ScriptkEase 4.20

ScripfEase

Desktop

lreasigh 4 Lis 4+

-

Copyright Notice

Copyright © 1993-2000 Nombas Incorporated.
All rights reserved.

No part of this manual may be copied without written permission by Nombas
Incorporated. To request permission to use a Nombas logo, or any section of this
manual, please contact:

Nombas Incorporated
64 Salem Street
Medford, MA 02155
USA
1-781-391-6595

Nombas home page. USA.
http://www.nombas.com/us/

ScriptEase Desktop home page.
http://www.sedesk.com

All Nombas products are trademarks or registered trademarks of Nombas
Incorporated. Other brand names are trademarks or registered trademarks or their
respective holders. Windows, as used in this manual, refers to Microsoft's
implementation of a windows system.

Technical documentation by Ronald Terry Constant

Table of Contents

TalE Of CONLENESoovieieeeie et 3
INEFOTUCTTION ... 9
SCHPLEASE DESKIOPccuvveiiteeiee sttt 9
SCHPLEASE PACKAOE ... ettt 10
SCHPLEASE JAVASCIIPL. ...ttt 13
BasiCS Of SCIIPLEASE......ccovieiiiee et 14
[BNEITIENS . 17
Dz e 1Y 01 PP 21
AULOMELIC tYPE CONVEISION.eeiiieiieeiieeeieeentieeeteeesieeesneeeeeeeesteeesneeeenneeeens 27
Properties and methods of basiC datatypes.........ccccevceverieriieenie e 27
(001 £ (0] 6 TR PRI 28
FIOW deCiSIONS SLALEMENES.........eiiriiiieiiee e 34
EXCeption handlingcoooeeiiei et 40
FUNCLIONS. ... 42
(@ o] = o1 TSP PRPUPRRTIN 49
DYNAMIC ODJECESeiieiie ettt e e e et e e neeeeneeeens 55
PrEIOIOCESSONceie ettt e e bt e e e e et e e e e e ene e e e e ennes 59
Variables in the enVIFONMENt...........c.ooiieiiiiiieeee e 59
Preprocessor DIFECHIVES.......cooueieiieeeeee e e eeeetee e e e seeeesneeeens 61
EXECULING @ SCHPE ..eeeeeiee ettt smeeeeneeeens 66
ScriptEase shell command-line ..o 66
RUNNING @ SCIIPL. .. et ettt e e e ens 68
Command-liNE SWITCNES..........ooiiiiiere e 72
Predefined VAUES...........oooiieee s 75
PreproCeSSOr VAIUES.........ccueiiiieeeiee et eee ettt e et e e sneeeeneeeens 75
Predefined constants and VAIUES..............cocieieeiieiieeiicsee e 77
QUICK Start TULOMT@leeeeiiiee e e e e e e e sre e e e s nre e e e enns 81
SCHPLEASE ShEl ... 81
SIMPIE SCIIPL. ..ttt n e nane e 82
Date and time diSplay.......cveeeieeeeiee et 82
FuNCtion With parameters.coooeee i 84
JLIC=: 0.1 20 o 1Y 86
FUNCEION WIth @TEIUM ..o 87
SCreen.WIite IMPIrOVEDcocviiiieiieeie et 88
T 1= SRR 91
Library and sSample fil€S..... ..o 94

USING HDrary fillES ... 95

INtegrated DEDUGOESeieiiiieiee et e e e 99
Using the ScriptEase DebUGQEYcoceeeiieeeiee e 100
MaiN MENU DA ... 106

SCriptEase VErsus C laNQUAGE............veeveeieeiieeieesiee st 113
DatatypeSin Cand SEc.oooiiiiiiieeere e 114
Automatic type deClarationccoeceeeiee e 114
ATITay rePreSENLAIIONcoeieei ettt e e eneeeeeeeas 115
Automatic array alloCatioNcceeeiiiieiee e 115
(L= = R o RS 116
SEUCIUIES ...ttt sn e e nn e 119
Passing variables by reference...........coov i eiee e 120
Pointer operator * and address operator &oooccvveveeeeieeeiie e 122
CaSE SLALEMENTS ... e 122
Initialization code which is external to fuNCtionS...........cccevveiieiieeieciiens 123
UNNECESSArY TOKENS.......oi ittt 123
= o OSSP 124
Token replacement MACTOS.........ueieeeeeieeeeieeereeeeieeeseeeeseeeseeeesneeeenneeeens 124
BaCK QUOLE SIINGS...ceeeeeeiiiieeiee ettt e e 125
Converting existing C code to SCriptEaSe.........cccocvvvieereerieeseeseeeeeee e 125

ATTAY ODJECL. ... e 127
L= 1o I = S 128
Array object inStanCe Properties.ccvvieeeree e 130
Array object instance methods ..o, 131

BIOD ODJECL ... 141
Blob object static methodsccooviiiii e, 141
blobDesCriptor OBJECT ... e 145

AN U g1 7 g o = SR PSTS 147
Number object instance Methods.............cccoeieriiiiricie e, 147

SEHD OBJECT ... 149
SElib object static MEthOUSoovieiieeeee e 149

BUFFEr ODJECL......eeeeee e 187
Buffer object instance properties.ccooveeeiee e 187
Buffer object instance methods............ooociiiii i, 189

SCrEEN ODJECE ...t 197
Screen object static MEthodSc.ooiviiiiii e 197

SUNG ODJECE ...t 205
SUNG 8S JALALTYPE. ...t 205
SUNG @S ODJECE ..ot 207

String object iNStanNCe PropErties........ccvvvviiieeieerie e 208

String object instance MEethOdS...........ooiviiieiie e 208
String object static MEthodScooiiiiiiie 216
REGEXP ODJECT ... 217
RegExp object instance Methods...........ooceieier e 217
OBJECE OIJECL ...ttt 219
Object object instance Methods............cooviiiii e 219
MEEN ODJECL.......eeeeeeiee e 221
Math object StatiC ProPErtieSccceee v 221
Math object static methods...........ccooooiiiii e, 223
(€1 Te] 7= e o] = SRS 233
100101%/= £=To] g ol o= i oo [F S 233
global ObjeCt ProPErtiES. . ..o 234
global object Methods/fUNCLIONS............cocviiieiie e 235
FUNCEION OBJECT ...t 249
Function object instance Methods............cccooiereiiiiiiieiee e, 249
D01 @] = USSR 253
Dos abject static MEthOUS.........cooiieeiiie e 253
ClID OBJECL ... 259
CoNS0IE [/O FUNCLIONSeeeieeiiieeie et 259
TIME FUNCLIONS. ... 268
SCHPL EXECULION ...ttt 274
o PSPPI 277
FHEITO e e 279
1 = (] SR 293
RS0 1 1] 0o PRSPPSO 295
Environment variableS...........ocooiiiiiiiiee e 298
Character ClassifiCatioNcocueiieeiieieee e 299
SrING MANTPUIBLION. ...t 303
Memory ManiPUIBEION.cocueiiiee e 322
IMEBEN .. 324
Variable argument [ISES......oocueiiiiieee e 335
UNIX ODJECE ... 341
Unix object static MELhOUS.........cceeeiiieeee e 341
B0O0I€aN ODJECL......oeiee e 347
Boolean object instance methods...........oocoieieeecicc e, 347
DaE ODJECT ... 349
Date object instance Methods..........cocoeve i 351
Date object static MEthOdS..........ooceee i 364

[g I o = =TT 367

UUCOAE LINK LIDIaIY.....cooieeeiee et 369
UU object static Methods..........coooeeiiie e, 369
DSP LINK LIBIaIY ..cceeeeeeeeee e 371
DSP ODJECL. ...ttt 371
Creating aDSP ODJECT.....coo e 371
USING 8DSP ODJEC ...t 372
DSP object instance MethOdScveeieeiiiiieeesee e 374
DSP object StatiC ProPertieSccoiveeieerierie e 380
GD LiNK LIBIarYcoeoeeeeiee ettt e e 381
GD OBJECL ...ttt 381
MDS5 Checksum Link Librarycccoooceeeieeeiireeee e 405
MAS ODJECE ... e s 405
md5 object iNStance MEthOdS...........cooieriiiee e 405
SEDBC LINK LiBraryc..cooeieiieieeee e 407
LN 5o L o] 1= ot 407
Database OBJECL........ccueeieiiiieieee e 416
SimpleDataset ODJECL..........ooieeiiiiiieiee e 427
SIPrOC ODJECT ... 440
SOCKEL LINK LIDIAIYeeeeeeieieieeeee e 447
SOCKEL ODJECL ... 447
Socket object instance MEthods.............cocviiieiiiiie e 447
Socket object static MEthodScooviiiiiiiei 454
Com Object Link Library.......cccooeeioeeeiee e 459
L0010 1 o] = S 459
SCHPL LIDIAITES. ...t 461
CommON SCHPEL HTDIANES.eeeeeee e 462
Common utility and sample SCrHPLS ..coeveeeiiieiee e 464
WiIN32 SCHPL HDraries.......cooeeeeeeeeee e 464
Win32 utility and SamPle SCriPLS........oeiveeiieiieeieesee e 466
Appendix B Instance and Static NOatioNc.ceevvveeieerieeniieeseenee e 467
String iNStANCE ProPErtiES.c..eeiuieiiieiee e 468
String iNStanCe MELhOUSooiiiiieec e 468
SUriNG SLALIC PrOPEITIESc..eieiieiiieere e 468
String Static MENOAS...........coceiieieee e 469
ProtOtYPE PrOPEITYeeeeeee ettt 469
Appendix A Grouped FUNCLIONS............ooiiiieiiieee e 471
ROULINES FOF @ITAYS. .. e eeeeieeee ettt et e s 471
ROULINES FOr BUFFEN'S......cieiiieeiieeie e 471

Routines for character ClasSifiCatioN..........ooviveeeieee et 472

Routines for CoNSOIE 1/O ... 472
Routines for CONVErsion/Castingccveueerieeneeneerieesieesee e 473
Routines for datalvariables...........cooviiiieieee e 473
ROULINES FOr dat@/tiMme........eee e 474
Routines for diagnOStiC/EITONcocvieiiiieciie e 475
Routines for directory, file, and OS...........ccooooeeiiiieeeee e, 475
Routines for display CONtrolooooiiriiieiee e 476
Routines for execution CONLIOlcooveiiieeeiiee e 476
Routines for file/stream 1/O........oceei e 477
ROULINES FOF MELN ... 477
Routines for memory manipulationc.ooceeeeieeiiereriee e 479
Routines for MisCellan@ousSoevieiriieiiiee e 479
Routines for strings/byte arrays....... ..o 480
Routines for variable argument liStS..........cooveieiiiiiii e, 481
L0 L= SR PSSTR 482

Introduction

Welcome to ScriptEase, the exciting world of scripting. ScriptEase is built on
JavaScript, which is perhaps the most popular scripting language in the world,
and is supported by C script, which is based on the most popular and powerful
programming language in the world. The guiding principles for the development
of ScriptEase are: smplicity, power, and safety. Prepare to take control of your
computer and to guide your computer destiny through the use of simple and
powerful scripts written in ScriptEase.

The foundation of ScriptEase is JavaScript which emphasizes simplicity and
flexibility. But what about the C scripting? Do you have to know the C language?
No, you do not need to know C to use ScriptEase, but the power of C is available
to you anytime you want to take advantage of it. Many scripts are written without
using C at all. Some programmers, especially those from a C background, write
scripts using C script also. The choiceisyours.

ScriptEase Desktop

ScriptEase Desktop, which is part of the Nombas product line of scripting
solutions, is designed to be used on individual computers, whether alone or in
networks. ScriptEase not only alows you to control your computer, but you may
control computers on a network through powerful networking capabilities. Even
more, ScriptEase Distributed Scripting Protocol allows auser on one computer in
a network, including the Internet, to run scripts on and control another computer
on the network. But, enough of previews into the awesome power available to
you in ScriptEase Desktop. The emphasis here is on simplicity for average
computer users, though experienced and professional programmers appreciate the
power of ScriptEase that allows them to accomplish more tasksin lesstime.

Most users want simple scripting ability so that they may control their computers
instead of their computers controlling them. ScriptEase allows you to take control
of your computer life and not be completely at the mercy of the whims and
mistakes of commercial programmers. Consider WordPad, the standard word
processor that comes with Windows95/98. Every time a user clicks the WordPad
icon, another instance of WordPad starts. Some users become frustrated. They
start an instance of WordPad to work on a document, not remembering that they
already have WordPad running with that same document in it. They lose work as

they save new changes over the other document. The result islost work and
frustration.

Some people like WordPad's ability to run multiple instances, but others dislike
it. For those who do not like to run multiple instances, ScriptEase provides a
solution. A ssimple script of afew lines can make sure that only one instance of
WordPad isrun at atime. You arein control.

Perhaps you have important data that you want backed up in a special way. A
ScriptEase script alows you to accomplish the task easily. Are these the only
ways to use ScriptEase. Of course not! The only real limitation is your
imagination and desire.

ScriptEase package

The ScriptEase Desktop package that you have received may be broken down
into the following categories.

The interpreter

The interpreter is comprised of the executable files that are often as the
interpreter. The interpreter isthe main program that interprets script or program
files. Scripts are plain text files that are normally written using any text editor.
For versions that support the integrated debugger, scripts may be written and
debugged in the debugger.

The debugger

Some versions of ScriptEase support the use of the Integrated Debugging
Environment (IDE). The IDE is a powerful source code debugger that allows you
to execute code using up-to-date features such as trace, stepping, break points,
and watches. These features are implemented through menus, shortcut keys, and
a multiple document interface (MDI), which means you can debug a script using
several windows to view the debugging process.

Library files

ScriptEase comes with many library files that have useful and powerful routines
for use in your own scripts. These library files can be easily included in your
Scripts giving you instant access to routines such as the dialog routinesin
dialog.jsh. When ScriptEase is installed, these library files are installed with
appropriate information provided to your computer system to use them
immediately and easily.

10

Prewritten routines

ScriptEase comes with many scripts that are complete and useful programs. An
example of such afileis deltreejsh which allows you to delete an entire directory
tree, including files. Another example is filecomp.jse which allows you to
compare two files. Like library files, these prewritten routines put into place
during installation with appropriate information provided to your computer
system to use them immediately and easily.

Sample files

Many sample files are installed with ScriptEase. These sample files range from
being examples and tutorials for writing scripts to being complete and use
programs.

Documentation

Up to the minute information and documentation about ScriptEase and installed
filesis kept in documentation files that come in various formats such as text, rtf,
and HTML. Further documentation, information about platform specific issues,
and information about installation are included as printed material accompanying
the main manual.

Installation

The installation procedure is self-explanatory and prompts for any information
that it needs. However, printed installation instructions are found in the printed
material that accompanies the main manual.

11

ScriptEase JavaScript

ScriptEase is a scripting or programming language that allows a computer user or
programmer to write simple scripts with tremendous power. The guiding
principles for ScriptEase are smplicity and power which add up to easy
elegance in scripting. Scripts are much easier to write and use than the source
code for compiled languages such as C++.

ScriptEase uses JavaScript, one of the most popular scripting language in today's
world, asits core language. In fact, ScriptEase uses the ECMA Script standard for
JavaScript. ECMAScript is the core version of JavaScript which has been
standardized by the European Computer Manufacturers Association and is the
only standardization of JavaScript. ScriptEase closely follows and will follow
this standardized JavaScript.

ScriptEase is not limited to JavaScript, as good as it may be. ScriptEase has
enhanced the power of JavaScript by adding two objects, Clib and SElib, that
have the power of the C programming language. Indeed, ScriptEase implements
ascripting version of C which has the power of C in asimple scripting language.
With the power of C readily available, computer users or programmers are able
to accomplish any tasks that they pursue. Both JavaScript and C script can be
intermingled in ScriptEase code, which allows scripters flexibility, power, and
simplicity.

The following line is a complete script which could be saved as a script file and
run as a program. The program simply displays a message, "A ssimple oneline
script,” on acomputer screen

Screen.witeln("A sinple one line script")

The following code fragment uses a more structured approach to accomplish the
same task. JavaScript and C share similar programming styles, such as the main()
function shown in this fragment.

function main()

Cib.puts("A sinple one line script");

A ScriptEase script may be written using a very straightforward scripting
approach as shown in the first example above, which is similar to the smple

13

scripting of a DOS batch file. A second line could be added to the single line as
shown in the following fragment.

Screen.witeln("A sinple one line script")
Cib.puts("Now there are two |ines")

The example using the main() function could be expanded as follows.

function main()

Cib.puts("A sinple one line script");
Screen.witeln("Now there are two |ines");

}

These examplesiillustrate how easily ScriptEase can be used in a ssimple scripting
mode and how easily the power of functions can be put in a script, and not just
the power of functions, but the power of C. They show how easily JavaScript and
C script can be intermingled, since C isimplemented as a JavaScript object.
Functions and other programming concepts are explained in the following
descriptions of the ScriptEase language. A tutorial section provides illustrations
of scriptsin addition to the example code fragments in the text.

Most JavaScript, other than ScriptEase, is part of web browsers and is used while
users are connected to the Internet. Usually people are unaware that JavaScript is
commonly being executed on their computers when they are connected to various
Internet sites. Not only are they unaware, they are unable to write and execute
scripts on their computers for their own uses. ScriptEase steps in at this point.
ScriptEase Desktop is designed for usersto control their own computersin a
stand alone mode. Users do not have to be connected to the Internet to use
ScriptEase, as they must be with other JavaScript interpreters.

Whether the desire is to write a smple script to copy a document to a backup
folder or to write an entire data processing program, ScriptEase can do the job or
any other job desired. ScriptEase has joined JavaScript and C. Further,
ScriptEase adds commands and functions not available in standard
implementations of either. In short, ScriptEase is the most powerful and
advanced scripting language available today, and it achieves its power while till
being smpleto use.

The following sections of this manual will help you to start enjoying the power of
ScriptEase.

Basics of ScriptEase

14

Case sensitivity

ScriptEase is case sensitive. A variable named "testvar” is a different variable
than one named "TestVar", and both of them can exist in a script at the same
time. Thus, the following code fragment defines two separate variables:

5
"five"

var testvar
var Test Var

All identifiersin ScriptEase are case sensitive. For example, to display the word
"dog" on the screen, the Screen.write() method could be used:
Screen.write("dog"). But, if the capitalization is changed to something like,
Screen.Write("dog"), then the ScriptEase interpreter generates an error message.
Control statements and preprocessor directives are also case sensitive. For
example, the statement "while" isvalid, but the word "While" is not. The
directive "#if" works, but the letters "# F" fail.

White space characters

White space characters, space, tab, carriage-return and new-line, govern the
spacing and placement of text. White space makes code more readable for
humans, but isignored by the interpreter.

Lines of script end with a carriage-return, and each line is usually a separate
statement. (Technically, in many editors, lines end with a carriage-return and
linefeed pair, "\r\n".) Since the interpreter usually sees one or more white space
characters between identifiers as simply white space, the following ScriptEase
statements are equivalent to each other:

var x=a+b
var X = a + b
var x = a + b
var X = a
+ b

White space separates identifiers into separate entities. For example, "ab" is one
variable name, and "a b" istwo. Thus, the fragment, "var ab = 2" isvalid, but
"var ab = 2" isnot.

Many programmers use al spaces and no tabs, because tab size settings vary
from editor to editor and programmer to programmer. By using spaces only, the
format of a script will look the same on all editors. All scripts provided by
Nombas with ScriptEase use spaces only.

15

Comments

A comment istext in a script to be read by humans and not the interpreter which
skips over comments. Comments help people to understand the purpose and
program flow of a program. Good comments, which explain lines of code well,
help people ater code that they have written in the past or that was written by
someone else.

There are two formats for comments: end of line comments and block comments.
End of line comments begin with two slash characters, "//". Any text after two
consecutive slash charactersisignored to the end of the current line. The
interpreter begins interpreting text as code on the next line. Block comments are
enclosed within a beginning block comment, "/**, and an end of block comment,
"*[". Any text between these markersis a comment, even if the comment extends
over multiple lines. Block comments may not be nested within block comments,
but end of line comments can exist within block comments.

The following code fragments are examples of valid comments:

// this is an end of |ine coment

/* this is a block comment

This is one big comment bl ock.

/1 this comment is okay inside the block
Isn't it pretty?
*/

var FavoriteAnimal = "dog"; // except for poodles

// This line is a coment but
var TestStr = "this line is not a comment"”

Expressions, statements, and blocks

An expression or statement is any sequence of code that performs a computation
or an action, such as the code "var TestSum = 4 + 3" which computes a sum and
assignsit to avariable. ScriptEase code is executed one statement at atimein the
order inwhich it is read. Many programmers put semicolons at the end of
statements, although they are not required. Each statement is usually written on a
separate line, with or without semicolons, to make scripts easier to read and edit.

A statement block is a group of statements enclosed in curly braces, "{}", which
indicate that the enclosed individual statements are a group and are to be treated
as one statement. A block can be used anywhere that a single statement can.

16

A while statement causes the statement after it to be executed in aloop. By
enclosing multiple statements in curly braces, they are treated as one statement
and are executed in the while loop. The following fragment illustrates:

whi | e(Ther eAreUncal | edNamesOnTheli st () == true)
{

var nane = Get NameFronTheli st ();
Cal | t hePer son(nane) ;
LeaveTheMessage() ;

}

All three lines after the while statement are treated as a unit. If the braces were
omitted, the while loop would only apply to the first line. With the braces, the

script goes through al lines until everyone on the list has been called. Without
the braces, the script goes through all names on the list, but only the last oneis
called. Two very different procedures.

Statements within blocks are often indented for easier reading.

ldentifiers

Identifiers are merely names for variables and functions. Programmers must
know the names of built in variables and functions to use them in scripts and
must know some rules about identifiers to define their own variables and
functions. The following rules are smple and intuitive.

Identifiers may use only ASCI|I letters, upper or lower case, digits, the
underscore, """, and the dollar sign, "$". That is, they may use only
characters from the following sets of characters.

" ABCDEFGHI J KL MNOPQRSTUWWKYZ"

"abcdef ghi j kIl mopgr st uvwxyz"

"0123456789"

" g

Identifiers may not use the following characters.

"t <> =1 %~ {3 O[],

Identifiers must begin with aletter, underscore, or dollar sign, but may have
digits anywhere else.

Identifiers may not have white space in them since white space separates
identifiers for the interpreter.

Identifiers may be aslong a programmer needs.

The following identifiers, variables and functions, are valid:

17

Sid

Nancy7436

annual Report

si d_and_nancy_pr epar ed_t he_annual Report
$alice

Cal cul ateTot al ()

$Subt ract Less()

_Divide$All ()

The following identifiers, variables and functions, are not valid:

1sid

2nancy

t hi s&t hat

Sid and Nancy

r at sAndCat s?
=Total ()

(M nus) ()

Add Both Fi gures()

Prohibited identifiers

The following words have specia meaning for the interpreter and cannot be used
as identifiers, neither as variable nor function names;

break case catch class const continue debugger

default delete do ese enum export extends

false finaly for function if import in

new null return super switch this throw

true try typeof while with var void
Variables

A variableis an identifier to which data may be assigned. Variables are used to
store and represent information in a script. Variables may change their values,
but literals may not. For example, if programmers want to display a name
literally, they must use something like the following fragment multiple times.

Screen.witel n("Runpel stiltskin Henry Constantinople")

But they could use a variable to make their task easier, asin the following.

var Nane = "Runpel stiltskin Henry Constantinople"
Screen. wri t e(Nane)

Then they can use shorter lines of code for display and use the same lines of code
repeatedly by simply changing the contents of the variable Name.

18

Variable scope

Variables in ScriptEase may be either global or local. Global variables may be
accessed and modified from anywhere in a script. Local variables may only be
accessed from the functions in which they are created. There are no absolute
rulesfor preferring or using global or local variables. Each type hasvalue. In
general, programmers prefer to use local variables when reasonable since they
facilitate modular code that is easier to alter and develop over time. It is generaly
easier to understand how local variables are used in a single function than how
global variables are used throughout an entire program. Further, local variables
conserve system resources.

To make alocal variable, declareit in afunction using the var keyword:
var perfect Nunber;

A value may be assigned to a variable when it is declared:
var perfect Nunber = 28;

The default behavior of ScriptEase is that variables declared outside of any
function or inside a function without the var keyword are global variables.
However, this behavior can be changed by the DefaultL ocalVars and
RequireVarKeyword settings of the #option preprocessor directive. This directive
is explained in the section on preprocessing. For now, consider the following
code fragment.

var a = 1;
function main()

b =1
var d = 3;
soneFuncti on(d);

}

functi on someFunction(e)

{

var ¢ = 2

}

In this example, aand b are both global variables, since ais declared outside of a
function and b is defined without the var keyword. The variables, d and c, are
both local, since they are defined within functions with the var keyword. The
variable ¢ may not be used in the main() function, sinceit is undefined in the

19

scope of that function. The variable d may be used in the main() function and is
explicitly passed as an argument to someFunction() as the parameter e. The
following lines show which variables are available to the two functions:

mai n(): a, b, d
soneFunction(): a, b, ¢, e

It is possible, though not usually a good ides, to have local and global variables
with the same name. In such a case, aglobal variable must be referenced as a
property of the global object, and the variable name used by itself refersto the
local variable. In the fragment above, the global variable a can be referenced
anywherein its script by using: "global.a".

Function identifier

Functions are identified by names, as variables are. Functions perform script
operations, and variables store data. Functions do the work of a script and will be
discussed in more detail later. The reason they are mentioned here is simply to
point out that they have identifiers, names, that follow the same rules for
identifiers as variable names do.

Function scope

Functions are al global in scope, much like global variables. A function may not
be declared within another function so that its scope is merely within a certain
function or section of a script. All functions may be called from anywherein a
script. If it is helpful, think of functions as methods of the global object. The
following two code fragments do exactly the same thing. Thefirst callsa
function, SumTwo(), as afunction, and the second calls SumTwo() as a method
of the global object.

/1 fragnent one
function Sunfwo(a, b)

{

return a + b

}

Screen. writel n(Sunfwo(3, 4))

/1 fragnent two
function Sunmlfwo(a, b)

{

return a + b

}

20

Screen. writel n(gl obal . SunTwo(3, 4))

Data types

Datatypes in ScriptEase can be classified into three groupings: primitive,
composite, and special. In a script, data can be represented by literals or
variables. The following lines illustrates variables and literals:

14;
"test string";

var Test Var
var aString

The variable TestVar is assigned the literal 14, and the variable aString is
assigned the literal "test string”. After these assignments of literal valuesto
variables, the variables can be used anywhere in a script where the literal values
could to be used.

In the fragment above which defines and uses the function SumTwo(), the
literals, 3 and 4, are passed as arguments to the function SumTwo() which has
corresponding parameters, aand b. The parameters, aand b, are variables for the
function the hold the literal values that were passed to it.

Data types need to be understood in terms of their literal representationsin a
script and of their characteristics as variables.

Data, in literal or variable form, is assigned to a variable with an assignment
operator which is often merely an equal sign, "=" as the following lines illustrate.
var happyVariable = 7;
var joyful Variable = "free chocol ate";

var theWrldlsFlat = true;
var happyToo = happyVari abl e;

Thefirst time avariable is used, its type is determined by the interpreter, and the
type remains until alater assignment changes the type automatically. The
example above creates three variables, each of a different type. Thefirstisa
number, the second is a string, and the third is a boolean variable. Variable types
are described below. Since ScriptEase automatically converts variables from one
type to another when needed, programmers normally do not have to worry about
type conversions as they do in strongly typed languages, such as C.

Primitive data types

Variables that have primitive data types pass their data by value, by actualy
copying the data to the new location. The following fragment illustrates:

21

var a
var b

"abc";
Ret ur nVal ue(a);

function ReturnVal ue(c)

{
}

After "abc" is assigned to variable a, two copies of the string "abc" exist, the
origina literal and the copy in the variable a While the function ReturnValueis
active, the parameter/variable ¢ has a copy, and three copies of the string "abc"
exist. If c were to be changed in such afunction, variable a, which was passed as
an argument to the function, would remain unchanged. After the function
ReturnValue isfinished, a copy of "abc" isin the variable b, but the copy in the
variable c in the function is gone because the function is finished. During the
execution of the fragment, as many as three copies of "abc" exist at one time.

return c;

The primitive data types are: Number, Boolean, and String.

Number type

Integer

Integers are whole numbers. Decimal integers, such as 1 or 10, are the most
common numbers encountered in daily life. ScriptEase has three notations for
integers. decimal, hexadecimal, and octal.

Decimal

Decimal notation is the way people write numbers in everyday life and uses base
10 digits from the set of 0-9. Examples are:

1, 10, 0, and 999
var a = 101;
Hexadecimal

Hexadecimal notation uses base 16 digits from the sets of 0-9, A-F, and a-f.
These digits are preceded by Ox. ScriptEase is not case sensitive when it comes to
hexadecimal numbers. Examples are:

Ox1l, 0x01, 0x100, Ox1F, O0Ox1f, OxABCD
var a = 0x1b2E;
Octal

Octal notation uses base 8 digits from the set of 0-7. These digits are preceded by
0. Examples are:

22

00, 05, and 077
var a = 0143;

Floating point

Floating point numbers are number with fractional parts which are often
indicated by a period, for example, 10.33. Floating point numbers are often
referred to as floats.

Decimal
Decimal floats use the same digits as decimal integers but alow a period to
indicate afractional part. Examples are:

0.32, 1.44, and 99.44
var a = 100.55 + . 45;

Scientific

Scientific floats are often used in the scientific community for very large or small
numbers. They use the same digits as decimals plus exponential notation.
Scientific notation is sometimes referred to as exponential notation. Examples
arel

4,087e2, 4.087E2, 4.087e+2, and 4.087E-2
var a = 5.321e33 + 9. 333e-2;

Boolean type

Booleans may have only one of two possible values: false or true. Since
ScriptEase automatically converts values when appropriate, Booleans can be
used as they are in languages such as C. Namely, faseis zero, and true is non-
zero. A script is more precise when it uses the actual ScriptEase values, false and
true, but it will work using the concepts of zero and not zero. When aBoolean is
used in anumeric context, it isconverted to O, if it isfalse, and 1, if it istrue.

String type

A String is a series of characters linked together. A string is written using
quotation marks, for example: "l am astring”, 'so am I', ‘'metoo’, and "344". The
string "344" is different from the number 344. Thefirst is an array of characters,
and the second is a value that may be used in numerical calculations.

ScriptEase automatically converts strings to numbers and numbers to string,
depending on context. If a number isused in astring context, it is converted to a
string. If astring is used in a number context, it is converted to a numeric value.
Automatic type conversion is discussed more fully in alater section

23

Strings, though classified as a primitive, are actualy a hybrid type that shares
characteristics of primitive and composite data types. Strings are discussed more
fully alater section.

Composite data types

Whereas primitive types are passed by value, composite types are passed by
reference. When a composite type is assigned to a variable or passed to a
parameter, only areference that points to its data is passed. The following
fragment illustrates:

var Antbj = new bj ect;

AnQbj . nane = "Joe";
AnQbj . ol d = Ret ur nName(AnQbj)

function ReturnNane(Cur Obj)
{

return Cur Qoj . name

}

After the object AnObj is created, the string "Joe" is assigned, by value since a
property is avariable within an Object, to the property AnObj.name. Two copies
of the string "Jo€" exist. When AnObj is passed to the function ReturnName, it is
passed by reference. CurObj does not receive a copy of the Object, but only a
reference to the Object. With this reference, CurObj can access every property
and method of the original. If CurObj.name were to be changed while the
function was executing, then AnObj.name would be changed at the same time.
When AnObj.old receives the return from the function, the return is assigned by
value, and a copy of the string "Joe" transferred to the property. Thus, AnObj
holds two copies of the string "Joe": one in the property .name and one in the
property .old. Three total copies of "Joe" exist, counting the original string literal.

The composite data types are: Object and Array.

Object type

An object is a compound data type, consisting of one or more pieces of data of
any type which are grouped together in an object. Data that are part of an object
are called properties of the object. The Object datatypeis similar to the structure
datatype in C and in previous versions of ScriptEase. The object data type also
allows functions, called methods, to be used as object properties. Indeed, in
ScriptEase, functions are considered to be like variables. But for practical
programming, think of objects as having methods, which are functions, and
properties, which are variables and constants.

24

Objects and their characteristics are discussed more fully in alater section.

Array type

An array isaseries of data stored in avariable that is accessed using index
numbers that indicate particular data. The following fragmentsillustrate the
storage of the datain separate variables or in one array variable:

var Test0 = "one";
var Testl = "two";
var Test2 = "three";

var Test = new Array,;

Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

After either fragment is executed, the three strings are stored for later use. In the
first fragment, three separate variables have the three separate strings. These
variables must be used separately. In the second fragment, one variable holds all
three strings. This array variable can be used as one unit, and the strings can be
accessed individually. The similarities, in grouping, between Arrays and Objects
is more than dight. In fact, Arrays and Objects are both objects in ScriptEase
with different notations for accessing properties. For practical programming,
Arrays may be considered as a data type of their own.

Arrays and their characteristics are discussed more fully in alater section.

Special values

undefined
If avariableis created or accessed with nothing assigned to it, it is of type
undefined. An undefined variable merely occupies space until avalue is assigned
toit. When avariable is assigned avalue, it is assigned a type according to the
value assigned. Though variables may be of type undefined, thereis no literal
representation for undefined. Consider the following invalid fragment.

var test;

if (test == undefined)
Screen.witeln("test is undefined")

After var test is declared, it is undefined since no value has been assigned to it.
But, thetest, "t est == undefi ned", isinvalid because there is no way to
literally represent undefined.

null

25

Null is a special datatype that indicates that a variable is empty, a condition that
is different from being undefined. A null variable holds no value, though it might
have previoudly. The null type is represented literally by the identifier, null.
Since ScriptEase automatically converts data types, null is both useful and
versatile. The code fragment above will work if "undefined” is changed to
"null", as shown in the following:

var test;

if (test == null)

Screen.write("test is undefined")

Since null has a literal representation, assignments like the following are valid:

var test = null;

Any variable that has been assigned a value of null can be compared to the null
literal.

NaN
The NaN type means "Not a Number”. NaN is merely an acronym for the phrase.
However, NaN does not have aliteral representation. To test for NaN, the
function, isNaN(), must be used, as illustrated in the following fragment:

var Test = "a string";

if (isNaN(parselnt(Test)))
Screen.witeln("Test is Not a Nunber");

When the parselnt() function tries to parse the string "a string” into an integer, it
returns NaN, since "a string" does not represent a number like the string "22"
does.

Number constants
Several numeric constants can be accessed as properties of the Number object,
though they do not have a literal representation.

Constant Value Description
Nunber . MAX_VALUE 1.7976931348623157e+308 L argest number
(positive)
Nunber . M N_VALUE 2.2250738585072014e-308 Smallest
number
(negative)
Nurber . NaN NaN Not a Number
Nunber . POSI TI VE_I NFI NI TY Infinity Number above
MAX_VALUE

26

Number . NEGATI VE_I NFI NI TY - Infinity Number below
M N_VALUE

Automatic type conversion

When avariable is used in a context where it makes sense to convert it to a
different type, ScriptEase automatically converts the variable to the appropriate
type. Such conversions most commonly happen with numbers and strings. For
example:

"dog" + "house" == "doghouse" // two strings are joined
"dog" + 4 == "dog4" /! a nunber is converted
4 + "4" == "44" // to a string

4 + 4 == /1 two nunbers are added
23 - "17" == /1 a string is converted

/1l to a nunber

Converting numbersto strings is fairly straightforward. However, when
converting strings to numbers there are several limitations. While subtracting a
string from a number or a number from a string converts the string to a number
and subtracts the two, adding the two converts the number to a string and
concatenates them. String always convert to a base 10 number and must not
contain any characters other than digits. The string "110n" will not convert to a
number, because the ScriptEase interpreter does not know what to make of the
"n" character.

Y ou can specify more stringent conversions by using the global methods,

par sel nt () and par seFl oat () methods. Further, ScriptEase has many global
functions to cast data as a specific type, functions that are not part of the

ECMA Script standard. These functions are described in the section on global
functions that are specific to ScriptEase.

Properties and methods of basic data
types

The basic data types, such as Number and String, have properties and methods
assigned to them that may be used with any variable of that type. For example,
all String variables may use al String methods.

The properties and methods of the basic data types are retrieved in the same way
as from objects. For the most part, they are used internally by the interpreter, but

27

you may use them if choose. For example, if you have a numeric variable called
number and you want to convert it to a string, you can use the .toString() method
asillustrated in the following fragment.

5
n.toString()

var n
var s

After this fragment executes, the variable n contains the number 5 and the
variable s contains the string "5".

The following two methods are common to all variables and data types.

toString()

This method returns the value of a variable expressed as a string. Every datatype
hast oSt ri ng() asamethod. Thus, t oSt ri ng() isdocumented here and not
in every conceivable place that it might be used.

valueOf()

This method returns the value of avariable. Every datatype hasval ueOf () asa
method. Thus, val ueO () is documented here and not in every conceivable
place that it might be used.

Operators

Object operator

The object operator isaperiod, ". . This operator allows properties and methods
of an object to be accessed and used. For example, abs() is a method of the Math
object. It may be accessed as follows:

var AbsNum = Mat h. abs(-3)

The variable AbsNum now equals 3. The variable AbsNum is an instance of the
Number object, not an instance of the Math object. Why? It is assigned the
number 3 which is the return of the Mat h. abs() method.

The Mat h. abs() method is a static method, that is, it is used directly with the
Math object instead of an instance of the object. Many methods are instance
methods, that is, they are used with instances of an object instead of the object
itself. Thesubst ri ng() method is an instance method of the String object. An
instance method is not used with an object itself but only with instances of an
object. Thesubst ri ng() method is never used with the String object as

28

St ring. substring() . Thefollowing fragment declares and initializes a string
variable, which is an instance of the string object, and then uses the substring()
method with this instance by using the object operator.

var s = "One Two Three";
var new = s.substring(4,7);

The variable sis an instance of the String object since it isinitialized as a string.
The variable new now equals "Twao" and is also an instance of the String object
sincethesubst ri ng() method returns a string.

The main point here is that the period ". " is an object operator that may be used
with both static and instance methods and properties. A method or property is
simply attached to an appropriate identifier using the object operator, which then
accesses the method or property.

Mathematical operators

Mathematical operators are used to make calculations using mathematical data.
The following sections illustrate the mathematical operatorsin ScriptEase.

Basic arithmetic
The arithmetic operators in ScriptEase are pretty standard.

= assignment assignsavalueto avariable
+ addition adds two numbers
subtraction subtracts a number from another
* multiplication multiplies two numbers
/ division divides a number by another
% modulo returns aremainder after division

The following are examples using variables and arithmetic operators.

-

va
i iisnow 2

+ 35 iisnow 5, (2+3)

3; iisnow 2, (5-3)

i isnow 10, (2*5)

iisnow 3, (10/3) (remainder isignored)
0; i isnow 10

% 3; iisnow 1, (10%3)

29

Expressions may be grouped to affect the sequence of processing. All
multiplications and divisions are calculated for an expression before additions
and subtractions unless parentheses are used to override the normal order.
Expressions inside parentheses are processed first, before other calculations. In
the following examples, the information inside square brackets, "[]," are
summaries of calculations provided with these examples and not part of the
calculations.

Notice that:
4 * 7 - 5* 3 [28 - 15 = 13]

has the same meaning, due to the order of precedence, as:
(4*7) - (5*3); [28 - 15 = 13]

but has a different meaning than:
4* (7- 5) *3 [4*2*3=24

which is till different from:
4% (7 - (5*3)); [4* - 8=- 32

The use of parentheses is recommended in all cases where there may be
confusion about how the expression is to be evaluated, even when they are not
necessary.

Assignment arithmetic

Each of the above operators can be combined with the assignment operator, =, as
ashortcut for performing operations. Such assignments use the value to the right

of the assignment operator to perform an operation with the value to the left. The
result of the operation is then assigned to the value on the left.

= assignment assignsavaueto avariable

+= assign addition adds avalueto avariable

- = assign subtraction subtracts a value from avariable
*= assign multiplication multiplies avariable by avalue
/= assign division divides avariable by avalue

% assign remainder returns aremainder after division

The following lines are examples using assignment arithmetic.
var i;
=2 iisnow 2

30

+

|
1

w
w -*

iisnow 5, (2+3)

sameasi =i+ 3

|

- iisnow 2, (5-3) sameasi=i- 3
i *=5; i isnow 10, (2*5) sameasi=i*5
i /1=3; iisnow 3, (10/3) sameasi=i/3
i = 10; i isnow 10

i % 3; i isnow 1, (10%3) sameasi =i %3

Auto- increment (++) and auto- decrement (- -)

To add or subtract one, 1, to or from a variable, use the auto- increment, ++, or
auto- decrement, - - , operator. These operators add or subtract 1 from the value
to which they are applied. Thus, "i++" isashortcut for "i += 1", whichisa
shortcut for "i =i + 1",

These operators can be used before, as a prefix operator, or after, as a postfix
operator, their variables. If they are used before avariable, it is atered beforeit is
used in a statement, and if used after, the variable is dtered after it is used in the
statement. The following lines demonstrates prefix and postfix operations.

=4 iis4

jo= A jis5,iis5 (i was incremented before use)
jo= i jis5,iis6 (i was incremented after use)
= -0 jis5,iis5 (i was decremented before use)
=i jis5,iis4 (i was decremented after use)
I+t iisb (i was incremented)

Bit operators

ScriptEase contains many operators for operating directly on the bitsin a byte or
an integer. Bit operations require a knowledge of bits, bytes, integers, binary
numbers, and hexadecimal numbers. Not every programmer needs to or will
choose to use bit operators.

<< shift left i =0 << 2
<<= assignment shift left i <<= 2:

>> shift right i =i > 2
>>= assignment shift right i >>= 2;
»>> shift left with zeros i =0 >>> 2
»>>= assignment shift left with zeros i >>>= 2

& bitwise and i =i &1
& assignment bitwise and i &= 1;

| bitwise or =i | 1

31

1
=

assignment bitwise or

A bitwise xor, exclusive or

N= assignment bitwise xor, exclusive or
~ Bitwise not, complement

Nl

> | —
n _.
=

Logical operators and conditional expressions

Logical operators compare two values and evaluate whether the resulting
expression isfalse or true. The value false is zero, and true is not false, that is,
anything not zero. A variable or any other expression may be false or true, that is,
zero or non-zero. An expression that does a comparison is called a conditiona
expression.

Many values are evaluated as true, in fact, everything except 0. It is often safer to
make comparisons based on false, which is only one value, rather than to true,
which can be many. Expressions can be combined with logic operators to make
complex true/false decisions.

Logical operators are used to make decisions about which statements in a script
will be executed, based on how a conditional expression evaluates. As an
example, suppose that you are designing a simple guessing game. The computer
thinks of a number between 1 and 100, and you guess what it is. The computer
tellsyou if you areright or not and whether your guessis higher or lower than
the target number. This procedure uses the if statement, which isintroduced in
the next section. Basically, if the conditional expression in the parenthesis
following an if statement is true, the statement block following the if statement is
executed. If false, the statement block is ignored, and the computer continues
executing the script at the next statement after the ignored block. The script
might have a structure similar to the one below in which GetTheGuess() isa
function that gets your guess.

var guess = Get TheGuess(); //get the user input
if (guess > target_nunber)

...guess is too high...

}

if (guess < target_nunber)

{
}

if (guess == target_nunber)

...guess is too |low..

32

{

...you guessed the nunber!...

Thisexample is simple, but it illustrates how logical operators can be used to
make decisions in ScriptEase.

The logical operators are:

&&

not

and

or

equality

inequality
identity

non-identity

less than

greater than

less than or equd to
greater than or equal
to

reverses an expression. If (at+b) istrue, then
I(atb) isfase.

trueif, and only if, both expressions are true.
Since both expressions must be true for the
statement as awhole to be true, if the first
expression isfalse, thereis no need to
evaluate the second expression, since the
whole expression is false.

true if either expression is true. Since only one
of the expressionsin the or statement needs to
be true for the expression to evaluate as true,
if the first expression evaluates as true, the
interpreter returns true and does not bother
with evaluating the second.

trueif the values are equal, else false. Do not
confuse the equality operator, ==, with the
assignment operator, =.

true if the values are not equal, else false.

true if the values are identical or strictly equal,
elsefalse. No type conversions are performed
as with the equality operator.

true if the values are not identical or not
gtrictly equal, else false. No type conversions
are performed as with the inequality operator.
a<bistrueif aislessthan b.

a>bistrueif aisgreater than b.
a<=bistrueif aislessthan or equal to b.
a>=bistrueif aisgreater than b.

Remember, the assignment operator, =, is different than the equality operator,
==. If you use one equal sign when you intend two, your script will not function

33

the way you want it to. Thisis a common pitfall, even among experienced
programmers. The two meanings of equal signs must be kept separate, since there
are times when you have to use them both in the same statement, and thereis no
way the computer can differentiate them by context.

Instanceof operator

The instanceof operator, which also may used asi nst anceof (), determinesif a
variable is an instance of a particular object. Since the variable sis created as an
instance of the String object in the following code fragment, the second line
displaystrue.

var s = new String("abcde")
Screen.writeln(s instanceof String); /1l Displays true

The second line could aso be written as;

Screen.witeln(s instanceof (String));

typeof operator

The typeof operator, which also may be used ast ypeof (), provides away to
determine and to test the data type of a variable and may use either of the
following notations, with or without parentheses.

var result = typeof variable
var result = typeof(variable)

After either line, the variable result is set to a string that is represents the

variable's type: "undefined", "boolean"”, "string", "object”, "number", or
"function”.

Flow decisions statements

This section describes statements that control the flow of a program. Use these
statements to make decisions and to repeatedly execute statement blocks.

if
Theif statement is the most commonly used mechanism for making decisionsin
aprogram. It allows you to test a condition and act on it. If an if statement finds

the condition you test to be true, the statement or statement block following it are
executed. The following fragment is an example of an if statement.

if (goo < 10)

{
}

Screen.wite("goo is smaller than 10\n");

else

The else statement is an extension of the if statement. It alows you to tell your
program to do something elseif the condition in the if statement was found to be
false. In ScriptEase code, it looks like the following.

if (goo < 10)

Screen.wite("goo is smaller than 10\ n");

}
el se
{ . .
Screen.write("goo is not snaller than 10\ n");
}

To make more complex decisions, else can be combined with if to match one out
of anumber of possible conditions. The following fragment illustrates using else
with if.

if (goo < 10)

{

Screen.write("goo is less than 10\n");
if (goo <0)
{

Screen.wite("goo is negative; so it's less than 10\n");

}
else if (goo > 10)
{
Screen.wite("goo is greater than 10\n");
}
el se
{
Screen.write("goo is 10\n");
}
while

The while statement is used to execute a particular section of code, over and over
again, until an expression evaluates as false.

whi | e (expression)

{

35

DoSorret hi ng() ;
}

When the interpreter comes across a while statement, it first tests to see whether
the expression istrue or not. If the expression istrue, the interpreter carries out
the statement or statement block following it. Then the interpreter tests the
expression again. A while loop repeats until the test expression evaluates to false,
whereupon the program continues after the code associated with the while
Statement.

The following fragment illustrates a while statement with atwo lines of codein a
statement block.

whi | e(Ther eAreUncal | edNanmesOnTheLi st () != fal se)

{ var name=Get NaneFr onirheLi st ();
SendEnmai | (nane) ;
}
do {...} while

The do statement is different from the while statement in that the code block is
executed at least once, before the test condition is checked.

var value = 0;
do

{

val ue++;
ProcessDat a(val ue) ;
} while(value < 100);

The code used to demonstrate the while statement could also be written as the
following fragment.

do
{

var nane = Get NameFronTheli st ();
SendEnai | (nane)
} while (name !'= ThelLast NameOnThelist());

Of course, if there are no names on the list, the script will run into problems!

for

36

The for statement is a specia looping statement. It allows for more precise
control of the number of times a section of code is executed. The for statement
has the following form.

for (initialization; conditional; |oop_expression)
{

st at enent
}

Theinitialization is performed first, and then the expression is evaluated. If the

result istrue or if there is no conditional expression, the statement is executed.

Then the loop_expression is executed, and the expression is re- evaluated,

beginning the loop again. If the expression evaluates as fal se, then the statement

is not executed, and the program continues with the next line of code after the

statement. For example, the following code displays the numbers from 1 to 10.
for(var x=1; x<11; x++)

{
}

None of the statements that appear in the parentheses following the for statement
are mandatory, so the above code demonstrating the while statement would be
rewritten thisway if you preferred to use afor statement:

for(; ThereAreUncal | edNanesOnThelList() ;)
{

Screen.write(x);

var name=Get NaneFr onirheLi st ();
SendEnai | (nane)

}

Since we are not keeping track of the number of iterations in the loop, thereis no
need to have an initialization or loop_expression statement. Y ou can use an
empty for statement to create an endless |oop:

for(;:)

//the code in this block will repeat forever,

/lunl ess the program breaks out of the for |oop sonehow.
}
break

Break and continue are used to control the behavior of the looping statements:
for, while, and do. The break statement terminates the innermost loop of for,
while, or do statements. The program resumes execution on the next line

37

following the loop. The following code fragment does nothing but illustrate the
break statement.

for(;:)

br eak;

}

The break statement is also used at the close of a case statement, as shown below.

continue

The continue statement ends the current iteration of aloop and begins the next.
Any conditional expressions are reevaluated before the loop reiterates.

switch, case, and default

The switch statement makes a decision based on the value of a variable or
statement. The switch statement follows the following format:

switch(switch_variable)

{

case val uel:
statenentl
br eak;

case val ue2:
st at enent 2
br eak;

defaul t:
def aul t _st at enent

}

The variable switch_variable is evaluated, and then it is compared to all of the
valuesin the case statements (valuel, value2, . . ., default) until amatchis
found. The statement or statements following the matched case are executed until
the end of the switch block is reached or until abreak statement exits the switch
block. If no match is found, the default statement is executed, if there is one.

For example, suppose you had a series of account numbers, each beginning with
a letter that determines what type of account it is. Y ou could use a switch
statement to carry out actions depending on that first letter. The same task could
be accomplished with a series of nested if statements, but they require much
more typing and are harder to read.

38

switch (key[O0])

case 'A':
Screen.wite("A"); //handle 'A accounts...
br eak;

case 'B':
Screen.wite("B"); //handle 'B accounts...
br eak;

case 'C:
Screen.wite("C'); //handle 'C accounts...
br eak;

defaul t:
Screen.wite("lInvalid account nunber.\n");
br eak;

}

A common mistake is to omit a break statement to end each case. In the
preceding example, if the break statement after the Screen.write("B") statement
were omitted, the computer would print both "B" and "C", since the interpreter
executes commands until a break statement is encountered.

Normally, if aswitch and series of case statements reference array variables, then
a comparison is performed whether or not the reference the same array data. But
if either the switch variable or one of the case valuesis a litera string, then the
comparison of the strings is done using the values of the stringsin a .strcmp()
type comparison.

goto and labels

Y ou may jump to any location within afunction block by using the goto
statement. The syntax is:

goto LABEL;

where label is an identifier followed by a colon (:). The following code fragment
continuously prompts for a number until a number less than 2 is entered.

begi nni ng:

Screen.wite("Enter a nunber less than 2:")
var x = getche(); //get a value for x
if (a>=2)

got o begi nni ng;
Screen.wite(a);

Asarule, goto statements should be used sparingly, since they make it difficult
to track program flow.

39

Conditional operator

The conditional operator, "? : ", provides a shorthand method for writing if
statements. It is harder to read than conventiona if statements, and so is
generally used when the expressionsin the if statements are brief. The syntax is:

test _expression ? expression_if_true : expression_if_false

First, test_expression is evaluated. If test_expression is non- zero, true, then
expression_if_trueis evaluated, and the value of the entire expression replaced
by the value of expression_if_true. If test_expression is false, then
expression_if_false is evauated, and the value of the entire expression is that of
expression_if _false.

The following fragment illustrates the use of the conditional operator.

foo=(5<6) ? 100 : 200; // foo is set to 100
Screen.wite("Narme is " + ((null==nane) ? "unknown" : nane));

Exception handling

Exception handling statements consist of: t hrow, t ry, cat ch, andfi nal | y.
The concept of exception handling includes dealing with unusual resultsin a
function and with errors and recovery from them. Exception handling that uses
thet ry related statements is most useful with complex error handling and
recovery. Testing for simple errors and unwanted results is usually handled most
easily with familiar i f or swi t ch statements. In this section, the discussion and
examples deal with smple situations, since explanation and illustration are the
godls. The exception handling statements might seem clumsy or bulky here, but
do not lose sight of the fact that they are very powerful and elegant in real world
programming where error recovery can be very complex and require much code
when using traditional statements.

Another advantage of using t r y related exception handling is that much of the
error trapping code may be in afunction rather than in the al the places that call
afunction.

Before getting to specifics, here is some generalized phrasing that might help
working with exception handling statements. A function has codein it to detect
unusual results and to throw an exception. The function is called from inside a
try statement block which triesto run the function successfully. If thereisa

40

problem in the function, the exception thrown is caught and handled inacat ch
statement block. If all exceptions have been handled when execution reaches the
final | y statement block, the final code is executed.

Remember these execution guides:

When at hr ow statement executes, the rest of the code in afunction is
ignored, and the function does not return a vaue.

A program continues in the next cat ch statement block after thet ry
statement block in which an exception occurred., and any value thrown is
caught in a parameter in the catch statement.

A program executes af i nal | y statement block if al exceptions, that have
been thrown, have been caught and handled.

The following simple script illustrates all exception handling statements. The
mai n() functionhastry, catch,andfi nal | y statement blocks. Thetry
block calls Squar eEven() , which throws an exception if an odd number is
passed to it. If an even number is passed to the function, then the number is
squared and returned. If an odd number is passed, it isfixed, and an exception is
thrown. When the t hr ow statement executes, it passes an object, as an argument,
with information for the cat ch statement to use.

For example, the script below, as shown, displays:
16
We caught odd and squared even.

If youchangertn = SquareEven(4) tortn = Squar eEven(3), thedisplay
is.

Fi xed odd nunber to next higher even. 16
We caught odd and squared even.

function nmain(argc, argv)

{

var rtn;
try
{
rtn = SquareEven(4);
/1 No display here if nunber is odd

Screen.witeln(rtn);

catch (err)

41

/1 Catch the exception info

/1 that was thrown by the function.

// In this case, the info was returned

/'l in an object.
Screen.writeln(err.nmsg + err.rtn);

}
finally

/1 Finally, display this line after normal processing

/'l or exceptions have been caught.
Screen.witel n("We caught odd and squared even.");

}
Screen.wite("Paused..."); Cib.getch();
} //main
/] Check for odd integers
/1 1f odd, make even, sinplistic by adding 1
/'l Square even nunber
functi on SquareEven(num
{
/'l Catch an odd nunber and fix it.
/] "throw an exception" to be caught by caller
if ((num%2) = 0)
{
num += 1;
throw {msg: "Fi xed odd nunber to next higher even.
rtn: num?* nuni;
/1 W throw an object here. W could have thrown
/!l a primtive, such as:
/1l throw("Caught and odd");
// W would have to alter the catch statenent
/1 to expect whatever data type is used.
}

// Normal return for an even nunber.

return num?* num
} //Squar eEven

This example script does not actually handle errors. Its purpose isto illustrate
how exception handling statements work. For purposes of thisillustration,
assume that an odd number being passed to Squar eEven() isan error or

extraordinary event.

Functions

42

A function is an independent section of code that receives information from a
program and performs some action with it. Once a function has been written, you
do not have to think again about how to perform the operationsin it. Just call the
function, and let it handle the work for you. Y ou only need to know what
information the function needs to receive, that is, the parameters, and whether it
returns a value to the statement that called it.

Screen.write() is an example of afunction which provides an easy way to display
formatted text. It receives a string from the function that called it and displays the
string on the screen. Screen.write is avoid function, meaning it has no return
value.

In JavaScript, functions are considered a data type, evaluating to whatever the
function's return value is. Y ou can use a function anywhere you can use a
variable. Any valid variable name may be used as a function name. Like
comments, using descriptive function names helps you keep track of what is
going on with your script.

Two things set functions apart from the other variable types: instead of being
declared with the "var" keyword, functions are declared with the "function”
keyword, and functions have the function operator, "()", following their names.
Data to be passed to a function isincluded within these parentheses.

Several sets of built- in functions are included as part of the ScriptEase
interpreter. These functions are described in this manual. They are internal to the
interpreter and may be used at any time. In addition, ScriptEase shipswith a
number of externa libraries or .jsh files. External libraries must be explicitly
included in your script to use the functions in them. See the description of the
#include preprocessor directive.

ScriptEase alows you to have two functions with the same name. The interpreter
uses the function nearest the end of the script, that is, the last function to load is
the one that to be executed when the function name is called. By taking
advantage of this behavior, you can write functions that supersede the ones
included in the interpreter or .jsh files.

Function return statement

The return statement passes a value back to the function that called it. Any code
in a function following the execution of areturn statement is not executed.

functi on Doubl eAndDi vi deBy5(a)

{
return (a*2)/5

43

}

Here is an example of a script using the above function.

function main()

{
var a = Doubl eAndDi vi deBy5(10) ;

var b Doubl eAndDi vi deBy5(20) ;
Screen.write(a + b);

}
This script displays12.

Passing information to functions

JavaScript uses different methods to pass variables to functions, depending on the
type of variable being passed. Such distinctions ensure that information gets to
functions in the most complete and logical ways. To be technically correct, the
datathat is passed to a function are called arguments, and the variablesin a
function definition that receive the data are called parameters.

Primitive types, namely, Strings, numbers, and Booleans, are passed by value.
The value of theses variables are passed to a function. If afunction changes one
of these variables, the changes will not be visible outside of the function where
the change took place.

Composite types, Objects and Arrays, are passed by reference. Instead of passing
the value of the object, that is, the values of each property, areferenceto the
object is passed. The reference indicates where in a computer's memory that
values of an object's properties are stored. If you make a change in a property of
an object passed by reference, that change will be reflected throughout in the
calling routine.

In ScriptEase it is possible to pass primitive types by reference instead of by
value, which is the default. When afunction is defined, an ampersand, &, may be
put in front of one or more of its parameters. Thus, when the function is called,
an argument, corresponding to a parameter with an ampersand, is passed by
reference instead of by value. The following fragment illustrates.

var nunml = 4;
var nun = 4;
var nunS;

Set Nunber s(numl, nun®2, nunB, 6)

function Set Nunbers(&nl, n2, &n3, &n4)
{

nl =n2 =n3 =n4 =5;
}

After executing this code, the values of variablesis:

nl ==5
n2 == 4
n3 == 5

The variable num1 was passed by reference to parameter nl. When nl was set to
5, num1 was actually set to 5 since n1 merely pointed to numl. The variable
num2 was passed by value to parameter n2. When n2, which received an actual
value of 4, was set to 5, num2 remained unchanged. The variable num3 was
undefined when passed by reference to parameter n3. When n3, which pointed to
numa3, was set to 5, num3 was actually set to 5 and defined as an integer type.
The literal value 6 was passed to parameter n4, but not by reference since 6 is not
avariable that can be changed. Though n4 has an ampersand, the literal value 6
was passed by value to n4 which, in this example, becomes merely alocal
variable for the function SetNumbers().

Passing information to cfunctions

All variables passed as arguments to the parameters of cfunctions are passed by
reference. If the cfunction called alters a parameter variable, the original variable
from where the cfunctions was called is actually atered. Since cfunction
parameters receive values by reference, they only point to the original variables,
and thus, any changes made to them are made to the origina variables.

Function property arguments|]

The argumentq[] property is an array of all of the arguments passed to a function.
The first variable passed to afunction isreferred to as arguments[0], the second
as arguments 1], and so forth.

The most useful aspect of this property isthat it allows you to have functions
with an indefinite number of parameters. Here is an example of afunction that
takes a variable number of arguments and returns the sum of them all.

function SunAll ()
{

var total = 0O;
for (var ssk = 0; ssk < SumAl|.argunents.|ength; ssk++)

{
}

total += SumAll.argunent s[ssk];

45

return total;

Function recursion

A recursive function is afunction that callsitself or that calls another function
that calls the first function. Recursion is permitted in ScriptEase. Each call to a
function is independent of any other call to that function. (See the section on
variable scope.) Be aware that recursion has limits. If afunction callsitself too
many times, a script will run out of memory and abort.

Do not worry if recursion is confusing, since you rarely have to use it. Just
remember that a function can cal itsalf if it needsto. For example, the following
function, factor(), factors a number. Factoring is an ideal candidate for recursion
because it is arepetitive process where the result of one factor is then itself
factored according to the same rules.
function factor(i) // recursive function to print all factors of
|

{}/ and return the nunber of factors in i
if (2<=1i)

for (var test = 2; test <= i; test++)
if (0==(i %test))

/1 found a factor, so print this factor then call
/1 factor() recursively to find the next factor
return(1 + factor(i/test));
}
}

/1 if this point was reached, then factor not found
return(0);

Error checking for functions

Some functions return a special value if they fail to do what they are supposed to
do. For example, thed i b. f open() method opens or creates afile for a script
to read from or write to. But suppose that the computer is unable to open afile. In
such acase, thed i b. f open() method returnsnul | .

If you try to read from or write to afile that was not properly opened, you get all
kinds of errors. To prevent these errors, make surethat A i b. f open() does not

46

return null when it tries to open afile. Instead of just calling C i b. f open() as
follows:

var fp = dib.fopen("nyfile.txt", "r");

check to make sure that nul | is not returned:
if (null == (var fp = dib.fopen("nyfile.txt", "r")))

ErrorMsg("Cib.fopen returned null");

Y ou may abort ascript in such acase, but at least you will know why. See the
section on the Clib object.

main() function

If ascript has afunction called mai n() , it isthe first function executed. (For
more information on what takes place when a script is run, see the section on
running a script.) Other than the fact that mai n() isthe first function executed, it
islike other functions. If the mai n() function returns avalue, that value is
returned to the operating system or whatever process called the script.

Themai n() function automatically receives two parameters, which, by
convention, are called argc and argv. The parameter argc, argument count, is the
number of parameters passed to the script and the parameter argv is an array of
strings, with each element being one of the parameters. The first element,
argv[Q], of this array is aways the name of the script, thusif argc == 1, then no
variables were passed to a script.

Arguments are passed to a script as parameters when it is called from a command
line asillustrated in the following line.

sewi n32. exe jseedit.jse docunent.txt
In the example above, argc == 2, argv[0] == "jseedit.jsg" and argv[1] ==
"document.txt".

cfunction keyword

The cfunction keyword defines a function whose behavior is somewhat different
than that of standard functions. In a cfunction, variables and operators behave
more as they would in C, specifically in the ScriptEase implementation of C asa
scripting language. The cfunction is provided for the convenience of C
programmers who are used to the way the C language handles functions and

47

variables and for those situations in which the underlying logic of C is more
efficient for a particular procedure.

Strings are treated as null- terminated character arrays. The first character of a
string is assigned to string[0], the second to string[1], and so on until the end of
the string. The last character of a string is always \0', which defines the end of
the string. If you assign a variable to a string, using double quotes, the \0'
character is automatically appended to the end of the string. To assign a string to
avariable without appending the \O' character, put the string in single quotes.
Single quotes are most often used with single characters. For example, if

var boy = "ni;

var girl ='m;

the variable boy is a character array in which: boy[0] = 'm' and boy[1] ="\0'". The
variable girl is acharacter, containing the letter 'm'. Internally, characters are
converted to numbers according to the ASCII standard.

Y ou can change the contents of strings or parts of them by assigning a new
character value to a element of a character array. For example:

var string = "file"
string[0] ="'b'

This fragment creates a string containing the word "bile".

Array arithmetic

If you try to add a number to a string, instead of converting the number to a string
and concatenating the two, the starting point of the string will be shifted forward
by the number of charactersin number. For example, the statement:

"This is a test" + 3

evaluatesto "Thisisatest3", in a standard JavaScript. In a cfunction, however,
this statement evaluatesto "sis atest". The starting point of the string has been
shifted by three, so that string[0] is now 'S instead of 'T". The 'T", 'h’, and 'i' of the
origina string are at indices [- 3], [- 2], and [- 1], respectively.

Variables passed to cfunctions are passed by reference. In other words, if you
have two variables:

"one"
"one"

var George
var Mart ha

and you compare them with the == operator, the comparison evaluates to false
and not to true, as you might expect. The reason is that while George and Martha

48

have the same value, they are not the same variable since they point to different
memory locations, and therefore are not equal to each other. In functions
declared with the function keyword, string variables are compared by value, so
the actual values of George and Martha are compared. In such cases the result of
comparing identical strings with == comparison istrue.

Objects

Variables and functions may be grouped together in one variable and referenced
asagroup. A compound variable of this sort is called an object in which each
individual item of the object is called a property. In generd, it is adequate to
think of object properties, which are variables or constants, and of object

methods, which are functions.

To refer to a property of an object, use both the name of the object and of the
property, separated by the object operator ".", a period. Any valid variable name
may be used as a property name. For example, the code fragment below assigns
values to the width and height properties of a rectangle object and calculates the

area of arectangle and displays the result:

var Rectangl e;

Rect angl e. hei ght = 4;
Rectangl e.w dth = 6;

Screen. wite(Rectangl e. height * Rectangle.w dth);

The main advantage of objects occurs with data that naturally occurs in groups.
An object forms a template that can be used to work with data groupsin a
consistent way. Instead of having a single object called Rectangle, you can have
anumber of Rectangle objects, each with their own values for width and height.

Predefining objects with constructor functions

A constructor function creates an object template. For example, a constructor
function to create Rectangle objects might be defined like the following.

functi on Rectangl e(w dth, height)
this.width = width;

t hi s. hei ght = height;
}

49

The keyword t hi s isused to refer to the parameters passed to the constructor
function and can be conceptually thought of as "this object.” To create a
Rectangle object, call the constructor function with the "new" operator:

var joe = new Rectangl e(3,4)

var sally = new Rectangl e(5, 3);

This code fragment creates two rectangle objects: one named joe, with awidth of
3 and a height of 4, and another named sally, with awidth of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object
created by a constructor function is called an instance of that class. The examples
above creates a Rectangle class and two instances of it. All of the instances of a
class share the same properties, although a particular instance of the class may
have additional properties unique to it. For example, if we add the following line:

joe.nmotto = "ad astra per aspera“;

we add a motto property to the Rectangle joe. But the rectangle sally has no
motto property.

Initializers for objects and arrays

Variables may be initialized as objects and arrays using lists inside of "{} " and
"[1". By using these initializers, instances of Objects and Arrays may be created
without using the new constructor. Objects may be initialized using a syntax
similar to the following:

var o = {a:1, b:2, c:3};
This line creates a new object with the properties a, b, and ¢ set to the values
shown. The properties may be used with normal object syntax, for example, o. a
== 1.
Arrays may initialized using a syntax similar to the following:

var a = [1, 2, 3];

Thisline creates a new array with three elements set to 1, 2, and 3. The elements
may be used with normal array syntax, for example, a[0] == 1.

The distinction between Object and Array initializer might be a bit confusing
when using aline with syntax similar to the following:

var a = {1, 2, 3};

50

Thisline also creates a new array with three elements set to 1, 2, and 3. Theline
differsfrom the first line, Object initiadizer, in that there are no property
identifiers and differs from the second line, Array initializer, in that it uses"{}"
instead of "[] ". In fact, the second and third lines produce the same results. The
elements may be used with normal array syntax, for example, a[0] == 1.

The following code fragment shows the differences.

var o= {a:1, b:2, c:3};
Screen.witeln(typeof o +" | "+ o._class +" | "+ 0);

var a = [1, 2, 3];
Screen.witeln(typeof a +" | "+ a._class +" | "+ a);

var a= {1, 2, 3};
Screen.writeln(typeof a +" | "+ a. _class +" | "+ a);

The display from this codeis:

object | ohject | [object Object]
object | Array |
object | Array |

1,2,3

1,2,3

As shown in thefirst display line, the variable o is created and initialized as an
Object. The second and third lines both initialize the variable a as an Array.
Noticethat in all casesthet ypeof the variableis object, but the class, which
corresponds to the particular object and which isreflected in the _cl ass
property, shows which specific object is created and initialized.

Methods - assigning functions to objects

Objects may contain functions as well as variables. A function assigned to an
object is called amethod of that object.

Like a constructor function, a method refers to its variables with the "this’
operator. The following fragment is an example of a method that computes the
area of arectangle.

function rectangl e_area()

{
return this.width * this.height;

}

Because there are no parameters passed to it, this function is meaningless unless
itiscalled from an object. It needs to have an object to provide values for
this.width and this.height.

51

A method is assigned to an object as the following lines illustrates.

joe.area = rectangl e_area;

The function will now use the values for height and width that were defined
when we created the rectangle object joe.

Methods may also be assigned in a constructor function, again using the this
keyword. For example, the following code:

function rectangl e_area()

{
}

functi on Rectangl e(w dth, height)

return this.width * this.height;

this.width = width;
t hi s. hei ght = height;
this.area = rectangl e_area;

}

creates an object class Rectangle with the rectangle_area method included as one
of its properties. The method is available to any instance of the class:

var joe = Rectangl e(3,4);

var sally = Rectangl e(5, 3);
var areal = joe. area,;
var area2 = sally. area;

This code sets the value of areal to 12, and the values of area2 to 15.

Object prototypes

An object prototype lets you specify a set of default values for an object. When
an object property that has not been assigned a value is accessed, the prototypeis
consulted. If such a property exists in the prototype, its value is used for the
object property.

Object prototypes are useful for two reasons:. they ensure that all instances of an
object use the same default values, and they conserve the amount of memory
needed to run a script. When the two Rectangles, joe and sally, were created in
the previous section, they were each assigned an area method. Memory was
allocated for this function twice, even though the method is exactly the samein
each instance. This redundant memory waste can be avoided by putting the

52

shared function or property in an object's prototype. Then all instances of the
object will use the same function instead of each using its own copy of it.

The following fragment shows how to create a Rectangle object with an area
method in a prototype.

function rectangl e_area()

{
return this.width * this.height;

}

functi on Rectangl e(w dth, height)

this.width = width;
t hi s. hei ght = height;
}

Rect angl e. prot ot ype. area = rectangl e_ar ea;

The rectangle_area method can now be accessed as a method of any Rectangle
object as shown in the following.

var areal = joe.area();
var area2 = sally.area();

Y ou can add methods and data to an object prototype at any time. The object
class must be defined, but you do not have to create an instance of the object
before assigning it prototype values. If you assign a method or data to an object
prototype, all instances of that object are updated to include the prototype.

If you try to write to a property that was assigned through a prototype, a new
variable will be created for the newly assigned value. This value will be used for
the value of this instance of the object's property. All other instances of the object
will still refer to the prototype for their values. If, for the sake of this example,
we assume that joe is a special Rectangle, whose areais equal to three timesiits
width plus half its height, we can modify joe as follows.

joe.area = function joe_area()

{
(this.width * 3) + (this.height/2);

}

This fragment creates a value, which in this case is afunction, for joe.area that
supercedes the prototype value. The property sally.areais till the default value
defined by the prototype. The instance joe uses the new definition for its area
method.

53

for/in

The for/in statement is away to loop through all of the properties of an object,
even if the names of the properties are unknown. The statement has the following
form.

for (var property in object)

DoSorret hi ng(obj ect [property]);
}

where object is the name of an object previoudly defined in a script. When using
thefor . . .in statement in thisway, the statement block will execute once for
every property of the object. For each iteration of the loop, the variable property
contains the name of one of the properties of object and may be accessed with
"object[property]". Note that properties that have been marked with the
DontEnum attribute are not accessibleto afor . . . in statement.

with
The with statement is used to save time when working with objects. It lets you
assign adefault object to a statement block, so you need not put the object name

in front of its properties and methods. The object is automatically supplied by the
interpreter. The following fragment illustrates using the Clib object.

with (dib)

printf("l ama canera");
srand();

xxx = rand() % 5;

put char (xxx) ;

}

The Clib methods, i b. printf(),dib.srand(),dib.rand(),and

d i b. put char (), inthe sample above are called as if they had been written
with Clib prefixed. All code in the block following a with statement seemsto be
treated as if the methods associated with the object named by the with statement
were global functions. Global functions are still treated normally, that is, you do
not need to prefix "global." to them unless you are distinguishing between two
like- named functions common to both objects.

If you were to jump, from within awith statement, to another part of a script, the
with statement would no longer apply. In other words, the with statement only

applies to the code within its own block, regardless of how the interpreter
accesses or leaves the block.

Y ou may not use a goto statement or label to jump into or out of the middle of a
with statement block.

Dynamic objects

ScriptEase alows for direct access to the interior workings of how object
properties are called. If you wish, you may specify how an object accesses its
data by replacing one of the following routines which are internal to ScriptEase.
The following methods are available for modifying how an object callsits
members. In all cases, the parameter, property, is the name of the property being
called.

_get(property)

Whenever the value of a property is accessed, the _get () method is called. By
defining anew _get () method for an object, you modify the way it accesses
property values. If the new _get () method has no return value, the value that
the function would normally return is returned.

The example below modifies the Rectangle object created earlier with a new
_get () method. Whenever you access the value of one of the object's properties,
it will inform you if the Rectangle is a square. After the object isinitialized, the
mai n() function creates an instance of the object with the width and height
properties both set to 3. When the value of the Rect angl e. ar ea() method is
retrieved, usedinad i b. pri nt f () statement, the dynamic _get () functionis
called, which displays, "The rectangle is a square,” since width and height are
equal. Since no value is returned from the dynamic _get () function, the value
normally returned, 9 in this case, is returned to the mai n() function.

function rectangl e_area()

{
return this.width * this. height;

}

function rectangl e_get()

{
if (this.width == this. height)
Cib.printf("The rectangle is a square.");
}

functi on Rectangl e(w dth, height)

55

{
this.width = width;
t hi s. hei ght = height;
this._get = rectangl e_get;

}

Rect angl e. prot ot ype. area = rectangl e_ar ea;
mai n()

var rect = new Rectangle(3, 3);
Cib.printf("The area of the rectangle is %.", rect.area());
Cib.getch();

}

_put(property, value)
This method controls the way that new datais assigned to a property.

_canPut(property)

This method returns a boolean value indicating whether the property can be
written to or not, that is, whether it is read- only or not. For example, you could
modify this property to notify users when they try to change read- only values.

_hasProperty(property)

This method returns a boolean value indicating whether or not a property exists.

_delete(property)

This method is called whenever a property is deleted with the delete operator.
_defaultValue(hint)

This method returns the primitive value of avariable.

The parameter hint should be either a string or a number that indicates the
preferred data type to return. If hint is a string, the method will return a string if
possible, otherwise a different type. The actual value of hint isignored.

_construct(...)

This method is called whenever a new object is created with the new operator.
The abject will have been already created and passed as the this variable to the
.construct() method.

56

_call(...)

The call function is called whenever an object method is called. Whatever
parameters are passed to the original function will be passed to the call()
function.

The following example creates an Annoying object that beeps whenever it
retrieves the value of a property.

function nyget (prop)

{
Syst em beep();
return this[property];

}
var Annoyi ng = new bj ect;
Annoyi ng. get = nyget;

Note that the System.beep() method is used only for this example and must be
explicitly created for actual use.

57

Preprocessor

ScriptEase programs, such as sewin32.exe, read, preprocess, interpret, and
execute scripts. A ScriptEase executable program is sometimes referred to as the
processor, interpreter, or engine. There is adifferent version of the processor for
each operating system that ScriptEase supports. Each version interprets
ScriptEase code in a manner appropriate to its operating system. For example, the
.directory() function parses a DOS directory differently than a Unix directory
because of differencesin the operating systems. But, the end result for the user is
the same.

The term ScriptEase is used generically for all versions of ScriptEase. The names
of executable programs for each operating system are different, for example:

Win32
Sewin32.exe
Secon32.exe
Win16
Sewinl6.exe
DOS
Sedos.exe
Sedos32.exe
052
Seos?.exe

Many of the scripts that ship with ScriptEase work with any version, but some
scripts work only with specific versions or operating systems. When ScriptEase
isinstalled, the scripts are placed into directories indicating which versions they
work with.

This section describes environment variables and preprocessor directives that
affect the processing of a ScriptEase script prior to finally compiling, tokenizing,
and executing the script. The description then covers the sequence of events
when a script is executed, the ScriptEase shell, stand, finally, command-line
switches.

Variables in the environment

59

The environment variables covered in this section are those which are important
when a script is being preprocessed. Other environment variables that ScriptEase
uses are covered in the sections most appropriate to them.

SEDESKPATH

SEDESKPATH is an environment variable that the processor uses to search for
scripts and libraries. It functions like a PATH variable for the processor. When
looking for scripts and libraries, the processor first searches the current directory
and then the directory that has the ScriptEase executable. If the file needed is not
found, it searches through the directories specified by the SEDESKPATH
variable. If the needed files are still not found, the processor looks for them in the
regular PATH variable.

In Windows systems, the processor searches the SEDESKPATH profile valuein
win.ini (in Windows 3.x) or the Registry (in Windows 95/98 and NT) before
searching the SEDESKPATH environment variable.

PATH

The PATH variable is used to find ScriptEase files if they are not found in the
current directory or in the directories of SEDESKPATH.

SEDESKPREFS

SEDESKPREFS is an environment variable that should be set before loading and
executing a script. SEDESKPREFS allows you to specify one or more files that
the interpreter will automatically load and run every time a script is started. The
files specified may be files with the extensions, .jsh, .jse, or any other file
extensions that a programmer chooses to use. SEDESKPREFS takes aform
similar to a PATH environment variable. Multiple files are separated by
semicolons. An example setting for SEDESKPREFS is:

SEDESKPREFS=C: \ SEDESK\ JSH\ GLBLS. JSH; C: \ SEDESK\ GENERAL. JSE

Thetwo filesin this example are files that a programmer might choose to create
and are not standard files distributed with ScriptEase. Glbls.jsh might have
various definitions, globals variables, and so forth that a programmer uses
regularly, and General.jse might have several functions that are regularly used.
Every time these files are needed by a script, they must be included with code
similar to the following.

#include "dA bl s.jsh"
#i ncl ude "General .jse"

60

If SEDESKPREFS, as shown above, exists in the environment, then no scripts
need to contain the include the statements shown immediately above.

SE_ESET

Two Clib methodsd i b. get env() andd i b. put env() alow you to retrieve
and set values or system environment variables. Operating systems that do not
allow direct modification of environment variables (such as 32-bit Windows and
0S/2) use the environment variable, SE_ESET, to hold the name of afile used to
change the system=s environment variables indirectly.

Preprocessor Directives

The following ScriptEase statements that begin with a# character are collectively
called preprocessor directives, since they are processed before a script is actually
executed and direct the way the script commands are interpreted. Preprocessor
directives can only be used with the ScriptEase interpreter. Other JavaScript
interpreters will not recognize them.

define

The #define directive is used to replace a token or almost any identifier with
other characters. The #define directive is executed while the script is being read
into the interpreter, before the script itself is executed. The #define directive
causes one string to be replaced by another in the script that goes to the
interpreter. All substitutions are made before the code is interpreted. A #define
directive has the following structure.

#define token repl acenent

Thisline resultsin all subsequent occurrences of "token" being replaced by
"replacement”. Consider the following line.

#defi ne Nunber O Countri esl nSout hAnerica 13

The define statement increases program legibility and makes it easier to change
code later. If Bolivia and Peru decide someday to unite, you only have to change
the #define statement to update your program. Otherwise, you would have to go
through your script looking for al occurrences of the number 13, decide when
they refer to the number of countries in South America, and change them to the
number 12.

61

Likewise, if you write screen routines for a 25[line monitor, and then later
decide to make it a 50(line monitor, you are better off altering the following
#define directive from:

#defi ne RON COUNT 25

to
#defi ne ROWN COUNT 50

and using ROW_COUNT in your code. Y ou only have to make one changein
your script instead of many.

The ScriptEase interpreter has default tokens that are defined, such as true and
false.

include

The #include directive lets you include other scripts, and al of the functions
contained therein, as a part of the code you are writing. Usually #include lines are
placed at the beginning of the script and consist only of the #include statement
and the name of the file to be included, as in the following.

#i ncl ude <gdi . jsh>

#i nclude "gdi.jsh"

#i ncl ude ' gdi.jsh’

Any one of these lines makes all of the functionsin the library file gdi.jsh
available to the script that has the line. If the file to be included isin one of the
directories in SEDESKPATH, you do not need to specify anything more than the
name and extension of thefile. If it is not, you must supply afull path so the
interpreter can find the file, as shown next.

#i ncl ude <c:\ CMM LI B. JSH>

The quote characters, ' or ", may be used in place of the angled brackets < and >.

To include several filesin one program ssimply use multiple #include directives
as shown.

#i ncl ude <screen.jsh>

#i ncl ude <keyboard. j sh>

#include <init.jsh>
#i ncl ude <comm j sh>

The ScriptEase interpreter will not include a file more than once, so if afile has
already been included, a second or subsequent #include directive, with the same

62

file specification, has no effect. ScriptEase ships with a large number of libraries
of pre-written functions that you can use. Library files are plain text files, as are
all ScriptEase scripts, and have the extension .jsh as a default. See the section on
ScriptEase versus the C language for more information about library files and
including them in scripts. See the tutorial section about writing and including the
writejsh library file.

if, ifdef, elif, else, endif

These directives are all preprocessor conditionals and allow you to specify a
different set of global variables and constants based on different conditions at
load and tokenize time. Conditional directives are frequently used in scripts
designed to run on different operating systems by ensuring that scripts include
files that are appropriate for the operating system being used.

#if isused like an if statement. #else corresponds to an else statement. #elif
corresponds to an else if statement. These directives define which block of code
isactually used when a script is interpreted and executed. Y ou must use them
with terminating #endif directives to mark the ends of code blocks.

For example, suppose you have a script that builds long path names from
directories supplied to it in different variables. If you are working in a
DOSDased environment, the backslash character is used to separate d irectories,
so you could indicate the full path of afile in DOS as follows:

var fullPathOFile = dib.rsprintf("%\\%\\%\\%",
rootdirectory, subdirectoryl, subdirectory2, filenane);

If you ported this script to a UNIX machine, however, you would run into
problems since UNIX uses forward slashes to separate directories.

Y ou can get around this problem by defining the separator character differently
for each operating system:

#if defined(_UN X))
#define PathChar '/'
#el i f defined(_MAC)
#defi ne Pat hChar '
#el se
#define PathChar '"\\'
#endi f

By putting the separator character in a variable, you can make the script work on
any operating system:

63

var fullPathOFile = dib.rsprintf("%%%%%%%",
rootdirectory,

Pat hChar, subdirectoryl,

Pat hChar, subdirectory2,

Pat hChar, fil enane);

The #ifdef directiveis alimited form of the #if statement and is equivalent to #if
defined(var). The example above could be rewritten with #ifdef statements like
this:
#ifdef (_UNIX)
#define PathChar '/'
#i fdef (_MAC)
#defi ne PathChar '
#el se
#define PathChar "\\'
#endi f

link
The #link command incorporates preldompiled libraries, dynamic link library

(.dil) files, into the ScriptEase interpreter. The #link directiveis similar to the
#include statement with no parameters. For example, the directive

#l i nk <ol eaut oc>

lets the interpreter use the functions for OLE automation. #link takes no
parameters other than the name of the library being linked.

Although you could write these functions in JavaScript, the functions in the #ink
libraries are processor intensive and run much more quickly from a compiled
source.

Nombas currently supplies the following #link libraries:

GD

for generating .gif files and other graphics functions
ODBC

for working with ODBC databases

OLEAUTOC

for doing OLE automation

REGEXPSN

to perform complex searches

SESOCK

for working with sockets

Please contact Nombas for more information on the #link developer's kit, which
lets users to create customized #link libraries. The most recent versions of #ink
libraries are listed on the Nombas downloads page at the following web site:

http://www.sedesk.com/
http://www.nombas.com/us/

option

The #option directive has four useful options that are available when afileis
being parsed before it begins executing. Many programmers will appreciate the
help that these options provide while developing scripts. Each of the following
options may be preceded by the not operator, "!", to turn an option off.

Def aul t Local Vars

With this option set, all variables declared inside functions are local
variables. The default is that variables declared in functions without the var
keyword or variables declared outside functions are global. Thus, with this
option set, only variables declared outside of functions are global.

Mat hEr r or War ni ngs

With this option set, ScriptEase provides warning messages on division by
zero, operations on NaN, and invalid automatic type conversions to numbers.
Requi r eFunct i onKeyword

This option requires that the "function™ or "cfunction" keywords precede
functions. This option is similar to requiring the var keyword for variables.
Requi r eVar Keywor d

With this option set, all variables, both global and local, must be declared
with the var keyword. This option is useful while developing a script. It helps
to insure that variable names are typed correctly and to avoid common
mistakes when undefined variables are expected to be defined.

The default behavior for ScriptEase Desktop is consistent with normal JavaScript
and is represented by the following list of #option settings.

#option ! Defaul t Local Vars

#opti on Mat hErr or War ni ng

#opti on ! RequireFuncti onKeyword
#opti on ! Requi r eVar Keywor d

65

Remember that the #option directive must begin in the first column of the line
on which it appearsin a script. This directive may be used multiple times but
must always begin in the first column.

Executing a script

The sequence of events when a script is executed are:

When a script is run, the interpreter first checks for the SEDESKPREFS
environment variable and then executes preprocessor directives. It locates
any filesthat are included or linked, assigns values to any #defined tokens,
and the statements between #if and #endif directives are executed, if the
directives evaluate to true. Settings for the #option directive are observed
when encountered.

Then any code that is not included as part of afunction is executed. Any
variables referenced are global variables and are available to all functionsin
the script.

Finally, the main() function is executed, if there is one. If thereis no function
main(), the program will end after running through all of the stepsin the
initialization. Code may be set to execute when the program exits using the
Clib.atexit() method.

ScriptEase shell command-line

Except for the Unix version, when any version of ScriptEase is run without
command line arguments, auser is put in a ScriptEase shell. In a shell,
ScriptEase scripts can be run from the command line. Other programs may also
be run from a shell command line. In Windows versions, though the shell
resembles a DOS command prompt, Windows applications may be run from the
text command prompt. To exit any ScriptEase shell, simply type "exit" at the
command prompt.

File redirection

The input and output of commands executed from a ScriptEase shell may be
redirected from or to afile with redirection operators.

<

This command line operator redirect standard input from afileto afile so

that a program gets input from the redirected file instead of the keyboard.
sort < list.txt

66

>
This command line operator redirect standard output from afileto afile
instead of to the screen. The file receiving the redirected output is created

new every time.
dir > dir.txt

>>
This command line operator is similar to the > operator, except if thefile
receiving the redirected output exists, then the output is appended to the file.

If the file does not exist, it is created new.
dir >> dir.txt

In the first example, the sort program receives the lines of text from list.txt file as
itsinput, and it displays those lines to the screen in alphabetical order.

In the second exampl e, the directory listing that the dir command would normally
display to the screen is saved to the file dir.txt. If the file dir.txt already exists, it
is over written by the new directory listing.

In the third example, the directory listing is appended to the file dir.txt, unless the
file does not exist, in which case, the fileis created.

Auto files

When a ScriptEase shell starts, three files are executed automatically if they
exist: autoload.jse, autoexec.jse, and shellchr.jse. These files modify and extend
the functionality of the ScriptEase shell. Various extensions to a ScriptEase shell
are implemented through the hooks: ShellFilterCharacter() and
ShellFilterCommand().

The following list has descriptions of some of the features implemented by the
autoload.jse file that ships with ScriptEase. To see a complete list of shell
commands, type "help" at a shell command prompt. For help with a specific
command, type "help command". The word "command" should be replaced by
the name of the actual command for which you want help.

CD - this command changes the directory.

CD implicit - a ScriptEase shell has the ability to automatically change
directory. If the name of an existing directory is entered at a shell prompt, the
current directory is changed to it.

ChDir - this command changes directory.

Cls - this command clears a ScriptEase screen.

67

History - a ScriptEase shell maintains a history of the commands that have
been entered in it. The up and down arrow keys may be used to scroll
through thislist of commands.

Start - this command is used in operating systems that support multitasking.
When a program is started with this command, a ScriptEase shell does not
wait till the program finishes executing before returning to the command
prompt. Thus, another application can be launched while the previous
program is still running. For example, the following command line launches
the program notepad.exe and immediately returns to the shell prompt.

start notepad. exe

When launching a program with the start command, any arguments needed
by the program follow the program name as normally done.

Tab - the tab key functions as a speed key for entering directory or program
names. A user can enter the first letters of an existing directory or file name
and then press the tab key. Theinitia letters are filled out to the name of the
first directory or file that fits these letters. For example, suppose the directory
documents and the file dinosaurs.txt exist in the current directory. If a user
enters "do" and presses the tab key, the entry isfilled out to "documents'.
But, if auser enters "di" and presses the tab key, the entry isfilled out to
"dinosaurs.txt".

Type - this command displays the contents of atext file to the screen.

Running a script

There are several ways to run a ScriptEase script: from an operating system
command prompt, a ScriptEase shell prompt, a GUI interface, or a batch file. All
examplesin this section assume that files are either in the same directory or can
be found in the directories specified by either SEDESKPATH or PATH. Seethe
description of the SElib.compileScript() method, on page ?, for more information
about executing scripts as text, object, or executable files.

Operating system command prompt

At the command prompt of most operating systems, the ScriptEase interpreter
program is the first program entered on the command line. Short fragments of
ScriptEase code may be passed to the interpreter directly. The following
command line displays "hello" to screen.

Secon32. exe "Screen.wite(' hello)"

68

The quotes are required around script commands when they are passed directly to
an interpreter. If quotation marks are required in a script command, then one of
or acombination of the following must be used: single quotes, back quotes, or
escape sequences. In this example, single quotes are used.

Passing commands directly to a ScriptEase interpreter is seldom done. Usualy, a
script is contained in atext file created with atext editor. The following
command line illustrates using a script file.

Secon32. exe Myscript.jse Myargl Myarg2 . .

The ScriptEase interpreter secon32.exe receives the script myscript.jse and its
arguments as parameters. When the script itself executes, it receives the
arguments after it asits parameters. If a script does not require arguments, none
need to be specified. The file myscript.jse may be put on the command line
without its extension .jse, since the interpreter automatically adds the default
extension .jseif it is absent. Thus, the above command line could look like the
following.

Secon32. exe Myscript Myargl Myarg2 . . .

Some operating system command processors, such as 4Dos.com which replaces
Command.com in a DOS environment, allow extensions to be defined as
executable extensions. If the extension .jse is defined as an executable extension,
then the above two lines may be shortened to one of following lines.

Myscript.jse Myargl Myarg2 .
Myscri pt Myargl Myarg2 .

ScriptEase shell command prompt

A ScriptEase shell command prompt accepts every form of a command line
shown above in the section about an operating system command prompt. Unless
auser has an enhanced command processor as mentioned above, a ScriptEase
shell provides, perhaps, the most flexible command prompt environment from
which to execute scripts.

GUI environment

Graphic User Interfaces are the most popular operating environments for most
computer users in today's world. Most people are familiar with the process of
double-clicking an icon to launch an application. ScriptEase scripts may be
launched in the same way. When ScriptEase installs, it puts appropriate

69

information in the settings of an operating environment, such asin the registry of
Windows. Aswith al applicationsin a Graphic User Interface, parameters are
not automatically passed to an application when it is launched by clicking on it.

DOS batch files

ScriptEase scripts may be imbedded into batch files by putting them between
special marker statements. These special marker statements are coordinated with
how an operating system processes batch files so that ScriptEase statements are
ignored. There are two special marker statements for a DOS batch file: "GOTO
SE EXIT" and ":SE_EXIT". The statement, GOTO SE_EXIT, is put before
ScriptEase code, and the statement, :SE_EXIT, is put after. When the operating
system is processing a batch file, the goto statement simply instructs the batch
processor to skip over the ScriptEase code. The ScriptEase interpreter knows to
process lines of text between the statements as ScriptEase code and to ignore
other lines of text in the batch file. The following example, mybatch.bat, is a
batch file using special statements for ScriptEase.

@cho off

Secon32. exe Mybat ch. bat

GOTO SE EXIT
Screen.witeln("ScriptEase: |ine one")
Screen.witeln("ScriptEase: line tw")
“SE EXIT

This batch file may be called from a command prompt into ways. The first way
is.
Mybat ch. bat

and the second way is:
Secon32. exe Mybat ch. bat

Both ways result in the following output.

Scri pt Ease: |ine one
Scri pt Ease: line two

When the batch file is called as a batch file, it calls a ScriptEase interpreter with
the batch file as a parameter. The ScriptEase interpreter knows to process only
lines of text between the two special statements. After the ScriptEase interpreter
has finished and control has returned to the batch processor, the next statement to

70

be executed is the statement, GOTO SE_EXIT, with skips the ScriptEase
statements.

When the batch file is called as a parameter for a ScriptEase interpreter, the
interpreter simply executes the code between the special statements.

Mybatch.bat may be atered as follows to demonstrate more fully how ScriptEase
script may be embedded in a batch file. In this atered file, one line of normal
batch code has been put before any lines concerned with ScriptEase and one line
after them. The batch file may be called by both methods shown above.

@cho of f
echo Mybatch. bat has started.

Secon32. exe Mybat ch. bat

GOTO SE EXIT

Screen.witel n("ScriptEase: |ine one")
Screen.witeln("ScriptEase: line tw")
“SE EXIT

echo Mybat ch. bat has fini shed.

When this batch file is called as a batch file, it results in the following output.

Mybat ch. bat has started.
Scri pt Ease: |ine one
Scri pt Ease: line two
Mybat ch. bat has fi ni shed.

When this batch file is called as a parameter for a ScriptEase interpreter, it results
in the following output.

Scri pt Ease: |ine one
Scri pt Ease: line two

This output isidentical with the output of the original batch file, since the
ScriptEase interpreter processes only the ScriptEase code, which isidentical in
both batch files.

OS/2 batch file

An OS/2 .cmd file has a command, EXTPROC, which allows and external
processor to be called to process a batch or source file. The statement,
EXTPROC, must be the first statement in the file and must be followed by a
single space and the name of the external processor. For ScriptEase, the
processor is SEOS2. The following file, mysource.cmd, displays the arguments

71

passed to it from a command line and illustrates the use of the statement
EXTPROC.

EXTPROC SECS2
function nmain(argc, argv)

for (var i=0; i < argc; i++)
Aib.printf("Input argument % = \%\n", i, argv[i]);
}

0S/2 REXX file

Running ScriptEase script from a REXX fileis similar to the process described
for DOS batch files above. The main difference is that the two specia statements
surrounding ScriptEase code are different. For a REXX file, the two statements
are: "SIGNAL SE_EXIT" and "SE_EXIT:". The following example file may be
caled in ways similar to the process described for a DOS batch file. The
behavior, in regards to the ScriptEase code between the special statements, isaso
similar.

“call SD.bat 9%9.cmd %4 %R 9B % % % % 9B WO

SIGNAL SE EXIT

function nmain(argc, argv)

{
var SUM = O;
for (var i=1; i < argc; i++)
SUM += Cib.atoi(argv[i]);
}
SE_EXIT:
unix

Unix also allows the specification of an external processor. To specify an
external processor, use the statement #! followed by the full and name of an

external processor program. The following exampleis asimpleillustration.
#! [usr/ | ocal / bin/se
Screen.witeln("Hello");

Command-line switches

72

Bind

The professional versions of ScriptEase processors have a/bind option which
allows scripts to be compiled into stand-alone executable programs. These
executable programs are completely independent and do not require any
ScriptEase programs to run. Assume that the script myscript.jse exists and
executes properly. The script may be compiled into a stand-al one executable
program using a command line similar to the following.

Secon32. exe / Bi nd=Myscri pt.exe Myscript.jse

Such acommand line instructs a ScriptEase processor to compile the script
myscript.jse to the executable program myscript.exe. The name for the
executable program specified after the /bind option does not have to be the same
as the name of the script.

0OS/2 and seos2pm.exe

Some scripts in the OS2 operating system might require the presence of the file
seos2pm.exe for an executable program that has been created using the /bind
option. Some methods, such as .pmDynamicLink() and other .pm* () methods,
always require the presence of seos2pm.exe. The file seos2pm.exe may be
distributed free of royalty.

73

Predefined Values

ScriptEase has many predefined values that are useful when writing scripts.
Predefined values are available to the shell, the preprocessor, and various
methods and functions. Some values are available at al levels of script
interpretation.

Preprocessor values

The following preprocessor values are defined and available during the
preprocessing phase of script interpretation and are not available as values during
the running of a script if they apply. For example, _"W N32_ and _95CON_ are
defined if SEcon32.exe is the current interpreter. If a preprocessor valueis
defined, it has avalue of 1. Normally, these preprocessor values are used with the
preprocessor directives: #i f, #i f def ,and #i f defi ned() . Seethe section on
the Processor for detailed information.

The distinction between compile time and run time isimportant if a script is
being compiled into ajsb file. If decisions are being made based on preprocessor
directives, then those decisions are made at compile time. Thus, if certain
behavior depends on being run by a particular interpreter, then the script must be
run by the same program with which it was compiled. An exampleisin order.

Consider the following fragment:
#ifdef _95WN_
var n = 10;
#el se
var n = 20;
#endi f

If this fragment is compiled with SEwin32.exe and run with SEwin32.exe, the
variable nisinitiaized to 10 as expected. But if this fragment is compiled with
SEcon32.exe and run with SEwin32.exe, the variable nis still initialized to 10,
though the intent might have been for it to be initialized to 20 under any platform
but Windows 95/98. This difference in behavior does not occur when atext script
is being interpreted and only applies to scripts that have been compiled. If a
script is being interpreted as atext file, the results are consistent.

If you want consistent behavior in a compiled script, do the test at run time. The
above fragment could be written as:

75

if (defined(_95WN)
var n = 10

el se
var n = 20;

In this case, a compiled script aways makes the expected decision. One warning.
The#opti on Requi r eVar Keywor d preprocessor directive isimportant here.
If thevar keyword is being required, the fragment above will cause an error
since _95W N_ isnot declared using var . If you are requiring that variables be
declared using the var keyword, rewrite the above fragment to be:
#opti on ! Requi r eVar Keywor d
i f (defined(_95WN)
var n = 10
el se
var n = 20;
#opti on Requi r eVar Keyword

Platform

The following values indicate which ScriptEase interpreter is currently running.
These values are useful when writing scripts to be used on multiple platforms
that perform operations that are specific to different platforms.

BOS MS-DOS

DOs32 MS-DOS with extended memory
MAC Macintosh

NWALM Netware Network Lan Manager
082 0s/2

_UNEXC UNIX

W NDOAS Windows

WN32 Windows 32 bit 95/98/NT

If Win32 is defined, one of the following is defined also,
which alows more precision in determining the operating
environment being used.

95CON Windows 95/98 in a DOS or console session
95W N Windows 95/98 as a window

76

NTCON Windows NT in a DOS or console session

NTWN Windows NT as awindow
Shell
SHELL Defined if any ScriptEase interpreter is running as a shell

Strictness of interpretation
The following values are used with the #option preprocessor directive

Def aul t Local Vars

Mat hEr r or War ni ngs

Requi r eVar Keywor d

Requi r eFunct i onKeyword

Variables inside functions default to being
local

Ensures that warning messages are displayed
for various invalid math operations

All variables must be declared with the
keyword var

All functions must be declared with the
keywords function or cfunction

Predefined constants and values

The following values are predefined values in ScriptEase and are available
during runtime, during the execution of a script. These values may be used in any

normal statementsin scripts.
fal se
nul |

true

Bl G_ENDI AN

Boolean false
A null value with multiple uses

Boolean true

Indicates whether a processor stores a
multi-byte value as Big_Endian or
Little Endian.

0, false, indicating that the processor stores

P URSY R NI S [P N

77

CLOCKS_PER _SEC
EOF

EXI T_FAI LURE

EXI T_SUCCESS

FATTR_NORVAL
FATTR_RDONLY
FATTR_HI DDEN
FATTR_SYSTEM
FATTR_SUBDI R
FATTR_ARCHI VE

I NTERP_COWPI LED_SCRI PT

| NTERP_LOAD

I NTERP_NO NHERI T_GLOBAL

the low byte of avaluein low memory,
such as Intel.

1, true, indicating that the processor stores
the low byte of a value in high memory,
such as Motorola

In file operations, indicates that the end of
afile has been reached

Indicates an error when exiting a script, 1-
255

Indicates success when exiting a script, O

Attribute for anormal file
Attribute for aread only file
Attribute for a hidden file
Attribute for asystem file
Attribute for a directory
Attribute for a changed file

Run a script compiled with the
compileScript() method. This flag only
works with the INTERP_TEXT flag.

Load code into same function and variable
space as the code that is calling .interpret().
All functions, and variables are supplied to
the code being called, which can modify
and use them. If the code being called has
similarly named functions or variables as
the calling code, the functionsin the called
code replace those in the calling code.

Glaobal variables will not be inherited as
global variables in the interpreted code.

78

I NTERP_NO NHERI T_LOCAL

| NTERP_FI LE

| NTERP_TEXT

LOCK_EX

LOCK_SH

LOCK_NB

LOCK_UN

NaN
Nurber . MAX_VALUE

Nurber . M N_VALUE

Nunber . NaN
Nunber . PCSI TI VE_| NFI NI TY
Nunber . NEGATI VE_| NFI NI TY

P_NOWAI T

P_OVERLAY

P_SWAP

Loca variables will not be inherited by the
interpreted code.

Code must be the name of a ScriptEase
source file, followed by any arguments.

Code is ScriptEase source code with no
arguments.

File lock exclusive (in Windows equival ent
to LOCK_SH)

File lock share (in Windows equivalent to
LOCK_EX)

File lock non-blocking (use in a bitwise or
with LOCK_EX or LOCK_SH)

File unlock

Not a Number

Largest positive number that can be
represented in ScriptEase

Small negative number that can be
represented in ScriptEase

Not a Number
Any number greater than MAX_VALUE
Any number smaller than MIN_VALUE

Do not wait for a child process, started by
SElib.spawn(), to finish before continuing
SCript execution.

Current program exit and new process
executesin its place.

Swap ScriptEase to expanded or extended
memory and then execute a child process

79

PVWAIT

RAND_MAX

_ SEDESKTOP_

SEEK_CUR

SEEK_END

SEEK_SET

stderr
stdin

st dout

VERSI ON_VAJOR

VERS|I ON_M NOR

VERSI ON_STRI NG

asP_WAIT does.

Wait for a child process, started by
SElib.spawn(), to finish before continuing
SCript execution.

Maximum value that can be returned by
the Clib.rand() method.

Defined if the current interpreter is
ScriptEase Desktop, in distinction from
other ScriptEase interpreters.

Position in afilerelative to the current
positionin afile

Position in afile relative to the end of the
file

Position in afile relative to the beginning
of thefile

FILE stream for standard error output
FILE stream for standard input
FILE stream fro standard output

The major version number of ScriptEase,
for example, 4in 4.10b

The minor version number of ScriptEase,
for example, 10 in 4.10b

Therevision letter of ScriptEase, for
example, b in 4.10b

80

Quick Start Tutorial

This tutorial section provides examples and information to get started with
ScriptEase and is not intended to be a complete tutorial on ScriptEase or
JavaScript. Keep in mind that ScriptEase scripts may be written as simple scripts,
much like simple batch files, in which lines of code execute sequentialy, or they
may be written as structured programs. The examplesin this tutoria illustrate
both kinds of scripts. While in this tutorial section, the two kinds of scripts are
sometimes referred to as: batch scripts and program scripts. When a script has
code outside of functions and code inside of functions, it shares characteristics of
both batch and program scripts. For example, the following fragment:

Screen.witeln("first ");

function main()

{
Screen.witeln("third.");

}

Screen.witel n("second ");

resultsin the following output:

first second third.

ScriptEase Shell

When a ScriptEase interpreter program, such as sewin32.exe or secon32.exe, is
run by itself with no script as a parameter, it starts a ScriptEase shell. A
ScriptEase shell provides an interface for a user to use ScriptEase. The interface
isacommand line interface using text commands. Most users will not use
ScriptEase as a shell but will useit to execute, asillustrated later, various scripts
that they have written. As examples, both of the following lines start a ScriptEase
shell.

Sewi n32. exe

Secon32. exe

These lines, like al examples in this section, assume that ScriptEase executables
arein the current directory or that their paths arein a PATH variable. When you
arein ashdl, you may exit by typing "exit" at the prompt. For simplicity, the

81

ScriptEase interpreters, Secon32.exe and Sewin32.exe, are used in examples. If a
different platform is being used, substitute the name of the appropriate ScriptEase
interpreter.

Simple script
The following line is a simple and complete script.
Screen.wite(' A sinple script')

The following command line will execute the script.

Secon32. exe "Screen.write(' A sinple script')"

However, executing script fragments that fit on acommand lineis of limited
value. The more common way to handle scriptsisto save the them to afile and
execute the file. Any text editor may be used to work with script files. Assume
that the single line of this example has been saved to afile named simple.jse. The
script could then be executed with the following command line.

Secon32. exe sinple.jse

Thisline, like all examplesin this section, assumes that a script file isin the same
directory as a ScriptEase interpreter program or is visible to the program through
the use of SEDESKPATH or PATH variables.

The most common way to display information on a computer screen is to use the
statements: Screen. write() and Screen. wri t el n() . The statements are
methods in the Screen object provided by ScriptEase. The Screen object provides
multiple methods for working with ScriptEase screens or windows. The
write() method displays avalue, which is not limited to being a string, on the
screen. Thewr i t el n() method does the same thing but automatically adds
carriage return and new line charactersto the end of a displayed value. Both of
these methods display information to the default screen or window of a
ScriptEase interpreter. ScriptEase ships with library files which have routines for
displaying information in other ways, such as in windows on a Windows
platform.

Date and time display

The following fragment:

var d = new Date
Screen.witeln(d.tolLocal eString())

82

produces output similar to the following.
Fri Cct 23 10:29: 05 1998

Thefirst line creates a variable d as a new Date object, or more accurately, asa
new instance of a Date object. The second line usesthet oLocal eSt ri ng()
method of the Date object to display local date and time information. This batch
script could be written as a program script as shown in the following fragment.

function main()

{

var d = new Date;
Screen.witeln(d.tolLocal eString());
}

The function mai n() , if it exists, isthe first function to be executed in a script.
This script, using a structured programming style, produces the exact same result
asthefirst two lines, which follow a batch style. The following fragment is
another variation that produces the same result.

var d = new Date;

function main()

{
}

Remember that lines of script outside of functions are executed before the
mai n() function. The following fragment is yet another variation.

Screen.witeln(d.tolLocal eString());

function main()

Di spl ayTi me();

function DisplayTi me()
{

var d = new Date;
Screen.witel n(d.tolLocal eString());
}

To repeat, the first fragment shown consists of two lines of code written asa
simple batch script. The fragments, shown after it, are al written as program
scripts. All of the fragments accomplish the same thing, namely, displaying local
day, date, and time information. All fragments work equally well. What are the
differences? If a user wanted a simple script to display date and time information,

83

then the first batch script would likely be the best choice. However, if auser
wanted to write a more involved program, one in which the display of the date
and time was only a small part, then one of the program scripts would be the best
choice. Remember, ScriptEase scripts may be as ssimple or as powerful as a user
chooses.

Function with parameters

In the section above on date and time display, several variations of scripts were
presented showing different ways to accomplish the same result. The last
variation shown defined the function Display Time() which was called from the
mai n() function. When DisplayTime() was called, no parameters, that is, no
information or arguments, were passed to the function. Many times such
functions are used, but often scripts need to be able to pass data or information to
a function which then works with different data when called for differing reasons
in a script. See the section on passing information to functions for more
information about arguments and parameters.

The following script fragment illustrates the use of a function with parameters.
The purpose of the fragment is to terminate a script if the day of the week is
Saturday. A detailed explanation follows.

var dat = new Date();

// Sun ==0. . . Sat == 6

if (dat.getDay() == 6)

{
var FirstLine = "The host is closed on Saturday.";
var SecondLi ne = "Term nating program?";

Exi t OnError (FirstLine, SecondLine, EX T_FAILURE);
Y Iif

function ExitOnError(Li neOne, LineTwo, ExitCode)
{

Screen. writel n(Li neOne) ;
Screen. wri tel n(Li neTwo) ;
Cdib.exit(ExitCode);

} //ExitOnError

/'l The rest of the script follows
Screen.witeln("The programis continuing.");

Thefirst line creates a new Date abject which holds information about the
current date and time that can be retrieved in various formats. In this script, the
only date information used is the day of the week.

The third line of the script calls the method get Day() which returns the day of
the week as a number. Sunday is the first day of the week and is zero. The Date
object has many methods, such as get Day() , that are available to al Date
objects that are created as in this example. The variable dat is only one instance
of aDate object. A script can create or construct as many Date objects as desired,
and each one may use al the methods of the Date object. However, if date
information is altered in one instance, the date information in the other instances
is not affected. This behavior, of constructing an object which isinsulated from
operations within other instances of the same type of Object, is the same for all
objects, not just Date objects.

Thethird line tests, with an if statement, whether the current day is day number
6, Saturday. If the day is 6, then two variables, FirstLine and SecondLine, are
created with string information in them. Then the function ExitOnError() is
called with the two variables as the first two parameters of the function. The
parameter is EXI T_FAI LURE, which is a predefined value in ScriptEase, is
passed as the third parameter.

The function ExitOnError() uses the information passed to it in its parameters:
LineOne, LineTwo, and ExitCode. Notice that the variables, FirstLine and
SecondLine, do not have the same names as the parameters, LineOne and
LineTwo. Arguments, such as FirstLine and SecondLine, do not have to have the
same names as the parameters to which they are passed, in this case, LineOne
and LineTwo. Further, arguments do not have to be variables as parameters are.
In this example, EXI T_FAI LURE is not avariable but is a predefined value. The
variables FirstLine and SecondLine did not have to be created at all. The function
ExitOnError() could have been called with two litera strings instead of two
variable names. But such aline could become too long. The use of variablesin
the if statement makes the code easier to read and to alter. Without the variables,
the call to ExitOnError() would have been:

Exi t OnError (" The host is closed on Saturday.", "Term nating
program", EXI T_FAI LURE);

Specifically, what does the function ExitOnError() do? It displays the parameter
LineOne on aline by itself, displays the parameter LineTwo on the next line, and
exits the script with an error code. The rest of the script, no matter how long, is
not executed on Saturday. The display to the screen is:

The host is closed on Saturday.
Term nati ng program

85

The exit from the script is accomplished in line 14 withthe d i b. exi t ()
method. The identifier Clib is the Clib object and gets its name from "C library"
since the Clib object has almost all of the functions of the standard C library.
These C functions are implemented as methods of the Clib object. Though
documentation with ScriptEase covers this library of methods, other books and
documentation that cover the standard C library are useful, especially for users
new to the C language. Experienced C programmers will be able to use the Clib
object quickly and easily. See the section on the Clib object for more
information.

If the day of the week is not 6, then the statements in the if statement block of the
code are ignored. The script is not terminated, and all code after the if statement
is executed. In this script, the string "The program is continuing.” is displayed to
the screen by the last line in the script.

Terminology

Before going further, alittle explanation of terminology might help. One problem
with terminology isthat it is has developed over the years and is not used
uniformly. But in general, the term routine refers to afunction or procedure that
may be called in a program. A procedure is a routine that does something but
does not return avalue. A function is aroutine that returns a value. Said another
way, aprocedure is a function that does not return a value.

In JavaScript, the terms used are methods and functions, and these terms do not
make the distinction between a function that returns a value and one that does
not. The term procedure is not used. In the current discussion, the term routine is
ageneral term used for functions and methods (and procedures, though this term
is not used). The term method is normally used for afunction that has been
attached as a property of an object. The term function is used for functions of the
global object and functions that a user defines that are not attached to a specific
object. Such functions are actually methods of the global object.

The methods of the global object may be called without placing gl obal . in front
of the method name. Thus, they look like and act like plain functions in other
languages, such as C. For example, the function par seFl oat () isactualy a
method of the global object. The following fragment calls par seFl oat () likea
function.

var n = parseFloat("3.21");

Screen.witel n(typeof n);
Screen.witeln(n);

86

The following fragment, which is the same as the one above with the addition of
gl obal , calspar seFl oat () asamethod, but both fragments are identical in
behavior.

var n = gl obal . parseFl oat ("3.21");
Screen.witel n(typeof n);
Screen.witeln(n);

Thus, par seFl oat () may be referred to as afunction reflecting these calling
conventions. The line displaying typeof n displays number in both cases. The
typeof operator returns the type of data of the value following it. The typeof
operator may be invoked with () ". For example, t ypeof n andtypeof (n)
are the same.

The following fragment has a user defined function, MyFunction(), that is called
like afunction and then as a method. Both calls to MyFunction() are identical in
behavior.

functi on MyFunction()

{

Screen.writeln("My function has been called.");

}

MyFunction();
gl obal . MyFuncti on();

In the current ScriptEase manual, the following distinctions generally are
followed.

The term routine is generally used for functions and methods. Some writers
use function this general sense.

The term function is used for methods of the global object, that is, for
methods that do not require an object name or name of an instance of an
object to precede the method name. Such functions were described
immediately above.

The term method is used for methods that require an object name or name of
an instance of an object. The get Day() method, which was used abovein
the section about a function with parameters, is an example of such a method.

Function with a return

Functions may simply do something as the function ExitOnError() above does, or
they may return avaue to a calling routine. Of course, functions may do things

87

and return values. The following fragment illustrates a function that returns a
value.

function Cubed(n)
{

return n * n * n;
} // Cubed

var CubedNunber = Cubed(3);
Screen. wri t el n(CubedNunber) ;

The function Cubed() simply receives a number as parameter n, multiplies the
number times itsalf three times, and returns the result. The variable
CubedNumber is assigned the return value from the function Cubed().
CubedNumber is displayed to the screen, and in this example, the number 9 is

displayed.

Screen.write improved

The methods, Screen. write() and Screen. writel n(), are useful and easy
to use, but they can be improved. For example, the first linein the following
fragment works, but the second line causes an error since these methods can have
only one parameter.

Screen.witeln(1)
Screen.witeln(1,2)

The first step in writing our improved display functions is to write a function that
uses Screen. wri t e() and that accepts a variable number of arguments. The
W ite() function in the following fragment accomplishes our goal.

function Wite()

for (var i=0; i < argunents.length; i++)
Screen.wite(argunments[i]);
} I/ Wite

This function uses afor loop to display, using the Screen.write method, al
arguments passed to it. The key element in the loop is the special property,
arguments. Every function has an arguments property which may be used as an
Object or an Array. In the initialization section of the for loop, the arguments
property behaves like an object since arguments.length is a property of arguments
that returns the number of arguments which have been passed to a function. The
linethat uses Scr een. wri t e() to display the values that have been passed to

88

the function uses the arguments property like an array. The first argument in the
array isindexed by the number O, that is, the first argument is argumentg[0]. The
last argument is indexed by arguments.length minus 1, that is, arguments.length -
1. See the section on function properties for more information about the
arguments property of functions.

Our second step is to write a similar function that automatically adds end of line
characters to the display. The following fragment accomplishes our goal by
writing a blank line at the end of the display of all values passed to the function.

function Witeln()

{
for (var i=0; i < argunents.length; i++)
Screen.wite(argunments[i]);
Screen.witeln();
} /I/Witeln

What has been accomplished? We can now display multiple values with asingle
call to afunction. The following fragment:

Wite(l,2,3)
Wite(4,5)

produces the following display.
12345

And the following fragment:

Witeln(l,2,3)
Witeln(4,5)

produces the following display.

123
45

We can add a few touches to make such routines more useful, especially when
developing and debugging a script. First, we can write routines that allow us to
put characters or strings between displayed values.

function WiteSep(Sep)
{
for (var i=1; i < argunents.length; i++)
{
Screen.wite(argunments[i]);
Screen. write(Sep);
} /lfor

89

} /I WiteSep

function Witel nSep(Sep)
{

for (var i=1; i < argunents.length; i++)

{

Screen.wite(argunments[i]);
Screen. write(Sep);
} /lfor
Screen.witeln();
} /I Witel nSep

Now we can display multiple values separated by characters of our choice. The
following fragment:

WiteSep('--',1,2,3)

WiteSep('--',4,5)
produces the following display.

1--2--3--4--5--

And the following fragment:

WitelnSep('--',1,2,3)
Witeln('--',4,5)

produces the following display.

1--2--3--
4--5--

The separator character or characters must be a string which is passed as the first
parameter to the functions. A modified form of these two routines makes them
especially useful when developing and debugging scripts that depend on precise
strings. The following fragment defines the modified routines.

function WiteBar()

for (var i=0; i < argunents.length; i++)

{

Screen.wite(argunments[i]);
Screen.write('|");
} /lfor
} /IWiteBar
function Witel nBar()

for (var i=0; i < argunents.length; i++)

90

{

Screen.wite(argunments[i]);
Screen.write('|");
} /lfor
Screen.witeln();
} /I Witel nBar

These two routines simply use the pipe bar, |, as a separator between values. The
following fragment:

var sl = "one";

var s2 = "one "

WiteBar(sl);
WiteBar(s2);

produces the following display.

one| one |

And the following fragment:

var sl = "one";
var s2 =" one "
Witel nBar(sl);
Witel nBar(s2);

produces the following display.

one|
one |

If these variables were displayed using Screen.write() or Screen.writeln(), the
difference between them would not be apparent on the screen. But, by using the
pipe bar separator, the difference between the two strings is obvious.

Library file

We have now written six useful functions. If we want to use them over and over
again, we can put them into asingle library file that we include in other scripts.
The following fragment is an entire script to be saved as alibrary file with the
name write,jsh. Since these are general use routines, we can save writejshin a
directory for general library routines. The likely choice is \sedesk\jsh which is
created when ScriptEase is installed.

/! Wite routines library file

function Wite()

91

for (var i=0; i < argunents.length; i++)
Screen.wite(argunments[i]);

} /IWite

function Witeln()
for (var i=0; i < argunents.length; i++)
Screen.wite(argunments[i]);
Screen.witeln();
} /I/Witeln

function WiteSep(Sep)
for (var i=1; i < argunents.length; i++)
{
Screen.wite(argunments[i]);
Screen. write(Sep);
} /lfor
} /I WiteSep

function Witel nSep(Sep)
for (var i=1; i < argunents.length; i++)

{

Screen.wite(argunments[i]);
Screen. write(Sep);

} /lfor

Screen.witeln();
} /I Witel nSep

function WiteBar()
for (var i=0; i < argunents.length; i++)

{
Screen.wite(argunments[i]);

Screen.write('|");
} /lfor
} /IWiteBar

function Witel nBar()

for (var i=0; i < argunents.length; i++)

{
Screen.wite(argunments[i]);
Screen.write('|");

} /lfor

Screen.witeln();

} //Witel nBar

92

var wb
var Wb

WiteBar;
Wi tel nBar;

Notice the last two lines that assign the functions, Wi t eBar () and

Wi tel nBar (), to the variables, wb and wlib. These assignments illustrate how
JavaScript treats almost all identifiers, whether variables, arrays, objects, or
functions, like variables. Both wb and wib may be used in place of the functions
assigned to them. In the following example, both lines of code do the same thing.

Wi teBar ("Li ne one")
wb("Li ne one")

Likewise, both lines of code in the following fragment do the same thing.

Witel nBar ("Line two");
w b("Line two");

The only reason for adding the two assignments at the end of writejsh isfor the
ease of aprogrammer. The functionsW it eBar () andW it el nBar () are
mainly useful while developing and debugging a script. Typing wbh() issimply
faster than typing Wi t eBar () . Plus, the assignments illustrate how JavaScript
handles many identifiers as variables. Though not officially accurate, the
variables, wb and wlb, may be thought of as aliases, if that metaphor is helpful.

Two more observations should be made concerning write,jsh. First, the functions
defined do not list a specific number of parameters to receive, which is the most
common way to define functions. The following fragment illustrates the more
common method of defining functions.

function MoreCommonWite(Strl, Str2)

{
Screen.write(Strl);

Screen.wite(Str2);
}

The function MoreCommonWrite() explicitly defines, expects, and uses two
parameters. Whereas, the functions defined in write.jsh were written to expect
and use a variable number of parameters. A programmer has the choice of which
way to define and use parameters in afunction.

Second, each function end with a comment that is the function name. For
example, theW i t e() function endswith "} //Write". The function namein a
comment at this point is not required nor particularly useful in very short
functions such as the ones in write,jsh. However, they are useful when writing

93

functions of many lines and are shown here mainly because of programming
habits, hopefully good ones.

The following fragment illustrates how to include our newly created library file
in another script.

#include "wite.jsh'

var s1 = "This fragnment illustrates "
var s2 = "how to include "

var s3 = "our library file "

var s4 = "in a script."

Witel n(sl,s2,s3,s4)

The #include statement is a preprocessor directive which instructs a ScriptEase
interpreter to include the text of afilein a script before the file is executed. In
effect, the text of the included file replaces the include directive as if the text had
been originally typed in the script at that point. Thus, the six functions and two
variables used as diases that we defined in the library file are available to usin
the current script.

Library and sample files

ScriptEase Desktop ships with a number of files that are sample scripts. Many of
these scripts are useful programs that perform both useful and powerful tasks.
When ScriptEase Desktop isinstalled, it puts these sample scriptsin various
subdirectories of the installation directory. The default installation directory is
C:\Sedesk, and all other ScriptEase Desktop directories are subdirectories. Of
course, a user may specify adifferent installation directory, but for now, SEdesk
is assumed. Sample files are put into the following directories.

SEdesk\Utility
SEdesk\Sample

In addition, scriptsthat are specific to a particular operating system or platform
are put into the directory with the files for that platform. For example, scripts for
Win32 are put into the following directory.

Sedesk\Win32

Many library files are provided in the following directory.
Sedesk\Include

94

These library files provide very powerful routines that are not part of the actual
JavaScript or ScriptEase languages. Some of the library files are specific to a
particular platform, such asthe dialog library files for Windows.

ScriptEase users and programmers will find that many of the routines and
programs that they want have already been written and provided as sample and
library files. Before writing a script, it is usually beneficial to check thesefiles.
Sample and library files are self documented, that is, the documentation
explaining the files and routines in them is included in the files as comments.
These comments are explicitly written to be similar to areference manual. In
addition, files that document these sample and library files are provided in the
directories with them. These documentation files may be found in text (txt), rich
text (rtf), or hyper text markup (htm) formats.

The reason for documenting library and sample filesin this manner is that they
are continually being improved and updated. The latest library, sample, and
documentation files may be found in the ScriptEase Desktop pages of the
Nombas web site at:

http://www.sedesk.com/
http://www.nombas.com/us/

Feel free to vigit this site often and download updated files and documentation.

Using library files

Whether users write their own library files, asillustrated above with the
improved Screen.write routines, or use the library files provided by Nombas, they
need to include them with their scripts. As shown above, the #include
preprocessor directive isacommonly used way, asit isin other programming
languages. See the section on preprocessor directives for more information on
using the include directive.

ScriptEase provides another, ssmple and powerful, way to include files that is not
standard in other programming languages. The SEDESK PREFS environment
variable is an innovation that many ScriptEase users will learn to appreciate. To
use this variable, simply set it to the files, usualy library files, that should be
included with all scripts. In DOS and Windows platforms, appropriate lines may
be added to the autoexec.bat file.

95

To include the write.jsh library file, as shown above, add the following line to the
autoexec.bat file.

set SEDESKPREFS=write.jsh

With this setting, every script that is run by a ScriptEase interpreter will include
write.jsh at the beginning of the script. More than one file may beincluded as a
SEDESKPREFS setting. If more than one file is to be included, separate the file
names with a semicolon, asis done with the PATH variable. The following line
illustrates.

set SEDESKPREFS=write.jsh;file.jsh

With this setting, both write.jsh and file,jsh will be included at the beginning of
the interpretation of scripts. The SEDESKPREFS setting only affects scripts,
such as .jsefiles, that are being interpreted. Scripts that have been compiled into
a stand alone executable file, using the /Bind option of ScriptEase:Desktop Pro,
are not affected by the settings of SEDESKPREFS. The SEDESKPREFS will be
used when a script is compiled but ignored when it is run as an executable
program.

Both of the example lines shown above assume that the SEDESKPATH
environment variable or registry key has been set to point to the directories
holding library files, or any files to be included in a script. SEDESKPATH is set
when ScriptEase isinstalled. SEDESKPATH may be altered by a user, but
normally will not need to be changed.

Path names may be included in the SEDESK PREFS setting. For example,
assume that a user wants to keep certain library filesin a directory not included
in SEDESKPATH. Then SEDESKPREFS could be set with a full specification
of thefile, such asin the following.

set SEDESKPREFS=C.\ Sedesk\ MyLi braries\wite.jsh;file.jsh

With this setting, the file, C:\Sedesk\MyL ibraries\write.jsh, will be included with
all scripts, even if afile named writejsh exists in the standard library directories.
Thefile, filejsh, which isin the Sedesk\Jsh library directory will also be
included. The library file, filejsh, isauseful file when working with fileson a
disk.

A user might have certain routines and settings that he wants included with all
scripts. The settings and include statements could be put into every script written,
or they could be put into one library file that is included with every script. For

96

example, the following script could be saved as general .jsh in the Sedesk\Include
directory.

#opti on Requi r eVar Keywor d

#option ! Defaul t Local Vars

#opti on Requi reFuncti onKeyword
#opti on Mat hErr or War ni ngs

#include "wite.jsh'

Then set SEDESK PREFS as follows.
set SEDESKPREFS=general . sh

Now what has been accomplished? Every interpreted script will include
general.jsh. Thelibrary file general .jsh sets the strictest options for scripts. These
option settings facilitate the writing and development of scripts by reducing the
number of bugs that enter a script by common errors. Further, general .jsh
includes write.jsh that has the improved write routines devel oped above. Thus,
write.,jsh will also be included with all interpreted scripts.

There is no absolutely right or best way to use the flexibility provided by
SEDESKPREFS, but the flexibility is there to meet differing needs and styles.

97

Integrated Debugger

ScriptEase comes with a source debugger that provides a complete Integrated
Debugging Environment, which means you can edit a script while you are
debugging it.

" dScriptEase Debugger- T jse M= ES
File Edit ¥iew Search Debug MWindow Help

Djc@] 26| Sle] ole] x|=]7]2] B|6| W@
ETje M]S|

2l||[Locals - O Total E]
J//#option DefaultCBehavior Variahle Type Value

var v}

var arr = Array(l, false,3, "four");

v = rar;
wlh{typeof v, v);

v = Z; - ¥
il A7) | 2
'w_Watches M=1E3|| - ‘Globals ol]|
Watches - 7 Total “{l|5lokals - 0O Total E]
Expression Break Format Variahle Type value
Work. line Hone %3
Work.word None %=z
Cont. line Hone LS
Cont.word Hone s
Work. funcName None %=z
Cont. funcName Hone %=
2lpha.index None %d 727

= ¥
| = 7] | 1 oY
Ready Line 1. Col 1 y

The debugger is a Windows application with a standard Multiple Document
Interface (MDI) like many other applications. The image above has four
windows showing: the script, Watches, Locals, and the Globals window. The
specifics about windows are explained later. The script window is explained in
the section about the File menu options, and the other three in the section about
the window menu options. For now, just understand that the tiled arrangement
shown above is just one out of many ways to display windows in the debugger.
You may have multiple script window or only one. You may have only one
window showing or any combination of windows. Like any MDI application,
you may maximize, minimize, tile, and cascade windows. In short, the user
interface of the ScriptEase debugger is a standard windows interface.

99

ScriptEase debuggers are available only for Windows operating environments.
There are debuggers for Windows 95/98, Windows NT, and Windows 3.x.

Using the ScriptEase Debugger

The ScriptEase debugger is a source code debugger which means that you may
debug programs while watching the execution of a program line by line in the
original source code. Y ou may set breakpoints, trace lines of code as they
execute, step into and over functions, watch variables that you choose, keep up
with global and local variables, and other powerful options that you expect in a
good source code debugger.

The main window of the ScriptEase debugger consists of the following
components, listed in top to bottom order.

Components of main MDI window

Menu bar

All commands in the ScriptEase debugger may be accessed through menus. The
menu bar is described completely in the following section, "Main menu bar."

Tool bar

The toolbar has buttons for the common and useful debugger commands. Instead
of clicking menus, you may click a button on the toolbar as a shortcut. The
commands that are available on the toolbar are exactly the same as the
corresponding commands in menus. In the section, "Main menu bar," commands
that are available on the toolbar are indicated by the notation: "In toolbar."

Document window

The document window is a standard Windows Multiple Document Interface
(MDI) window. Y ou may open four kinds of windows within the document
window: Source, Watches, Locals, and Globals.

Status bar

The status bar at the bottom of the window provides useful information
concerning the currently active window. The current cursor position in a script
window is displayed as line and column numbers. The status of the Caps, Num,
and Scroll lock keys is displayed. When the mouse cursor is over menu and

100

toolbar items, help or hint information displays in the status bar. The general
state of the IDE is also displayed, such as "Ready" or "Program Terminated.”

MDI windows

Source

Source windows may be called script windows since they display the source code
of ascript file. These script windows are actually text editing windows in which
scripts may be viewed, edited, or used for source line debugging.

When used for editing, the editor is capable of writing an entire script, but the
editing features of a script window are basic and adequate for simple scripts.
Normally, you will use a more powerful editor for most writing and editing of
sophisticated scripts, an editor such as the ScriptEase Editor that accompanies
ScriptEase products. The ScriptEase Editor has features that alow you to
coordinate your work effectively with the ScriptEase debugger. Currently, when
you change text in a script while it is still loaded in a script window in the
debugger, you must manually reload the file in the debugger. However, when
you make changes in a script while in a script window, the ScriptEase Editor can
automatically detect the changes and reload the file. Thus, for most editing of
scripts use the ScriptEase Editor for major writing and script windows in the
debugger for minor changes while debugging a script.

The current position in a source file isindicated by a special marker, icon, that
can be chosen from several options. In addition, breakpoints may be setin a
script window. Breakpoints display as small red hexagons at the beginning of the
lines of scripts to which they apply.

Y ou may open multiple script windows at the same time. Remember, that various
debugging commands apply to the currently active script window. For example, a
command such as "Debug | Run in Debugger” runs the script in the currently
active source window, not any other scripts that might be open in source
windows.

Source windows have gray backgrounds when in debugging, as opposed to
editing, mode. Y ou may not edit scripts while in debugging mode. When script
windows have gray backgrounds, remember that you may only use debugging
commands, such as "Debug | Step Into."

Globals

101

The Globa s window displays all global variables that are available to the point in
a script. The source marker indicates in a script where execution is currently
occurring. The information for each variable displayed is the variable name, type,
and value.

Locals

The Locals window displays all local variables that are available at the point in a
script where execution is occurring. The source marker indicates in a script
where execution is currently occurring. The variables in alocal window
constantly change as functions that have local variables are entered and
debugged. The information for each variable displayed is the variable name, type,
and value.

Watches

The Watches window is a place where you can view variables and expressions
that you want to see. You may put plain variables here, and when they are active,
these variables will show as in other windows. In addition you may set variables
to be watched and used as breakpoints. Y ou may set execution to break if a
variable changes or is equd to true or false. But the watch window may be used
with more than just variables, it may be used with expressions. For example,

the following code:

var arr = Array(false, 1, 2, 3, "four");

creates an array with four elements. In the Locals and Globals windows, the array
arr isshown as type object with no value shown.

Y ou might want to keep up with one or more elements in the array. To keep up
with the second element in the array arr, set awatch for arr[1] and it will

appear as an expression to be watched with its format type and value, which in
this caseis 1. Perhaps you want to keep up with the addition or concatenation of
the fourth and fifth elements. If so, set awatch or arr[3] + arr[4], whichinthis
case would display avalue of "four3".

In fact, the watch window is designed to watch expressions rather than variables.
When avariable by itself is watched, the debugger simply considersit to be an
expression. Notice that the second column in the watch window provides format
information instead of the type of avariable.

Setting watches

102

The Watch dialog, Figure 2, is the main window used to set watch information.

Yatch |
Add Expression Format String
Femowve ‘
Break when Expressian...
| ’71’3‘ [NoBreak] ¢ Changes ¢ True ¢ False
Expression | Break Format String
Work.line Mo Break s
Work word Mo Break s
Contline Mo Break s
Contword Mo Break s
Wark funchMame Mo Break s
ContfuncHame Mo Break s
Alpha.index Mo Break ed
Exit |

Add

The Add button adds the current expression, in the Expression edit box, to the list
of expressions to be watched in the Watches window.

Remove

The Remove button removes the expression which is currently highlighted in the
list of expressions to be watched.

Remove All
The Remove All button removes all expressions to be watched.
Expression

The Expression edit box allows entry of expressions and variables to be watched
in the Watches window.

103

Format String

The Format String edit box allows some control over the format of expression,
that is, how an expression value will appear.

Break when Expression

The four optionsin this group allow watches to serve as conditional breakpoints.
To simply watch an expression or variable, set [No Break], which is the default.
Set Changes if you want program execution to pause when the expression or
variable changes value. Set True or False if you want program execution to pause
when an expression becomes true or false. You may use "Debug | Change
Variables..." to set avariable to a different value and watch execution with the
changed variable.

Setting breakpoints

The Breakpoint dialog, Figure 3, is the main window used to set breakpoints.

104

Breakpoint |

—File MName
|C:".,C".,SEPF{G".,T.JSE

Add

—Line Mumber

|1

—Breakpoints

Line 8. CANCAVSEPRGAT.JSE

Remuvel

Add breakpoint

The Add button adds a breakpoint at the line specified, in the Line Number edit
box, to the script specified in the File Name edit box. Of course, the script itself

is not altered since scripts are plain text files. Breakpoints are retained as settings
within the ScriptEase debugger.

Remove breakpoint

The Remove button removes the breakpoint which is currently highlighted in the
Breakpoints list box.

File Name for breakpoint

105

The File Name edit box indicates which script is presently being used for add and
remove operations

Line Number for breakpoint

The Line Number edit box indicates which line in a script is affected by add and
remove operations

Breakpoints listing

The Breakpoints list box shows all breakpoints currently active in a script.

Main menu bar

The main menu bar consists of the seven menus across the top of the windows
just below thetitle of bar. The seven menus are: File, Edit, View, Search, Debug,
Window, and Help. Some menu commands may be accessed from the toolbar or
by shortcut keys, and those that can are indicated by the notations: "In toolbar"
and a keystroke description.

File menu

The file menu has options for starting, opening, closing, saving, and printing
script files. Plus, an exit option to exit the debugger. All of the commands
concerning files operate on script or source files. These files are opened in the
integrated editor which allows the use of all debugging optionsin the integrated
debugger. The editor is also a standard editor that can be used to do plain text
editing in any text file, such as one created by Notepad.

The editor can be used to write complete scripts. Normally, however, scripters
use their favored editors to write and edit most scripts and use the integrated
editor while debugging a script.

New In toolbar and Ctrl+N

Start anew script or source file. The file is opened in the editor which is
integrated with al debugging features.

Open... In toolbar and Ctrl+O
Open dialog to open a script file.
Close Ctrl+W

Close the currently active script file.

106

Save In toolbar and Ctrl+S
Save the currently active script file.
Save As...

Save the currently active script file to a new filename. The title of the currently
active script will change to the new filename. Immediately after a script is saved
to anew filename, the script will exist in two separate files with the old and new
filenames. But, the new filename will be the active script. To edit the previous
file, it must be opened again.

Print... In toolbar and Ctrl+P

Print the currently active script file using straightforward print settings. The print
dialog that opensis a standard Windows print dialog.

Print Preview

Preview how the printed script file will ook before actually printing the file.
When previewing a page, there are various options to page through the pre-
printed document, examine pages one or two at atime, zoom in and out, print the
document, or close the preview window without printing.

Print Setup...

Change printer settings. These settings are for the printer and are not a page
setup. The print setup dialog that opens is a standard Windows print dialog.

(Recent files list)
List up to four of the most recent script files that have been opened in the editor.
Exit

Exit the entire ScriptEase debugger program. Some settings, such as the size and
location of open windows is saved. Thus, when the ScriptEase debugger is
started again, it is easier to restore various windows to their previous state.

Edit menu

Undo Ctrl+z
Undo the last editor operation in the script window.
Cut In toolbar and Ctrl+X

107

Cut selected text from the script window.

Copy In toolbar and Ctrl+C
Copy selected text from the script window.

Paste In toolbar and Ctrl+V

Paste text at the insertion point, where the cursor is, or into the selection in the
script window.

Options
Font...

Display adiaog to set the style, size, and color of the font used in the debugger
windows.

Tabs...

Set how many spaces should be used when displaying a tab character in the
debugger windows.

Trace On

When a script is run using the Debug | Run in Debugger menu item, the active
script runs until it encounters a breakpoint or the script ends. If the Edit | Options
| Trace On option is checked, then when a script is run in the debugger, the lines
executed are traced. The source marker visibly moves from source line to source
line asthe script is run. The effect is similar to choosing the Debug | Step Into
and Step Over menu items. The difference is that with Trace On checked, the
stepping is done automatically.

Trace Speed

When the Trace On menu item is checked, the Trace Speed options determine
how fast the trace operation executes each line of a script. The options are: Fast,
Normal, Slow, and Slowest.

Trace over

When the Trace On menu item is checked, the Trace Over menu item determines
if the tracing steps over functions that are called or steps into them. When Trace
Over is checked, the tracer steps over functions, and when it is not checked, the
tracer steps into functions.

Source Mark

108

When debugging a script, the current position in a script is visibly marked by an
icon or graphic. The Source Mark option allows a choice of the appearance of the
marker.

Default Interpreter...

The default interpreter is the ScriptEase executable that the debugger uses when
executing a script. In Win32, the two valid programs are SEwin32.exe and
SEcon32.exe. There are differences between a windowed application and a
console application. Y ou may want to set the default interpreter to be the same
interpreter that you will use to execute a script.

View menu

Toolbar view
View the push button toolbar, just below the menu bar, if checked.
Status Bar view

View the status bar at the bottom of the debugger window. The status bar
displays various hel pful messages and the position of the cursor or insertion point
in the editor in terms of line and column.

Search menu

Find... Ctrl+F
Find text in the script window using afind dialog.
Replace... Ctrl+R

Find text in the script window and replace it with other text using afind and
replace dialog.

Debug menu

Start Debug Session

Start executing the active script in a debug session. The source marker is
positioned at the first executable line in the script awaiting further commands.

Restart

Restart a debugging session. The source marker is positioned at the first
executable line in the script awaiting further commands.

109

Run in Debugger In toolbar and F5

Run the current script in the debugger. The source mark appears. The script
executes until a break point is reached or the script is finished.

Go Ctrl+F5
Execute the current script as a program, that is, not in the debugger.
Stop In toolbar

Stop the execution of a script that is running in the debugger. The script may be
actively executing or paused at a source line or breakpoint.

Step Into In toolbar and F9

Stepsinto any user defined functions in the current source line and begins
displaying source lines in the function as they are executed. Does not step into
built in functions. If a script has not begun execution in the debugger, then the
first line of executable code is executed.

Step Over In toolbar and F10

Steps over any user defined functions in the current source line and simply
executes the line and pauses at the next line in the current script. If a script has
not begun execution in the debugger, then the first line of executable codeis
executed.

Step to Cursor In toolbar and F11

Executes all lines of executable code till reaching the line where the cursor is
located. In effect, the cursor behaves like atemporary breakpoint.

Step Out In toolbar and F12
Executes lines of code in the current function until the function is finished.
Parameters...

Opens a dialog box to set command line parameters to be sent to a script when it
is executed in the debugger. The parameters are handled by a script in the same
way as they are when part of a command line.

Breakpoint
Toggle current In toolbar and F8

Toggle the breakpoint at the current line, off or on.

110

Add/Remove...

Opens a dialog box to add or remove breakpoints on any line in the current script.
Remove all In toolbar
Removes all breakpoints in the current script.

Watch

Add/Remove... Toolbar

Opens a dialog box for adding variables and expressions to the watch window or
removing them.

Remove all Toolbar
Remove all watches from the current script and debugging session.
Change Variables

The menu item allows a variable to be changed while a script is executing.

Window menu

Cascade

Display the open windows in the debugger in a cascaded fashion.
Tile

Tile open windows horizontaly. If two or three windows are open, they are all
tiled horizontally extending the entire width of the main debugger window. If
four or more windows are open, then two columns of windows are begun, and all
windows are tiled horizontally in the two columns. For example, if a script
window, the global, the local, and the watch window are opened, the resulting
window is quartered. Each window will be in the four corners of the main
window. The screen shot, Figure 1, at the beginning of this section is an example
of four tiled windows.

Arrange Icons

Asin al MDI applications, open windows may be minimized inside the main
window. The Arrange Icons menu item arranges these minimized icons at the
bottom of the main debugger window.

Global... Ctrl+Shft+G

111

Open the Globals window to view global variables while debugging a script.
Local... Ctrl+Shft+L
Open the Locals window to view local variables while debugging a script.
Watch... Ctrl+Shft+W

Open the Watches window to view variables and expressions that have been
defined by a user.

(Open windows list)
A list of the currently open windows in the debugger.

Help menu

Help Topics... F1
Display ahelp file for the debugger.
About ScriptEase Debugger... In toolbar

Displays program information, version number, and copyright notice for the
debugger.

112

ScriptEase versus C language

This section is primarily for those who already know how to programin C,
though novice programmers can learn more about the Clib and SElib objects and
C concepts by reading it. The emphasisis on those elements of ScriptEase that
differ from standard C. Most of the pertinent differences involve the Clib object,
SElib object, and cfunction function. Users who are not familiar with C should
first read the section on ScriptEase JavaScript.

The assumption here is that readers of this section aready know C. Thus, only
those aspects of the C portion of ScriptEase that differ from C are described. If
something is not mentioned here, ScriptEase follows standard C behavior. While
in this section on the differences from C, the term ScriptEase is used for the
portion of ScriptEase that implements the standard C library and ScriptEase
additions to that library. Almost all of the implementation of C in ScriptEase
involves the use of Clib objects, SElib objects, or cfunctions. Thus, references to
ScriptEase as the C portion of ScriptEase usualy involve Clib, SElib, or
cfunction. The differences between a function and a cfunction are also discussed
in the section on ScriptEase JavaScript.

Deviations from C result from following several principles:
simplicity
power
safety

The C portion of ScriptEase is different from C where changes make ScriptEase
more convenient for scripting, writing small programs, and entering command
line code or where unaltered C rules encourage coding that is potentially unsafe.
Keep in mind, that most issues involved in this section involve the use of Clib,
SElib, and cfunction.

The C portion of ScriptEase is C without type declarations and pointers. If you
already know C and can forget these two aspects of C while using ScriptEase,
then you already know the C portion of ScriptEase. If you were to take C code
and delete al the lines, code words, and symbols that either declare data types or
explicitly point to data, then you would be left with code that would work with
Clib, SElib, and cfunction. Though you would be altering source code, you
would not be removing capabilities.

113

The most basic idea underlying this section is that the C portion of ScriptEaseis
C without type declarations and pointers.

Data types in C and SE

ScriptEase uses the same data types as JavaScript.

Automatic type declaration

There are no type declarations nor type castings as found in C. Types are
determined from context. In the statement, var i = 6, thevariableiisa
number type. For example, the following C code:

int max(int a, int b)

{
int result;
result = (a<b) 2b: g
return result;

}

could be converted to the following ScriptEase code:

Aib.max(a, b)
{

var result = (a<b) ?2 b: g
return result;

}

The code could be made even more like C by using a with statement asin the
following fragment.

with (dib)

max(a, b)

{

var result = (a<b) ? b: a
return result;

}
}

A with statement can be used with large blocks of code which would allow Clib
and SElib methods to be called like C functions. C programmers will appreciate
this ability. Other users who decide to use the extra power of C functions will
come to appreciate this ability.

114

Array representation

This section on the representation of arrays in memory only deals with automatic
arrays which are part of the C portion of ScriptEase. JavaScript uses constructor
functions that create instances of JavaScript arrays which are actually objects
more than arrays. Everything said in this section is about automatic arrays
compared to C arrays. The methods and functions used to work with JavaScript
constructed arrays and ScriptEase automatic arrays are different. The following
fragment creates a JavaScript array.

var aj = new Array();

The following line creates an automatic array in ScriptEase.
var ac[3][3];

The two arrays are different entities that require different methods and functions.
For example, the property aj . | engt h provides the length of the g array, but the
function get Ar r ayLengt h(ac) provides the length of the ac automatic array.
When the term array is used in the rest of this section, the referenceisto an
automatic array. JavaScript arrays are covered in the section on ScriptEase
JavaScript.

Arrays are used in ScriptEase much like they arein C, except that they are stored
differently. A single dimension array, for example, an array of numbers, is stored
in consecutive bytesin memory, just asin C, but arrays of arrays are not in
consecutive memory locations. The following C declaration:

char c[3][3]; // thisis the C version

indicates that there are nine consecutive bytes in memory. In ScriptEase a similar
statement such as the following:

var c¢[2][2] ='a"; [/ this is the ScriptEase version

indicates that there are at least three arrays of characters, and the third array of
arrays has at least three charactersin it. Though the charactersin c[0] and the
charactersin c[1] are in consecutive bytes, the two arrays c[0] and c[1] are not
necessarily adjacent in memory.

Automatic array allocation

115

Arrays are dynamic, and any index, positive or negative, into an array is always
valid. If an element of an array is referenced, then ScriptEase ensures that such
an element exists. For example, if a statement in ascript is:

var foo[4] = 7;

then ScriptEase makes an array of 5 integers referenced by the variable foo. If a
later statement refersto foo[6] then ScriptEase expands foo, if necessary, to
ensure that the element foo[6] exists. The same is true for negative indices. When
foo[- 10] isreferenced, foo is grown in the negative direction if necessary, but
foo[4] still refersto theinitial 7. Arrays can be of any order of dimensions, thus
foo[6][7][34][- 1][4] isavalid variable or array.

Literal strings

A litera string in ScriptEaseis any array of characters, that is, a string, appearing
in source code within double, single, or back quotes. Back quotes are sometimes
referred to as back-ticks. The following lines show examples of literal stringsin
ScriptEase:

"dog" /1 literal string (double quote)
' dog' /1 literal string (single quotes)
“dog” /] literal string (back- ticks)
{*d,"o,'g,"\0} /1 not aliteral string, rather

/] an array initialization

Literal strings have special treatment for certain ScriptEase operations for the
following reasons.

To protect literal string data from being overwritten accidentally
To reduce confusion for novice programmers who do not think of strings
as arrays of bytes

To simplify writing code for common operations, for example, the
Statement:

Test Str == " MYLONGPASSVORD'

issmpler than :
Cib.strcnp(TestStr, "MYLONGPASSWORD') .

In generd, litera strings adhere to the two following rules.

Comparisons are intrinsically handled by Clib.stremp()

116

Assignment and passing of literal stringsis done by making copies of the
literal string

Literal strings and assignments

When aliteral string is assigned to a variable, a copy is made of the string, and
the variable is assigned the copy of the literal string. For example, the following
code:

for (var i = 0; i < 3; i++4)

{

var str = "dog";
Cib.strcat(str, "house");
Aib.puts(str);

resultsin the following output:

doghouse
doghouse
doghouse

A dtrict C interpretation of this code would not only overwrite memory, but
would also generate the following outpuit:

doghouse
doghousehouse
doghousehousehouse

Literal strings and comparisons

If both sides of a comparison operator are strings, and at least one of themisa
literal string, then the comparison is performed asif C i b. st rcnp() were
being used. If one or both variables are literal strings, then the following
trandation of the comparison operation is performed.

| var operator rvar Aib.strcnp(lvar, rvar) operator 0
The following examples demonstrate how literal strings follow the logic of
Adib.strenp().

if (animal == "dog") [/ if (dib.strcnp(animal, "dog") == 0)

if (animal < "dog") [/ if (dib.strcnp(animal, "dog") < 0)
if ("dog" <= animal) // if (dib.strcmp("dog", animal) <= 0)

In ScriptEase, the following fragment:

117

var animal = "dog";
if (animal == "dog")
Cib. puts("hush puppy");

displays:
"hush puppy"

Literal strings and parameters

When aliteral string is a parameter to afunction, it is passed as a copy, that is, by
value. For example, the following code:
for (var i = 0; i < 3; i++4)

{

var str = Cib.strcat("dog", "house");
Cib.puts(str)

resultsin the following output:

doghouse
doghouse
doghouse

Literal strings and returns

When aliteral string is returned from afunction by areturn statement, it is
returned as a copy of the string. The following code:

for (var i = 0; i < 3; i++4)
{

var str = Cib.strcat(dog(), "house");
Cib.puts(str)

function dog()
{
}

resultsin the following output:

return "dog";

doghouse
doghouse
doghouse

Literal Strings and switch statements

118

If either a switch expression or a case expression is aliteral string, then the case
statement match is based on a string comparison usingd i b. st rcnp() logic.
The following fragment illustrates.

switch(dib.strlw (tenp, argv[1]))

{

case "add":
DoTheAddThi ng() ;
br eak;

}

case "renove":

DoTheRenoveThi ng() ;
br eak;

defaul t:

dib. put s("Whaddya want ?");

Structures

Structures are created dynamically, and their elements are not necessarily
contiguous in memory. When ScriptEase encounters a statement such as:

foo. ani mal = "dog"

it creates a structure element of foo that is referenced by "animal” and that isaan
array of characters. The "animal" variable becomes an element of the "foo"
variable. Though foo, in this example, may be thought of and used as a structure
and animal as an element, in actuality, foo is a JavaScript object and animal isa
property. The resulting code looks like regular C code, except that thereis no
separate structure definition anywhere. The following C code:

struct Point

{
int Row,
int Colum;
}
struct Square
{

struct Point BottonlLeft;
struct Poi nt TopRi ght;

119

}
voi d main()

struct Square sq;

int Area;

sq. BottonlLeft. Row = 1;

sqg. BottonlLeft. Col um = 15;

sq. TopRi ght. Row = 82;

sg. TopRi ght. Col uim = 120;

Area = AreaO ASquare(sq);
}

int AreaO ASquar e(struct Square s)

int wdth, height;
width = s. TopRight. Colum - s.BottonlLeft.Colum + 1;
hei ght = s. TopRight. Row - s.BottonLeft.Row + 1;
return(width * height);

}

can be easily converted into ScriptEase code as shown in the following.

cfunction nain()

{
var sq.BottonLeft. Row = 1;
sqg. BottonlLeft. Col um = 15;
sq. TopRi ght. Row = 82;
sqg. TopRi ght. Col uim = 120;
var Area = AreaO ASquare(sq);
}
cfunction AreaO ASquare(s)
{
var width = s. TopRi ght.Colum - s.BottonLeft. Colum + 1;
var height = s. TopRi ght.Row - s.Bottonleft.Row + 1;
return(width * height);
}

Structures can be passed, returned, and modified just as any other variable. Of
course, structures and arrays are different and independent, which allows a
statement like the following.

foo[8].animal.forge[3] = bil.bo

Some operations, such as addition, are not defined for structures.

Passing variables by reference

120

By default, lvalues in ScriptEase are passed to cfunctions by reference. If a
cfunction alters a variable, then the variable passed as an argument by the calling
routineis altered also, if it isan lvalue. So instead of the following C code which
uses address and pointer operators:

mai n()
CQuadr upl el nPl ace(&);

}

voi d CQuadrupl el nPl ace(int *j)
{

*j += 4;
}

a ScriptEase conversion could be:

function main()

{
d}édr upl el nPl ace(i);

}

cfunction Quadrupl el nPl ace(j)

L
=4
}

The following calls to QuadruplelnPlace() are valid in ScriptEase, but the values
passed as arguments are not changed after QuadruplelnPlace() is called. Why?
None of the arguments being passed are Ivalues.

Quadr upl el nPl ace(8);

Quadr upl el nPl ace(i +1);
Quadr upl el nPl ace(8+1);

Variables may not be passed by value to cfunctions. However, general
ScriptEase alows functions to have primitive types passed values by value or by
reference, though composite data types can be passed only by reference. See the
sections on data types, passing information to functions, and passing information
to cfunctions for more information.

121

Pointer operator * and address
operator &

No pointers. None. The* symbol never means pointer in ScriptEase, which
might cause seasoned C programmers to gasp in disbelief. But the situation turns
out not to be such abig deal. The pointer operator is easily replaced. For
example, *var can bereplaced by var[0] .

Further, in cfunctions, address arithmetic may be used to simulate some to the
functionality of pointers. The following function displays the string in the
variable s. In the first display line shows:

abcde

The second display line, which uses address arithmetic "s+2" shows:

cde

cfunction main(argc, argv)

{

var s = "abcde";
Screen.witeln(s);
Screen.witel n(s+2);

}

Remember that in cfunctions, variables are passed by reference. In functions (not
cfunctions), all variables, except primitive data types, are passed by reference.
ScriptEase adds the address operator & for primitive data types. If you want to
pass a primitive data type by reference in a JavaScript function, use the address
operator in the parameter list. For example,

function Set Nunbers(&nl, n2, &n3, &n4)

{
nl =n2 =n3 =n4 =5;

}

Remember, the address operator & is for functions, not cfunctions.

Case statements

Case statements in a switch statement may be constants, variables, or other
statements that can be evaluated to a value. The following switch statement has
case statements which are valid in ScriptEase.

122

switch(i)

case 4:

case foe():

case "thorax":

case Math.sqrt(foe()):
case (PILLBOX * 3 - 2):
def aul t:

}

As described in the section on literal strings above, if either a switch expression
or a case expression is aliteral string, then any comparisons are based on the
logicof A ib.strcnp(),thatis, asif the comparisons were
ICib.strcnp(switch_expr, case_expr).

Initialization code which is external to
functions

All code not inside a function block is interpreted before main() is called and can
be thought of asinitialization code. When a script has initialization code outside
of functions and code inside of functions, it shares characteristics of both batch
and program scripts. Thus, the following ScriptEase code:

Cib.printf("first ");
cfunction nain()

Cib.printf("third.");
}

Aib.printf("second ");

resultsin the following output:

first second third.

Unnecessary tokens

If symbols are redundant, they are usually unnecessary in ScriptEase which
allows more flexibility in writing scripts and is less onerous for users not trained
in C. Semicolons that end statements are usually redundant and do not do
anything extrawhen a script isinterpreted. C programmers are trained to use
semicolons to end statements, a practice that can be followed in ScriptEase.

123

Indeed, some programmers think that the use of semicolonsin ScriptEase and
JavaScript is agood to be pursued. Many people who are not trained in C wonder
at the use of redundant semicolons and are sometimes confused by their use. The
use of semicolonsis persona. If a programmer wants to use them, then he
should, but if he does not want to, then he should not.

In ScriptEase the two statements, "f oo() " and "f oo() ; " areidentical. It does
not hurt to use semicolons, especially when used with return statements, such as
"return;". But widespread or regular use of semicolons simply is not
necessary. Similarly, parentheses, "(" and ")", are often unnecessary. For
example, the following fragment is valid and results in both of the variables, n
and x, being equal to 7.

var n =1+ 2* 3 var x =2 * 3 +1

The following fragment is identical and is clearer, but it requires more typing
because of the addition of redundant tokens.

var n =1+ (2 * 3); var x = (2 * 3) + 1;

The fragments could be rewritten to be:

var n =1+ 2 * 3
var x =2 * 3 +1
and:

var n =1 + (2 * 3);
var x = (2 * 3) + 1;

Which fragment is better? The answer depends on personal taste. Efforts to
standardize programming styles over the last three decades have been abysmal
failures, not unlike efforts to control the Internet.

Macros

Function macros are not supported. Since speed is not of primary importancein a
scripting language, a macro gains little over afunction call. Macros smply
become functions.

Token replacement macros

The #define preprocessor directive, which can be thought of and used as a macro,
is supported by ScriptEase. As an example, the following token replacement is

124

recognized and implemented during the preprocessing phase of script
interpretation.

#define NULL O

Back quote strings

Back quotes are not used at all for stringsin the C language. The back quote
character, °, a'so known as a back- tick or grave accent, may be used in
ScriptEase in place of double or single quotes to specify strings. However, strings
that are delimited by back quotes do not trandate escape sequences. For example,
the following two lines describe the same file name:

"c:\\autoexec.bat" // traditional C nmethod, which is al so

/] valid in ScriptEase
“c:\autoexec. bat” /1 alternative ScriptEase met hod

Converting existing C code to
ScriptEase

Converting existing C code to ScriptEase is mostly a process of deleting
unnecessary text. Type declarations, such asi nt , f| oat , struct, char, and
[], should be deleted. The following two columns give examples of how to make
such changes. C code is on the left and can be replaced by the ScriptEase code on
the right.

C ScriptEase
int i; var i; // or nothing
int foo = 3; var foo = 3;
struct var st; // no struct type
{ /] Sinply use st.row
int row /!l and st. col
int col; /1 when needed.
}
char name[] = "George"; var nane = "George";
int goo(int a, char *s, int c); var goo(a, buf, c);
int zoo[] = {1, 2, 3}; var zoo = {1, 2, 3};

Another step in converting C to ScriptEase is to search for pointer and address
operators, * and & Since the* operator and & operator work together when the
address of avariable is passed to a function, these operators are unnecessary in

125

the C portion of ScriptEase. Remember, variables are passed by reference to
cfunctions. If code has* operatorsin it, they usually refer to the base value of a
pointer address. A statement like"*f oo = 4" can bereplaced by "f oo[0] =
4",

Finally, the- > operator in C which is used with st r uct ur es may be replaced
by a period for values passed by address and then by reference.

126

Array object

An Array object is an object in JavaScript and is in the underlying ECMA Script
standard. Be careful not to confuse an array variable that has been constructed as
an instance of the Array object with the automatic or dynamic arrays of
ScriptEase. ScriptEase offers automatic arrays in addition to the Array object of
ECMAScript. The purpose is ease the programming task by providing another
easy to use tool for scripters. The current section is about Array objects.

An Array isaspecia class of object that refersto its properties with numbers
rather than with variable names. Properties of an Array object are called elements
of the array. The number used to identify an element is called an index in
brackets which follows an array name. Array indices must be either numbers or
strings.

Array elements can be of any data type. The elementsin an array do not al need
to be of the same type, and there is no limit to the number of elements an array
may have.

The following statements demonstrate assigning values to arrays.

var array = new Array();

array[0] = "fish";

array[1] = "fow";

array["joe"] = new Rectangl e(3,4);
array[foo] = "creeping things"
array[goo + 1] = "etc."

The variables foo and goo must be either numbers or strings.

Since arrays use a number to identify the data they contain, they provide an easy
way to work with sequential data. For example, suppose you wanted to keep
track of how many jelly beans you ate each day, so you can graph your jelly bean
consumption at the end of the month. Arrays provide an ideal solution for storing
such data.

var April = new Array();
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;

127

Now you have all your data stored conveniently in one variable. Y ou can find out
how many jelly beans you ate on day x by checking the value of April[x]:
for(var x = 1; x < 32; Xx++)

Screen.wite("On April " + x + " | ate " + April[x] +
" jellybeans.\n");

Arrays usually start at index [O], not index [1]. Note that arrays do not have to be
continuous, that is, you can have an array with elements at indices 0 and 2 but
noneat 1.

Creating arrays

Like other abjects, arrays are created using the new operator and the Array
constructor function. There are three possible ways to use this function to create
an array. The simplest isto call the function with no parameters:

var a = new Array();

Thislineinitializes variable a as an array with no elements. The parentheses are
optional when creating a new array, if there are no arguments. If you wish to
create an array of a predefined size, pass variable athe size as a parameter of the
Ar r ay () function. The following line creates an array with alength of the size
passed.

var b = new Array(31);

In this case, an array with length 31 is created.

Finally, you can pass a list of elements to the Ar r ay () function, which creates an
array containing all of the parameters passed. For example:

var ¢ = new Array(5, 4, 3, 2, 1, "blast off");

creates an array with alength of 6. c[0] issetto 5, ¢[1] isset to 4, and so on up to
c[5], which is set to the string "blast off". Note that the first element of the array
isarray[Q], not array[1].

Arrays may also be created dynamically. By referring to a variable with an index
in brackets, avariable is created as or converted to an array. The array that is
created is an automatic or dynamic array which is different than an instance of an
Array object created as described in this section. Automatic arrays, created as
described in this paragraph, are unable to use the methods and properties
described below, so it is recommended that you use, in most circumstances, the
new Array() constructor function to create arrays.

128

Initializers for arrays and objects

Variables may be initialized as objects and arrays using lists inside of "{} " and
"[1". By using these initializers, instances of Objects and Arrays may be created
without using the new constructor. Objects may be initialized using a syntax
similar to the following:

var o = {a:1, b:2, c:3};
This line creates a new object with the properties a, b, and ¢ set to the values
shown. The properties may be used with normal object syntax, for example, o. a
== 1.
Arrays may initialized using a syntax similar to the following:

var a = [1, 2, 3];

Thisline creates a new array with three elements set to 1, 2, and 3. The elements
may be used with normal array syntax, for example, a[0] == 1.

The distinction between Object and Array initializer might be a bit confusing
when using aline with syntax similar to the following:

var a = {1, 2, 3};

Thisline also creates a new array with three elements set to 1, 2, and 3. Theline
differsfrom the first line, Object initidizer, in that there are no property
identifiers and differs from the second line, Array initializer, in that it uses"{}"
instead of "[1 ". In fact, the second and third lines produce the same results. The
elements may be used with normal array syntax, for example, a[0] == 1.

The following code fragment shows the differences.
var o= {a:1, b:2, c:3};
Screen.witeln(typeof o +" | "+ o._class +" | "+ 0);

var a = [1, 2, 3];
Screen.witeln(typeof a +" | "+ a._class +" | "+ a);

var a= {1, 2, 3};
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

The display from this codeis:

object | ohject | [object Object]
object | Array |

1,2,3
object | Array | 1,2,3

129

As shown in thefirst display line, the variable o is created and initialized as an
Object. The second and third lines both initialize the variable a as an Array.
Noticethat in all casesthet ypeof the variableis object, but the class, which
corresponds to the particular object and which isreflected in the _cl ass
property, shows which specific object is created and initialized.

Array object instance properties
Array length

SYNTAX: array.length

DESCRIPTION: The length property returns one more than the largest index
of the array. Note that this value does not necessarily
represent the actual number of elementsin an array, since
elements do not have to be contiguous.

By changing the value of the length property, you can
remove array elements. For example, if you change
ant.length to 2, ant will only have the first two members,
and the values stored at the other indices will be lost. If we
set bee.length to 2, then bee will consist of two members:
beg[0], with avalue of 88, and beg[1], with an undefined

value.
SEE: Array(), getArrayLength(), setArrayLength()
EXAMPLE: /'l Suppose we had two arrays "ant" and "bee",

/1 with the follow ng el ements:

var ant = new Array();
ant [0] ;
ant [1]
ant [2]
ant [3]

Suhw

var bee = new Array();
bee[0] 88;
bee[3] 99;

/1 The length property of both ant and bee
/'l is equal to 4, even though ant has twi ce
/! as many actual elenents as bee does.

130

Array object instance methods
Array() with length

SYNTAX: new Array(length)

WHERE:! length - If thisis a number, then it is the length of the array to be
created. Otherwise, it is the element of a single-element array to
be created.

RETURN: object - an Array object of the length specified.

DESCRIPTION: The array returned from this function is an empty array whose
length is equal to thel engt h parameter. If | engt hisnot a
number, then the length of the new array is set to 1, and the first
element is set to the | engt h parameter. Note that this can also
be called as a function, without the new operator.

SEE: Automatic arrays

EXAMPLE: var a = new Array(5);

Array() with list

SYNTAX: new Array([elementl, ...])

WHERE! elementN - list of elements to be in the new Array object being
Created.

RETURN: object - an Array object with the elements specified.

DESCRIPTION: This function is an aternate form of the Array constructor which
initializes the elements of the new array with the arguments
passed to the function. The arguments are inserted in order into
the array, starting with element 0. The length of the new array is
set to the total number of arguments. If no arguments are
supplied, then an empty array of length O is created.

SEE! See Array()

EXAMPLE: var a = new Array(1,"tw",three);

131

Array concat()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

array.concat([elementl, ...])

elementN - list of elements to be concatenated to this Array
object.

object - anew array consisting of the elements of the current
object, with any additional arguments appended.

Thereturn array isfirst constructed to consist of the el ements of
the current object. If the current object is not an array object,
then the object is converted to a string and inserted as the first
element of the newly created array. This method then cycles
through all of the arguments, and if they are arrays then the
elements of the array are appended to the end of the return array,
including empty elements. If an argument is not an array, then it
isfirst converted to a string and appended as the last element of
the array. The length of the newly created array is adjusted to
reflect the new length. Note that the original object remains
unaltered.

String.concat()

var a = new Array(1,2);
var b = a.concat (3);

Array join()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

array.join([separator])

separator - avalue to be converted to a string and used to
separate the list of array elements. The default is an empty string.

string - string consisting of the elements, delimited by separator,
of an array.

The elements of the current object, from 0 to the length of the
object, are sequentially converted to strings and appended to the
return string. In between each element, the separator is added. If
separ at or isnot supplied, then the single-character string *," is
used. The string conversion is the standard conversion, except
the undefined and null elements are converted to the empty

132

SEE!

EXAMPLE!

string "'

The join() method creates a string of al of array elements. The
join() method has an optional parameter, a string which
represents the character or characters that will separate the array
elements. By default, the array elements will be separated by a
comma. For example:

var a = new Array(3, 5, 6, 3);
var string = a.join();

will set the value of "string” to "3,5,6,3". Y ou can use another
string to separate the array elements by passing it as an optional
parameter to the .join() method. For example,

var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

creates the string "3*/*5*/*6*/*3".
Array.toString()
/1 The foll ow ng code:

var array = new Array("one", 2, 3, undefined);
Screen.witeln(array.join("::"));

/1 W1l print out the string "one::2::3::".

Array pop()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

array.pop()
value - the last element of the current Array object. The element
is removed from the array after being returned.

This method first gets the length of the current object. If the
length is undefined or O, then undefined is returned. Otherwise,
the element at thisindex isreturned. This element isthen
deleted, and the length of current object is decreased by one. The
pop() method works on the end of an array, whereas, the

shi ft () method works on the beginning.

Array.push()

/'l The foll ow ng code:

133

var array = new Array("four");
Screen.witel n(array.pop());
Screen.witeln(array.pop());

/1 WIl first print out the string "four", and
/1 then print out "undefined",

/1 which is the result of converting

/1 the undefined value to a string.

/!l The array will be enpty after these calls.

Array push()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

array.push([elementl, ...])
elementN - alist of elementsto append to the end of an array.
number - the length of the new array.

This method appends the arguments to the end of thisarray, in
the order that they appear. The length of the current Array object
is adjusted to reflect the change.

Array.pop()
/1 The foll ow ng code:
var array = new Array(1, 2);

array. push(3, 4);
Screen.writeln(array);

/1 WIl print the array converted
/!l to the string "1,2,3,4".

Array reverse()

SYNTAX:

RETURN:

DESCRIPTION:

array.reverse()

object - anew array consisting of the elements in the current
Array object in reverse order.

If the length of the current Array object is O, then the current
Array object is simply returned. Otherwise, a new Array object is
created, and the elements of the current Array object are put into
this new array in reverse order, preserving any empty or
undefined elements.

134

EXAMPLE!

var a
var b

= new Array(1,2,3);
= a.reverse();

/1 The foll ow ng code:
var array = new Array;

array[0] = "ant";
array[1] = "bee";
array[2] = "wasp";

array.reverse();

/'l produces the follow ng array:

array[0] == "wasp"
array[1] == "bee"
array[2] == "ant"

Array shift()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

array.shift()

value - the first element of the current Array object. The element
isremoved from the array after being returned.

If the length of the current Array object is 0, then undefined is
returned. Otherwise, the first element isreturned. This element
is deleted from the array, and any remaining elements are shifted
down to fill the gap that was created. The shi ft () method
works on the beginning of an array, whereas, the pop() method
works on the end.

Array.unshift(), Array.pop()

/1 The foll ow ng code:

var array = new Array(1, 2, 3);
Screen.witeln(array.shift());
Screen.writeln(array);

/'l First prints out "1",
/1 and then the contents of the array,
/! which converts to the string "2,3".

Array slice()

SYNTAX:

array.dice(start[, end])

135

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

start - the element offset to start from.
end - the e ement offset to end at.

object - anew array containing the e ements of the current object
fromst art up to, but not including, element end.

This method creates a subset of the current array. If end is not
supplied, then the length of the current object is used instead. If
either st art or end is negative, then it is treated as an offset
from the end of the array, and the value | engt h+st art or

| engt h+end isused instead. If either is beyond the length of
the array, then the length is used instead. If either islessthan O
after adjusting for negative values, then the value O is used
instead. The elements are then copied into the newly created
array, starting a st art and proceeding to (but not including)
end.

String.substring()

/1 The foll ow ng code:

var array = new Array(1, 2, 3, 4);
Screen.witeln(array.slice(1, -1));

/1 Print out the elenents from1 up to 4,
/! which results in the string "2,3".

Array sort()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

array.sort([compareFunction])

compareFunction - identifier for afunction which expects two
parameters x and y, and returns a negative value if x <y, zero if
X =y, or apositivevalueif x >y.

object - this Array object after being sorted.

This method sorts the elements of the array. The sort is not
necessarily stable (that is, elements which compare equal do not
necessarily remain in their original order). The comparison of
elements is done based on the supplied conpar eFuncti on. If
conpar eFunct i on isnot supplied, then the elements are
converted to strings and compared. Non-existent elements are

136

SEE!

EXAMPLE!

always greater than any other element, and consequently are
sorted to the end of the array. Undefined values are also aways
greater than any defined element, and appear at the end of the
Array before any empty values. Once these two tests are
performed, then the appropriate comparison is done.

If acompare function is supplied, the array elements are sorted
according to the return value of the compare function. If aand b
are two elements being compared, then:

If compareFunction(a, b) is less than zero, sort b to alower
index than a.

If compareFunction(a, b) returns zero, leave aand b
unchanged to each other.

If compareFunction(a, b) is greater than zero, sort b to a
higher index than a.

By specifying the following function as a sort function, you will

get the desired result when comparing numbers:
function conpareNunbers(a, b)

{

}
Clib.stremp()

/1 Consider the follow ng code,
// which sorts based on nunerical val ues,
/1 rather than the default string conparison.

return a Ob

function conpare(x, y)

{

X
y

ToNunber (x) ;
ToNunber (y) ;

if(x <y)
return -1;

elseif ((x ==y)
return O;

el se
return 1;

var array = new Array(3, undefined, "4", -1);
array. sort (conpare);
Screen.witeln(array);

137

/1 Prints out the sorted array,
/! whichis "-1,3,4,,".

/! Notice the undefined val ue
/1 at the end of the array.

Array splice()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

array.splice(start, deleteCount[, elementl, ...])

start - the index at which to splice in the items. If thisis
negative, then (length+start) is used instead, and if it beyond the
end of the array, then the length of the array is used.

deletecount - the number of items to remove from the array.

elementN - alist of elements to insert into the array in place of
the ones which were deleted.

object - an array consisting of the elements which were removed
from the current Array object.

This method 'splices in' any supplied elementsin place of any
elements deleted. Beginning at index st art , del et eCount

el ement s arefirst deleted from the array and inserted into the
newly created return array in the same order. The elements of the
current object are then adjusted to make room for the al of the
items passed to this method. The remaining arguments are then
inserted sequentially in the space created in the current object.

Array.push()

/1 The foll ow ng code:

var array = new Array(1, 2, 3, 4, 5);
Screen.witeln(array.splice(1, 2, 6, 7, 8);
Screen.witeln(array);

/1 WIl print "2,3" and then "1,6,7,8,4,5".//
/'l The array has been nodified to include

/! the extra items in place of those

/] that were del eted.

Array toString()

SYNTAX:

array.toString()

138

RETURN: string - string representation of an Array object.

DESCRIPTION: This method behaves exactly the same asif Array.join() was
called on the current object with no arguments. Theresultisa
string consisting of the string representation of the array
elements (except for null and undefined, which are empty
strings) separated by commas.

SEE: Array.join()
EXAMPLE: /1 The follow ng code:
var array = new Array(1, "tw", , null, false);

Screen.witeln(array.toString());

/1 WIl print out the string "1,two,,,false".
/1 Note that this method is rarely call ed,

/'l rather the function ToString() is used,
/1 which inmplicitly calls this nethod.

Array unshift()

SYNTAX: array.unshift([elementl, ...])
WHERE: elementN - alist of itemsto insert at the beginning of the array.
RETURN: number - the length of the new array after inserting the items.

DESCRIPTION: Any arguments are inserted at the beginning of the array, such
that their order within the array is the same as the order in which
they appear in the argument list. Note that this method is the
opposite of Array.push(), which adds the items to the end of the

array.

SEE: Array.shift(), Array.push()

EXAMPLE: var a = new Array(2,3);
var b = a.unshift(1);

139

Blob Object

This section describes Blobs, Binary Large Objects.

The methods in this section are preceded with the Object name Blob, since
individual instances of the Blob Object are not created. For example,

Bl ob. get () isthe syntax to use to get data from a Blob. Blob and Buffer
variables overlap. The Buffer is the newer construct, and the Blob is retained
mostly for compatibility with previous versions of ScriptEase. When necessary to
work with datain memory, use a Buffer object if possible.

Blob object static methods
Blob.get()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

Blob.get(BlobVar, offset, DataType)

Blob.get(BlobVar, offset, bufferLen)

Blob.get(BlobVar, offset, DataStructureDefinition)

BlobVar - binary large object variable to use.

offset - the offset or position in the Blob from which to work.
DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of a structure (object)
variable.

value - the data retrieved according to the defining parameters.

This method reads data from a specified location of a Binary
Large Object, a Blob and is the companion function to

Bl ob. put () . The parameter BlobVar specifies the Blob to use.
The parameter offset specifies where, in the Blob, to get data.
The last parameter specifies the format of the datain the Blob
and, hence, determines the type of the value returned which is
the data read from the Blob.

141

SEE!

Valid values for DataType are:
UWORD8, SWORDS, UWORD16, SWORD16, UWORD24, SWORD24,
UWORD32, SWORD32, FLOAT32, FLOAT64, FLOAT80

Seed i b. fread() or blobDescriptor object, below, for more
information on these DataType values.

Blob.put(), Blob.size(), _BigEndianMode, Buffer object

Blob.put()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Blob.put(BlobVar[, offset], variable, DataType)
Blob.put(BlobVar[, offset], buffer, bufferLen)
Blob.put(BlobVar[, offset], SrcStruct, DataStructureDefinition)
BlobVar - binary large object variable to use.

offset - the offset or position in the Blob from which to work.
variable - variable with data to put into a Blob.

buffer - buffer with data to put into a Blob.

SrcStruct - structure (object) with data to put into a Blob.
DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of an object (structure)
variable.

number - the byte offset to the next byte following the data that
was just inserted into a Blob. If at the end of a Blob, then return
the value that equals Bl ob. si ze(Bl ob) .

This method puts data into a specified location of a Binary Large
Object, Blob and, along with Bl ob. get (), alowsfor direct
access to memory within a variable. The contents of such a
variable may be viewed as a packed structure. Data can be
placed at any location within a Blob. The parameter BlobVar
specifies the Blob to use. The parameter offset specifies where,

142

SEE!

EXAMPLE!

in the Blob, to write data. The third parameter is the data to
write. The last parameter specifies the format of the datain the
Blob.

Bl ob. put () returns the byte offset for the next byte following
the section where data was just put. If the datais put at the end of
the Blob, then the return is equivalent to the size of the Blob.

If offset is not supplied, then the datais put at the end of the
Blob, or at offset O if the Blob is not yet defined.

Thedatain v is converted to the specified DataType and then
copied into the bytes specified by offset.

If DataType is not the length of a byte buffer, then it must be one
of these types:

UWORD8, SWORDS, UWORD16, SWORDL6, UWORD24, SWORD24,
UWORD32, SWORD32, FLOAT32, FLOAT64, FLOATS0

Seed i b. fread() or blobDescriptor object, below, for more
information on these DataType values.

Blob.get(), Blob.size(), _BigEndianMode, Buffer object

/1 1f you were sending a pointer to data
/1 in an external C library and knew
/1 that the library expected the data
/1 in a packed DOS structure of the form

struct foo

{
si gned char a;
unsi gned int b;
doubl e C;

}s

/1 and if you were building this structure
/1l fromthree correspondi ng vari abl es,

/1 then such a building function mght | ook
/1 like the follow ng:

function Buil dFooBl ob(a, b, c)

{
var offset = Blob.put(foo, 0, a, SWORDSB);
of fset = Bl ob. put(foo, offset, b, UADRD16);
Bl ob. put (foo, offset, c, FLOAT64);
return foo;

143

}

/1 or, if an offset were not supplied:

Bui | dFooBl ob(a, b, c¢)

{
Bl ob. put (foo, a, SWORDS);
Bl ob. put (foo, b, UWORDL6);
Bl ob. put (foo, c, FLOAT64);
return foo;
}
Blob.size()
SYNTAX: Blob.size(BlobVar[, SetSize)])

Blob.size(DataType)
Blob.size(bufferLen)
Blob.size(DataStructureDefinition)

WHERE:! BlobVar - binary large object variable to use.
SetSize - size to which to set BlobVar.
DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of a structure (object)
variable.

RETURN. number - bytesin aBlob variable. If SetSize is passed, then that
valueisreturned.

DESCRIPTION: This method determines the size of a Binary Large Object, Blab.
The parameter BlobVar specifies the Blob to use. If SetSizeis
provided, then the Blob BlobVar is altered to this size or created
with this size.

If DataType, bufferLen, or DataStructureDefinition are used,
Blob.size() returns the size of a Blob that would contain the type
of dataitem used in by Blob.get() or Blob.put(). In these cases,
these parameters specify the type to be used for converting
ScriptEase data to and from a Blob.

144

Blob.size returns the size of a Blob which isthe number of bytes
in BlobVar. If SetSize is supplied, then the return is SetSize.

SEE: Blob.get(), Blob.put(), _BigEndianMode, Buffer object

blobDescriptor object

When an object (structure) needs to be sent to a process other than the ScriptEase
interpreter, such as to a Windows API function, a blobDescriptor object must be
created that describes the order and type of datain the object to be sent. This
description tells how the properties of the object are stored in memory and is
used with functions, suchasd i b. fread() and SEl i b. dynami cLi nk() .

A blobDescriptor has the same data properties as the object it describes. Each
property must be assigned a value that specifies how much memory is required
for the data held by that property. Consider the following object.

Rect angl e(wi dt h, hei ght)
{

this.width = width;
t hi s. hei ght = height;
}

The following code creates a blobDescriptor object that describes the Rectangle
object defined above:

var bd = new bl obDescri ptor()

bd. wi dth
bd. hei ght

UWORD32;
UWORD32;

Y ou can now pass bd as a blobDescriptor parameter to functions that require one.
The vaues assigned to the properties depend on what the receiving function
expects. In the example above, the function that is called expects to receive an
object that contains two 32-bit words or data values. If you write a
blobDescriptor for afunction that expects to receive an object containing two 16-
bit words, assign the two properties a value of UNDRD16.

The following values may be used for blobDescriptors.

UWORD8 Stored as a byte
SWORD8 Stored as an integer
UWORD16 Stored as an integer

145

SWORD16 Stored as an integer

UWORD24 Stored as an integer

SWORD24 Stored as an integer

UWORD32 Stored as an integer

SWORD32 Stored as an integer

FLOAT32 Stored as afloat

FLOAT64 Stored as afloat

FLOAT80 Stored as afloat (not available in Win32)

If ablobDescriptor describes an object property that is a string, the corresponding
property should be assigned a numeric value that is larger than the length of the
longest string the property may hold. Object methods usually may be omitted
from a blobDescriptor.

146

Number Object

platform Al GS, Al version of SE

Number object instance methods
Number toLocaleString()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

number.toL ocal eString()
string - a string representation of this number.

This method behaves like Number.toString() and converts a
number to a string in a manner specific to the current locale.
Such things as placement of decimals and comma separators are
affected.

Number.toString()

8.9;
n.tolLocal eString();

var n
var S

Number toString()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

number.toString()
string - a string representation of this number.

This method behaves similarly to Number.toL ocaleString() and
converts a number to a string using a standard format for
numbers.

Number.toL ocaleString()
var n = 8.9;
var s = n.toString();

147

SElib Object

The methods in the SElib object extend the functionality of JavaScript. Whereas
the Clib object extends the power of JavaScript by providing functions from the
standard C library, the SElib extends power by allowing programmers to work
with such things as directories, files, memory, windows, messages, system
operations, and script execution. The methods in the SElib object are more like
the C functionsin the Clib object than JavaScript functions.

When using the methods in this section, they are preceded with the Object name
SElib, since individual instances of the SElib Object are not created. For
example, SElib.directory() is the syntax to use to get directory information in a
Sscript.

SElib object static methods
SElib.baseWindowFunction()

SYNTAX: SElib.baseéWindowFunction(hWnd, message, paraml, param?2)
WHERE! hwnd - a number, a handle of the window receiving the
message.

message - a number, a Windows message ID.
paraml - the first parameter of the message ID.
param?2 - the second parameter of the message ID.

RETURN: value - the value returned by the base window function. If the
parameter handle is not a window with a windowFunction
created with SElib.makeWindow() or is not awindow subclassed
with SElib.subclasswindow(), then the return is O.

DESCRIPTION: Calls the base procedure of awindow created with a
windowFunction in SElib.makeWindow() or subclassed with
SElib.subclassWindow(). This method is normally used within a
ScriptEase window function to pass the window parameter to the
base procedure before handling it in your own code. Remember
that if your window function returns no value, ScriptEase will

149

SEE!

call the base procedure automatically which is the preferred
method.

SElib.makeWindow(), SElib.subclassWindow(), Window object
in winobj.jsh

SElib.breakWindow()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

SEIib.breakWindow(hWnd)

hwnd - a number, the handle of the window being released or
destroyed.

boolean - true on success and the window is successfully
destroyed, released, or subclassed, else false on failure.

For Win32 and Winl16

Releases control of awindow controlled by
SElib.subclassWindow() or destroys awindow previously
created with SElib.makeWindow(). No other windows are
affected. If hwnd is not a valid window handle, no action is
taken and true is returned.

When awindow is destroyed all appropriate Dest r oyW ndow()
functions, interna to the Windows AP, are called. Any child
windows of amain window are destroyed before the main
window.

If hwnd is awindow controlled by SElib.subclasswindow(),
then this method removes the WindowFunction for a window
from the message function loop.

If hwnd is not supplied, then all windows created with
SElib.makeWindow() are destroyed and all subclassing ends.

SElib.makeWindow()

SElib.compileScript()

SYNTAX:

WHERE!

SElib.compileScript(codeToCompile], isFile])

codeToCompile - astring with ScriptEase statements or a

150

RETURN!

DESCRIPTION:

filename of a script file.

isFile - aboolean telling whether or not codeToCompileisa
filename or a string with statements. The default isfalse
indicating that codeToCompileis a string consisting of
ScriptEase statements.

buffer - the compiled code in a ScriptEase buffer. Normally, this
buffer of compiled code is saved to afile.

Compiles a ScriptEase script into executable code which is
normally written to afile with an extension of ".jsb" and referred
to as a ScriptEase binary file. This compiled code is the same
code that is created when the /bind option is used with the Pro
version of ScriptEase Desktop and the code is bound in an
executable ".exe" file.

Compiled code may be executed in two ways. Firgt, the compiled
code may be passed to the SElib.interpret() method as the Code
parameter. The SElib.interpret() method executes compiled code
in the same way that it does text script. Second, a ScriptEase
binary file may be executed by a ScriptEase interpreter, such as
sawin32.exe. This second way is the most common way to
execute compiled code. There are three basic waysthat a
ScriptEase script file may be run:

A text script, astyped by a programmer, may be called using
an interpreter program, such as sewin32.exe. The interpreter
reads the text and performs all the statementsin it. Running a
script in this way results in the slowest overall execution
speed since the interpreter must preprocess, tokenize, and
run thefile.

A text script may be compiled using the
SElib.compileScript() method and written to a ScriptEase
binary file. A ScriptEase binary file may also be called by an
interpreter program, such as sewin32.exe. But overall
execution time is faster since the first two steps,
preprocessing and tokenizing, are already done by
SElib.compileScript(). The compiled code of ascript is the
same as the compiled code of an executable file produced
using the /bind option of the Pro version.

A text script can be compiled using the /bind option of the

151

Pro version. The script is compiled, into the same form as
when using SElib.compileScript() but is physically attached
to the pertinent executable part of an interpreter, such as
sawin32.exe. The compiled file is an executable file with an
extension of ".exe" and can be run as a stand a one program.

See the section on "Running a script” in the manual or help file
for more information on executing ScriptEase scripts.

ScriptEase binary files are called in the same way as text scripts,
either ".jse" or ".jsh" files. Assume that a file named testobj.jse
has been compiled with SElib.compileScript() to testobj.jsb. The
invocations of either file by an interpreter do the same thing. For
example, both lines below accomplish the same thing when run
as acommand line.

sewi n32. exe testobj.jse sew n32.exe testobj.jsb

The second line using ".jsh" executes faster, in overall time, that
is, it begins executing more quickly.

In alike manner, assume that a file named testinc.jsh has been
compiled with SElib.compileScript() to testinc.jsb. Either file
may be included in a script using the preprocessor directive

#i ncl ude. Both lines of script below accomplish the same
thing.

#include "testinc.jsh" #include "testinc.jsb"

The second line executes faster since the code in that fileis
precompiled. Thisinclude example points to another difference
between the /bind option and the SElib.compileScript() method.
The /bind option results in a stand alone executable file. The
SElib.compileScript() method allows the flexibility of
precompiling sections of code that may be used in other scripts
or of having a complete precompiled program. Complete
programs compiled by either method execute at the same speed,
at actual run time.

A compiled ScriptEase binary file may also be run from a script
by using the SElib.interpret() method, using the
INTERP_COMPILED_SCRIPT flag.

152

SEE!

EXAMPLE!

A ScriptEase binary file has 4 bits that identify it as a compiled
script and 16 bytes for a checksum to make sure that the file has
not been altered. Compiled scripts are implemented at a very low
level which allows ScriptEase binary filesto beincluded in a
script, as already described. But, there is another benefit. A
programmer may use file extensions other than the default ".jsb".

ScriptEase comes with a script, compile.jse, which automates the
process of compiling atext script to a ScriptEase binary file.

SElib.interpret(), SElib.interpretinNewThread(), compile.jse

/! Conpile the script file, nyscript.jse,
/1 to the ScriptEase
/1 binary file, nyscript.jsb.

function nmain(argc, argv)

/'l Filename of the script to conpile
var infile = "Mscript.jse";

/1 Filenane for the conpiled code
var outfile = "Myscript.jsb";

/1 Conpile the script file
/] into conpiled code.
/1 Argunent true indicates that infile is a
fil ename
var conpiledScript = SElib.conpileScript(infile,
true);

/] If the returned buffer has code in it,
/!l save it to a file.
if(conpiledScript !'= null)

var outfp = dib.fopen(outfile, "wW);
if(outfp == null)

Cib.fprintf(stderr,
"Could not open file \"9%\"\n",
outfile);

Clib.fclose(outfp);

}
el se
Adib.fwite(conpiledScript,
get ArrayLengt h(conpi l edScript), outfp);
Cdib.fclose(outfp);
}

}

153

SElib.directory()

SYNTAX:

WHERE!

SElib.directory([filespec[, subdirg], includeAttr[, requireAttr]]]])

filespec - string specification for files to find. The specification
must be consistent with the operating system being used and may
include wildcard characters. A file specification may include
path specifications, both full and partial.

subdirs - a boolean as to whether or not to include subdirectories
in file search. The default is false, which limits the search for
filespec to the current directory.

includeAttr - specify the file attributes to include in the file
search. Only files with one of the attributes specified will be
included in the array of file names and information retrieved.
Attribute flags that do not apply to an operating system are
ignored. If includeAttr is 0, only files with no attributes are
included. The default valueis:

FATTR _RDONLY| FATTR SUBDI R|
FATTR_ARCH VE| FATTR_NORVAL

File attributes are set using the following values:

FATTR_RDONLY Read-only file
FATTR_HI DDEN H dden file
FATTR_SYSTEM Systemfile
FATTR_SUBDIR Directory
FATTR_ARCH VE Archive file

More than one file attribute can be specified by using the bitwise
or operator, "|". For example, to find files with the hidden or
system attributes set, use the following expression:

FATTR_HI DDEN | FATTR_SYSTEM

A file attribute may be excluded from array of files returned by
using the bitwise not operator, "~". For example, to exclude
subdirectories, use the following expression:

~FATTR_SUBDI R

154

requireAttr - specify attributes that files are required to have to
be included in the array of file names and information retrieved.
Files must have at least these attributes. The difference between
the two file attributes specifications is that files must have at
least one of the attributes specified by includeAttr but must have
all the attributes specified by requireAttr. The default valueisO.

RETURN: object - an array of objects with information about the file names
retrieved. If no files or directories match the specifications of the
parameters, anull isreturned. Each element of the array has the
following properties:

. name Full file nanme, including the fil espec
pat h.

.attrib File flags, as defined above in IncAttr.
.size Size of file, in bytes.

.access Date and tine of last file access.
.Wwite Date and tinme of last wite to file.
.create Date and tine of file creation.

For example, if you use the following line of code:
var FileList = SElib.directory("*.*");

The information for the first file retrieved is accessed using:

Fi | eLi st[0] . name
FileList[O].attrib
Fil eList[0].size
Fi |l eLi st[0].access
FileList[O].wite
FileList[0].create

The information for the second file is accessed using:

Fi | eLi st[1] . name

DESCRIPTION: Find files in a directory or subtree that match path and file
specifications and have specified file attributes set. Remember
the directory names are treated like file names and have the
FATTR_SUBDIR attribute set. Matching files and information
about them are retrieved and returned in an array of objects.
These objects are also structures.

This method may be used in many ways. One way, besides the

155

obvious way of getting information aboui files, isto test for the
existence of afile or file specification. If the file specified does
not exist, thereturn is null.

SEE: SElib.fullpath(), SElib.splitFilename, File object in fileobj.jsh

EXAMPLE: /1 The follow ng routine lists
/1 all files matching Fil eSpec,
/| except subdirectory entries,
/1 in the current directory of a script.
function ListDi rectory(Fil eSpec)
{
var FileList = SHib.directory(FileSpec, False,
~FATTR_SUBDI R)
if (null == FileList)
Aib.printf(
"No files found for search spec \"%\".\n",
Fi | eSpec)
el se

var FileCount = getArraylLength(FileList);
for (var i = 0; i < FileCount; i++)
Aib.printf(
"Os\tsize = %@\t Create date/tinme = %\n",
FileList[i].nane, FileList[i].size,
Cib.ctime(FileList[i].Create));

SElib.doWindows()

SYNTAX: SElib.doWindows(immediateReturn)

WHERE:! immediateReturn - if true return immediately, regardless of
messages. Default isfalse.

RETURN: boolean - true if any of the windows created with
SElib.makeWindow() or subclassed with
SElib.subclassWindow() are still open, that is, have not received
aWM_NCDESTROY message. Returns false if there are no
valid windows registered with the ScriptEase Window Manager.

DESCRIPTION: For Win32 and Winl16

Starts the ScriptEase Window Manager to activate whatever
windows have been created or subclassed with
SElib.makeWindow() or SElib.subclassWindow. All such

156

SEE!

EXAMPLE!

windows are registered with the Window Manager. The Window
Manager controls the messages sent to the windowsin its
registry and routes them to their respective window functions.

There should not be more than one copy of the Window Manager
running at atime. Generally, SElib.doWindows() is called only
once with a succession of windows. All windows created or
subclassed after a call to SElib.doWindows() are automatically
registered with the Window Manager.

The flags that define window messages are kept in the library
file, message.jsh.

If the optional parameter immediateReturn is true, the method
returns immediately, regardless of whether there are messages
for this application or not. Otherwise this method yields control
to other applications until a message has been processed, subject
to filtering by SElib.messageFilter(), for this application or for
any window subclassed by this application.

The example below displays a standard Windows window. If
you click anywhere in the window, the string "Y ou clicked me!™
is displayed briefly in the middle of the window. When the
window is closed, the script terminates.

SElib.makeWindow(), SElib.subclassWindow(), Window object
in winobj.jsh
#i ncl ude <nessage.jsh>

#i ncl ude <wi ndow. j sh>
function main()

var hwid = SEl i b. makeW ndow(nul |, null,
W ndowFunction, "Display Wndows' nessages",
W5_OVERLAPPEDW NDOW | WS_WI SI BLE,
CW USEDEFAULT, CW USEDEFAULT,
500, 350, null, 0);
SEl i b. messageFi | t er (hwhd, VWM _LBUTTONDOMN) ;
whi | e(SEl i b. doW ndows()) ;

}

functi on WndowFuncti on(hWwhd, nsg, parant,
paran®, counter)

if (nmsg == WM LBUTTONDO)

157

var nsgHwnd = SEl i b. makeW ndow(hWd,
"static", null, "You clicked ne!",
W5 _CH LD | WS VI SIBLE,
200, 150, 100, 50, null, 0);
SEl i b. suspend(1000) ;
SEl i b. br eakW ndow nsgHand) ;

SElib.fullpath()

SYNTAX: SElib.fullpath(pathspec)
WHERE! pathspec - a partial path specification.
RETURN: string - the pathspec filled out to its full path specification or null

if the path specification isinvalid.

DESCRIPTION: Converts pathspec to a full and absolute path specification. The
file name part of the path specification is not affected and may
have wildcards. The drive and directory part of the path
specification is converted or fleshed out to a full and absolute
path.

The exact behavior of SElib.fullpath() depends on the underlying
operating system. Some results can vary when using system
specific path specifications.

SEE: SElib.directory(), SElib.splitFilename(), File object in fileobj.jsh

EXAMPLE: /1 The followi ng returns the full spec
/1 of current dir
function CurDir()

{
return SElib.fullpath(".")

/] The followi ng returns the full spec
/1 of a parent dir
function CurDir()

{
return SElib.fullpath("..\")

/1 The followi ng works in DOS or OS/2
/1 to test whether a drive
/1 letter is valid

function ValidDrive(DrivelLetter)

{

158

Cib.sprintf(CurdirSpec, "%:.", DrivelLetter)
return (null != SElib.full path(CurdirSpec))
}

SElib.getObjectProperties()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

SElib.getObjectProperties(object[, includeUndefined])
object - an object from which to get its properties.

includeUndefined - a boolean, determines whether or not to
include properties with undefined values. The default isfalse,
that is, do not include properties with undefined values.

object - an array of strings which are the names of the properties
of the object. The array is terminated with anull, that is, the last
element is aways null.

Get the names of the properties of an object in an array of strings
in which each element is a property name and the last element is
null.

The parameter includeUndefined must be true to return
properties that are not defined. If includeUndefined is false, then
only properties that have defined data are included. The default
for includeUndefined is false.

The final member of the returned array returned is aways null. If
the parameter object is not defined or contains no properties,
then the return is an array with a single element set to null.

For/in statement

var Point;

Poi nt.row = 5;
Poi nt.col = 8;
Poi nt . hei ght;

Di spl ayAl | Struct ur eMenber s(Poi nt);

function D splayAl | StructureMenbers(Qoj ect Var)
{
Screen.witeln("oject Properties:");
var MenberlList =
SEl i b. get bj ect Properti es(Obj ect Var) ;
for (var i = 0; MenmberList[i]; i++)
Cib.printf(" 9%\n", MenberList[i]);
}

159

/1 This fragment produces the follow ng output.
/1 Object Properties:

I row

/1 col

SElib.inSecurity()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SElib.inSecurity(infoVar)

infoVar - variable to be passed to the ScriptEase security filter.
Y our application and its security filter may use it however you
choose.

boolean - true if there is a security filter, else false.

Calls the security manager's initialization routine and is the only
way your application can directly interact with the security filter.
It is provided so you can reinitialize the security system,
probably to change the security level of a script.

Typicaly, you use this method when executing a particularly
insecure piece of code, such as a script received over a network,
to downgrade the security level, restoring it when the script
completes.

SElib.instance()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

SElib.instance()

number - instance handle of the current ScriptEase session, that
is, for the current script.

For Win32

Get the instance handle of the currently executing script. This
handle may be used with Windows API functions that use an
instance handle.

Screen.handle(), SElib.makeWindow(), icon.jsh, pickfile.jsh,
dropper.jse, iconmany.jse

var hScript = SElib.instance()

160

SElib.interpret()

SYNTAX:

WHERE:!

SElib.interpret(codeT ol nterpret[,howTol nterpret[,security]])

codeTolnterpret - a string with ScriptEase code statements to be
interpreted as script statements or the file specification, path and
file name, of a script file. If the interpreted code receives
arguments, they are put at the end of the codeTolnterpret string--
somewhat like a command line string.

howTolnterpret - tells how to handle the interpreted code. The
following flag values may be combined using the bitwise or
operator, "| ". The value must be 0 or one of the following
choices:

| NTERP_FI LE

CodeTolnterpret is the file name of a script, followed by any
arguments.

| NTERP_TEXT

CodeTolnterpret is a string of source code with no
arguments attached.

| NTERP_LOAD

Load code into same function and variable space as the script
that iscalling SEl i b. i nter pret (). All functions, and
variables are supplied to the code being called, which can
modify and use them. If the code being called has similarly
named functions or variables as the calling code, functionsin
the called code replace those in the calling code.

I NTERP_NO NHERI T_LOCAL

Local variables are not inherited by the interpreted code.

I NTERP_NO NHERI T_G_OBAL

Global variables are not inherited by the interpreted code as
globals.

| NTERP_COWPI LED_SCRI PT

Run a script compiled with SElib.compileScript().This flag
only works with the | NTERP_TEXT flag.

| NTERP_FI LE and | NTERP_TEXT are mutually exclusive. If

neither is supplied the interpreter decides whether
codeTolnterpret isafile or string of code.

161

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

These flags tell the computer how to interpret the parameter
codeTolnterpret. If oneis not supplied, the computer parses the
string and determines the most appropriate way to interpret it.

security — the filename of the security script to run this
interpreted script using. Thisis exactly like the security script
passed to SE:Desk using the ‘/secure=" option, except it applies
only to the script you are about to interpret. Remember that
security is additive; any existing security is still in effect for the
interpreted script as well.

value - the return of the interpreted code.

Interprets a string asiif it were script. More flexible than the
JavaScript eval () function sinceit interprets afileaswell asa
string and allows more control over how interpreted code inherits
variables from the script that callsSEl i b. i nterpret (). By
default, all variablesin a script are inherited as global variables.

There is no specific return for an error. To trap an error use the
t ry/ cat ch error trapping statements.

TheSEl i b. i nterpret () method may not be used with scripts
that have been compiled into executable files using the / bi nd
option of the Pro version of ScriptEase Desktop.

SElib.interpretinNewThread(), SElib.spawn()

/1 The follow ng interpreted code displays "Hello
wor | d"
SElib.interpret(' Screen.witeln("Hello world")",
| NTERP_TEXT) ;

/] The following interprets

/1 the file jseedit.jse with

/] autoexec.bat as an argunent to the script
SElib.interpret("jseedit.jse c:\\autoexec.bat",

| NTERP_FI LE) ;

SElib.interpretinNewThread()

SYNTAX:

WHERE!

SElib.interpretinNewT hread(filename, codeT ol nterpret)

filename - the name of a script file with ScriptEase code. Use
null if not interpreting afile.

162

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

codeTolnterpret - a string variable with one or more ScriptEase
statements to interpret, if not using afile. If afileisbeing
interpreted, the string is used as command line arguments for the
script file being interpreted.

number - the ID of the thread containing the new instance of
ScriptEase. Depending on the operating system, returns O or -1
on an error.

For Win32 and OS/2, that is, for operating systems that support
multithreading. Not supported for operating systems that do not
support multithreading, such as DOS and 16-bit Windows.

This method creates a new thread within the current ScriptEase
process and interprets a script within that new thread. The new
script runs independently of the currently executing thread. This
method differs from SElib.interpret() in that the calling thread
does not wait for the interpretation to finish and differs from
SElib.spawn() in that the new thread runsin the same memory
and process space as the currently running thread.

A script writer must ensure any synchronization among threads.
ScriptEase data and globals are on a per-thread basis.

If the parameter filename is not null, then it is the name of afile
to interpret, and the parameters, filename and codeT ol nterpret
are parsed as if being command-line parameters to a main()
function.

If the parameter filenameis null, then codeTolnterpret is treated
as JavaScript code, a string with ScriptEase statements, and is
interpreted directly.

SElib.interpret(), SElib.spawn()

/! See usage in threads.jse and httpd.jse

SElib.makeWindow()

SYNTAX:

WHERE!

SElib.makeWindow(parent, class, windowFunction, text, style,
col, row, width, height, createParam, utilityVar)

parent - window handle of the parent window of this window,
which would mean that this window is a subwindow. Pass null if

163

this window is being created on the desktop, without a specific
window being its parent. If null, the desktop is the parent.

class- astring or an object. If this parameter is a string, it must
be one of the pre-existing Windows classes:

but t on
conbobox
edit
|istbox
scrol | bar
static

If this parameter is an object or structure it may have the
following properties:

.style W ndows cl ass style

.icon icon bitmap for mnimzed w ndow
. cursor appear ance when over this w ndow
. backgr ound wi ndow background col or

Properties that are not assigned values receive default values. In
general, the class defines the behavior of awindow.

windowFunction - an identifier, the function that is called
whenever Windows sends a message to this window. Use null if
no function isto be called to intercept windows messages. In the
case of null, default functions for Windows are called. If
specified, the windowFunction should return a number or
nothing. Use the actual identifier of the function and not a string
with its name. For example, use MyWinFunction instead of
"MyWinFunction". The windowFunction is described in greater
detail in the description section.

text - the window title or caption that appearsin thetitle bar. Use
null or "" if the window has no title.

style - the style of the window. Windows has many predefined
styles that may be joined into one style by using the bitwise or
operator, "[*. Windows styles are defined with "WS " a the
beginning. For example, Ws_MAXI M ZEBOX |

W5 THI CKFRANME would define awindow that has a thick frame
and a maximize box. The "WS_" windows styles are standard
definitions used in Windows programming and may be found in

164

RETURN:

DESCRIPTION:

wi nobj . j sh or wi ndow. j sh.
col - the left most column of the window, expressed in pixels.

row - the top most row of the window, expressed in pixels.
Together, col and row define the top left corner of the window.
Use CW_USEDEFAULT for col and row to let Windows set the
position.

width - the total width of the window, expressed in pixels.

height - the total height of the window, expressed in pixels. By
using col, row, width, and height, awindow can be place
precisely on a screen.

createParam - normally set to null. If used, it may be a number or
object that is passed with the Windows WM_CREATE message
when creating a window.

utilityVar - any variable that a scripter chooses. Thisvariableis
passed to the windowFunction when it receives a Windows
message. The windowFunction may alter the utilityVar. An
object or structure may be used, in which case many values may
be passed and altered as properties of the object. One practiceis
to use an object to keep up with the properties of a window,
sometimes including its subwindows. This object is agood
vehicle for passing information.

number - the handle of the window created on success, €lse null.
For Win32 and Winl16

This method is the basic function for creating windows that will
be opened and managed by ScriptEase. This function provides
the basis for normal windows operations when windows created
by it are opened. This function registers the created window with
ScriptEase, so that when the .doWindows() method is executed,
this window will be properly managed.

If the class of the Window is unknown, it is registered as a new
class.

The windowFunction, a parameter of SElib.makeWindow(), isa
function that is specified to intercept and handle al Windows
messages that are posted to this window, the window just created

165

SEE!

EXAMPLE!

by SElib.makeWindow(). The windowFunction will intercept al
messages sent its associated window which slows execution of a
script. Use SElib.messageFilter() to limit the messages that are
actually intercepted by the windowFunction. If the
windowFunction has areturn value, it must be a number, which
seems limiting. But remember, that you may use utilityVar asa
variable for receiving information and for passing information.

The definition of a windowFunction must follow the following
format:

functi on MyYW nFuncti on(hwWhd, Message, Paranid,
Paran? [, utilityVar])

/1 Body of the wi ndow function

}

hwnd - a number, Window handle for the window which
receives these Windows messages. It is the handle of the window
created by SElib.makeWindow() that specified this function to
receive messages.

Message - a number, a message ID. Windows defines message
IDs and posts them to windows.

Paraml - a parameter that may accompany a message.
Param2 - a second parameter that may accompany a message.

utilityVar - an optional variable that is specified in the
SElib.makeWindow() call that created this window. This
variable is often an object/structure with several pieces of
information which may be altered. If it is, the changes are
available to other functions that may use the variable while
SElib.doWindows() is active and is showing and managing the
windows under its control.

SElib.doWindowsy()

var I nfoStruct;

I nfoStruct.w dth = 400;

I nfoStruct. hei ght = 300;

var hwid = SEl i b. nakeW ndow

0, null, MyWnFunction,

166

"My W ndow', WS _MAXI M ZEBOX,

CW USEDEFAULT, CW USEDEFAULT,
InfoStruct.w dth, InfoStruct. height,
null, InfoStruct

)

functi on MyYW nFuncti on(hwhd, Msg, Parant,
Paran2, Uil Var)

/1 Body of function to process nessages.
/1 Notice that UtilVar receives |InfoStruct

SElib.messageFilter()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

SElib.messageFilter(hwWnd[, messagq, ...]])

hwnd - a number, the handle of awindow created by
SElib.makeWindow() or subclassed with
SElib.subclasswWindow().

message - one or more messages to be processed by the window
to which hwnd points.

object - an array of messages being filtered prior to this call to
SElib.messageFilter(). Returns null if no messages are in the
filter, that is, all messages are passed through to ScriptEase
functions or if hwWnd is not a handle for awindow processed by
SElib.makeWindow() or SElib.subclassWindow().

For Win32 and Winl16

Restricts the messages being processed by windows created with
SElib.makeWindow() or subclassed with
SElib.subclassWindow(). Scripts run much faster if windows
only process the messages that they act on, that is, just the
messages that they need. Initially, there are no message filters so
all messages are processed.

Calling this method with no parameters removes all message
filtering.

SElib.makeWindow(), SElib.subclassWindow()

167

SElib.multiTask()

SYNTAX:

SElib.multi Task(on)

WHERE:! on - a boolean determining whether multitasking is on or off.
Default istrue.

RETURN: void.

DESCRIPTION: For Winl6
Turns multitasking of programs on or off. Normally,
multitasking is enabled and should be turned off only for very
brief and critical sections of code. No messages are received by
the current program or any other program while multitasking is
off.
SEli b. mul ti Task() isadditive, meaning that if you call
SEl i b. mul ti Task(fal se) twice, then you must call
SEli b. mul ti Task(true) twice before multitasking is
resumed.
The example below empties the clipboard. Multitasking is turned
off during this brief interval to ensure that no other program tries
to open the clipboard while this program is accessing it.

SEE! SElib.suspend()

EXAMPLE: SEli b. mul ti Task(fal se);
SEl i b. dynami cLi nk("USER', "OPENCLI PBOARD', SWORDL6,

PASCAL, Screen. handle());

SEl i b. dynami cLi nk("USER', "EMPTYCLI PBOARD', SWORD16,
PASCAL) ;
SEl i b. dynami cLi nk("USER', "CLOSECLI PBOARD', SWORDL6,
PASCAL) ;
SEli b. mul ti Task(true);

SElib.peek()

SYNTAX: SElib.peek(address], dataType])

WHERE:! address - the address in memory from which to get data, that is, a

pointer to data in memory.

dataType - the type of data to get, or thought of in another way,
the number of bytes of datato get. UNORDS is the default.

168

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

value - returns the data specified by dataType

Reads or gets data from the position in memory to which the
parameter address points. The parameter dataType may have the
following values:

UAMORDS SWORD8S WWORD16 SWORD16 — UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLQAT80 is not available in Wn32)

These values specify the number of bytesto be read and
returned.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SElib.poke(), Blob.get(), Clib.memchr(), Clib.fread() for more
information on the dataType values

var v = "Now';
/] Display "Now'
Screen.witeln(v);
/1 Get the "N'
var vPtr = SElib. pointer(v);
/] Get the address of the first byte of v, "N
var p = SElib. peek(vPtr);
// Convert "N' to "P"
SEl i b. poke(vPtr, p+2);
/] Display "Pow'
Screen.witeln(v);

/1 See usage in clipbrd.jsh, comjsh,
/! dde.jsh, ddesrv.jsh, and wi nsock.jsh

SElib.pointer()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SElib.pointer(varName)
varName - the name or identifier of avariable

number - the address of, a pointer to, the variable identified by
varName.

Gets the address in memory of avariable. The pointer points to

169

SEE!

EXAMPLE!

the first byte of datain avariable. The variable may be a
primitive data type: byte, integer, or float, or it may be asingle
dimension array of bytes, integers, or floats, which includes a
string. If the variable is an array, then the address returned points
to the first byte of the first element of the array. The parameter
varName may also identify a Blob variable since Blaobs are
actually byte arrays. Other types of data are not allowed.

For computer architectures that distinguish between near and far
memory addresses, the value returned by SElib.pointer() isafar
address or pointer.

ScriptEase data is guaranteed to remain fixed at its memory
location only as long as that memory is not modified by a script.
Thus, a pointer isvalid only until a script modifies the variable
identified by varName or until the variable goes out of scopein a
script. Putting data in the memory occupied by varName after
such a change is dangerous. When data is put into the memory
occupied by varName, be careful not to put more data than will
fit in the memory that the variable actually occupies.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SElib.peek(), SElib.poke(), Clib.memchr(), Blob object

var v = "Now';
/] Display "Now'
Screen.witeln(v);
/1 Get the "N'
var vPtr = SElib. pointer(v);
/] Get the address of the first byte of v, "N
var p = SElib. peek(vPtr);
// Convert "N' to "P"
SEl i b. poke(vPtr, p+2);
/] Display "Pow'
Screen.witeln(v);

/'l See usage in fileobj.jsh, batch.jsh,
/'l mensrch.jsh, touch.jsh, and pickfile.jsh

170

SElib.poke()

SYNTAX: SElib.poke(address, data[, dataType])

WHERE:! address - the address in memory from which to get data, that is, a
pointer to datain memory.

data - data to write directly to memory. The data should match
the dataType.

dataType - the type of datato get, or thought of in another way,
the number of bytes of datato get. UWORDS is the default.

RETURN: number - the address of the byte after the data just written to
memory.

DESCRIPTION: Writes data to the position in memory to which the parameter
address points. The data to be written must match the dataType.
The parameter dataType may have the following values:
UANORDS SWORDS UWORDL6 SWORDL6 UWORD24

SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLQAT80 is not available in Wn32)

These values specify the number of bytes to be written to
memory.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SEE: SElib.peek(), Blob.put(), Clib.memchr(), Clib.fread for more
information on the dataType values

EXAMPLE: var v = "Now';
/] Display "Now'
Screen.witeln(v);
/1 Get the "N'
var vPtr = SElib. pointer(v);
/! Get the address of the first byte of v, "N
var p = SElib. peek(vPtr);
/1 Convert "N' to "P"
SEl i b. poke(vPtr, p+2);
/] Display "Pow'

171

Screen.witeln(v);

/1 See usage in bnp.jsh, clipbrd.jsh,
/] dde.jsh, ddecli.jsh, and dropsrc.jsh

SElib.ShellFilterCharacter()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SElib.ShellFilterCharacter(functionFilterCharacter, allKeys)

functionFilterCharacter - identifier, the name of a ScriptEase
function to use to filter characters.

allKeys - boolean, specifies whether the functionFilterCharacter
iscalled for every keystroke or just for keys that are not ordinary
printable characters, such as function keys. The return of the
method Clib.isprint() corresponds to the difference in keys that
alKeys affects.

void.

Adds a character filter function to a ScriptEase shell. When
ScriptEase is running as a command shell, that is, when a
ScriptEase interpreter is executed with no arguments, this
methods allows the installation of a function to be called when
keystrokes are pressed. For example, the autol oad.jse script that
ships with ScriptEase uses this method to implement command
line history and filename completion.

The function, functionFilterCharacter, must conform to the
following:

function functionFilterCharacter(comrand,
posi tion, key, extended, al phaNuneric)

command - string, the current string on the shell command line.
This string is read/write and may be changed by this function.

position - number, the current cursor position within the
command string. This position may be atered by this function.

key - number, the key being pressed. This parameter may be
altered by the function. Set key to zero, 0O, to ignore keyboard
input.

extended - boolean, trueif the current keystroke is an extended

172

keyboard character, that is, afunction key, akeyboard
combination, and so forth.

alphaNumeric - true if the current keystroke is an alphabetic or
numeric key. The return of the method Clib.isalnum()
corresponds to alphaNumeric.

return - boolean, true if the command line must be redrawn or the
cursor position moved, based on the actions in this function.

SEE: SElib.ShellFilterCommand(), autoload.jse, Clib.isalnum()

SElib.ShellFilterCommand()

SYNTAX: SElib.ShellFilterCommand(functionFilterCommand)

WHERE:! functionFilterCommand - identifier, the name of afunction to
use to filter commands to a ScriptEase shell.

RETURN: void.

DESCRIPTION: Adds a command filter function to a ScriptEase shell. When
ScriptEase is running as a command shell, that is, when a
ScriptEase interpreter is executed with no arguments, this
method allows a function to be installed which is called when
commands are entered in a shell. For example, the autoload.jse
script that ships with ScriptEase uses this method to implement
commands, such as CD and TY PE.

The function, functionFilterCommand, must conform to the
following:

function functionFilter Command(comrand)

command - a string, the current string on a shell command line.
This string is read/write and may be changed by the function. A
ScriptEase shell executes the command after returning from this
function. To prevent ScriptEase from executing any command
set command to a zero-length string, for example,

command[0]="0', but not command=""".

Before passing a command line to afilter function, ScriptEase
strips leading white space from the beginning and end of the
command string. Also, any redirection on acommand line is not

173

SEE!

seen by this function, since redirection is handled internally by
ScriptEase. For example, if acommand line string is
"dir>dir.txt", then this function only sees the string "dir".

SElib.ShellFilterCommand(), autoload.jse

SElib.spawn()

SYNTAX:

WHERE!

RETURN:

SElib.spawn(mode, execSpec], arg[, ...]])

mode - a number indicating how to spawn or execute the file
named by execSpec. The parameter mode may be one of the
following values though not al values are valid on all operating
systems:

P_WAI T Wait for a child program to complete before
continuing. (All platforms)

P_NOWMAI T A script continues to run while a child program
runs. In windows, a successful call with mode P_NOMAI T
returns the window handle of the spawned process.
(Windows and OS/2)

P_SWAP Like P_WAIT, but swap out ScriptEase to create
more room for the child process. P_SWAP will free up as
much memory as possible by swapping ScriptEase to

EMS/ XV5/ | NT15 memory or to disk (in TMP or TEMP or else
current directory) before executing the child process (thanks
to Ralf Brown for his excellent spawn library). (DOS only)
P_OVERLAY The script exits and the child program is
executed in its place. (DOS 16-bit)

execSpec - a string with the path and filename of an executable
file or a ScriptEase script.

arg - one or more values to passed as parametersto the file to be
executed.

void - if the mode is P_OVERLAY.

number - if the modeis P_WAI T, the return is the exit code of the
child process, elseitis-1.

number - if the modeisP_NOWMI T or P_SWAP, the return is the

174

DESCRIPTION:

SEE!

EXAMPLE!

identifier of the child process, elseitis-1.

Launches another application. The parameter mode determines
the behavior of the script after the spawn call, while execSpec is
the name of the process being spawned. Any arguments to the
spawned process follow execSpec.

The parameter execSpec may be the path and filename of an
executable file or the name of a ScriptEase script. If it isascript,
the spawned script runs from the same instance of ScriptEase as
the calling script. A spawned script does not cause another
instance of the interpreter to be launched. A script that has been
bound with the ScriptEase /bind function cannot be spawned
from the same instance as the calling script.

The parameter execSpec is automatically passed as argument 0.
ScriptEase implicitly converts all arguments to strings before
passing them to the child process.

SEl i b. spawn() searchesfor execSpec in the current directory

and then in the directories of the PATH environment variable. If

thereis no extension in execSpec, SEl i b. spawn() searchesfor
file extensions in the following order: com, exe, bat, and cmd.

If abatch file is being spawned in 16-bit DOS and the
environment variable COMGPEC _ENV_SI ZE exists, the command
processor is provided the amount of memory as indicated by
COVBPEC _ENV_SI ZE. If COVBPEC ENV_SI ZE does not exist,
the command processor receives only enough memory for
existing environment variables.

A return value of -1 resultswhen i b. err no is set to identify
why the function failed.

SElib.interpret(), SElib.interpretinNewThread(), winexec.jsh

/] The follow ng fragnent

/1 calls a nortgage program

/1 nortgage. exe, which takes

/] three paraneters, initial debt,

/'l rate, and nonthly payment, and

// returns, inits exit code,

/] the nunber of nobnths needed to pay the debt.
var nmonths = SElib. spawn(P_WAI T,

" MORTGAGE. EXE 300000 10.5 1000");

175

if (months < 0)
Screen.witeln("Error spawni ng MORTGAGE");
el se
Aib.printf(
"It takes %l nonths to pay off the nortgage\n",
nont hs) ;

/] The argunments coul d al so

/1 be passed to nortgage. exe as

/| separate variables, as in the follow ng.
var nmonths = SElib. spawn(P_WAI T,

" MORTGAGE. EXE", 300000, 10. 5, 1000) ;

/1 The argunents coul d be passed

/! to nortgage.exe in a

/1 variable array, provided that

/1 they are all of the sane

/] data type, in this case strings.
var MortgageDat a;

Mor t gageDat a[0] = "300000";
Mort gageDat a[1] = "10.5";
Mor t gageDat a[2] = "1000";

var ths = spawn(P_WAI T,
"MORTGAGE. EXE', MbrtgageData);

SElib.splitFilename()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SElib.splitFilename(filespec)
filespec - string specification for afile. May be afull or partial
path specification.

object - structure containing the drive and directory, file, and
extension information contained in filespec. The structure
returned has the following properties:

.dir directory nanme including | eading drive
spec and trailing slash (d:\dir1\dir2\)

.name root nane of file only (filenane)

. ext file extension with | eading period (.ext)

The three properties returned are guaranteed not to be null.

The actua characters used, such as the sash, depend on the
operating system.

Break up afile specification, full or partial path specification,

176

SEE!

EXAMPLE!

into its component parts: drive and directory, filename, and
extension. The filespec does not have to actualy exist. This
method merely divides up the filespec, as passed, according to
the conventions of the operating system without checking to see
if adrive, directory, or filename actualy exists.

SElib.fullpath(), SElib.splitFilename(), File object in fileobj.jsh

/] After splitting a fil espec,
/] the follow ng statenment wl |
/'l reconstruct it
var parts = SHib.splitFilenane(M/Spec);
var FileSpec = MySpec.dir + M/Spec. nane + M/Spec. ext;

SElib.subclassWindow()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SElib.subclasswindow(hWnd, windowFunction, utilityVar)
hwnd - a number, the handle of an existing window to subclass.

windowFunction - an identifier, the function that is called
whenever Windows sends a message to this window. The
parameter windowFunction is the same as for
SElib.makeWindow().

utilityVar - any variable that a scripter chooses. Thisvariableis
passed to the windowFunction when it receives a Windows
message. The parameter utilityVar isthe same as for
SElib.makeWindow().

boolean - true on success, elsefaseif hWnd isinvalid, was
created with SElib.makeWindow(), or is already subclassed.

For Win32 and Winl16

This method hooks the specified windowFunction into the
message loop for awindow such that the function is called
before the window's default or previoudy-defined function.

The parameter hwnd is the window handle of an already existing
window to subclass.

The parameter windowFunction is the same asin the
SElib.makeWindow() method. Note that, asin the
SElib.makeéWindow() method, if this method returns a value,

177

SEE!

then the default or subclassed function is not called. If this
method returns no value, the call is passed on to the previous
function. This method may be used to subclass any Window that
is not already being managed by a windowFunction for this
ScriptEase instance. If a window was created with
SElib.makeWindow() or is already subclassed then this method
falls.

Note that this method may be used, only once, with the window
handle returned by Screen.handle(). If you want to subclass the
main ScriptEase window, it is best to open another instance of
ScriptEase and subclass it rather than to subclass the instance
that is powering your script. Although it is possible to subclass
that window, if you try to do anything with it, you will likely get
caught in an infinite loop and hang. To undo the window
subclassing or remove a WindowFunction from the message
loop, use SElib.breakWindow().

A WindowFunction may modify UtilityVar.

In your function that handles messages for another process,
certain limits are set as to what you can do with system
resources. For example, an open file handle is invalid while
processing a message for another program, because Windows
maps file handles into a table for programs. To work around this
problem, you may send a message to one of your ScriptEase
windows to handle the processing. This action switches
Windows' tables to your program while handling that
SendMessage.

SElib.makeWindow(), Window object in winobj.jsh

SElib.suspend|()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SElib.suspend(milliSeconds)

milliSeconds - a number, the time in thousandths of a second to
suspend program execution.

void.

Suspends script or program execution for the time interval

178

SEE!

EXAMPLE!

specified in milliSeconds. The next statement in a script will
execute at the end of the delay.

True accuracy to the exact millisecond is not guaranteed and is
only closely approximated according to the accuracy provided by
the underlying operating system. This method allows a computer
to devote more time to other processes and can be used to give
the processor time to complete other tasks before calling the next
linein ascript.

The example below spawns a copy of Windows Notepad, puts
the date and time into the document by simulating the selection
of Time/Date from the Edit menu, and then displays the line

"Y ou asked for the time?"'. The SElib.suspend() method gives the
processor time to finish completing the menu command before
entering the text into Notepad. If Keystroke() were called
immediately after the call to MenuCommand(), the text would be
sent to Notepad while the menu item was still being selected and
would be garbled.

SElib.spawn(), Clib.ctime(), Date object

#i ncl ude <menuctrl.jsh>

#i ncl ude <keypush.jsh>

var hwid = SEli b. spawn(P_NOMI T, "notepad. exe");
MenuCommand(hwhd, "Edit| Ti ne");

SEl i b. suspend(300);

KeyStroke("\nYou asked for the tine?");

SElib.windowList()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SElib.windowList(hWnd)

hwnd - anumber, the handle of the window for which to find its
child windows.

object - an array of window handles for all the child windows of
hwnd.

For Win32 and Winl16

Get the handles of al child windows of the window designated
by hwnd. | hwnd is not passed, then get the handles of the
windows on the desktop which amount to all the parent

179

windows.
SEE: SElib.makeWindow(), Window object in winobj.jsh

Dynamic links
For Win32, Winl16, and OS/2

The dynamic link method, which varies in usage among the three platforms that
support it, allows flexibility when making calls to dynamic link libraries, DLLS,
and allows access to operating-system functions, API calls, not explicitly
provided by ScriptEase. If you know the proper conventions for a call, then you
can make an SEl i b. dynani cLi nk() call ina ScriptEase function to be used
for making a system call. Such afunction isreferred to as a wrapper, afunction
in which a system call becomes available as a function call.

There are three versions of SEl i b. dynani cLi nk() : Win32, Winl6, and OS/2.
These three versions differ dightly in the way they are called. So, if you wish to
use one function in a script that will be run on different platforms, you must
create an operating system filter using preprocessor directives:. #i f , #i f def ,
#elif,#el se,and#endi f.

Since these versions are different in the way that they call
SEl i b. dynani cLi nk() , they will be treated separately.

SElib.dynamicLink() - for Win32

SYNTAX: SElib.dynamicLink(library, procedure, convention)

WHERE:! library - a string, the name of the dynamic link library, DLL,
being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in adynamic link library to be used.

convention - the calling convention to use when invoking or
using the procedure being called.

CDECL Push right paraneter first.
Cal | er pops paraneters.

STDCALL Push right paraneter first.
Cal | er pops paraneters.

PASCAL Push | eft paraneter first.
Cal | ee pops paraneters.

RETURN: value - the value returned by the procedure being called, else

180

DESCRIPTION:

SEE!

EXAMPLE!

void if the procedure does not return avalue.
For Win32

Cdlsaroutinein adynamic link library, DLL. The most
common use is to use various functions in the Windows API.

All values are passed as 32-bit values. If a parameter is
undefined when dynamicLink() is called, then it is assumed that
the parameter is a 32-bit value to be filled in, that is, the address
of a 32-bit data element is passed to the function, and that
function will set the value.

If a parameter is a structure, then it must be a structure that
defines the binary data types in memory to represent the
following variable. Before calling the DLL function, the
structure is copied to a binary buffer as described in Blab.put()
and Clib.fwrite(). When calling the DLL function, a descriptor
argument must precede the structured parameter, and this
descriptor argument is in addition to the parameter list for the
procedure being called. After calling the DLL function, the
binary data will be converted back into the data structure
according to the rules defined in Blob.get() and Clib.fread().
Data conversion is performed according to the current
_BigEndianM ode setting.

Clib.fread(), Blob object

/] The follow ng calls
/1 the Wndows MessageBeep() function:

#define MESSAGE BEEP_ORDI NAL 104

SEl i b. dynami cLi nk(" USER EXE", MESSAGE_BEEP_ORDI NAL,
SWORD16, PASCAL, 0);

/1 The follow ng displays a sinple nessage box
/1 and waits for user to press <Enter>.
#defi ne MESSAGE_BOX_ORDI NAL 1
#define MB_OK 0x0000
/'l Message box contains one push button: OK
#defi ne MB_TASKMODAL 0x2000
/1 Must respond to this nessage
SEl i b. dynam cLi nk(" USER EXE", MESSAGE_BOX_ORDI NAL,
SWORD16, PASCAL, null,
"This is a sinple nessage box",
"Title of box", MB_OK | MB_TASKMODAL);

181

/] The follow ng acconplishes
/1 the sanme thing as above.
#define MB_OK 0x0000
/'l Message box contains one push button: OK
#define MB_TASKMODAL 0x2000
/1 Must respond to nessage
SEl i b. dynami cLi nk("USER', " MESSAGEBOX', SWORD1S6,
PASCAL, nul I,
"This is a sinple nessage box",
"Title of box", MB OK | MB_TASKMODAL);

SElib.dynamicLink() - for Win16

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SElib.dynamicLink(library, procedure, returnType, convention)

library - a string, the name of the dynamic link library, DLL,
being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in adynamic link library to be used.

returnType - a number which tells ScriptEase what type of value
the procedure returns, so that it can be properly converted into an
integer. The be one of the following:

UAORD8 SWORD8 UWORD16 SWORDL6 UWORD24

SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLQAT80 is not available in Wn32)

convention - the calling convention to use when invoking or
using the procedure being called.
CDECL Push right paraneter first.
Cal | er pops paraneters.
STDCALL Push right paraneter first.
Cal | er pops paraneters.

PASCAL Push | eft paraneter first.
Cal | ee pops paraneters.

value - the value returned by the procedure being called, else
void if the procedure does not return avalue.

For Winl16

Cdlsaroutinein adynamic link library, DLL. The most
common use is to use various functions in the Windows API.

If aparameter isaBlob, abyte-array, or an undefined value, it is

182

SEE!

passed as afar pointer. All other numeric values are passed as
16-bit values. If 32-bits are needed, the parameter must be
passed in parts, with the low word first and the high word second
for CDECL calls but the high word first and low word second for
PASCAL calls.

If a parameter is undefined when SElib.dynamicLink() is called,
then it is assumed that the parameter is afar pointer to be filled
in, that is, that the far address of a data element is passed to the
function and that function will set the value. If any parameter isa
structure, then it must be a structure that defines the binary data
types in memory to represent the following variable. Before
calling the DLL function, the structure will be copied to a binary
buffer as described in Blob.put() and Clib.fwrite(). After calling
the DLL function, the binary data is converted back into the data
structure according to the rules defined in Blob.get() and
Clib.fread(). Data conversion is performed according to the
current _BigEndianM ode setting.

Blob object, Clib.fread()

SElib.dynamicLink() - for OS/2

SYNTAX:

WHERE!

SElib.dynamicLink(library, procedure, bitSize, convention, ...)

library - a string, the name of the dynamic link library, DLL,
being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in adynamic link library to be used.

bitSize - indicates whether this call is 16-bit or 32-bit and may be
either of two defined values: BIT16 or BIT32.

convention - the calling convention to use when invoking or
using the procedure being called.

CDECL Push right paranmeter first.
Cal | er pops paraneters.

STDCALL Push right paraneter first.
Cal | er pops paraneters.

PASCAL Push | eft paraneter first.
Cal | ee pops paraneters.

183

RETURN:

DESCRIPTION:

value - the value returned by the procedure being called, else
void if the procedure does not return avalue.

For OS/2
Cadlsaroutinein adynamic link library, DLL.

Any parameters required by a dynamically linked function
should be passed at the end of the parameters listed above, as
indicated by the ellipsis at the end of the parameter list. These
variables are interpreted as follows, depending on the operating
system.

For 32-bit functions, all values are passed as 32-bit values. For
16-bit functions, if the parameter is a Blob, a byte-array, or an
undefined value, then it is passed as a 16:16 segment:offset
pointer, otherwise all numeric values are passed as 16-hit values,
so if 32-hits are needed they must be passed in parts, with the
low word first and the high word second.

If a parameter is undefined when SElib.dynamicLink() is called,
then it is assumed that parameter is a 32-bit value to be filled in,
that is, that the address of a 32-bit data element is passed to the
function and that function will set the value. If any parameter isa
structure then it must be a structure that defines the binary data
types in memory to represent the following variable. Before
calling the DLL function, the structure is copied to a binary
buffer as described in Blob.put() and Clib.fwrite(). After calling
the DLL function, the binary data is converted back into the data
structure according to the rules defined in Blob.get() and
Clib.fread(). Data conversion is performed according to the
current _BigEndianM ode setting.

An aternative syntax:

The OS2 processor aso alows you to cal afunction viaacall
gate with the following syntax:

SEl i b. dynami cLi nk(cal | Gate, bitSize, convention,

Where callGate is the gate selector for aroutine referenced
through acall gate.

184

SEE: Blob object

185

Buffer Object

The Buffer object provides away to manipulate data at avery basic level.
It is needed whenever the relative location of datain memory is important.
Any type of data may be stored in a buffer object. A new Buffer object
may be created from scratch or from a string, buffer, or Buffer object, in
which case the contents of the string or buffer will be copied into the
newly created Buffer object.

Buffer object instance properties
Buffer bigEndian

SYNTAX:

DESCRIPTION:

SEE!

EXAMPLE!

buffer.bigEndian

This property is a boolean flag specifying whether to use
bigEndian byte ordering when calling getValue() and putValue().
Thisvalue is set when a buffer is created, but may be changed at
any time. This property defaults to the state of the underlying OS
and processor.

Buffer.unicode
buf fer. bi gEndi an = true;

Buffer cursor

SYNTAX:

DESCRIPTION:

SEE!

EXAMPLE!

buffer.cursor

The current position within a buffer. This valueis aways
between 0 and .size. It can be assigned to aswell. If auser
attempts to move the cursor beyond the end of a buffer, than the
buffer is extended to accommadate the new position, and filled
with null bytes. If a user attempts to set the cursor to less than 0,
then it is set to the beginning of the buffer, to position 0.

Buffer.bigeEndian

var p = buffer.cursor;

187

Buffer data

SYNTAX: buffer.data

DESCRIPTION: This property is areference to the internal data of a buffer. Itis
only atemporary value to assist in passing parameters to OS and
system library type calls. In the future, all ScriptEase library
functions should be able to recognize Buffer objects and to get
this member on their own.

SEE: Buffer.size
Buffer size
SYNTAX: buffer.size

DESCRIPTION: The size of the Buffer object. This property may be
assigned to, such asf oo. si ze = 5. If auser changesthe
size of the buffer to something larger, then it is filled with
null bytes. If the user sets the size to avalue smaller than
the current position of the cursor, then the cursor is moved
to the end of the new buffer.

SEE: Buffer.cursor

EXAMPLE: var n = buffer.size;

Buffer unicode

SYNTAX: buffer.unicode

DESCRIPTION: This property is a boolean flag specifying whether to use unicode
strings when calling getString() and putString(). This value is set
when the buffer is created, but may be changed at any time. This
property defaults to the unicode status of the underlying
ScriptEase engine.

SEE: Buffer.bigeEndian

EXAMPLE: buffer. bi gendi an = fal se;

Buffer[] Array

188

SYNTAX:

DESCRIPTION:

SEE!

EXAMPLE!

Buffer[offset]

Thisis an array- like version of the

get Val ue() /put Val ue() methods which works only with
bytes. A user may either get or set these values, such as goo
= foo[5] Or foo[5] = goo. Every get/put operation uses
byte types, that is, SWORDS. If offset islessthan O, then O is
used. If offset is beyond the end of a buffer, the size of the
buffer is extended with null bytes to accommodate it.

Buffer.getVaue(), Buffer.putValue()

var ¢ = 'a';
buffer[5] = c;
c = buffer[4];

Buffer object instance methods

Buffer()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

new Buffer([size[, unicode], bigEndian]]])
new Buffer(string[, unicode], bigEndian]]])
new Buffer(buffer[, unicode[, bigEndian]]])
new Buffer(bufferObject)

size - size of buffer to be created.

string - string of characters from which to create a buffer.

buffer - buffer of characters from which to create another buffer.
bufferObject - buffer to be duplicated.

unicode - boolean flag for the initia state of the unicode property
of the buffer

bigEndian - numeric description of the initial state of the
bigEndian property of the buffer.

object - the new buffer created.
To create a Buffer object, follow of the syntax below.

new Buf fer([size[, unicode[, bigEndian]]]);

189

A line of code following this syntax creates a new buffer object.
If sizeis specified, then the new buffer is created with the
specified size, filled with null bytes. If no sizeis specified, then
the buffer is created with a size of 0, though it can be extended
dynamically later. The unicode parameter is an optional boolean
flag describing the initial state of the .unicode flag of the object.
Similarly, bigEndian describes the initial state of the bigEndian
parameter of the buffer. If unspecified, these parameters default
to the values described below.

new Buf fer(string[, unicode[, bigEndian]]]);

A line of code following this syntax creates a new buffer object
from the string provided. If string is a unicode string (unicode is
enabled within the application), then the buffer is created asa
unicode string. This behavior can be overridden by specifying
true or false with the optional boolean unicode parameter. If this
parameter is set to false, then the buffer is created as an ASCII
string, regardless of whether or not the original string wasin
unicode or not. Similarly, specifying true will ensure that the
buffer is created as a unicode string. The size of the buffer isthe
length of the string (twice the length if it is unicode). This
constructor does not add a terminating null byte at the end of the
string. The bigEndian flag behaves the same way asin the first
constructor.

new Buf fer(buffer[, unicode[, bigEndian]])

A line of code following this syntax creates a new buffer object
from the buffer provided. The contents of the buffer are copied
asisinto the new buffer aobject. The unicode and bigEndian
parameters do not affect this conversion, though they do set the
relevant flags for future use.

new Buf f er (buffer Qhj ect);

A line of code following this syntax creates a new buffer object
from another buffer object. Everything is duplicated exactly from
the other bufferObject, including the cursor location, size, and
data.

All of the above calls have an equivaent call form (such as
"Buffer(15)"), except that this simply returns the buffer part

190

SEE!

EXAMPLE!

(equivalent to the data member), rather than the entire Buffer
object.

Buffer getString()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

buffer.getString([length])
length - number of characters to get from the buffer.

string - starting from the current cursor location and continuing
for length bytes. If no length is specified, then the method reads
until anull byte is encountered or the end of the buffer is
reached.

The string is read according to the value of the .unicode flag of
the buffer. A terminating null byte is not added, even if alength
parameter is not provided.

Buffer.putString()

foo = new Buffer("abcd");
f oo. cursor = 1;

goo = foo.getString(2);
//goo is now "bc"

Buffer getValue()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

Buffer.getVaue([VaueSize], VaueType]])

ValueSize - a positive number describing the number of bytesto
be used and defaults to 1. The following are acceptable values:
1,2,3,4,8, and 10 ValueType - One of the following types:

"si gned", "unsi gned", or "f | oat ". The default typeis:

"si gned."

ValueType - either si gned, unsi gned or f| oat .
value - from the specified position in a buffer object.

Thiscall is similar to the put Val ue() function, except that it
gets avalue instead of puts avaue.

191

SEE!

EXAMPLE!

Buffer.putValue(), Buffer[]

/*

To explicitly put a value at a specific |location
whi |l e preserving the cursor |ocation, do sonething
simlar to the foll ow ng.

*/

/! Save the old cursor |ocation
var ol dCursor = foo.cursor;
/!l Set to new | ocation
f 0o. cursor = 20;
/1 Get goo at offset 20
bar = foo. getVal ue(goo);
/! Restore cursor |ocation
f 0o. cursor = ol dCur sor

/| Pl ease see Buffer. putVal ue
/! for a nore conplete description.

Buffer putString()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

EXAMPLE!

buffer.putString(String)
string - Any string.
void.

This method puts a string into the buffer object at the current
cursor position. If the .unicode flag is set within the Buffer
object, then the string is put as a unicode string, otherwiseit is
put as an ASCII string. The cursor isincremented by the length
of the string (or twice the length if it is put as a unicode string).
Note that terminating null byte is not added at end of the string.

/! To put a null termnated string,
/1 the follow ng can be done.

/] Put the string into the buffer
foo.putString("Hello");

/1 Add termnating null byte
f oo. putValue(0);

Buffer putValue()

SYNTAX:

buffer.putVaue(Value[, ValueSize[, VaueType]])

192

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

Value - value to be put into the buffer.

ValueSize - a positive number describing the number of bytesto
be used and defaults to 1. The following are acceptable values:
1,2,3,4,8, and 10 ValueType - One of the following types:

"si gned", "unsi gned", or "f | oat ". The default typeis:
"si gned."

ValueType - either si gned, unsi gned or f| oat .

The vaueis put into buffer at the current cursor position, and the
cursor value is automatically incremented by the size of the
value to reflect this addition.

This method puts the specified value into a buffer. The value
must be anumber. Val ueSi ze or both val ueSi ze and

val ueType may be passed as additional parameters. ValueSize
is apositive number describing the number of bytes to be used
and defaultsto 1. Acceptable values for val ueSi ze are
1,2,3,4,8, and 10, providing that it does not conflict with the
optional val ueType flag. (Seelisting below.)

The parameter valueType must be one of the following:

"si gned"”, "unsi gned", or "f | oat ". It defaultsto "si gned."
Theval ueType parameter describes the type of datato be read.
Combined with valueSize, any type of data can be put. The
following list describes the acceptable combinations of valueSize
and valueType:

val ueSi ze val ueType
si gned, unsigned
si gned, unsigned
si gned, unsigned
si gned, unsigned, float
fl oat
0 float (Not supported on every systen)

P OP~WNPE

Any other combination will cause an error. The valueis put into
buffer at the current cursor position, and the cursor value is
automatically incremented by the size of the value to reflect this
addition.

Buffer.getValue(), Buffer]
/ *

193

To explicitly put a value at a specific location
whi |l e preserving the cursor |ocation, do sonething
simlar to the foll ow ng.

*/

var ol dCursor = foo.cursor;
/1 Save the old cursor |ocation
f 0o. cursor = 20;
/!l Set to new | ocation
f 0o. put Val ue(goo) ;
/1 Put goo at offset 20
f oo. cursor = ol dCur sor
/! Restore cursor |ocation

/*.

The value is put into the buffer with byte-ordering
according to the current setting of the .bigEndian
flag. Note that when putting float values as a
smal | er size, such as 4, sone significant figures are
lost. A value such as "1.4" will actually be
converted to sonething to the effect of "1.39999974".
This is sufficiently insignificant to ignore, but
note that the foll owi ng does not hold true

i

foo. putValue(1.4,4,"float");

f oo. cursor -= 4;

if(foo.getValue(4,"float") !'=1.4)
/1 This is not necessarily true due
/1 to significant figure |oss.

/*.
This situation can be prevented by using 8 or 10 as a
val ueSi ze instead of 4. A valueSize of 4 may still be

used for floating point values, but be aware that
sone | oss of significant figures may occur (though it
may not be enough to affect nobst cal cul ations).

C*

Buffer subBuffer()

SYNTAX:

WHERE:!

RETURN:

buffer.subBuffer(Beginning, End)

Beginning - start of offset

End - end of offset (up to but not including this point)

object - another Buffer object consisting of the data between the

194

DESCRIPTION:

SEE!

EXAMPLE!

positions specified by the parameters: beginning and end.

If the parameter beginning islessthan O, then it istreated as O,

the start of the buffer. If the parameter end is beyond the end of
the buffer, then the new sub-buffer is extended with null bytes,
but the original buffer is not altered.

String.subString()

foo = new Buffer("abcd");

bar = foo.subBuffer(1,3);

/1 bar is now the string "bc"

/1 "a" was at position 0, "b" at position 1, etc.
/'l The paraneter "3"

/1 or "nEnd" is the postion to go up to,

/1 but NOT to be included in the string.

Buffer toString()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

buffer.toString()

string - a string equivalent of the current state of the buffer, with
al characters, including "\ 0".

Any conversion to or from unicode is done according to the
. uni code flag of the object.

Buffer.getString()

foo = new Buffer("hello");
bar = foo.toString(void);
//bar is now the string "hello"

195

Screen Object

The methods in this section are preceded with the Object name Screen,
since individual instances of the Screen Object are not created. For
example, Screen.clear() isthe syntax to use to clear a ScriptEase text
screen.

The methods documented in this section are the internal methods of the
Screen object. The script library file screen.jsh adds methods and
properties to the Screen object. See the documentation for screen.jsh for
more information about useful Screen object methods.

Screen object static methods
Screen.clear()

SYNTAX: Screen.clear()

RETURN: void.

DESCRIPTION: This method clears the portion of a computer screen that is
controlled by a script. On some platforms, such as DOS, the
entire screen may be cleared, but on others, such as Win32, only
awindow will be cleared.

SEE: Screen.setBackground(), Screen.setForeground()

EXAMPLE: Screen.clear();

Screen.cursor()

SYNTAX: Screen.cursor([col[, row])

WHERE:! col - the column or x coordinate of a character on atext screen or
window. The unit of measurement is a character position.

row - the row or y coordinate of a character on atext screen or
window. The unit of measurement is a character position.

RETURN: object - a structure with two numeric properties, col and row,
which represent the current cursor position on atext screen or

197

DESCRIPTION:

SEE!

EXAMPLE!

window. The properties of the structure are:

. col
.row

Gets and sets the cursor position in atext screen or window. If
no parameters are passed, the only action is to return the current
cursor position. If the parameters, col and row, are passed, the
cursor is set to the position specified. If the parameter row is
omitted, the cursor is moved to the column specified by col on
the current row.

When parameters are passed, the cursor position returned is the
position after the cursor has been placed at the new coordinates.

Text screen coordinates begin with O, that is, the first column or
row is 0. Thefirst position on atext screen/window is at col ==
and row == 0.

Screen.size()

/1 Get the cursor position as:

/1 CurPos.col and CurPos.row
var CurPos = Screen. cursor()

/! Place the cursor at colum 3, the 4th col um,

/1l of the current row
var CurPos = Screen. cursor(3)

// Place the cursor at colum 3, the 4th col um,
and

// at row 4, the 5th row, of the current text
screen/ wi ndow.
var CurPos = Screen.cursor(3, 4)

/] Place the cursor at the first position
Screen. cursor (0, 0);

Screen.handle()

SYNTAX:

RETURN:

DESCRIPTION:

Screen.handle()

number - the window handle of the current ScriptEase screen or
window.

This method returns the window handle of a ScriptEase screen,
such as the text screen produced by normal text output from
Sawin32.exe. This handle may be used with other windows
routines that manipulate windows. A ScriptEase screenisa

198

SEE!

EXAMPLE!

window like other windows in the Windows API.
Window object in winobj.jsh, winutils,jsh

var ScreenHandl e = Screen. handl e()

Screen.setBackground()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Screen.setBackground(color | r, g, b)

color - anumber that represents a color. A single number may be
used. Thefile colors.jsh has defines, such as color_cyan, for
many popular colors. If more than one parameter is passed, then
the method assumes that a three number system based on red,
green, and blue elementsis being used.

r - anumber that represents the red element of a color.

g - anumber that represents the green element of a color.
b - anumber that represents the blue element of a color.
void.

Sets the background color of a ScriptEase screen or window,
such as the window that is created when ScriptEase is running as
a shell. The method may receive either one or three arguments. If
thereis only one parameter color, it must be one of the colors
defined in colors.jsh. If there are three parameters, they define a
color based on a combination of r(ed), g(reen), and b(lue).

The background color is the color of screen or window on which
characters are displayed. The foreground color is the color of the
characters. The colors set are for the entire screen/window, not
just the current text being written.

Screen.setForeground()

/1 Needed for col or_cyan bel ow
i nclude "col ors.jsh"
/'l Set screen background to cyan
Scr een. set Backgr ound(col or _cyan)
/] Set to white
Scr een. set Backgr ound(255, 255, 255)
/] Set to white
Scr een. set Backgr ound(OxFF, OxFF, OxFF)
/] Set to black

199

Scr een. set Background(0, 0, 0);

Screen.setForeground()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Screen.setForeground(color | r, g, b)

color - anumber that represents acolor. A single number may be
used. Thefile colors,jsh has defines, such as color_cyan, for
many popular colors. If more than one parameter is passed, then
the method assumes that a three number system based on red,
green, and blue elementsis being used.

r - anumber that represents the red element of a color.

g - anumber that represents the green element of a color.
b - anumber that represents the blue element of a color.
void.

Sets the foreground color of a ScriptEase screen or window, such
as the window that is created when ScriptEaseis running as a
shell. The method may receive either one or three arguments. If
thereis only one parameter color, it must be one of the colors
defined in colors.jsh. If there are three parameters, they define a
color based on a combination of r(ed), g(reen), and b(lue).

The foreground color is the color of the characters. The
background color is the color of screen or window on which
characters are displayed. The colors set are for the entire
screen/window, not just the current text being written.

Screen.setBackground()

/1 Needed for col or_cyan bel ow
i nclude "col ors.jsh"
/1 Set screen foreground to cyan
Scr een. set For egr ound(col or _cyan)
/] Set to white
Scr een. set For egr ound(255, 255, 255)
/] Set to white
Scr een. set For egr ound(OxFF, OxFF, OxFF)
/1 Set to black
Scr een. set For eground(0, 0, 0);

200

Screen.size()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Screen.size([col[, row])

col - a number representing the number of columns, the x
coordinate, of the current text screen or window. The unit of
measurement is a character position.

row - a number representing the number of rows, they
coordinate, of the current text screen or window. The unit of
measurement is a character position.

object - a structure with two numeric properties, col and row,
which represent the current width and height of a text screen or
window. The properties of the structure are:

. col

. row
Gets and sets the size, width and height, of the current text
screen or window. If no parameters are passed, the only action is
to return a structure with the width and height. If two arguments
are passed, the screen/window is set to the width and height
specified by the two parameters. If only one argument is passed,
an error occurs.

Screen.cursor()

/!l Get the current screen/w ndow size

var CurSiz = Screen.size()
/] Set text screen/w ndow size to 40 col ums
/!l and 12 rows

Screen. si ze(40, 12)

Screen.write()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Screen.write(data)
data - any data typein JavaScript.
void.

The method Screen.write is the most basic way of displaying
datain text form. It will display any JavaScript datatype asa
string by using the automatic data conversion abilities of
JavaScript. For example, ook at the following fragment:

201

var s = "123";
var n = 123;
var a = new Array(1, "2", 3);

Screen.witeln(s);
Screen.witeln(n);
Screen.witeln(a);

Thedisplay is:

123
123
1,2,3

Automatic conversion allows the variables n and s to display the
same and converts the array ato a suitable string in which the
elements of the array are separated by commas.

Screen.write does not put end of line characters on a string, that
is, the cursor is positioned at the end of the string displayed. Use
Screen.writeln to display a string and position the cursor on the
next line. For example, the following two lines of code produce
the same display:

Screen. wite("456");
Cib.printf("456");

The following two lines of code produce the same display and
illustrate the difference between Screen.write and Screen.writeln:

Screen.wite("This is a line.\n");
Screen.writeln("This is a line.");

The Screen.write statement uses the escape character "\" to put
end of line (EOL) characters at the end of the string. The
Screen.writeln statement automatically puts EOL characters at
the end of a string.

As an example of displaying data, consider the following
fragment:

var FirstName = "John "

var Last Nane = "Doe "

var CtyStateZip = ne\’/v Array("Medford", "MA',
02155) ;

Screen.write(FirstName + LastNane + "in ");
Screen.wite(C tyStateZp);

202

SEE!

EXAMPLE!

produces the following display:
John Doe in Medford, MA 1133

This code fragment illustrates how easy it is to work with,
concatenate, combine, and display different data types.

Screen.writeln(), write,jsh which has many extensions to the
Screen.write method.

Screen.wite("Using Screen.wite is sinple.");

Screen.writeln()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Screen.writeln(data)
data - any data type in JavaScript.
void.

Screen.writeln is the same as Screen.write except that
Screen.writeln automatically puts end of line (EOL) characters at
the end of data that it displays. See Screen.write for a full
description, including the differences between Screen.write and
Screen.writeln.

Screen.writeln(), write,jsh which has many extensions to the
Screen.write method.

Screen.witeln("Using Screen.wite is sinple.");

203

String Object

The String object is adatatype, a hybrid that shares characteristics of
primitive data types and of composite data types. The String is presented
in this section under two main headings in which the first describes its
characteristics as a primitive data type and the second describes its
characteristics as an object.

String as data type

A string is an ordered series of characters. The most common use for
strings is to represent text. To indicate that text isastring, it is enclosed in
guotation marks. For example, the first statement below puts the string
"hello" into the variable word. The second sets the variable word to have
the same value as a previous variable hello:

var word = "hell o";
word = hell o;

Escape sequences for characters

Some characters, such as a quotation mark, have special meaning to the
interpreter and must be indicated with specia character combinations
when used in strings. This alows the interpreter to distinguish between a
guotation mark that is part of a string and a quotation mark that indicates
the end of the string. The table below lists the characters indicated by
escape seguences:

\a Audible bell

\b Backspace

\ f Formfeed

\n Newline

\r Carriage return

\'t Tab

\v Vertica tab

\! Single quote

\ " Double quote

\\ Backslash character

205

\ O### Octal number (example: "\033' is the escape character)

\ x## Hex number (example: "\x1B' is the escape character)
\0 Null character (example: \O' is the null character)

\ u#HH# Unicode number (example: "\uOO1B' is the escape
character)

Note that these escape sequences cannot be used within strings enclosed by back
guotes, which are explained below.

Single quote

Y ou can declare a string with single quotes instead of double quotes.
There is no difference between the two in JavaScript, except that double
guote strings are used less commonly by many scripters. In functions
declared with the cfunction keyword, the difference is more important. For
more information, see the section on cfunctions.

Back quote

ScriptEase provides the back quote "™, also known as the back-tick or
grave accent, as an alternative quote character to indicate that escape
sequences are not to be translated. Any special characters represented with

a backdash followed by aletter, such as"\n", cannot be used in back tick
strings.

For example, the following lines show different ways to describe asinglefile
name:

"c:\\autoexec.bat" // traditional C nethod
"c:\\autoexec.bat' // traditional C nethod
“c:\autoexec.bat® // alternative ScriptEase nethod

Back quote strings are not supported in most versions of JavaScript. So if you are
planning to port your script to some other JavaScript interpreter, you should not
use them.

Long Strings
Y ou can use the + operator to concatenate strings. The following line:

var proverb = "Arolling stone " + "gathers no noss."

206

creates the variable proverb and assigns it the string "A rolling stone gathers no
moss.” If you try to concatenate a string with a number, the number is converted
to a string.

var newstring = 4 + "get it";

This bit of code creates newstring as a string variable and assigns it the string
"Aget it".

The use of the + operator is the standard way of creating long stringsin
JavaScript. In ScriptEase, the + operator is optional. For example, the following:

var badJoke =
"I was standing in front of an Italian "
"restaurant waiting to get in when this guy "
"came up and asked ne, \"Wiy did the "
"ltalians lose the war?\" | told himl had "
"no idea. \"Because they ordered ziti"
"instead of shells,\" he replied."

creates along string containing the entire bad joke.

String as object

Strictly speaking, the String object is not truly an object. It isahybrid of a
primitive data type and of an object. As an example of its hybrid nature,
when strings are assigned using the assignment operator, the equal sign,
the assignment is by value, that is, acopy of astring is actually transferred
to avariable. Further, when strings are passed as arguments to the
parameters of functions, they are passed by value. Objects, on the other
hand, are assigned to variables and passed to parameters by reference, that
is, avariable or parameter points to or references the original object.

Strings have both properties and methods which are listed in this section. These
properties and methods are discussed as if strings were pure objects. Strings have
instance properties and methods and are shown with a period, ".", at their
beginnings. A specific instance of avariable should be put in front of a period to
use a property or call a method. The exception to this usage is a static method
which actually uses the identifier String, instead of a variable created as an
instance of String. The following code fragment shows how to access the .length
property, as an example for calling a String property or method:.

"123";

Test Str. | ength;

var TestStr
var Test Len

207

String properties

String object instance properties
String length

SYNTAX: string.length

DESCRIPTION: The length of a string, that is, the number of charactersin a
string. JavaScript strings may contain the "\ 0" character.

SEE! String.lastIndexOf()
EXAMPLE: var s = "a string";
var n = s.|ength;

String object instance methods

String()

SYNTAX: new String([value])

WHERE! value - value to be converted to a string as this string object.
RETURN: This method returns a new string object whose value is the

supplied value.

DESCRIPTION: If val ue isnot supplied, then the empty string " is used instead.
Otherwise, the value ToString(val ue) isused. Notethat if this
function is called directly, without the new operator, then the
same construction is done, but the returned variable is converted
to a string, rather than being returned as an object.

EXAMPLE: var s = new String(123);

String charAt()

SYNTAX: string.charAt(Position)
WHERE: Position - offset within a string.
RETURN: string - character at position Posi ti on

208

DESCRIPTION:

SEE!

EXAMPLE!

This method acter at the specified position. If no character exists
at location nPosi ti on, or if nPosi ti on islessthan O, then
NaN is returned.

String.charCodeAt()

/!l To get the first character in a string,
/'l use as follows:

var string = "a string";
string. charAt(0);

/1 To get the last character in a string, use:
string.charAt(string.length - 1);

String charCodeAt(index)

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

string.charCodeAt(index)
index - index of the character whose encoding is to be returned.

number - representing the unicode value of the character at
position index of astring. Returns NaN if there is no character at
the position.

This method gets the nth character code from a string.
String.charAt(), String.fromCharCode()

String concat()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

string.concat([stringl, ...])

stringN - A list of strings to append to the end of the current
object.

This method returns a string value (not a string object) consisting
of the current object and any subsequent arguments append to it.

This method creates a new string whose contents are equal to the
current object. Each argument is then converted to a string using
ToString() and appended to the newly created string. Thisvalue
isthen returned. Note that the original object remains unaltered.

The '+' operator performs the same function.

209

SEE!

EXAMPLE!

Array.concat()

/1 The followi ng |line
var proverb = "Arolling stone " + "gathers no noss."

/'l creates the variable proverb and

/1 assigns it the string

/1l "Arolling stone gathers no noss."

/1 1f you try to concatenate a string with a nunber,
/1 the nunber is converted to a string.

var newstring = 4 + "get it";

/1 This bit of code creates newstring as a string
/1 variable and assigns it the string
/1 "4get it".

/1 The use of the + operator is the standard way of
/'l creating long strings in JavaScri pt.

/1 In ScriptEase, the + operator is optional

/'l For exanple, the follow ng:

var badJoke = "I was in front of an Italian "
"restaurant waiting to get in when this guy "
"cane up and asked me, \"Wiy did the "
"Italians lose the war?\" | told himI| had "
"no idea. \"Because they ordered ziti"
"instead of shells,\" he replied."

/] creates a long string containing
/! the entire bad joke

String indexOf()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

string.indexOf (substring[, offset])
substring - substring to search for within string.

offset - optional integer argument which specifies the position
within string at which the search isto start.

number - index of the first appearance of a substring in a string.
If position is undefined or not supplied, O is returned.

String.indexOf () searches the string for the string specified in
subst ri ng. The search begins at of f set if of f set is

210

SEE!

EXAMPLE!

specified, otherwise the search begins at the beginning of the
string. If subst ri ng isfound, String.indexOf() returns the
position of its first occurance. Character positions within string
are numbered in increments of one beginning with zero.

String.charAt(), String.lastindexOf(), String.substring()

var string = "what a string";
string.indexOr("a")

/1 returns the position, which is 2 in this exanple,
/1 of the first "a" appearing in the string.

/1 The nethod i ndexX () may take an optional second

/| paraneter which is an integer indicating the index
/1 into a string where the nmethod starts searching

/1 the string. For exanple:

var nmagi cWwrd = "abracadabra”;
var secondA = nagi cWord. i ndexOF ("a", 1);

// returns 3, index of the first "a" to be found in
/1 the string when starting fromthe second |l etter of
/'l the string.

// Since the index of the first character is 0, the
/! index of second character is 1.

String lastindexOf()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

string.lastlndexOf (substring|[, offset])
substring - The substring that is to be searched for within string

offset - An optional integer argument which specifies the
position within string at which the search isto start.

number - position of the last occurence of the substri ng
specified
This method issimilar to St ri ng. i ndexOf (), except that it

finds the last occurrence of a character in a string instead of the
first.

String.indexOf ()

String localeCompare()

211

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

string.localeCompare()

String slice()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

string.dice(start], end])
start - index to start from.
end - index at which to end.

string - a substring (not a String object) consisting of the
characters.

This method is very similar to String.substring(), in that it returns
a substring from one index to another. The only differenceis
that if either st art or end isnegative, then it istreated as

| engt h+start or | engt h+end. If either exceeds the bounds
of the string, then either O or the length of the string is used
instead.

String.substring()

String split()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

string.split([substring])

substring - character, string or regular expression where the
string is split. If subst ri ng isnot specified, an array will be
returned with the name of the st ri ng specified. Essentially this
will mean that the string is split character by character.

object - if no delimiters are specified, returns an array with one
element which is the original string.

This method splits a string into an array of strings based on the

212

SEE!

EXAMPLE!

delimitersin the parameter substring. The parameter substring is
optional and if supplied, determines where the string is split.

Array.join()

/'l For exanple, to create an array of al
/'l use code sinmlar to the following fra
var sentence = "|I amnot a crook";

var wordArray = sentence.split(' ');

String substring()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

string.substring(Start, End)

Start - integer specifing the position within the string to begin the
desired substring.

End - integer specifing the position within the string to end the
desired substring. Thisinteger must be one greater than the
desired end position to alow for the terminating nul | byte.

string - substring of the result of converting this object to a
string, starting from character position start and running to the
end of the string. The result is a string value, not a string object.

This method retrieves a section of a string. The Start parameter is
the index or position of the first character to include. The End
parameter marks the end of the string. The End position is the
index or position after the last character to be included. The
length of the substring retrieved is defined by End minus Start.
Another way to think about the Start and End positions is that
End equals Start plus the length of the substring desired.

String.charAt(), String.indexOf(), String.lastlndexOf(),
String.slice()

/'l For exanple, to get the first nine characters
/1 in string, use a Start position

// of 0 and add 9 to it, that is,

/1 "0 + 9", to get the End position
/1 which is 9. The follow ng fragnment illustrates.

var str = "1234567890 - 10 digits begin this string";
var substr = str.substring(0,9);

/| The variabl e substr will equal "123456789".

213

/! The characters fromO to 8, a total of 9,
// are included, but the tenth character,
/] "0", at position 9 is not included.

String toLocaleLowerCase()

SYNTAX: string.toL ocal el owerCase()
RETURN: string - acopy of astring with each character converted to lower
case.

DESCRIPTION: This method behaves exactly the same as
String.prototype.toLowerCase(). It is designed to convert the
string to lower case in alocale sensitive manner, though this
functionality is currently unavailable. Once it isimplemented,
this function may behave differently is some locales (such as
Turkish), though for the majority it will be identical to
toL owerCase()

SEE: String.toL owerCase()

String toLocaleUpperCase()

SYNTAX: string.toL ocaleUpperCase()
RETURN: string - a copy of a string with each character converted to lower
case.

DESCRIPTION: This method behaves exactly the same as
String.prototype.toUpperCase(). It is designed to convert the
string to lower case in alocale sensitive manner, though this
functionality is currently unavailable. Once it isimplemented,
this function may behave differently is some locales (such as
Turkish), though for the mgjority it will be identical to

toUpperCase()
SEE: String.toUpperCas«()

String toLowerCase()

SYNTAX: string.toL owerCase()

214

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

string - copy of astring with all of the letters changed to lower
case.

This method changes the case of a string.

String.toUpperCase

var string = new String("Hello, Wrld!'");
string.toLower Case()

/1 This will return the string "hello, world!".

String toUpperCase())

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

string.toL owerCase()

string - a copy of astring with al of the letters changed to upper
case.

This method changes the case of a string.

String.toL owerCase()

var string = new String("Hello, Wrld!'");
string.toUpper Case()

/1 This will return the string
/1 "HELLO WORLD ".

String valueOf()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

string.valueOf()
string - the value of a string.

The value returned is equivalent to String.toString and is not
generally called in code but rather internally by JavaScript.

String.toString(), Object.valueOf()

foo = new String("This is a string");
Screen. witel n(foo.val ued ())

/1 The result, "This is a string",
/1 will be printed.

215

String object static methods
String.fromCharCode()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

string.fromCharCode(CharCodd], ...])
CharCode - character code, or list of codes, to be converted.

string - string created from the character codes that are passed to
it as parameters.

The identifier String is used with this static method, instead of a
variable name as with instance methods. The arguments passed
to this method are assumed to be unicode characters.

String()

/1 The foll ow ng code:
var string = String.frontChar Code(0x0041, 0x0042)
/!l will set the variable string to be "AB".

216

RegExp Object

The RegExp object allows the use of regular expression parsing in searches. The
syntax follows the ECMA Script standard.

RegEXp object instance methods

RegExp()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

EXAMPLE!

new RegExp()
new RegExp(pattern)
new RegExp(pattern, flags)

pattern - a string containing the regular expression search
pattern.

flags - A string containing the options for this regular expression
object .

object - anew regular expression object, or null on error.

Creates a new regular expression object using the search pattern
and options if they are specified. The flag string must contain
any of the following characters, or it must be the empty string:

i - setsthe ignoreCase property to true
g - setsthe globa property to true

/1 no options

var regobj = new RegExp("r*t", "");
/'l ignore case
var regobj = new RegExp("r*t", "i");

/'l gl obal search

var regobj = new RegExp("r*t", "g");
/'l set both to be true

var regobj = new RegExp("r*t", "ig");

RegExp exec()

SYNTAX:

WHERE:!

regexp.exec(string)

string - the string on which to perform aregular expression
match.

217

RETURN:

DESCRIPTION:

EXAMPLE!

object - an array object containing the results of the match, or
null if there was no match.

This method performs aregular expression search on the
specified string using the regular expression pattern for this
object.

new RegExp("r*t", "");
regobj . exec("rat");

var regobj
var result

RegExp test()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

regexp.test(string)

string - the string on which to perform aregular expression
match.

boolean - true if there is a match, false otherwise.

Thisfunction is equivalent to r egexp. exec(string)!=nul |

RegExp compile()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

EXAMPLE!

regexp.compile(pattern[, flags])
pattern - A string containing the regular expression search
pattern.

flags - A string containing the options for this regular expression
object.

void.

This function sets the regular expression for this object to the
specified pattern.

If the flag string is supplied, it must contain any of the following
characters, or it must be the empty string:

i - setsthe ignoreCase property to true
g - setsthe globa property to true

var regobj = new RegExp();
regobj.conmpile("r*t");

218

Object Object

platform Al GS, Al version of SE

Object object instance methods
Object hasOwnProperty()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

object.hasOwnProperty(propertyName)
property - name of the property about which to query.

boolean - indicating whether or not the current object has a
property of the specified name.

This method simply determinesif the object has a property with
the name propertyName. Thisis amost the same astesting

def i ned(obj ect [propertyNane]), except that undefined
values are different from non-existent values, and the interna
_hasProperty() method of the object may be called.

Object isPrototypeOf()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

object.isPrototypeOf (variable)
variable - the object to test.

boolean - true if variable is an object and the current object is
present in the prototype chain of the object, otherwise it returns
false.

If variable is not an object, then this method immediately returns
false. Otherwise, the method recursively searches the internal
_prototype property of the object and if at any point the current
object is equal to one of these prototype properties, then the
method returns true.

Object propertylsEnumerable()

219

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

object.propertyl SEnumerabl e(propertyName)
property - name of the property about which to query.

boolean - true if the current object has an enumerable property of
the specified name, otherwise false.

If the current object has no property of the specified name, then
faseisimmediately returned. If the property hasthe Dont Enum
attribute set, then falseisreturned. Otherwise, trueis returned.

Object toLocaleString()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

object.toLocaleString()
string - a string representation of this object.

This method is intended to provide a default .toL ocaleString
method for all objects. It behaves exactly if .toString() had been
called on the original object.

Object.toString()

Object toString()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

object.toString()
string - a string representation of this object.

When this method is called, the internal class property (_class) is
retrieved from the current object. A string isthen constructed
whose contents are "[object classname]”, where cl assnane is
the value of the property from the current object. Note that this
function israrely called directly, rather it is caled implicitly
through such functions as ToString().

Object.toL ocaleString

220

Math Object

The Math object in ScriptEase has a full and powerful set of methods and
properties for mathematical operations. A programmer has arich set of
mathematical tools for the task of doing mathematical calculationsin a
script.

The methods in this section are preceded with the Object name Math,
since individual instances of the Math Object are not created. For
example, Math.abs() is the syntax to use to get the absolute value of a
number.

Math object static properties
Math.E

SYNTAX: Math.E

DESCRIPTION: The number value for e, the base of natura logarithms. This
valueisrepresented internally as approximately

2.7182818284590452354.
EXAMPLE: var n = Math. E
Math.LN10
SYNTAX: Math.LN10

DESCRIPTION: The number value for the natural logarithm of 10. Thisvalueis
represented internally as approximately 2.302585092994046.

EXAMPLE: var n = NMath. LN1O;
Math.LN2
SYNTAX: Math.LN2

DESCRIPTION: The number value for the natural logarithm of 2. Thisvalueis
represented internally as approximately 0.6931471805599453.

EXAMPLE: var n = Math. LN2;

221

Math.LOGZ2E

SYNTAX: Math.L OG2E

DESCRIPTION: The number value for the base 2 logarithm of e, the base of the
natural logarithms. This value is represented internally as
approximately 1.4426950408889634. The value of Math.LOG2E
is approximately the reciprocal of the value of Math.LN2.

EXAMPLE: var n = NMath. LORE;

Math.LOG10E

SYNTAX: Math.L OG10E

DESCRIPTION: The number value for the base 10 logarithm of e, the base of the
natural logarithms. This value is represented internally as
approximately 0.4342944819032518. The value of
Math.LOG10E is approximately the reciprocal of the value of

Math.LN10
EXAMPLE: var n = Math. LOGLOE
Math.PI
SYNTAX: Math.Pl

DESCRIPTION: The number value for pi, the ratio of the circumference of a
circleto itsdiameter. Thisvalue is represented internally as
approximately 3.14159265358979323846.

EXAMPLE: var n = Math. Pl ;

Math.SQRTL 2

SYNTAX: Math.SQRTL 2

DESCRIPTION: The number value for the square root of 2, which is represented
internally as approximately 0.7071067811865476. The value of
Math.SQRT1_2 is approximately the reciprocal of the value of
Math.SQRT2.

222

EXAMPLE: var n = Math. SQRT1_2;

Math.SQRT?2

SYNTAX: Math.SQRT2

DESCRIPTION: The number value for the square root of 2, which is represented
internally as approximately 1.4142135623730951.

EXAMPLE: var n = Math. SQRT2;

Math object static methods

Math.abs()

SYNTAX: Math.abs(X)

WHERE:! X - anumber.

RETURN: number - the absolute value of x. Returns NaN if x cannot be

converted to a number.
DESCRIPTION: Computes the absolute value of a number.

EXAMPLE: // The function returns the absol ute val ue
/1 of the nunmber -2 (i.e.
//the return value is 2):
var n = Math. abs(-2);

Math.acos()

SYNTAX: Math.acos(X)
WHERE: X - anumber between 1 and -1.
RETURN: number - the arc cosine of x.

DESCRIPTION: The return value is expressed in radians and ranges from O to pi .
Returns NaN if x cannot be converted to a number, is greater than
1, orislessthan -1.

EXAMPLE: functi on conpute_acos(x)
{
return Math. acos(x)
}

223

/1 1f you pass -1 to the function conpute_acos(),
/'l the return is the

/'l value of pi (approximtely 3.1415...),

/1 if you pass 3 the

/] return is NaN since 3 is out

/1 of the range of Math. acos.

Math.asin()

SYNTAX: Math.asin(X)

WHERE:! X - anumber between 1.0 and -1.0

RETURN: number - implementati on-dependent approximation of the arc
sine of the argument.

DESCRIPTION: Thereturn value is expressed in radians and ranges from - pi / 2
to +pi / 2. Returns NaN if x cannot be converted to a number, is
greater than 1, or lessthan -1.

EXAMPLE: function compute_asi n(x)

{

return Math. asi n(x)

/11f you pass -1 to the function conpute_acos(),
//the return is the

/lvalue of -pi/2 , if you pass 3 the returnis
//NaN since 3 is out of Math.acos's range.

Math.atan()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

EXAMPLE!

Math.atan(X)
X - any number.

number - an implementati on-dependent approximation of the
arctangent of the argument.

The return value is expressed in radians and ranges from - pi / 2
to +pi / 2.

/1 The arctangent of x is returned
/lin the follow ng function:
function conput e_arctangent (x)

{

return Math. arct angent (x)

224

Math.atan2()

SYNTAX: Math.atan2(X, Y)

WHERE:! X - x coordinate of the point.
Y -y coordinate of the point.

RETURN: number - an implementati on-dependent approximation to the arc
tangent of the quotient, y/ x, of the argumentsy and x, where the
signs of the arguments are used to determine the quadrant of the
result.

DESCRIPTION: It isintentional and traditional for the two-argument arc tangent
function that the argument named y be first and the argument
named x be second. The return value is expressed in radians and
ranges from - pi to +pi .

EXAMPLE: /[The arctangent of the quotient y/x
/lis returned in the
//follow ng function:
function conpute_arctangent_of _quotient(x, y)

{
return Math. arctangent 2(x, y)
}

Math.ceil()

SYNTAX: Math.ceil (X)

WHERE:! X - any number or numeric expression.

RETURN: number - the smallest number that is not less than the argument
and is equal to a mathematical integer.

DESCRIPTION: If the argument is already an integer, the result is the argument
itself. Returns NaN if x cannot be converted to a number.

EXAMPLE: //The snall est nunber that is

/Inot |less than the argunment and is

/lequal to a mathematical integer is returned
/lin the follow ng function

function conpute_small _arg_eq_to_int(x)

{

225

return Math. ceil (x)

}

Math.cos()

SYNTAX: Math.cos(X)

WHERE:! X - an angle, measured in radians.

RETURN: number - an implementati on-dependent approximation of the
cosine of the argument

DESCRIPTION: The argument is expressed in radians. Returns NaN if x cannot be
converted to a number. In order to convert degreesto radians you
must multiply by 2pi/360.

EXAMPLE: // The cosine of x is returned

/lin the follow ng function:
function conpute_cos(x)

{
}

return Math. cos(x)

Math.exp(X)

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

EXAMPLE!

Math.exp(X)

X - either anumber or a numeric expression to be used as an
exponent

number - an implementati on-dependent approximation of the
exponential function of the argument.

For example returns e raised to the power of the x, where eisthe
base of the natural logarithms. Returns NaN if x cannot be
converted to a number.

// The exponent of x is returned

/lin the follow ng function:
function conput e_exp(x)

{
}

return Math. exp(x)

Math.floor()

226

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

EXAMPLE!

Math.floor(X)
X - anumber.

number - the greatest number value that is not greater than the
argument and is equal to a mathematical integer.

If the argument is already an integer, the return valueis the
argument itself.

//The floor of x is returned
/lin the follow ng function:
function conpute_floor(x)

{
return Math. fl oor (x)

}

/11f 6.78 is passed to conpute_fl oor,
/17 will be returned. If 89.1

/lis passed, 90 will be returned.

Math.log()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

EXAMPLE!

Math.log(X)
X - anumber.greater than zero.

number - an implementati on-dependent approximation of the
natural logarithm of x.

If anegative number is passed to Math.log, the return is NaN

/1 The natural log of x is returned
/lin the follow ng function:
function conpute_Il og(x)

{
return Math. | og(x)

}

/11f the argunent is less than 0 or NaN,
//the result is NaN

/11f the argunment is +0 or -0,

//the result is -infinity

/11f the argunent is 1, the result is +0
//1f the argunent is +infinity,

//the result is +infinity

Math.max()

227

SYNTAX: Math.max(X, Y)
WHERE: X - anumber.
Y - anumber.
RETURN: number - the larger of x and y.
DESCRIPTION: Returns NaN if either argument cannot be converted to a number.
EXAMPLE: //The larger of x and y is returned
/lin the follow ng function:
function conpute_nmax(x, y)
{
return Math. max(x, y)
}
/1Nf x =aandy = 4 the return is NaN
/11f x >y the returnis x
//1f y >x the returnisy
Math.min()
SYNTAX: Math.min(X, Y)
WHERE: X - anumber.
Y - anumber.
RETURN: number - the smaller of x and y. Returns NaN if either argument
cannot be converted to a number.
DESCRIPTION: Returns NaN if either argument cannot be converted to a number.
EXAMPLE: //The snaller of x and y is returned
/lin the follow ng function:
function conpute_m n(x, y)
{
return Math. mn(x, vy)
}
/1Nf x =aandy = 4 the return is NaN
/I11f x >y the returnisy
//1f y >x the returnis x
Math.pow()
SYNTAX: Math.pow(X, Y)

228

WHERE:!

RETURN!

DESCRIPTION:

EXAMPLE!

X - The number which will be raised to the power of Y
Y - The number which X will be raised to
number - the value of x to the power of y.

If the result of Mat h. powis an imaginary or complex number,
NaN will be returned. Please note that if Mat h. pow unexpectedly
returnsinfinity, it may be because the floating-point value has
experienced overflow.

/Ix to the power of y is returned
/1in the follow ng function:
function conpute_x_to_power_of _y(x, Yy)

{
return Math. pow(x, Yy)

}

/11f the result of Math.powis

//an imagi nary or conpl ex nunber,

//the return is NaN

/11f y is NaN, the result is NaN

/1Nf yis +0 or -0, the result is 1,
/leven if x is NaN

//1f x =2 and y = 3 the return value is 8

Math.random()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

Math.random()

number - a number which is positive and pseudo-random and
which is greater than or equal to 0 but less than 1.

Calling this method numerous times will result in an established
pattern (the sequence of numbers will be the same each time.
This method takes no arguments. Seeding is not yet possible.

Clib.rand()

// Return a random nunber:
functi on conmput e_rand_nunb()

{
}

return Math.rand()

Math.round()

229

SYNTAX: Math.round(X)
WHERE; X - anumber.

RETURN: number - value that is closest to the argument and isequal to a
mathematical integer. X isrounded up if itsfractiona partis
equal to or greater than 0.5 and is rounded down if less than 0.5.

DESCRIPTION: The value of Math.round(x) is the same as the value of
Math.floor(x+0.5), except when x is*0 or is less than O but
greater than or equal to -0.5; for these cases Math.round(x)
returns *0, but Math.floor(x+0.5) returns +0.

SEE: Math.floor()

EXAMPLE: //Return a mat henatical integer:
function conpute_int(x)
{

return Math. round(x)

}

/11f the argunent is NaN, the result is NaN
/11f the argunent is already an integer
//such as any of the

//following values: -0, +0, 4, 9, 8§;

//then the result is the

/largunent itself.

/11f the argunent is .2, then the result is 0.
/11f the argunent is 3.5, then the result is 4
/1 Note: Math.round(3.5) returns 4,

//but Math.round(-3.5) returns -3.

Math.sin()
SYNTAX: Math.sin(X)
WHERE:! X -ananglein radians.
RETURN: number - the sine of x, expressed in radians.
DESCRIPTION: Returns NaN if x cannot be converted to a number. In order to
convert degrees to radians you must multiply by 2pi/360.
EXAMPLE: // Return the sine of x:
function conpute_sin(x)
{

return Math. sin(x)

}
/11f the argunent is NaN, the result is NaN

230

//1f the argunent is +0, the result is +0
/11f the argument is -0, the result is -0
//1f the argunent is +infinity or -infinity,
//the result is NaN

Math.sqrt()

SYNTAX: Math.sgrt(X)
WHERE:! X - anumber or numeric expression greater than or equal to zero.
RETURN: number - the square root of x.
DESCRIPTION: Returns NaN if x is a negative number or cannot be converted to
anumber.
SEE: Math.exp()
EXAMPLE: //Return the square root of x:
functi on conpute_square_root (x)
{
return Math.sqrt(x)
}
/11f the argunent is NaN, the result is NaN
/11f the argunent is |ess than 0,
//the result is NaN
//1f the argunent is +0, the result is +0
/11f the argunent is -0, the result is -0
//1f the argunent is +infinity,
//the result is +infinity
Math.tan()
SYNTAX: Math.tan(X)
WHERE:! X - an angle measured in radians.
RETURN: number - the tangent of x, expressed in radians.
DESCRIPTION: Returns NaN if x cannot be converted to a number. In order to
convert degrees to radians you must multiply by 2pi/360.
EXAMPLE: //Return the tangent of x:

function conpute_tan(x)

{
return Math. tan(x)

}
/11f the argunent is NaN, the result is NaN

231

//1f the argunent is +0, the result is +0
/11f the argunent is -0, the result is -0
//1f the argunent is +infinity or -infinity,
//the result is NaN

232

Global object

The properties and methods of the gl obal object may be thought of as global
variables and functions. The object identifier gl obal is not required when
invoking agl obal method or function. Indeed, the object name generaly is not
used. For example, the following two i f statements are identical, but the first
oneillustrates how gl obal functions are usually invoked.

i f (defined(nane))
Screen.witeln("nane is defined");

i f (gl obal.defined(nane))
Screen.witeln("nane is defined");
The following two lines of code are also equivalent.

ToString(123)
gl obal . ToStri ng(123)

var aString
var aString

Remember, global variables are members of the global object. To access global
properties, you do not need to use an object name. The exception to thisrule
occurs when you are in afunction that has alocal variable with the same name as
agloba variable. In such a case, you must use the global keyword to reference
the global variable.

Most of the gl obal methods, functions, described in this section are defined in
the ECMA Script standards. A few are unique additions to ScriptEase. In other
words, they are not part of the ECMA Script standard, but they are useful. Avoid
using the unique functions in a script if it will be used with a JavaScript
interpreter that does not support these few unigue functions.

Conversion or casting

Though ScriptEase does well in automatic data conversion, there are times when
the types of variables or data must be specified and controlled. Each of the
following casting functions, the functions below that begin with "To", has one
parameter, which is a variable or piece of data, to be converted to or cast as the
data type specified in the name of the function. For example, the following
fragment creates two variables.

var aString = ToString(123);

233

var aNunber = ToNunber ("123");

Thefirst variable aString is created as a string from the number 123 converted to
or cast as a string. The second variable aNumber is created as a number from the
string "123" converted to or cast as a number. Since aString had already been
created with the value "123", the second line could also have been:

var aNunber = ToNunber (aString);

The type of the variable or piece of data passed as a parameter affects the returns
of some of these functions.

global object properties
global. argc

SYNTAX: arge

DESCRIPTION: This property refers to the number of parameters passed to the
mai n() function of a script. The name of the script is dways the
first parameter, so if _argc == 1, then the script received no
arguments. See the mai n() function for more information on
ar gc and the mai n() function. General programming practice
uses ar gc, a parameter to the mai n() function rather than

_argc.
SEE: function main(), _argv
EXAMPLE: function main(argc, argv)

/1 At this point, unless deliberately changed
/'l by special programmng, _argc == argc

}

global._argv

SYNTAX: argv

DESCRIPTION: This property is an array of strings. Each string is a parameter
passed to the mai n() function. The value of ar gv[0] isaways
the name of the script being called. The first parameter passed to
thescriptisinar gv[1] . Seethe mai n() function for more
information on ar gc, ar gv, and the mai n() function. Genera

234

SEE!

programming practice uses ar gv, a parameter to the
mai n() function rather than _ar gv.

function main(), _argc

global object methods/functions
global.defined()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

defined(value)
value - avalue or variable to check to seeif it is defined.
boolean - true if the value has been defined, else false

This function tests whether a variable, object property, or value
has been defined. The function returnst r ue if a value has been
defined, or elsereturnsf al se. The function def i ned() may be
used during script execution and during preprocessing. When
used in preprocessing with the directive #i f , the function

defi ned() issimilar to the directive #i f def , but is more
powerful. The following fragment illustrates three uses of
defined().

global .undefine()

var t = 1;
#if defined(_WN32_)
Screen.witeln("in Wn32");
if (defined(t))
Screen.writeln("t is defined");
if (!defined(t.t))
Screen.witeln("t.t is not defined");
#endi f

/'l The first use of defined() checks whether a val ue
/'l is available to the preprocessor

/! to determ ne which platformis running the script.
/1 The second use checks a variable "t".

/1 The third use checks an object "t.t"

global.escape()

235

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

escape(string)

string - with specia characters that need to be handled specialy,
that is, escaped.

string - with specia characters escaped or fixed so that the string
may be used in specia ways, such asbeing aURL.

The escape() method receives a string and escapes the
special characters so that the string may be used with a
URL. This escaping conversion may be called encoding.
All uppercase and lowercase letters, numbers, and the
gpecia symbols, @ * + - ./, remain in the string. All other
characters are replaced by their respective unicode
sequence, a hexadecimal escape sequence. Thismethod is
the reverse of escape() .

global .unescape()

escape("Hello there!");
/! Returns "Hell o%20t here%21"

global.eval()

SYNTAX:

WHERE:!:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

eval (expression)

expression - avalid expression to be parsed and treated as if it
were code or script.

value - the result of the evaluation of expression as code.

Evaluates whatever is represented by the parameter expression.
If expression is not astring, it will be returned. For example,
calling eval(5) returns the value 5.

If expression is a string, the interpreter tries to interpret the string
asif it were JavaScript code. If successful, the method returns
the last variable with which was working, for example, the return
variable. If the method is not successful, it returns the specia
value, undefined.

SElib.interpret()

var a = "who";
/] Displays the string as is

236

Screen.witeln('a == "who"");
/] Evaluates the contents of the string as code,
/1 and displays "true",
/!l the result of the eval uation
Screen.witeln(eval ('a == "who"'));

global.isFinite()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

isFinite(number)
number - to check if it isafinite number.

boolean - if the parameter is or can be converted to a number,
elsefdse

This method returns true if the parameter, number, is or can be
converted to a number. If the parameter evaluates as NaN,
Number.POSITIVE_INFINITY, or
Number.NEGATIVE_INFINITY, the method returns false.

global.isNaN()
if (isFinite(99)) Screen.witel n("A nunber");

global.isNaN()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

isNaN(number)
number - avauetoif it is not a number.
boolean - true if number is not a number, elsefalse.

This method returnstrue if the parameter, number, evaluates to
NaN, "Not a Number". Otherwise it returns false.

global .isFinite()
if (isNan(99)) Screen.witeln("Not a nunber");

global.getArrayLength()

SYNTAX:

WHERE:!

getArrayL ength(array[, minindex])
array - an automatic array.

minindex - the minimum index to use.

237

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

number - the length of an array.

This function should be used with dynamically created arrays,
that is, with arrays that were not created using the new
Array() operator and constructor. When working with arrays
created using thenew Array() operator and constructor, use
thel engt h property of the Array abject. Thel engt h property
is not available for dynamically created arrays which must use
the functions, get ArrayLengt h() andset ArrayLengt h(),
when working with array lengths.

Theget ArrayLengt h() function returns the length of a
dynamic array, which is one more than the highest index of an
array, if the first element of the array is at index O, which is most
common. If the parameter minlndex is passed, then it is used to
set to the minimum index, which will be zero or less. You can
use this function to get the length of an array that was not created
withthe Array() constructor function.

This function and its counterpart, set Arr ayLengt h() , are
intended for use with dynamically created arrays, that is, arrays
not created with the Ar r ay() constructor function. Use the

| engt h property to get the length of arrays created with the
constructor function and not get Ar r ayLengt h() .

setArrayLength(), Array.length

var arr = {4,5,6,7};
Screen.witel n(getArraylLength(arr));

global.getAttributes()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

getAttributes(variable)
variable - avariable identifier, name.

number - representing the attributes set for avariable. If no
attributes are set, thereturn is0. Seeset At t ri but es() for a
list of predefined constants for the attributes that a variable may
have.

Gets and returns the variable attributes for the parameter
variable. Variable attributes may be set using the function

238

setAttributes(). Seeset At tri but es() for more information
and descriptions of the attributes of variables that can be set.

SEE: setAttributes()

global.parseFloat()

SYNTAX: parseF oat(string)
WHERE: string - to be converted to a decimal float.
RETURN: number - the float to which the string converts, else NaN.

DESCRIPTION: This method is similar to par sel nt () except that it reads
decimal numbers with fractional parts. In other words, the first
period, ".", in the parameter string is considered to be a decimal
point, and any following digits are the fractional part of the
number. The method par seFl oat () does not take a second

parameter.
SEE: global .parsel nt()
EXAMPLE: var i = parselnt("9.3");

global.parselnt()

SYNTAX: parselnt(string[, radix])
WHERE: string - to be converted to an integer.
radix - the number base to use, default is 10.
RETURN: number - the integer to which string converts, else NaN.

DESCRIPTION: This method converts an alphanumeric string to an integer
number. The first parameter, string, is the string to be converted,
and the second parameter, radix, is an optional number indicating
which base to use for the number. If the radix parameter is not
supplied, the method defaults to base 10 which is decimal. If the
first digit of string isa zero, radix defaults to base 8 which is
octal. If thefirst digit is zero followed by an "x", that is, "0x",
radix defaults to base 16 which is hexadecimal.

White space characters at the beginning of the string are ignored.

239

SEE!

EXAMPLE!

The first non-white space character must be either adigit or a
minus sign (-). All numeric characters following the string will
be read, up to the first non-numeric character, and the result will
be converted into a number, expressed in the base specified by
the radix variable. All characters including and following the
first non-numeric character are ignored. If the string is unable to
be converted to a number, the specia value NaN is returned.

global .parseF oat()

var i = parselnt("9");
var i = parselnt("9.3");
/! In both cases, i ==

global.setArrayLength()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

setArrayL ength(array[, minlndex[, length]])

array - an automatic array.

minlndex - the minimum index to use. Default is 0.
length - the length of the array to set.

void.

This function sets the first index and length of aarray. Any
elements outside the bounds set by Minindex and length are lost,
that is, become undefined. If only two arguments are passed to
setArrayLength(), the second argument is length and the
minimum index of the newly sized array is O. If three arguments
are passed to setArrayLength(), the second argument, which
must be 0 or less, isthe minimum index of the newly sized array,
and the third argument is the length.

getArrayLength(), Array.length

var arr = {4,5,6,7};
Screen.witel n(get ArrayLength(arr));
set ArraylLength(arr, 9);

global.setAttributes()

SYNTAX:

setAttributes(variable, attributes)

240

WHERE:!

RETURN:

DESCRIPTION:

variable - avariable identifier, name.

attributes - the attribute or attributes to be set for avariable, If
more than one attribute is being set, use the or operator, "| ", to
combine them.

void.

This function sets the variabl e attributes for the parameter
variable using the parameter attributes. Variablesin ScriptEase
may have various attributes set that affect the behavior of
variables. This function has no return.

The following list describes the attributes that may be set for
variables. Multiple attributes may be set for variables by
combining them with the or operator. For example, the flag
setting READ_ONLY | DONT_ENUMsets both of these attributes
for one variable.

DONT_DELETE

This variable may not be deleted. If the delete operator is
used with a variable, nothing is done.

DONT_ENUM

This variable is not enumerated when using afor/in loop.

| MPLI CI T_PARENTS

This attribute applies only to local functions and alows a
scope chain to be altered based on the __parent__ property
of the"this' variable. If thisflag is set, if the __parent__
property is present, and if avariable is not found in the local
variable context, activation object, of afunction, then the
parents of the "this' variable are searched backwards before
searching the global object. The example below illustrates
the effect of thisflag.

IMPLICIT_TH S

This attribute applies only to local functions. If thisflagis
set, then the "this' variable is inserted into a scope chain
before the activation object. For example, if variable TestVar
isnot found in alocal variable context, activation object, the
interpreter searches the current "this' variable of a function.
READ ONLY

Thisvariable is read-only. Any attempt to write to or change

241

this variable fails.

SEE: getAttributes()

EXAMPLE: /1 The followi ng fragment illustrates the use
/1 of setAttributes() and the behavior affected
/1 by the I MPLI Cl T_PARENTS fl ag.
function foo()

val ue = 5;
} .
set Attributes(foo, | MPLIC T_PARENTS)

var a;
a.val ue = 4;

var b;

b. __parent__ = a;
b.foo = foo;

b. foo();

// After this code is run, a.value is set to 5.

global.undefine

SYNTAX: undefine(value)
WHERE! value - value, variable, or property to be undefined.
RETURN: void.

DESCRIPTION: This function undefines a variable, Object property, or value. If a
value was previously defined so that its use with the function
defined() returnstrue, then after using undefine() with the value,
defined() returns false. Undefining a value is different than
setting avalue to null.

SEE: defined()

EXAMPLE: /1 In the following fragnent, the variable n
/1 is defined with the nunber value of 2 and
/1 then undefi ned.
var n = 2;
undefine(n);

/1 In the followi ng fragment an object o

/'l is created and a property o.one is defined.
/1 The property is then undefined but

/1 the object o remains defined.

242

var o = new (bj ect;
0.one = 1;
undefi ne(o.one);

global.ToBoolean()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

ToBoolean(value)
value - to be cast as a boolean.
boolean - conversion of value.

The following list indicates how different data types are
converted by this function.

Boolean

same as value

Buffer

same as for String

null

false

Number

fase, if vaueis0, +0, -0 or NaN, else true
Object

true

String

fase if empty string,
undefined

false

, else true

global.ToBuffer()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

ToBuffer(value)
value - to be cast as a buffer.
buffer - conversion of value.

This function converts value to a buffer in amanner similar to
ToString() except that the resulting array of charactersisa
sequence of ASCII bytes and not a unicode string.

ToBytes()

243

global.ToBytes()

SYNTAX: ToBytes(value)
WHERE: value - to be cast as a buffer.
RETURN: buffer - conversion of value.

DESCRIPTION: This function converts value to a buffer and differs from
ToBuffer() in that the conversion is actually araw transfer of
datato a buffer. The raw transfer does not convert unicode
values to corresponding ASCII values. For example, the unicode
string " Hi t " isstored in abuffer as"\OH\ 0\i \ Ot ", that is, as
the hexadecimal sequence: 00 48 00 69 00 74.

SEE: ToBuffer()

global.Tolnt32()

SYNTAX: Tolnt32(value)
WHERE! value - to be cast as asigned 32 bit integer.
RETURN: number - conversion of value.

DESCRIPTION: This function is the same as Tolnteger() except that if the return
isan integer, it isin the range of - 2** through 2** - 1.

SEE: Tolnteger(), ToNumber()

global. Tolnteger()

SYNTAX: Tolnteger(value)
WHERE! value - to be cast as an integer.
RETURN: number - conversion of value.

DESCRIPTION: This function converts value to an integer type. First, call
ToNumber(). If result is NaN, return +0. If result is +0, -0,
+Infinity or -Infinity, return result. Else return floor(abs(result))
with the appropriate sign. For example, the value -4.8 is

244

converted to -4.
SEE: Tolnt32(), ToNumber()

global. ToNumber()

SYNTAX: ToNumber(value)
WHERE! value - to be cast as a number.
RETURN: number - conversion of vaue.

DESCRIPTION: The following table lists how different data types are converted
by this function.

Boolean

+0, if valueisfdse esel
Buffer

same as for String

null

+0

Number

same as value

Object

first, call ToPrimitive(), then call ToNumber() and return
result

String

number, if successful, else NaN
undefined

NaN

SEE: Tolnteger(), Tolnt32()

global.ToObject()

SYNTAX: ToObject(value)
WHERE! value - to be cast as an object.
RETURN: object - conversion of value.

DESCRIPTION: The following table lists how different data types are converted

245

by this function.

Boolean

new Boolean object with value
null

generate runtime error

Number

new Number object with value
Object

same as parameter

String

new String object with value
undefined

generate runtime error

SEE: ToPrimitive()

global. ToPrimitive

SYNTAX: ToPrimitive(value)
WHERE:! value - to be cast as a primitive.
RETURN: value - conversion of value to one of the primitive data types.

DESCRIPTION: This function does conversions only for parameters of type
Object. An internal default value of the Object is returned.

SEE: ToObject()

global. ToString()

SYNTAX: ToString(value)
WHERE! value - to be cast ass a string.
RETURN: string - conversion of value.

DESCRIPTION: The following table lists how different data types are converted
by is this function.

Boolean

246

SEE!

"fase", if valueisfalse, ese "true"

null

“null"

Number

if valueis NaN, return "NaN". If +0 or -0, return "0". If
Infinity, return "Infinity”. If a number, return a string
representing the number. If a number is negative, return
concatenated with the string representation of the number.
Object

first, call ToPrimitive(), then call ToString() and return result
String

same as value

undefined

"undefined”

ToPrimitive(), ToNumber()

global.unescape()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

unescape(string)
string - holding escape characters.

string - with escape characters replaced by appropriate
characters.

This method is the reverse of the escape() method and
removes escape sequences from a string and replaces them with
the relevant characters. That is, an encoded string is decoded.

global .escape()

unescape(" Hel | 0920t her e%21") ;
/! Returns "Hello there!"

global.Uint16()

SYNTAX:

WHERE:!

RETURN:

ToUint16(vaue)
value - to be cast as a 16 hit unsigned integer.

number - conversion of vaue.

247

DESCRIPTION: This function is the same as Tolnteger() except that if the return
is an integer, it isin the range of 0 through 2'° - 1.

SEE: ToUint32(), Tolnteger()

global.Uint32()

SYNTAX: ToUint32(value)
WHERE! value - to be cast as a 32 hit unsigned integer.
RETURN: number - conversion of value.

DESCRIPTION: This function is the same as Tolnteger() except that if the return
isan integer, it isin the range of 232 - 1.

SEE: Tolnt32(), Tolnteger()

248

Function Object

The Function object is one of three ways to define and use objects in ScriptEase.
The three ways to work with objects are:

Use the function keyword and define a function in a normal way:
function myFunc(x) {return x + 4;}

Construct a new Function object:

var myFunc = new Function("x", "return x + 4;");

Define and assign afunction literal:

var myFunc = function(x) {return x + 4;}

All three of three of these ways of defining and using functions produce the same
result, x + 4. The differences are in definition and use of functions. Each way has
a strength that is very powerful in some circumstances, power that allows
elegance in programming. The methods and discussion in this segment on the
Function object deal with the second way shown above, the construction of a new
Function object.

Function object instance methods

Function()
SYNTAX: new Function(paramg], ...], body)
WHERE: params - one or alist of parameters for the function.

body - the body of the function as a string.

RETURN: object - a new function object with the specified parameters and
body that can later be executed just like any other function.

DESCRIPTION: The parameters passed to the function can be in one of two
formats. All parameters are strings representing parameter
names, although multiple parameter names can be grouped
together with commas. These two options can be combined as
well. For example, new Function("a", "b", "c",
"return") isthesameasnew Function("a, b", "c",
"return"). Thebody of the function is parsed just as any other

249

EXAMPLE!

function would be. If there is an error parsing either the
parameter list or the function body, a runtime error is generated.
If thisfunction is later called as a constructor, then a new object
is created whose internal _prototype property is equal to the
prototype property of the new function object. Note that this
function can also be called directly, without the new operator.

/1 The following will create a new Functi on obj ect
/1 and provi de sonme properties
/1 through the prototype property.

var nmyFunction = new Function("a", "b",
"this.value = a + b");

var printFunction = new Function
("Screen.witeln(this.value)");

nyFunction. prototype. print = printFunction;

var foo = new nyFunction(4, 5);
foo.print();

/1 This code will print out the value "9",
/1 which was the value stored in foo when it was
/] created with the nmyFunction constructor.

Function

apply()

SYNTAX:

WHERE:!

function.apply([thisObj[, arguments])

thisObj - object that will be used as the "this" variable while
calling this function. If thisis not supplied, then the global
object is used instead.

arguments - array of arguments to pass to the function as an
Array object or alist in the form of [argl, arg?], ...]]. The
brackets "[]" around alist of argumentsis required. Note that the
similar method Function.prototype.call() can receive the same
arguments as alist. Compare the following ways of passing
arguments:
/'l Uses an Array object
function. apply(this, argArray)
/'l Uses brackets
function.apply(this,[argl, arg2?])
/'l Uses argunent |ist
function.call (this,argl, arg2)

250

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

variable - the result of calling the function object with the
specified "this* variable and arguments.

This method is similar to calling the function directly, only the
user is able to pass avariable to use as the "this" variable, and
the arguments to the function are passed as an array. If

ar gurrent s is not supplied, then no arguments are passed to the
function. If thear gunent s parameter isnot avalid Array
object or list of argumentsinside of brackets "[]", then a runtime
error is generated.

Function(), Function.prototype.call()

var nmyFunction = new Function("a,b","return a + b");
var args = new Array(4,5);
nyFuncti on. appl y(gl obal , args);
/1 or
nyFunction. appl y(gl obal, [4,5]);

/1l This code sanple will return 9, which is
/1 the result of calling nmyFunction with
/1 the argunments 4 and 5, fromthe args array.

Function

call()

SYNTAX:

WHERE!

RETURN:

function.call([thisObj[, argumentq], ...]1])

thisObj - An object that will be used as the "this" variable while
calling this function. If thisis not supplied, then the global
object is used instead.

arguments - list of arguments to pass to the function. Note that
the similar method Function.prototype.apply() can receive the
same arguments as an array. Compare the following ways of
passing arguments:
/1 Uses an Array object
function. apply(this, argArray)
/1 Uses brackets
function. apply(this,[argl, arg2?])
/'l Uses argunent |ist
function.call (this,argl, arg2)

variable - the result of calling the function object with the
specified "this* variable and arguments.

251

DESCRIPTION:

SEE!

EXAMPLE!

This method is almost identical to calling the function directly,
only the user is able to supply the "this" variable that the function
will use. Otherwisg, it isthe same.

Function(), Function.apply()

/1 The foll ow ng code:

var nmyFunction = new Function("arg",

"return this.a + arg");
var obj = { a: 4 };
nyFunction(obj, 5);

/'l This code fragment returns the value 9,

/1 which is the result of fetching this.a//

/1l fromthe current object (which is obj) and

/! adding the first paraneter passed, which is 5.

Function toString()

SYNTAX:

RETURN:

DESCRIPTION:

EXAMPLE!

function.toString()
string - arepresentation of the function.

This method attempts to generate the same code that built the
function. Any spacing, semicolons, newlines, etc., are
implementation-dependent. This method tries to make the output
as human-readable as possible. Note that the function nameis
always "anonymous’, because the function itself is unnamed,
even though the function object has a name. Also, note that this
function is very rarely called directly, rather it is caled implicitly
through conversions such as ToString().

var nmyFunction = new Function("a", "b",
"this.value = a + b");
Screen.witel n(nyFunction);

/1 This fragment will print the follow ng
/1 to the screen:

functi on anonynous(a, b)

this .value = a + b

252

Dos Object

platform DOS, Wnl6

The methods in this section are specific to the DOS or WIN16 versions of
ScriptEase. Most of these routines allow a programmer to have more power than
is generally acknowledged as safe under the scripting guidelines of general
ScriptEase. Be cautious when you use these commands. They allow much
latitude in what may be done at a very low programming level with little or no
built-in protections.

The methods in this section are preceded with the Object name Dos, since
individual instances of the Dos Object are not created. In other words, the Dos
object has only static methods. For example, Dos. i nport (portid) isthe
syntax to use to read a byte from a hardware port. Remember to prepend "Dos."
to the method names as shown in this section.

Dos object static methods
Dos.address()

SYNTAX: Dos.address(segment, offset)
WHERE: segment - segment portion of memory address.
offset - offset portion of memory address.

RETURN: number - memory address, a segment:offset address suitable for
usein calls such as peek() and poke().

DESCRIPTION: Convert segment:offset pointer into memory address.

SEE: Dos.offset(), Dos.segment()

Dos.asm()

SYNTAX: Dos.asm(buf[, ax[, bx[, cx[, dx[, si[, di[, d, es]]11111])
WHERE: buf - a byte buffer.

ax, bx, cx, dx, g, di, ds, es - registers.

253

RETURN:

DESCRIPTION:

EXAMPLE!

number - long value for whatever isin DX:AX when buf returns.

Make afar cal to the routine that you have coded into buf. ax,
bx, cx, dx, g, di, ds, and es are optiona; if some or all are
supplied, then the ax, bx, cx, etc... will be set to these values
when the code at buf is called. The code in buf will be executed
with afar call to that address, and is responsible for returning via
retf or other means. The ScriptEase calling code will restore
ALL registers except ss, sp, ax, bx, cx, and dx. If esor ds are
supplied, then they must be valid values or O, if O then the
current value will be used.

/1 The foll ow ng exanpl e uses 80x86 assenbly code
/! to rotate nenory bits:

/] return value of byte b rotate count byte
function RotateByteR ght (b, count)

{
assert(0 <= b & b <= OxFF);
assert(0 <= count && count <= 8)
return asn(\ xD2\ xC8\ xCB', b, 0, count, 0);
/1 assenbly code for would | ook as foll ows:
// ror al, cl D2C8
Il retf CB
}

Dos.inport()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Dos.inport(portid)

portid - port from which to read.

number - byte of data from a hardware port.
Read byte from a hardware port: portid.
Dos.inportw()

Dos.inportw()

SYNTAX:

WHERE:!

Dos.inportw(portid)
portid - port from which to read.

254

RETURN: number - 16 bit word of data from a hardware port.

DESCRIPTION: Read aword (16 bit) from hardware port: portid. Valueread is
unsigned (not negative).

SEE: Dos.inport()

Dos.interrupt()

SYNTAX: Dos.interrupt(interrupt, regin[, regOut]
WHERE! interrupt - DOS interrupt number.
regin -
regOut -
RETURN: boolean - since many interrupts set the carry flag for error, this

function returns false if the carry flag is set, elsetrue.

DESCRIPTION: Executes an 8086 interrupt. Set registers, call 8086 interrupt
function, and then get the return values of the registers. The
parameters regln and regOut are structures containing the
elements corresponding to the registers on an 8086. On input,
those structure members that are defined will be set, and those
that are not defined will be set to zero, with the exception of the
segment registers (es & ds) which retain their current values if
not explicitly specified. The possible defined input values are ax,
ah, a, bx, bh, bl, cx, ch, cl, dx, dh, dI, bp, s, di, ds, and es. All
Fields of the output reg structure are the same, with the addition
of the FLAGS member, and al are set before returning. If regOut
is not supplied, then the return registers and FLAGS register will
be set for regln on return from the interrupt call.

The parameter regOut is set to the register values upon return
from Interrupt. If regOut is not supplied then regin is set to
contain the register values upon return from Interrupt.

EXAMPLE: /1 The followi ng exanple calls the DOS interrupt
/] service Ox2C to read the clock:

/1 display DOS time as accurately as it is read
Print DOSti me()

{
reg. ah = 0x2GC,

255

i nterrupt (0x21,reqQ);
printf("92d: ¥92d: %92d", reg. ch, reg. cl, reg. dh);

Dos.offset()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Dos.offset(buf)
Dos.offset(address)

buf - a byte buffer.

address - address in memory.

number - offset of buffer such that 8086 would recognize the
address segment::buffer as pointing to the first byte of buf.

Dos. segnent () and Dos. of f set () return the segment and
offset of the data at index O of buf, which must be a byte array.
The buffer must be big enough for whatever purposeit is used,
and no changes may be made to the size of buf after these values
are determined since changing the size of buf might change its
absolute address. If the address versions are used, then addressis
assumed to be afar pointer to data, and segment will be the high
word while address will be the low word. See Dos. addr ess()
for converting segment and offset into a single address.

Dos.offset(), Dos.address()

Dos.outport()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

Dos.outport(portid, value)

portid - port to which to send value.

value - abyte of datato send to the port identified by portid.
void.

Write a byte value to hardware port: portid.

Dos.outportw()

256

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Dos.outportw(portid, value)
portid - port to which to send value.

value - a 16 bit word of data to send to the port identified by
portid.

void.
Write a 16 bit word value to hardware port: portid.

Dos.segment()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Dos.segment(buf)
Dos.segment(address)

buf - a byte buffer.

address - address in memory.

number - segment of buffer such that 8086 would recognize the
address segment::buffer as pointing to the first byte of buf.

Dos. segnent () and Dos. of f set () return the segment and
offset of the data at index O of buf, which must be a byte array.
The buffer must be big enough for whatever purposeit is used,
and no changes may be made to the size of buf after these values
are determined since changing the size of buf might change its
absolute address. If the address versions are used, then addressis
assumed to be afar pointer to data, and segment will be the high
word while address will be the low word. See Dos. addr ess()
for converting segment and offset into a single address.

Dos.offset(), Dos.address()

257

Clib Object

platform Al operating systens; all versions of SE

The Clib object contains functions that are a part of the standard C library.
Methods to access files, strings, and characters are all part of the Clib object.

Some of the functions in the Clib Object overlap the methods in JavaScript. In
most cases, the newer JavaScript methods should be preferred over the older C
functions. However, there are times, such as when working with many cfunctions
or with string routines that expect null terminated strings, that the Clib methods
make more sense and are more consistent in a section of a script.

Clib functions with equivalent methods in JavaScript are noted as such. Since
ScriptEase, JavaScript and the ECMA Script standard are developing and
growing, generally, a programmer should favor the JavaScript methods over
equivalent methods in the Clib object.

The methods in this section are preceded with the Object name Clib, since
individual instances of the Clib Object are not created. For example, Clib.exit() is
the syntax to use to exit a script.

Console I/O functions
Console I/0 functions are not available for ScriptEase WebServer Edition

Clib.printf()
SYNTAX: Clib.printf(formatString[, variables ...])
WHERE: formatString - string that specifies the final format.
variables - values to be converted to and formatted as a string.
RETURN: number - characters written, or a negative number if thereis an
error.

DESCRIPTION: This method writes output to the standard output device
according to the format string and returns a number equal to the
number of characters written, or a negative number if thereisan
error. The format string can contain character combinations
indicating how following parameters are to be treated. Characters

259

are printed as read to standard output until a percent character,
%, is reached. % indicates that avalue isto be printed from the
parameters following the format string. Each subsequent
parameter specification takes from the next parameter in the list
following format. A parameter specification has the following
form in which square brackets indicate optional fields and angled
brackets indicate required fields:

9 flags][width][.precision]<type>
flags may be:

Left justification in the field with blank padding; else right
justifies with zero or blank padding
+
Force numbers to begin with a plus (+) or minus (-)
bl ank
Negative values begin with aminus (-); positive values
begin with a blank
#
Convert using the following alternate form, depending on
output data type:
- ¢, s, d, i, u
No effect
0
0 (zero) is prepended to non- zero output
x, X
0x, or OX, are prepended to output
f, e, E
Output includes decimal even if no digits follow decimal
g G
Same as e or E but trailing zeros are not removed

width may be:

n
(nisanumber e.g., 14) At least n characters are output,
padded with blanks

On

260

At least n characters are output, padded on the left with zeros
The next value in the argument list is an integer specifying
the output width

. precision

If precision is specified, then it must begin with a period (.),
and may be as follows:

0

For floating point type, no decimal point is output
n

n characters or n decimal places (floating point) are
output

The next value in the argument list is an integer
specifying the precision width

type may be:

:i'gnled integer

tjmsi gned integer

gctal integer x

)r(lexadeci mal integer withO-9and a, b, ¢, d, e, f
ﬁexadecimal integer withO- 9and A, B, C, D, E, F

;Ioati ng point of the form [-]dddd.dddd

feloati ng point of the form [-]d.ddde+dd or [-]d.ddde- dd
Eloati ng point of the form [-]d.dddE+dd or [-]d.dddE- dd
?Ioati ng point of f or e type, depending on precision

1EI3 oating point of For E type, depending on precision

261

SEE!

EXAMPLE!

c
character (e.g. 'd, 'b, '8)
s

string

To include the %character as a character in the format string, you
must use two %characters together, %84 to prevent the computer
from trying to interpret it as on of the above forms.

Clib.sprintf()

// Each of the follow ng |ines shows
/1 a printf exanple foll owed by what woul d show
/1 on the output in boldface:

Cib.printf("Hello world!'™")

/!l Hello world!

Cib.printf("l count: %l % %l.", 1, 2, 3)
// 1 count: 1 2 3

var a = 1;

var b = 2;
Cib.printf("% % %", a, b, a +b)
/1 123

Clib.getch()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Clib.getch()
number - character value of the key pressed.

This method works exactly like getche(), but does not echo the

returned key to the screen. For example, the following code has
you enter a password; each time you enter a letter an asterisk is
written to the screen:

Clib.getchar()

var password;
for (var gg = 0; ;gg++)

var letter = dib.getch();

if (letter == "\n') conti nue;
Aib.putc('*").
password[gg] = letter;

262

Clib.getchar()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

Clib.getchar()
number - character value of the key pressed.

This method returns the next character from stdin. Usually, this
is the keyboard, but you may redefine it to something else. This
method will wait for "enter" to be pressed after the key, and will
then return two values: the key pressed, and then the value of the
enter key.

Clib.getche()

Clib.getche()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

Clib.getche()
number - character value of the key pressed.

This method waits until akey is pressed and returns the character
value of that key. The character will be printed (echoed) to the
screen. Some key presses, such as extended keys and function
keys, may generate multiple getche() return values. If akey was
pressed before calling the function but never cleared from the
keyboard buffer, that value will be returned instead of the next
pressed key. Thisis not acommon occurrence but can happen.
To see whether there are any key values pending in the keyboard
buffer, use .kbhit().

Clib.getch()

Clib.gets()

SYNTAX:

RETURN:

DESCRIPTION:

Clib.gets()

string - an entire string from the keyboard, or nul | if there was
an error.

This method reads an entire string from the keyboard and returns
it (or null if there was an error). The function will read all
characters up to a newline character or EOF. If anewline

263

character isread, it will not be included in the string.

SEE: Clib.getchar()

EXAMPLE: var s = dib.gets()

Clib.kbhit()

SYNTAX: Clib.kbhit()

RETURN: boolean - t r ue if there are any keystrokes waiting, f al se if not.

DESCRIPTION: This method checks to see whether there are any keystrokes
waiting to be processed, returning true if there are and false if
there are not.

SEE: Clib.getche()

Clib.putchar()

SYNTAX: Clib.putchar(chr)
WHERE: chr - character to write to the stream st dout .
RETURN: number - character written on success, else ECF.

DESCRIPTION: This method writes chr to the stream defined by st dout (usually
the screen). If successful, it will return the character it just wrote;
if not, it will return ECF.

This method isidentical toCl i b. f put c(chr, stdout).
SEE! Clib.puts()

Clib.puts()

SYNTAX: Clib.puts(str)

WHERE! str - string to write to the stream st dout .

RETURN: number - a positive number on success, el se ECF.

DESCRIPTION: Writes a string to st dout , followed by a newline character. Will
not write the final null character of null terminated strings.

264

SEE!

Returns ECF if there is an error writing the string; otherwise it
returns a positive number.

Thismethod isthesameasd i b. f put s(str, stdout)
except that a newline character is written after the string.

Clib.putchar()

Clib.scanf()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Clib.scanf(formatString, variableg, ...])
formatString - specifies how to read and store data in variables.

variables - list of variables to hold data input according to
formatString.

number - input items assigned.

This flexible method reads input from the screen, extracts data
from it by matching the string to a format string (as described
below), and stores the data in the variables which follow the
format string. It returns the number of input items assigned; this
number may be fewer than the number of parameters requested if
there was a matching failure. The format string contains
character combinations that specify the type of data expected.
The format string specifies the admissible input sequences, and
how the input is to be converted to be assigned to the variable
number of arguments passed to this function.

Characters are matched against the input as read and as it
matches a portion of the format string until a % character is
reached. % indicates that a value is to be read and stored to
subsequent parameters following the format string. Each
subsequent parameter after the format string gets the next parsed
value takes from the next parameter in the list following format.
A parameter specification takes this form (sguare brackets
indicate optional fields, angled brackets indicate required fields):

o4* 1[width]<type>
*, width, and type may be:

*

265

SEE!

suppress assigning this value to any parameter

width

maximum number of characters to read; fewer will be read if
white space or nonconvertible character

type

may be one of the following:

d, D i, |
signed integer
u, U

unsigned integer
oo O

octal integer

X, X

hexadecimal integer

f, e, EE g, G

floating point number

c

character; if width was specified then thiswill be an
array of characters of the specified length

s

string

[abc]

string consisting of al characters within brackets; where
A- Z representsrange "A" to "Z"

[~abc]

string consisting of al character NOT within brackets.

Modifies any number of parameters following the format string,
setting the parameters to data according to the specifications of
the format string.

Clib.vscanf()

Clib.vprintf()

SYNTAX:

Clib.vprintf(formatString, valist)

266

WHERE:!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

formatString - string that specifies the fina format.

valist - avariablelist of arguments to be used according to
formatString.

number - number of characters written on success, else a
negative number.

This method displays formatted output on the standard output
stream, screen, using a variable number of arguments. This
method is similar to .printf() except that it takes a variable
argument list using valist.

See printf() and va_start() for more information. The method
vprintf() returns the number of characters written on success,
else a negative number on error.

The example function acts just like a printf() statement except
that it beeps, displays a message, beeps again, and waits a second
before returning. This method could be a wrapper for the printf()
method to display urgent messages.

Clib.printf(), Clib.va_start()

function UrgentPrintf(FormatString[argl ...])

{
/] create variable arg Ilist
Cib.va_start(valist, FormatString);
Screen.wite("\a"); // audible beep
/1 printf original statenent
var ret = dib.vprintf(FormatString, valist);
Screen.wite("\a"); // beep again
SEl i b. suspend(1000); // wait before returning
Cib.va_end(valist); // end using valist
return(ret); [/l return as printf would }

Clib.vscanf()

SYNTAX:

WHERE:!

RETURN!

Clib.vscanf(formatString, valist)
formatString - string that specifies the fina format.

valist - avariablelist of arguments to be used according to
formatString.

number - input items assigned. This number may be fewer than

267

DESCRIPTION:

SEE!

EXAMPLE!

the number of parameters requested if there is a matching failure
during input.

This method gets formatted input from the standard input stream,
the keyboard, using a variable number of arguments. This
method is similar to scanf() except that it takes a variable
argument list. See scanf() and va_start() for more information.

The method vscanf() modifies any number of parameters
following formatString, setting the parameters to data according
to the specifications of the format string.

This method returns the number of input items assigned. This
number may be fewer than the number of parameters requested if
thereis a matching failure during input.

The example function behaves like scanf(), including taking a
variable number of input arguments, except that it beeps and tries
again if there are zero matches:

Clib.scanf()

function Must_scanf(Format String[,argl ...)
{
Cib.va_start(valist, FormatString);
/] creates variable arg |ist
do
{ // mmc original scanf() call
var count = dib.vscanf(FormatString,
valist);
if (0==count) // if no nmatch, beep
Screen.wite("\a");
} while(0 == count);
/1 if not match, try again
dib.va_end(valist);
/1 end using valist (optional)
return(count);
/1 return as scanf() woul d

Time functions

The Clib object (like the Date object) represents time in two distinct ways. as an
integral value (the number of seconds passed since January 1, 1970) and asa
Time object with properties for the day, month, year, etc. This Time object is

268

distinct from the standard JavaScript Date object. Y ou cannot use Date object
properties with a Time object or vice versa.

In the methods below, timeObj represents a variable in the Time object format,
while timelnt represents an integral time value.

Clib.asctime()

SYNTAX: Clib.asctime(timeObj)

WHERE:! timeObj - time variable in the Time object format.

RETURN: string - the date and time extracted from a Time object, as
returned by d i b. | ocal time().

DESCRIPTION: Returns a string representing the date and time extracted from a

Time object, asreturned by G i b. | ocal ti me() . The string
will have this format:

Mon Jul 19 09: 14:22 1993

Clib.clock()

SYNTAX: Clib.clock()

RETURN: number - the current processor tick count.

DESCRIPTION: Returns the current processor tick count. Clock value starts at O

when ScriptEase program begins and is incremented
CLOCKS_PER_SEC times per second.

Clib.ctime(timelnt)

SYNTAX: Clib.ctime(timelnt)
WHERE! timelnt - an integer time value.
RETURN: string - the date and time extracted from a Time object, as

returned by d i b. | ocal time().

DESCRIPTION: This method is equivalent to: A i b. ascti me(
Clib.localtinme(tine)),wheretimelntisadate time
value asreturned by thed i b. ti ne() function.

269

Clib.difftime()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

Clib.difftime(timelntO, timelnt1)
timelntO - an integer time value.
timelntl - an integer time value.
number - difference between two times, in seconds.

This method returns the difference in seconds between two
times. timelnt0 and timelnt1 are integral time values as returned
by the time() function.

Clib.gmtime()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Clib.gmtime(timel nt)
timelnt - an integer time value.

number - the value timelnt (as returned by the time() function) as
a Time object.

Takes the integer timelnt (as returned by the time() function) and
convertsit to a Time object representing the current date and
time expressed as Greenwich mean time. See localtime() for a
description of the returned object.

Clib.localtime()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

Clib.localtime(timel nt)
timelnt - an integer time value.

number - the value timelnt (as returned by the time() function) as
a Time object.

This method returns the value timelnt (as returned by the time()
function) as a Time object. Note that the Time object differs
from the Date object, although they contain the same data. The
Time object is for use with the other date and time functions in
the Clib object. It has the following integer properties:

.tmsec

270

EXAMPLE!

second after the minute (from 0)
.tmmnin

minutes after the hour (from 0)
.t m hour

hour of the day (from 0)

.t m nday

day of the month (from 1)
.tm.non

month of the year (from 0)
.tmyear

years since 1900 (from 0)

.t m wday

days since Sunday (from 0)

.t m yday

day of the year (from 0)

.tmi sdst
daylight-savings-time flag

The following function prints the current date and time on the
screen and returns the day of the year, where Jan 1 isthe 1st day
of the year.

/1 Show today's date
/! Return day of the year in USA fornat
ShowToday()

/1 get current time structure
var tm= localtime(tine());
/1 display the date in USA format
Cib.printf("Date: %92d/ %92d/ %®2d
tmtmnon+l,
tmtmnday, tmtmyear % 100);
/! hour to run from12 to 11, not 0 to 23
var hour = tmtmhour % 12;
if (hour == 0)
hour = 12;
/1 print current tinme
Cib.printf("Tinme: % 2d: %92d: %92d\ n", hour,
tmtmmn,
tmtmsec);
/1 return day of year, Jan. 1 is day 1
return(tmtmyday + 1);

271

Clib.mktime()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

Clib.mktime(timeObj)
timeObj - time variable in the Time object format.

number - time integer, or -1 if time cannot be converted or
represented.

This method converts timeObj (an object as returned by
Jocaltime()) to the time format returned by time() (an integer).
All undefined elements of timeObj will be set to O before the
conversion. It returns [1 if time cannot be converted or
represented.

In other words, while localtime() converts from a time integer to
a Time object, mktime() converts from a Time object to atime
integer.

Clib.strftime()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

Clib.strftime(string, formatString, timeObyj)

string - a variable to receive the formatted time string.
formatString - string that specifies the fina format.
timeObj - time variable in the Time object format.

string - a string that describes the date and/or time and storesit in
the variable string.

This method creates a string that describes the date and or time
and stores it in the variable string. The parameter formatString
describes what the string will ook like, and timeObj isatime
object as returned by localtime().

These following conversion characters are used with
dib.strftinme() toindicatetimeand date output:

Y%a
abbreviated weekday name (Sun)
YA

272

full weekday name (Sunday)

%

abbreviated month name (Dec)

9B

full month name (December)

%

date and time (Dec 2 06:55:15 1979)

%l

two- digit day of the month (02)

%

two- digit hour of the 24- hour day (06)
%

two- digit hour of the 12- hour day (06)
%

three- digit day of the year from 001 (335)
%m

two- digit month of the year from 01 (12)
9

two- digit minute of the hour (55)

%

AM or PM (AM)

%5

two- digit seconds of the minute (15)

%)

two- digit week of year, Sunday isfirst day of week (48)
%

day of the week where Sunday is 0 (0)
%N

two- digit week of year, Monday isfirst day of week (47)
4

the date (Dec 2 1979)

9

the time (06:55:15)

%

two- digit year of the century (79)

%Y

the year (1979)

273

4

name of the time zone, if known (EST)
%%

the per cent character (%)

EXAMPLE: /1 displays the full day nane and nonth nane
/1 of the current day
Aib.strftinme(Ti meBuf,
"Today is: %\ the nmonth is: 9B",
Adib.localtinme(tinme()));
dib. put s(Ti neBuf);

Clib.time()

SYNTAX: Clib.time([t])

WHERE: t - variable to receive the time returned.

RETURN: number - integer representation of the current time.

DESCRIPTION: Returns an integer representation of the current time. The format

of the time is not specifically defined except that it represents the
current time, to the system's best approximation, and can be used
in many other time related functions. If t is supplied then it will
be set to equal the returned value.

Script execution

Clib.abort()
SYNTAX: Clib.abort([AbortAll])
WHERE: AbortAll - boolean flag as to whether to abort all levels of

ScriptEase execution.
RETURN: number - EXI T_FAI LURE to the operating system.

DESCRIPTION: This method terminates a program, usually when a specified
error occurs. This method causes abnormal program termination
and should only be called on afatal error. This method exits,
without returning to the caller, and returns EXI T_FAI LURE to
the operating system.

274

SEE!

If the boolean AbortAll istrue, this method aborts through all
levels of ScriptEase interpretation. If you are in multiple levels
of SElib.interpret(), .abort() aborts through all SElib.interpret()
levels.

Clib.assert()

Clib.assert()

SYNTAX: Clib.assert(test)

WHERE:! test - boolean flag to determine if the current file name and line
number will be displayed and if the script will abort.

RETURN: void.

DESCRIPTION: If boolean evaluates to false this function will print the file name
and line number to stderr and abort. If the assertion evaluates to
true then the program continues. .assert() istypically used as a
debugging technique to test assumptions before executing code
based on those assumptions. Unlike C, the ScriptEase
implementation of assert does not depend upon NDEBUG being
defined or undefined; it is always active.

SEE: Clib.abort()

EXAMPLE: /1 The Inverse() function bel ow returns
/'l the inverse of the input nunber (1/x):
function Inverse(x)
{

assert (0 !'= x);
return 1/ x;

}

Clib.atexit()

SYNTAX: Clib.atexit(functionld)

WHERE:! functionld - afunction to be called when a script is exited.

RETURN: void.

DESCRIPTION: This method registers a function to be called when the script

ends. The variable string passed to this function is the name of a

275

function to be called.

Clib.exit()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.exit(code)
code - status number to return to the operating system.

number - the status code of the exit is returned to the operating
system from which a script was called.

This method causes normal program termination. It calls all
functions registered with .atexit(), flushes and closes all open file
streams, updates environment variables if applicable to this
version of ScriptEase, and returns control to the OS environment
with the return code of status.

Clib.atexit()

Clib.system()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Clib.system([P_SWAP,] commandString)

P_SWAP - in DOS version, determines whether the ScriptEase
interpreter is swapped out of norma memory.

commandString - the command string to be executed, a
command as would be entered at a command prompt.

value - the value returned by a command processor.

Passes commandString to the command processor and returns
whatever value was returned by the command processor.
commandString may be a formatted string followed by variables
according to the rules defined in .sprintf().

DOS

In the DOS version of ScriptEase, if the special argument
P_SWAP is used then SeDos.exe is swapped to
EMSXMSINT15 memory or disk while the system
command is executed. This leaves almost all available
memory for executing the command. See SElib.spawn() for a
discussion of P_SWAP.

276

DOS32

The 32it protected mode version of DOS ignores the first
parameter if it isan not a string; in other words, P_SWAP is
ignored.

SEE: SElib.spawn()

Error

Clib.errno

SYNTAX: Clib.errno

DESCRIPTION: The property errno stores diagnostic message information when

SEE!

afunction fails to execute correctly. Many functionsin the Clib
and SElib objects set errno to non-zero in case of error to provide
more specific information about the error. ScriptEase
implements errno as a macro to the internal function _errno().
This property can be accessed with perror() or strerror().

Clib.perror()

Clib.clearerr()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.clearerr(filePointer)

filePointer - pointer to file for which error information is to be
cleared.

void.

This method clears the error status and resents the end-of-file
flags for the file associated with filePointer. Thereis no return
value.

Clib.ferror()

Clib.ferror()

SYNTAX:

WHERE!

Clib.ferror(filePointer)
filePointer - pointer to file for which error information is to be

277

retrieved.

RETURN: number - 0 on no file error, else the current error value
associated with a file operation.

DESCRIPTION: The parameter filePointer is afile pointer as returned by fopen().
This method tests and returns the error indicator for stream file.
Returns O if no error, otherwise returns the error value.

SEE: Clib.clearerr()

Clib.perror()

SYNTAX: Clib.perror([errmsg])

WHERE: errmsy - amessage to describe an error condition.

RETURN: string - error message that describes the error indicated by
Clib.errno.

DESCRIPTION: Prints and returns an error message that describes the error

defined by Clib.errno. This method isidentical to calling
Oib.strerror (Cib.errno).If astringvariableis
supplied it will be set to the string returned.

SEE: Clib.ferror()

Clib.strerror()

SYNTAX: Clib.strerror(errno)
WHERE! errno - an error number to convert to a descriptive string.
RETURN: string - an error number converted to a descriptive string.

DESCRIPTION: When some functions fail to execute properly, they store a
number in the .errno property. The number corresponds to the
type of error encountered. This method converts the error
number to a descriptive string and returnsiit.

SEE: Clib.perror()

EXAMPLE: /l Opens a file for reading, and if it cannot
/1 open the file then it prints a descriptive
/| message and exits the program

278

function Must Qpen(fil enane)

var fh = fopen(filenanme, "r");
if (fh == null)

Cib.printf("Error:%\n",
Cib.strerror(errno));
dib.exit(EX T_FA LURE);

return(fh);

File 110
Clib.fopen()
SYNTAX: Clib.fopen(filename, mode)
WHERE! filename - a string with afilename to open.
mode - how or for what operations the file will opened.
RETURN: number - afile pointer to the file opened, nul | in case of failure.
DESCRIPTION: This method opens the file specified by filename for file

operations specified by mode, returning afile pointer to the file

opened. null isreturned in case of failure.

The parameter filenameis a string. It may be any valid file name,

excluding wildcard characters.

The parameter mode is a string composed of one or more of the

following characters. For example, "r " or "rt "

r
open file for reading; file must already exist
w

open file for writing; create if doesn't exit; if file exists then

truncate to zero length
a

open file for append; create if doesn't exist; set for writing at

end- of- file
b

279

SEE!

EXAMPLE!

binary mode; if b is not specified then open file in text mode
(end- of- line trandlation)

t

text mode

+

open for update (reading and writing)

When afileis successfully opened, its error statusis cleared and
abuffer isinitialized for automatic buffering of reads and writes
to thefile.

Clib.fclose(), Clib.flock()

/1 Open the text file "ReadMwe"
/1 for text node reading, and
/'l display each line in the file.

var fp = dib.fopen("ReadMe", "r");
if (fp == null)
Aib.printf(
"\aError opening file for reading.\n")
el se
while (null I'= (line=dib.fgets(fp)))

Cib.fputs(line, stdout)

}
CAib.fclose(fp);

Clib.fclose()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Clib.fclose(filePointer)
filePointer - pointer to file to close.
number - 0 on success, else ECF.

The parameter filePointer is afile pointer as returned by
Clib.fopen(). This method flushes the file buffers of a stream and
closes the file. The file pointer ceases to be valid after this call.
Returns zero if successful, otherwise returns ECF.

Clib.fopen(), Clib.flock()

280

Clib.feof()

SYNTAX: Clib.feof (filePointer)

WHERE! filePointer - pointer to file to use.

RETURN: number - 0 if at end of file, else anon-zero number.

DESCRIPTION: The parameter filePointer is afile pointer as returned by .fopen().
This method returns an integer which is non-zero if the file
cursor is at the end of thefile, and O if it is NOT at the end of the
file.

SEE: Clib.fopen()

Clib.fflush()

SYNTAX: Clib.fflush(filePointer)

WHERE! filePointer - pointer to file to use.

RETURN: number - 0 on success, else ECF.

DESCRIPTION: Causes any unwritten buffered data to be written to filePointer. If
filePointer isnul | then flushes buffersin al open files. Returns
zero if successful; otherwise ECF.

SEE: Clib.fclose()

Clib.fgetc()

SYNTAX: Clib.fgetc(filePointer)

WHERE! filePointer - pointer to file to use.

RETURN: number - ECF if thereisaread error or the file cursor is at the
end of thefile. If thereisaread error thenf error () will
indicate the error condition.

DESCRIPTION: This method returns the next character in the file stream
indicated by filePointer as a byte converted to an integer.

SEE! Clib.gets()

281

Clib.fgetpos()

SYNTAX:

Clib.fgetpos(filePointer, pos)

WHERE:! filePointer - pointer to file to use.
pos - variable to hold the current file position.

RETURN: number - 0 on success, €lse non-zero and stores an error value in
Cib.errno.

DESCRIPTION: This method stores the current position of the file stream
filePointer for future restoration using d i b. f set pos() . The
file position will be stored in the variable pos; use it with
dib. fsetpos() torestore the cursor to its position.

SEE: Clib.fsetpos()

Clib.fgets()

SYNTAX: Clib.fgets([number,] filePointer)

WHERE:! number - maximum length of string.
filePointer - pointer to file to use.

RETURN: string - the charactersin afile from the current file cursor to the
next newline character on success, elsenul | .

DESCRIPTION: This method returns a string consisting of the charactersin afile

SEE!

from the current file cursor to the next newline character. The
newline will be returned as part of the string. If there is an error
or the end of the fileisreached null will be returned.

A second syntax of this function takes a number asitsfirst
parameter. This number is the maximum length of the string to
be returned if no newline character was encountered.

Clib.fgetc()

Clib.fprintf()

SYNTAX:

Clib.fprintf(filePointer, formatString[, variables ...])

282

WHERE:! filePointer - pointer to file to use.
formatString - string that specifies the fina format.
variables - values to be converted to and formatted as a string.

RETURN: number - characters written on success, else a negative number.

DESCRIPTION: This flexible function writes a formatted string to the file
associated with filePointer. The second parameter, formatString,
isastring of the same patternas i b. sprint f () and
Aib.rsprintf().

SEE: Clib.printf()

Clib.fputc()

SYNTAX: Clib.fputc(chr, filePointer)

WHERE:! chr - character to writeto file.
filePointer - pointer to file to use.

RETURN: number - character written on success, else ECF.

DESCRIPTION: If chr isastring, the first character of the string will be written to
thefile indicated by filePointer. If chr is a number, the character
corresponding to its unicode value will be added.

SEE: Clib.fputs()

Clib.fputs()

SYNTAX: Clib.fputs(str, filePointer)

WHERE:! str - string to write to file.
filePointer - pointer to file to use.

RETURN: number - non-negative number on success, else ECF.

DESCRIPTION:

This method writes the value of str to the file indicated by
filePointer. Returns EOF if write error, €lse returns a non-
negative value.

283

SEE!

Clib.fputc()

Clib.fread()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Clib.fread(dstVar, varDescription, filePointer)
dstVar - variable to hold data read from file.

varDescription - description of the data to read, that is, how and
how much.

filePointer - pointer to file to use.
number - elements read on success, 0 on failure.

This method reads data from an open file and storesit in dstVar.
If it does not yet exist dstVar will be created. varDescription is a
variable that describes the how and how much datais to be read:
if dstVar isabuffer, it will be the length of the buffer; if dstVar
is an abject, varDescription must be an object descriptor; and if
dstVar isto hold a single datum then varDescription must be one
of the following.

UWORDS

Stored asabyte in dstVar
SWORD8

Stored as an integer in dstVar
UWCRD16

Stored as an integer in dstVar
SWORD16

Stored as an integer in dstVar
UWCRD24

Stored as an integer in dstVar
SWORD24

Stored as an integer in dstVar
UWORD32

Stored as an integer in dstVar
SWORD32

Stored as an integer in dstVar
FLOAT32

Stored as afloat in dstVar

284

SEE!

EXAMPLE!

FLOAT64

Stored as afloat in dstVar

FLOAT80

Stored as afloat in dstVar (not available in Win32)

In al cases, this function returns the number of elements read.
For dstVar being a buffer, this would be the number of bytes
read, up to length specified in varDescription. For dstVar being
an object, this method returns 1 if the dataisread or O if read
error or end- of- file is encountered.

For example, the definition of an object might be:

dientDef.Sex = UWNORDS;

ClientDef.Murital Status = UWORDS;
CientDef._Unusedl = UWORDLS6;

CientDef.FirstName = 30; dientDef.Last Nane = 40;
ClientDef.lnitial = UNRDS;

The ScriptEase version of d i b. fread() differsfrom the
standard C version in that the standard C library is set up for
reading arrays of numeric values or structures into consecutive
bytes in memory. In JavaScript this is not necessarily the case.

Data types will be read fromthe file in a byte-
order described by the current value of the
_Bi gEndi anMbde gl obal vari abl e.

Clib.fopen(), Clib.fwrite()

/! To read the 16Mit integer "i",
// the 32bit float "f", and

/1 then 10 byte buffer "buf"

/!l fromthe open file "fp"

/'l use code like the follow ng.

if ('dib.fread(i, SWORDL6, fp) ||
1dib.fread(f, FLOAT32,fp) ||
(10 !'= dib. fread(buf, 10,fp)))

Cib.printf("Error reading fromfile.\n");
Cib.abort();

Clib.freopen()

285

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

Clib.freopen(filename, mode, filePointer)

filename - a string with afilename to open.

mode - how or for what operations the file will opened.
filePointer - pointer to file to use.

number - file pointer on success, elsenul | .

This method closes the file associated with filePointer, ignoring
any close errors, opens filename according to mode, as with
Cib. fopen() , and reassociates filePointer with the new file
specification. This method is commonly used to redirect one of
the pre-defined file handles (st dout , st derr, or st di n) toor
from afile.

The method returns a copy of the modified filePointer, or nul |
if it fails.

The example code calls ScriptEase for DOS with no parameters,
which causes a help screen to be printed, and redirects st dout

to afile cenvi.out so that cenvi.out will contain the text of the
ScriptEase help screens.

Clib.fopen()

if (null == dib.freopen("cenvi.out", "w', stdout))
Cib.printf("Error redirecting stdout\a\n")

el se
dib. systen("SEDOS");

Clib.fscanf()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

Clib.fscanf(filePointer, formatString[, variables ...])
filePointer - pointer to file to use.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
number - input items assigned on success, el se ECF.

This flexible function reads input from the file indicated by
filePointer and stores in parameters following formatString
according the character combinations in the format string, which

286

SEE!

EXAMPLE!

indicate how the file datais to be read and stored. The file must
be open, with read access. It returns the number of input items
assigned. This number may be fewer than the number of
parameters requested if there was a matching failure. If thereis
an input failure, before the conversion occurs, this function
returns ECF.

Seed i b. scanf () for adescription of thisformat string. The
parameters following the format string will be set to data
according to the specifications of the format string.

Clib.scanf()

/!l Gven the following text file, weight.dat:
/1 Crow, Barney 180

// daus, Santa 306

/'l Mouse, M ckey 2

/1 the foll ow ng code:

var fp = dib.fopen("weight.dat", "r");
var FormatString = "%,] %c % %l\n";
while (3 == dib.fscanf(fp, FormatString,
Last Nane, Firstane, weight))
Cib.printf("% % weighs %l pounds.\n",
Fi rst Nane, LastName, weight);
Aib.fclose(fp);

/1 results in the follow ng output:
/1 Barney Crow wei ghs 180 pounds.
/1 Santa C aus wei ghs 306 pounds.
/1 M ckey Muse wei ghs 2 pounds.

Clib.fseek()

SYNTAX:

WHERE:!

Clib.fseek(filePointer, offset[, mode])
filePointer - pointer to file to use.

offset - number of bytes past or offset from the point indicated
by mode.

mode - file position to use as a starting point. Default is
SEEK_SET and may be one of the following:

SEEK_CUR
seek is relative to the current position of thefile

287

RETURN!

DESCRIPTION:

SEE!

SEEK _END

position is relative from the end of thefile

SEEK SET

position is relative to the beginning of thefile
number - 0 on success, else non-zero.

Set the position of the file pointer of the open file stream
filePointer. The parameter offset is a number indicating how
many bytes the new position will be past the starting point
indicated by mode.

If mode is not supplied then absolute offset from the beginning
of file, SEEK_SET, is assumed. For text files, not opened in
binary mode, the file position may not correspond exactly to the
byte offset in thefile.

Clib.fsetpos(), Clib.ftell()

Clib.fsetpos()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.fsetpos(filePointer, pos)
filePointer - pointer to file to use.
pos - position in file to set.

number - zero on success, otherwise returns non-zero and stores
an error valueind i b. err no.

This method sets the current file stream pointer to the value
defined by pos, which must be a value obtained from a previous
call to .fgetpos() on the same open file. Returns zero for success,
otherwise returns non- zero and stores an error valuein
Cib.errno.

Clib.fseek()

Clib.ftell()

SYNTAX:

WHERE:!

Clib.ftell(filePointer)

filePointer - pointer to file to use.

288

RETURN:

number - current value of the file position indicator, or -1 if there
is an error, in which case an error value will be stored in
Cib.errno.

DESCRIPTION: This method sets the position offset of the file pointer of an open
file stream from the beginning of the file. For text files, not
opened in binary mode, the file position may not correspond
exactly to the byte offset in the file. Returns the current value of
the file position indicator, or -1 if thereisan error, in which case
an error value will be stored ind i b. er r no.

SEE: Clib.fseek()

Clib.fwrite()

SYNTAX: Clib.fwrite(srcVar, varDescription, filePointer)

WHERE:! srcVar - variable to hold data read from file.
varDescription - description of the data to read, that is, how and
how much.
filePointer - pointer to file to use.

RETURN: number - e ements written on success, else 0 if awrite error
OCCuUrs.

DESCRIPTION: This method writes the data in srcVar to the file indicated by

SEE!

filePointer and returns the number of elements written. O will be
returned if awrite error occurs. Used i b. ferror () toget
more information about the error. varDescription is a variable
that describes the how and how much dataisto beread. If srcVar
isabuffer, it will be the length of the buffer. If srcVar isan
object, varDescription must be an object descriptor. If srcVar is
to hold a single datum then varDescription must be one of the
values listed in the description for A i b. fread() .

The ScriptEase version of f wri t e() differsfrom the standard C
version in that the standard C library is set up for writing arrays
of numeric values or structures from consecutive bytesin
memory. Thisis not necessarily the case in JavaScript.

Clib.fread()

289

EXAMPLE: // To wite the 16_bit integer "i"
/! the 32_bit float "f", and
/1 then 10 _byte buffer "buf" into open file "fp",
/'l use the follow ng code.
if (1Cib.fwite(i, SWORDL6, fp) ||
Idib.fwite(f, FLOAT32, fp) ||
(10 '= fwite(buf, 10, fp)))
{
Cib.printf("Error witing to file.\n");
Cib.abort();
}

Clib.getc()

SYNTAX: Clib.getc(filePointer)

WHERE:! filePointer - pointer to file to use.

RETURN: number - on success, the next character, as an unsigned byte
converted to an integer, in afile. Else ECF if aread error or at the
end of file.

DESCRIPTION: This method isidentical to C i b. f get c() . It returns the next
character in afile as an unsigned byte converted to an integer.
Returns EOF if there isaread error or if at the end of the file. If
thereisaread error then i b. f er ror () will indicate the error
condition.

SEE! Clib.gets()

Clib.putc()

SYNTAX: Clib.putc(chr, filePointer)

WHERE:! chr - character to write to file.
filePointer - pointer to file to use.

RETURN: number - character written on success, else EOF on write error.

DESCRIPTION:

This method writes the character chr, converted to a byte, to an
output file stream. This method isidentical tod i b. f put c() . It
returns chr on success and EOF on awrite error.

290

SEE!

Clib.fputc()

Clib.remove()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.remove(filename)

filename - the name of the file to delete from a disk.
number - 0 on success, €lse non-zero.

Delete a file with the filename provided.
Clib.rename(), Clib.fopen()

Clib.rename()

SYNTAX: Clib.rename(oldFilename, newFilename)

WHERE:! oldFilename - current name of file on disk to be renamed.
newFilename - new name for file on disk.

RETURN: number - 0 on success, else non-zero.

DESCRIPTION: This method renames ol dFilename to newFilename. Both
oldFilename and newFilename are strings. Returns zero if
successful and non-zero for failure.

SEE: Clib.remove()

Clib.rewind()

SYNTAX: Clib.rewind(filePointer)

WHERE:! filePointer - pointer to file to use.

RETURN: void.

DESCRIPTION: This method sets the file cursor to the beginning of file. This call
isthesameasd i b. fseek(fil ePointer, 0, SEEK SET)
except that it also clears the error indicator for this stream.

SEE: Clib.fseek()

291

Clib.tmpfile()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

Clib.tmpfile()

number - on success, afile pointer to atemporary binary file that
will automatically be removed when it is closed or when the
program exits, else nul | on failure.

This method returns the file pointer of atemporary binary file
that will automatically be removed when it is closed or when the
program exits. Returns nul | if the function fails.

Clib.tmpnam()

Clib.tmpnam()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

Clib.tmpnam([str])
str - avariable to hold the name of atemporary file.
string - avalid and unique filename.

This method creates a string that is a valid file name that is not
the same as the name of any existing file and not the same as any
filename returned by this function during execution of this
program. If str issupplied it will be set to the string returned by
this function.

Clib.tmpfile()

Clib.ungetc(chr, filePointer)

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

Clib.ungetc(chr, stream)
chr - character to writeto file.
filePointer - pointer to file to use.

number - on success, the character put back into afile stream,
else ECF.

This method pushes character chr back into an input stream.

292

When chr is put back, it is converted to a byte and isagain in an
input stream for subsequent retrieval. Only one character is
guaranteed to be pushed back. The method returns chr on
success, €l'se ECF on failure.

SEE: Clib.getc()

Directory

Clib.chdir()

SYNTAX: Clib.chdir(dirpath)

WHERE: dirpath - directory specification to which to change.

RETURN: number - 0 on success, else -1.

DESCRIPTION: This method changes the directory for a script from its current

SEE!

directory to the directory specified in the parameter dirpath. The
specified directory may be an absolute or relative path
specification.

Clib.getcwd()

Clib.getcwd()

SYNTAX:

RETURN:

Clib.getowd()

string - complete path of the current working directory for a
script.

DESCRIPTION: This method returns the complete path of the current working
directory for ascript.

SEE: Clib.chdir()

Clib.flock()

SYNTAX: Clib.flock(filePointer, lockFlag)

WHERE! filePointer - pointer to file to use.

293

lockFlag - determines which locking operation to perform on a
file. Theflags are:

LOCK_EX

File lock exclusive (equivalent to LOCK_SH in Windows)
LOCK_SH

File lock share (equivalent to LOCK_EX in Windows)
LOCK_NB

File lock non-blocking (bitwise or with LOCK_EX or
LOCK_SH)

LOCK_UN

File unlock

RETURN: number - 0 on success, else -1 on failure.

DESCRIPTION: This method allows a file to be locked or unlocked, which isa
capability that is often important in a multi-tasking operating
system.

The ability to lock and unlock accessto afile varies among
operating systems. For normal usage on most systems, the
operating system handles al necessary locking and
administration of sharing privileges for files. However, if a
scripter needs extra control over files, ScriptEase provides the
ability. For example, a script might use filesto hold data while it
is running but does not need to keep the files open during all
phases of script execution. By locking and unlocking such files,
a scripter ensures that these files are not altered while a script is

running.
SEE: Clib.fopen(), Clib.fclose()
EXAMPLE: /1 The follow ng fragnent opens a file and

/1 then locks it for exclusive use w thout bl ocking
/1 further execution of the script.

var fp = dib.fopen("nyfile", "r");

Cib.flock(fp, LOCK EX | LOCK _NB);
Il Use the file

Aib.flock(fp, LOCK_UN);

Aib.fclose(fp);

294

Clib.mkdir()

SYNTAX:

Clib.mkdir(dirpath)

WHERE! dirpath - directory specification to make.

RETURN: number - 0 on success, else -1.

DESCRIPTION: This method creates the directory specified in the parameter
dirpath. The specified directory may be an absolute or relative
path specification.

SEE: Clib.rmdir(), Clib.chdir()

Clib.rmdir()

SYNTAX: Clib.rmdir(dirpath)

WHERE! dirpath - directory specification to delete.

RETURN: number - 0 on success, else-1.

DESCRIPTION: This method del etes the directory specified by the parameter
dirpath.

SEE: Clib.mkdir(), Clib.remove()

Sorting

Clib.bsearch()

SYNTAX:

WHERE!

RETURN!

Clib.bsearch(key, array[, elementCount], compareFunction)
key - value for which to search.
array - beginning of array to search.

el ementCount - number of e ements to search. Default is the
entire array.

compareFunction - function used to compare key with each
element searched in the array.

value - the element in an array if found, elsenul | if not found.

295

DESCRIPTION: This method looks for an array variable that matches key,
returning it if found and null if not. It will only search through
positive array members (array members with negative indices
will be ignored). The compareFunction must receive the key
variable asitsfirst argument and a variable from the array asits
second argument. If elementCount is not supplied then will
search the entire array. The elementCount is limited to 64K for
16 hit version of ScriptEase.

SEE: Clib.gsort()

EXAMPLE: /1 This exanple creates a two di nensional array
/1 that pairs a name with a favorite food.
/'l A nane is searched for. The nanme and paired
/1 food is displayed.

var Found;
var Key;
var list;

/'l create array of nanmes and favorite food

var list =
{
{" Mar ge", "sal ad"},
{"Lisa", "tofu"},
{" Honer", "sugar"},
{"Bart", "anyt hing"},
{"Itchy", "cats"},
{"Scratchy", "anything fromthe garbage"}

1
/'l sort the list
CAib.gsort(list, ListConpareFunction);

Key[0] = "narge";
/] search for the name Marge in the |ist

Found = Qi b. bsearch(Key, list, ListConpareFunction);
/1 display nane, or not found

if (Found !'= null)
Cib.printf("%'s favorite food is %\n",
Found[0], Found[1])
el se
Cib.puts("Could not find nane in list.");

/] This conmpare function is used to sort

/] the array and to find a nane.

/1 The sort and search are case insensitive.
function ListConpareFunction(ltendl, |tenR)

296

{
return Cib.strcnpi(lteml[0], Iten2[0]);

}

Clib.gsort()

SYNTAX: Clib.gsort(array[, e ementCount], ComparefFunction)

WHERE! array - array to sort.
elementCount - number of elements to sort. Default is the entire
array.
compareFunction - function used to compare key with each
element searched in the array.

RETURN: void.

DESCRIPTION: This method sorts elements in an array, starting from index O to
elementCount- 1. If elementCount is not supplied then will sort
the entire array. This method differs from the Arr ay. sort ()
method in that it can sort automatically created arrays, whereas
Array. sort () only workswith arrays explicitly created with a
new Array statement.

The value of elementCount is limited to 64K

SEE: Clib.bsearch(), Array()

EXAMPLE: /!l Create a list of color nanes,

/'l sort the list in reverse al phabetical order,
/'l case insensitive, and display the list.

/1 initialize an array of colors
var colors = {"yellow', "Blue", "GREEN', "purple",
"RED', "BLACK", "white", "orange"};

/] sort the list ReverseCol orSorter function
Cib.gsort(colors, ReverseCol orSorter);

/1 display the sorted colors
for (var i = 0; i < getArraylLength(colors); i++)
Cib.puts(colors[i]);

function ReverseCol orSorter(col orl, col or2)
/] do a sinple case insensitive string
/] conparison, and reverse the results too

297

{
var ConpareResult = dib.stricnp(colorl,color?2)

return -ConpareResult;

}

/1 The output is:
Il yellow

/1 white
/1 RED

/1l purple
/'l orange
/1 GREEN
/1 Blue
/1 BLACK

Environment variables
Clib.getenv()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

Clib.getenv([variableName])
variableName - the name of an environment variable.

value - a string representation of the value of an environment
variable on success. If no variableName is passed, an array of all
environment variable names. On failure, returnsnul | .

If the parameter variableName is supplied, this method returns

the value of a similarly named environment variable as a string,
if the variable exists, and nul | if VariableName does not exist.
If no name is supplied then returns an array of all environment

variable names, ending with anul | element.

Clib.putenv()

/1 Print the existing environnent vari abl es,
/1 in "EVAR=Val ue" format,
/1 sorted al phabetically.

/1 get array of all environnment variabl e nanes
var EnvList = dib.getenv();

/] sort array al phabetically
dib.qgsort(EnvLi st, getArraylLength(EnvList),

Cib.stricnp);
/1 display each el ement in ENV=VALUE for mat
for (var Ildx = 0; EnvList[l1dx]; |Idx++)

298

Adib.printf("%=%\n", EnvList[lIdx],
Cib.getenv(EnvList[I1dx]));

Clib.putenv()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.putenv(variableName, stringVaue)

variableName - the name of an environment variable.
stringValue - new value for environment variable variableName.
number - 0 on success, else -1.

This method sets the environment variable variableName to the
value of stringValue. If stringValueisnul | then variableName
is removed from the environment. For those operating systemsin
which ScriptEase can alter the parent environment (DOS or OS/2
when invoked with SD.bat or SEset.cmd) the variable setting will
dtill be valid when ScriptEase exits; otherwise the variable
change applies only to the ScriptEase code and to child processes
of the ScriptEase program. Returns - 1 if thereis an error, else 0.

Clib.getenv()

Character classification

JavaScript does not have a true character type. For the character classification
routines, a chr is actually a single character string. Thus, actua programming
usage is very much like C. For example, in the following fragment both
Isalnum() statements work properly.

var t = Cib.isalnun('a");
Screen.witeln(t);

var S
var t

i b i sal nun(s);

Screen.witeln(t);

This fragment displays the following.

true
true

299

In the following fragment both .isalnum() statements cause errors since the
arguments to them are strings with more than one character.

var t = dib.isalnun('ab');
Screen.witeln(t);

var s "ab';
var t dib.isal nun(s);
Screen.witeln(t);

All character classification methods return booleans: true or false.

Clib.isalnum()

SYNTAX: Clib.isalnum(chr)

WHERE! chr - acharacter, a single character string.

RETURN: boolean - trueif chrisin: A-Z, a-z, or 0-9. Else fase.

DESCRIPTION: Returns true if chr is a character in one of the following sets: A-
Z, az, or 0-9.

Clib.isalpha()

SYNTAX: Clib.isalpha(chr)

WHERE! chr - a character, a single character string.

RETURN: boolean - trueif chrisin: A-Z or a-z. Elsefalse.

DESCRIPTION: Returns true if chr is a aphabetic character in one of the

following sets of characters: A-Z or a-z.

Clib.isascii()

SYNTAX: Clib.isascii(chr)

WHERE! chr - acharacter, a single character string.

RETURN: boolean - trueif chr isin ASCII: 0-127.

DESCRIPTION: Returnstrue if chr isan ASCII character in the following set of
codes: 0-127.

300

Clib.iscntrl()

SYNTAX: Clib.iscntrl(chr)

WHERE! chr - acharacter, a single character string.

RETURN: boolean - trueif chrisin ASCII: 0-31 or 127.

DESCRIPTION: Returnstrueif chr isacontrol character in the set of ASCII
characters. Control characters are in one of the following sets of
codes: 0-31 or 127.

Clib.isdigit()

SYNTAX: Clib.isdigit(chr)

WHERE! chr - acharacter, a single character string.

RETURN: boolean - trueif chr isin: 0-9.

DESCRIPTION:

Returnstrue if chr isadecimal digit in the following set of
characters: 0-9.

Clib.isgraph()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

Clib.isgraph(chr)
chr - a character, a single character string.
boolean - true if chr is a printable character.

Returnstrue if chr is a printable character excluding the space
character " ", code 32.

Clib.islower()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

Clib.islower(chr)
chr - a character, a single character string.
boolean - true if chrisin: az.

Returnstrue if chr is alowercase character in the following set of

301

characters. a- z

Clib.isprint()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Clib.isprint(chr)
chr - acharacter, a single character string.
boolean - true if chr a printable ASCII code in: 32-126.

Returnstrue if chr is a printable character in the following set of
codes: 32-126.

Clib.ispunct()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

Clib.ispunct(chr)
chr - a character, a single character string.

boolean - if chr isa punctuation character code in: 32-47, 58-63,
91-96, or 123-126.

Returnstrue if chr is a punctuation character in one of the
following sets of codes: 32-47, 58-63, 91-96, or 123-126.

Clib.isspace()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

Clib.isspace(chr)
chr - a character, a single character string.

boolean - true if chr isawhite spacein ASCII: 9, 10, 11, 12, 13,
or 32.

Returnstrue if chr is awhite space character, that is, one of the
following codes: 9, 10, 11, 12, 13, or 32 (horizontal tab, new
line, vertical tab, form feed, carriage return, or space).

Clib.isupper()

SYNTAX:

Clib.isupper(chr)

302

WHERE! chr - acharacter, a single character string.

RETURN: boolean - true if chrisin: A-Z.

DESCRIPTION: Returns true if chr is an uppercase character in the following set
of characters: A- Z.

Clib.isxdigit()

SYNTAX: Clib.isxdigit(chr)

WHERE! chr - acharacter, asingle character string.

RETURN: boolean - trueif chr isin: 0-9, A-F, or af.

DESCRIPTION: Returnstrue if chr is a hexadecimal digit in one of the following

sets of characters: 0-9, A-F, or a-f.

String manipulation
Clib.rsprintf()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

Clib.rsprintf(formatString[, variables ...])
formatString - string that specifies the fina format.
variables - values to be converted to and formatted as a string.

string - formatted according to formatString using any variables
passed.

This method returns af or mat t ed string. It issimilar to
dib.printf(),exceptthat astringisreturned instead of
printed.

Clib.printf()

/1 1f in a script you had a line:

Adib.printf("% has seen % %l tines.\n", naneg,
novi e, tinmesSeen);

/1 and you wanted to pass the resulting string
/! as a paraneter to a function, you could do it
/] as follows.

303

func(Cib.rsprintf("% has seen % %l times.\n",
name, novie, tinmesSeen));

/1 The follow ng |ines of code achieve

// the same result, that is, create

/1 a string variable naned word that contains
/1 the string "Wo is #1?".

var word
word = dib.rsprintf("Wwo is #%?", 3-2);
Aib.sprintf(wrd, "Wo is #%?", 3-2);

Clib.rvsprintf()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

Clib.rvsprintf(formatString, valist)
formatString - string that specifies the fina format.

valist - avariablelist of arguments to be used according to
formatString.

string - specified by formatString on success, else ECF on error.

This method returns formatted output using the variable
argument list represented by the parameter valist, a Blob. This
method issmilartod i b. spri nt f () except that it takesa
variable argu ment list and returns a formatted string based on
the arguments, rather than storing it in a string buffer. See
Clib.sprintf() anddib.va_start() for more
information. The method C i b. rvsprint f () returnsastring
specified by formatString on success, else EOF on efror.

Clib.sprintf(), Clib.vprintf()

Clib.sscanf()

SYNTAX:

WHERE!

Clib.sscanf(str, formatString][, variables ...])

str - string holding the data to read into variables according to
formatString.

formatString - specifies how to read and store data in variables.
variables - list of variables to hold data input according to

304

formatString.

RETURN: number - input items assigned. May be lower than the number of
items requested if there is a matching failure.

DESCRIPTION: This flexible method reads data from a string and storesit in
variables passed as parameters following formatString. The
parameter formatString specifies how dataiis read and stored in
variables. Seed i b. scanf () for details about formatString.

d i b. scanf () readsdatafrom the standard input stream,
whereas this method, A i b. sscanf () reads datafrom a string.

SEE: Clib.scanf(), Clib.fscanf(), Clib.vscanf()

Clib.sprintf()

SYNTAX: Clib.sprintf(str, formatString[, variables ...])
WHERE:! str - to hold the formatted output.
formatString - string that specifies the fina format.
variables - values to be converted to and formatted as a string.

RETURN: number - characters written to string on success, else EOF on
fallure.

DESCRIPTION: This method writes output to the string variable specified by str
according to formatString, and returns the number of characters
written or EOF if there was an error. The parameter formatString
may contain character combinations indicating how following
parameters are to be written. The parameter str need not be
previously defined. It will be created large enough to hold the
result.

The format string may contain character combinations indicating
how following parameters are to be treated. Characters are
handled normally until a percent character, % isreached. The
percent %indicates that a value is to be written from the variables
following the format string. See C i b. pri ntf () for acomplete
description of formatString.

SEE: Clib.printf()

305

EXAMPLE!

/'l Each of the follow ng |ines shows
/1 a sprintf exanple foll owed
/1 by the resulting string.

Cib.sprintf(testString, "I count: % % %.", 1, 2, 3)
/1 "I count: 1 2 3"

var a = 1;

var b = 2;

Cib. sprintf(testString, "% % %", a b, a+b)

/1 "12 3"

Clib.strcat()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Clib.streat(dstStr, srcStr)

dstStr - destination string to which to add srcStr and to hold the
final result.

srcStr - source string to append to dstStr.
string - the resulting string from concatenating dstStr and srcStr.

This method appends srcStr string onto the end of dstStr string.
The dstStr string is made big enough to hold srcStr, and a
terminating nul | byte. In ScriptEase, a string copy is safe, so
that you can copy from one part of a string to another part of
itself.

Thereturn is the value of dstStr, that is, a variable pointing to the
dstStr array starting at dstStr[0].

Clib.strcpy(), Clib.memcpy()

/'l The result of the follow ng code is:
/'l Gant == "Fee Fie Foe Funf

var G ant = "Fee";
/1 add Fie
Cib.strcat(Gant, " Fie");
/1 add Foe
Cib.strcat(Gant, " Foe");
/1 add Fum
Cib.strcat(Gant, " Funt);

306

Clib.strchr()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Clib.strchr(str, chr)
str - string to search for a character.
chr - character to search for.

string - beginning at the point in string where chr is found, else
nul | if isnot found..

This method searches the parameter str for the character chr. It
returns a variable indicating the first occurrence of chr in str, else
it returnsnul | if chr isnot found in str.

Clib.strstr(), String indexOf()

/1 The follow ng code fragment:

var str = "l can't stand soggy cereal."
var substr = dib.strchr(str, 's');
Cib.printf("str = %\n", str);
Screen.writeln("substr =" + substr);

/1 results in the follow ng output.
/1 str =1 can't stand soggy cereal.
/1 substr = stand soggy cereal.

Clib.strcmp()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Clib.stremp(strl, str2)
strl - first string to compare.
str2 - second string to compare

number - negative, zero, or positive according to the following
rules:

0 if strlislessthan str2

0 if strlisthesameasstr2

0 if strlisgreater than str2

ThIS method does a case- sensitive comparison of the characters
of strl with str2 until there is a mismatch or a terminating null
byte is reached.

N

\%

307

SEE!

Clib.strempi(), Clib.stricmp(), ==, ===

Clib.strcmpi()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.strempi(strl, str2)
strl - first string to compare.
str2 - second string to compare

0 if strlislessthan str2

0 if strlisthesameasstr2

0 if strlisgreater than str2

ThIS method does a case- insensitive comparison of the
characters of strl with str2 until there is a mismatch or a
terminating null byte is reached.

Clib.stremp(), Clib.stricmp(), ==, ===

N

\%

Clib.strcpy()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.strcpy(dstStr, srcStr)

dstStr - destination string to which the source string will be
copied.

srcStr - source string to copy to destination string.
string - the value of dstStr after the copy process.

This method copies bytes from srcStr to dstStr, up to and
including the terminat ing nul | character. If dstStr is not already
defined, then it is defined as a string. It is safe to copy from one
part of a string to another part of the same string.

Thereturn isthe value of dstStr, that is, a variable pointing to the
dstStr array starting at dstStr[0].

Clib.strncpy(), =

Clib.strcspn()

308

SYNTAX: Clib.strespn(str, chrSet)
WHERE! str - string to be searched.
chrSet - set of characters to search for.

RETURN: number - offset into str to a found character on success, else the
length of str.

DESCRIPTION: This method searches the parameter string for any of the
charactersin the string chrSet and returns the offset of that
character. If no matching characters are found, it returns the
length of the string. This method is similar to
dib.strpbrk(),exceptthatdib. strcspn() returnsthe
offset number, or index, for the first character found, while
dib.strpbrk. () returnsthe string beginning at that

character.
SEE: Clib.strpbrk()
EXAMPLE: /1 The follow ng fragnent denonstrates

/1 the difference between dib.strcspn() and
/1 dib.strpbrk().

var string =
"There's nmore than one way to skin a cat.";

var rStrpbrk = dib.strpbrk(string, "dxb8wlk!");

var rStrcspn = dib.strcspn(string, "dxb8wlk!");

Adib.printf("The string is: %\n", string);

Aib.printf("\nstrpbrk returns a string: %\n",
rStrpbrk);

Cib.printf("\nstrcspn returns an integer: %\ n",
rStrcspn);

Aib.printf("string +strcspn = %\n", string +
rStrcspn); dib.getch();

/1 And results in the follow ng output:

/1 The string is:

/!l There's nore than one way to skin a cat.

/1 strpbrk returns a string: way to skin a cat.
/1 strcspn returns an integer: 22

/! string +strcspn = way to skin a cat

Clib.stricmp()

SYNTAX: Clib.stricmp(strl, str2)

309

WHERE:!

RETURN:

DESCRIPTION:

SEE!

strl - first string to compare.
str2 - second string to compare

0 if strlislessthan str2

0 if strlisthe sameasstr2

0 if strlisgreater than str2

ThIS method does a case- insensitive comparison of the
characters of strl with str2 until thereis amismatch or a
terminating null byte is reached.

Clib.stremp(), Clib.strempi(), ==, ===

N

\%

Clib.strlen()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Clib.strlen(str)
str - string to find length of .

number - the number of charactersin str, not including the
terminating nul | character.

This method returns the length of parameter str. The length
property of JavaScript stringsis similar. The difference between
Clib.strlen(str) andstr.lengthisthatstr.|ength
countsnul | characters as part of a string, whereas
dib.strlen() considersthem to be markersindicating the
end of the string and does not include them or any characters
which follow them as part of a string.

The return is the number of characters, bytes, in str, starting from
the character at str[0] and ending before the terminating null-
byte.

String length

Clib.strlwr()

SYNTAX:

WHERE!

Clib.striwr(str)
str - string in which to change case of characters to lowercase.

310

RETURN:

DESCRIPTION:

SEE!

string - the value of str after conversion of case.

This method converts all uppercase lettersin str to lowercase,
starting at str[0] and ending before the terminating null byte. The
return isthe value of str, that is, avariable pointing to the start of
str at str[0].

Clib.strupr(), String toL owerCase()

Clib.strncat()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.strncat(dstStr, srcStr, maxLen)

dstStr - destination string to which to add srcStr and to hold the
final result.

srcStr - source string to append to dstStr.
maxLen - maximum number of characters to append from srcStr.

string - the value of the destination string after the source string
characters have been appended.

This method appends up to maxLen bytes of srcStr onto the end
of dstStr. Characters following a null- byte in srcStr are not
copied. The dstStr array is made big enough to hold:

Cib.mn(dib.strlen(srcStr), maxLen)

characters and aterminating nul | character. The final value of
dstStr is returned.

Clib.streat()

Clib.strncmp()

SYNTAX:

WHERE!

RETURN:

Clib.strncmp(strl, str2, maxLen)

strl - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.

number - negative, zero, or positive according to the following

311

DESCRIPTION:

SEE!

rules:

N

0 if strlislessthan str2

0 if strlisthesameasstr2

0 if strlisgreater than str2

ThIS method compares up to maxLen bytes of strl against str2
until there is a mismatch or reach the terminating nul | byte. The
comparison is case-sensitive. The comparison ends when
maxL en bytes have been compared or when aterminating nul |
byte has been compared, whichever comes first.

Clib.strncmpi(), Clib.strnicmp(), ==, ===

\%

Clib.strncmpi()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Clib.strncmpi(strd, str2, maxLen)

strl - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.

number - negative, zero, or positive according to the following
rules:

N

0 if strlislessthan str2

0 if strlisthesameasstr2

0 if strlisgreater than str2

ThIS method compares up to maxLen bytes of strl against str2
until there is a mismatch or reach the terminating nul | byte. The
comparison is case-insensitive. The comparison ends when
maxL en bytes have been compared or when aterminating nul |
byte has been compared, whichever comes first.

Clib.strncmp(), Clib.strnicmp(), ==, ===

\%

Clib.strncpy()

SYNTAX:

WHERE:!

Clib.strncpy(dstStr, srcStr, maxLen)
dstStr - destination string to which the source string will be

312

RETURN:

DESCRIPTION:

SEE!

copied.

srcStr - source string to copy to destination string.
maxLen - maximum number of characters to copy.
string - the value of dstStr after the copy process.

This method copies:
Cib.mn(dib.strlen(srcStr)+1, MaxLen)

characters from srcStr to dstStr. If dstStr is not aready defined
then this method definesit as a string. The destination string is
padded with nul | characters, if maxLen is greater than the
length of srcStr, and anul | character is appended to dstStr if
maxL en characters are copied. It is safe to copy from one part of
a string to another part of the same string. Returns the value of
dstStr; that is, a variable into the destination array based at
dstStr[0].

Clib.strepy()

Clib.strnicmp()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

Clib.strnicmp(strd, str2, maxLen)

strl - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.

number - negative, zero, or positive according to the following
rules:

0 if strlislessthan str2

0 if strlisthesameasstr2

0 if strlisgreater than str2

ThIS method compares up to maxLen bytes of strl against str2
until there is a mismatch or reach the terminating nul | byte. The
comparison is case-insensitive. The comparison ends when
maxL en bytes have been compared or when aterminating nul |
byte has been compared, whichever comesfirst.

N

\%

313

SEE!

Clib.strncmp(), Clib.strnempi(), ==, ===

Clib.strpbrk()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

Clib.strpbrk(str, chrSet)
str - string to be searched.
chrSet - set of characters to search for.

string - beginning with the character in chrSet that was found,
elsenul | .

This method searches str for any of the characters in chrSet, and
returns the string based at the found character. Returns nul | if
no character from chrSet is found.

Clib.strcspn() returnsanumber and d i b. strpbrk()
returns a string.

Clib.strcspn()

/1l See dib.strcspn() for an exanple
/1 using this function.

Clib.strrchr()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

Clib.strrchr(str, chr)
str - string to search.
chr - character to search for.

string - beginning with the first character found from the right,
elsenul | .

This method searches a string for the last occurrence of chr. The
search isin the reverse direction, from the right, for chrina
string. The method returns a variable indicating the last
occurrence of chr in astring, elseit returnsnul | if chr isnot
found in str.

Clib.strchr()

/1 The foll ow ng code:

314

var str = "l can't stand soggy cereal ."
var substr = dib.strrchr(str, 's');
Cib.printf("str = %\n", str);
Screen.writeln("substr =" + substr);

/! Results in the follow ng output.
/1 str =1 can't stand soggy cereal.
/! substr = soggy cereal.

Clib.strspn()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.strspn(str, chrSet)
str - string to be searched.
chrSet - set of characters to search for.

number - the offset or index into str of the first character that is
not in chrSet.

This method searches a string for any characters that are not in
chrSet, and returns the offset of the first instance of such a
character. If all charactersin str are also in chrSet, the return is
the length of string.

Clib.strcspn()

Clib.strstr()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

Clib.strstr(srcStr, findStr)
srcStr - astring to search.
findStr - astring to find.

string - beginning in srcStr with the first character in findStr that
was found, elsenul | .

This method searches srcStr, starting at srcStr[0], for the first
occurrence of findStr. The search is case-sensitive. The method
returns a variable indicating the beginning of the first occurrence
of findStr in sreStr, elseit returnsnul | if findStr is not found in
srcStr.

Clib.strchr(), Clib.strstri()

315

EXAMPLE!

/1 The follow ng code fragment:

cfunction main()
{
var Phrase = "To be or not to be? Beep beep!";
do
{ .
Screen. witel n(Phrase);
Phrase = dib.strstr(Phrase + 1, "be");
} while (Phrase !'= null);

/1 results in the follow ng output.
/1 To be or not to be? Beep beep!
/1 be or not to be? Beep beep!

/'l be? Beep beep!

/1 beep!

Clib.strstri()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.strstri(srcStr, findStr)
srcStr - astring to search.
findStr - astring to find.

string - beginning in srcStr with the first character in findStr that
was found, elsenul | .

This method searches srcStr, starting at srcStr[0], for the first
occurrence of findStr. The search is case-insensitive. The method
returns a variable indicating the beginning of the first occurrence
of findStr in sreStr, elseit returnsnul | if findStr is not found in
srcStr.

Clib.strstr()

Clib.strtod()

SYNTAX:

WHERE:!

RETURN:

Clib.strtod(str[, endStr])
str - string to be converted to a number.

endStr - the part of str after the characters that were actually
parsed.

number - the first part of str converted to a double precision

316

DESCRIPTION:

SEE!

EXAMPLE!

number.

This method converts the string str into a number and optionally
returns a partial string that begins beyond the characters parsed
by this method. White space characters are skipped at the start of
str, and the string characters are converted to afloat aslong as
they match the following format.

[sign][digits][.][digits][format[sign] digits]

The parameter endStr is not compared against nul | , asitisin
standard C implementations, and is optional. If the parameter
endStr is supplied, then endStr is set to a string beginning at the
first character that was not used in converting.

Thereturn isthe first part of str, converted to a floating-point
num ber.

Clib.strtok()

/1l The follow ng strings, are exanples
/1 that can be converted.
/o1

/["1.8"

[/l "-400. 456e- 20"
/1 ".67e50"

/["2.5E+50"

Clib.strtok()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

Clib.strtok(srcStr, delimiterStr)
srcStr - source string consisting of delimited tokens.
delimiterStr - string of delimiter characters that separate tokens.

string - atoken, a substring, in srcStr, else nul | if thereisnot a
token or if there are no more tokens.

This method is unusual. The parameter srcStr is a string that
consists of text tokens, substrings, separated by delimiter
characters found in delimiterStr. The parameter srcStr may be
altered during the first and subsequent callsto C i b. st rt ok() .

Onthefirstcall tod i b. strtok(), srcStr points to the string
to tokenize and delimiterStr is a set of characters which are used

317

to separate tokens in the source string. The first call, such as:
token = dib.strtok(srcStr, delimterStr)

returns a variable pointing to the srcStr array and based at the
first character of the first token in srcStr. On subsequent calls,
such as

token = dib.strtok(null, delimterStr)

thefirst argument isnull and d i b. st rt ok() will continue
through srcStr returning subsequent tokens.

Theinitial variable receiving tokens must remain valid
throughout following callsthat use nul | . If the variableis
changed in any way, asubsequent use of d i b. strtok() must
first use the syntax form in which the new string, not nul I , is
passed as afirst parameter.

This method returns nul | if there are no more tokens; otherwise
returns srcStr array variable based at the next token in srcStr.

SEE: Clib.strstr()
EXAMPLE: /1 The follow ng code:
var source =
" Little John, ,, Eats ?? crackers;;;!
var token = dib.strtok(source,", ");
whil e(null != token)
Cib. puts(token);
token = dib.strtok(null,";?, ");
}
/1 produces the following list of tokens.
/1 Little
/1 John
/1l Eats
/'l crackers
/1!
Clib.strtol()
SYNTAX: Clib.strtol (str[, endStr[, radix]])

318

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

str - string to be converted to a number.

endStr - the part of str after the characters that were actually
parsed.

radix - the number base for the conversion.
number - the first part of str converted to along integer number.

This method converts the string str into a number and optionally
returns a string starting beyond the characters parsed in the
method. White space characters are skipped at the start of str,
and the string characters are converted to an integer aslong as
they match the following format.

[sign][O][x][digits]

The parameter endStr is not compared against nul | , asitisin
standard C implementations and is optional. The parameter radix
specifies the base for conversion. For example, base 10 would
use decimal digits zero through nine, 0 - 9, and base 16 would
use hexadecimal digits zero through nine, O - 9, uppercase letters
"A" through "F", A - F, or lowercase letters "a" through "f", a - f.
If radix is zero or is not supplied, then the radix is automatically
determined based on the first characters of str.

If the parameter endStr is supplied, then endStr is set to a string
beginning at the first character that was not used in converting.
Thereturn isthe first part of str, converted to a floating-point
number.

Clib.strtod()

/'l As exanples, the follow ng strings//
/ can be converted.
/o

/["1zt
/[l "-400"
/1 " OxFACE"

Clib.strupr()

SYNTAX:

WHERE:!

Clib.striwr(str)
str - string in which to change case of characters to uppercase.

319

RETURN: string - the value of str after conversion of case.

DESCRIPTION: This method converts all lowercase |ettersin str to uppercase,
starting at str[0] and ending before the terminating null byte. The
return is the value of str, that is, a variable pointing to the start of

str at str[0].
SEE: Clib.strlwr(), String toUpperCas()
Clib.toascii()
SYNTAX: Clib.toascii(chr)
WHERE:! chr - character to be converted.

RETURN:

DESCRIPTION: This method trand ates chr to ASCII format, to seven bits. The
trandation is done by clearing all but the lowest 7 bits. The
return is chr converted to ASCII. Remember that JavaScript has
no true character type, thus, this method considers asingle
character string to be a chr.

SEE!

EXAMPLE!

Clib.tolower()

SYNTAX: Clib.tolower(chr)

WHERE! chr - character to be converted.

RETURN:

DESCRIPTION: If chr is an uppercase alphabetic character, then this method

returns chr converted to lowercase alphabetic, otherwise it
returns chr unaltered. Remember that JavaScript has no true
character type, thus, this method considers a single character
string to be achr.

SEE!

EXAMPLE!

320

Clib.toupper()

SYNTAX: Clib.toupper(chr)

WHERE! chr - character to be converted.

RETURN:

DESCRIPTION: If chr isalowercase aphabetic character, then this method

returns chr converted to uppercase alphabetic, otherwise it
returns chr unaltered. Remember that JavaScript has no true
character type, thus, this method considers a single character
string to be a chr.

SEE!

EXAMPLE!

Clib.vsprintf()

SYNTAX: Clib.vsprintf(str, formatString, valist)
WHERE! str - to hold the formatted output.
formatString - string that specifies the final format.

valist - avariablelist of arguments to be used according to
formatString.

RETURN: number - characters written to str, not including the terminating
nul | character, on success, else EOF on error.

DESCRIPTION: This method puts formatted output into str, a string, using a
variable number of arguments, specified by valist. The parameter
formatString specifies the format of the data put into the string.
Thismethod issimilartod i b. spri nt f () except that it takes
avariable argu ment list.

The method returns the number of characters written to buffer,
not including the terminating null byte, on success, else EOF on
error.

SEE: Clib.sprintf(), Clib.va_start()

321

Memory manipulation
Clib.memchr()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Clib.memchr(buf, chr[, maxLen])

buf - buffer or byte array to search.

chr - character to search for.

maxLen - maximum number of bytes to search.

buffer - beginning in array with the character found, elsenul | if
not found.

This method searches a buffer, a byte array, or aBlob, and
returns a variable indicating or beginning with the first
occurrence of chr. If the parameter maxLen is not specified, the
method searches the entire array from element zero.

Clib.strchr()

Clib.memcmp()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

Clib.memcmp(bufl, buf2[, maxLen])

bufl - first buffer or byte array to use in comparison.
buf2 - second buffer or byte array to use in comparison.
maxLen - maximum number of characters to compare.

number - negative, zero, or positive according to the following
rules:

N

0 if strlislessthan str2

0 if strlisthesameasstr2

0 if strlisgreater than str2

ThIS method compares the first maxLen bytes of buf1 and buf2.
If the parameter maxLen is not specified, then maxLen isthe
smaller of the lengths of buf1 and buf2. If maxLen is specified
and one of the arrays is shorter than the specified length, then
ScriptEase treats length of the shorter array as being maxLen.

\%

The example function checks to see if the shorter string is the

322

same as the beginning of the longer string. This method differs
fromd i b. strcnp() inthat thisfunction returns true if passed
the strings "foo" and “foobar", since it only compares characters
up to the end of the shorter string.

SEE: Clib.stremp()
EXAMPLE: function MyStrCmp(stringl, string2)
{

var len = Cib.mn(stringl.length,
string2.1ength);
return(dib.mencnp(stringl, string2, len) == 0);
}

Clib.memcpy()

SYNTAX: Clib.memcpy(dstBuf, srcBuf[, maxLen])
WHERE! dstBuf - destination buffer to which the source buffer will be
copied.

srcBuf - source buffer to copy to destination buffer.
maxLen - maximum number of characters to copy.
RETURN: buffer - the final destination buffer.

DESCRIPTION: This method copies the number of bytes specified by maxLen
from srcBuf to dstBuf. If dstBuf is not already defined, theniit is
defined as a buffer. If the parameter maxLen is not supplied, then
all of the bytesin srcBuf are copied to dstBuf.

ScriptEase insures protection from data overwrite, so in
ScriptEasethe d i b. mencpy() method isthe same as
dib. menmove() .

SEE: Clib.strncpy(), Clib.memmove()

Clib.memmove()

SYNTAX: Clib.memmove(dstBuf, srcBuf[, maxLen])
WHERE: dstBuf - destination buffer to which the source buffer will be
copied.

323

RETURN:

DESCRIPTION:

SEE!

srcBuf - source buffer to copy to destination buffer.
maxLen - maximum number of characters to copy.
buffer - the final destination buffer.

This method copies the number of bytes specified by maxLen
from srcBuf to dstBuf. If dstBuf is not already defined, theniit is
defined as a buffer. If the parameter maxLen is not supplied, then
all of the bytesin srcBuf are copied to dstBuf.

ScriptEase insures protection from data overwrite, so in
ScriptBEasethe d i b. mencpy() method isthe same as
dib. menmove() .

Clib.strncpy(), Clib.memcpy()

Clib.memset()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.memset(buf, chr[, maxLen])

buf - abyte array or buffer.

chr - character to set in buf.

maxLen - number of bytesin buf to set to chr.

buffer - buf with the appropriate number of bytes set to chr.

This method sets the first number, as specified by maxLen, of
bytes of buf to character chr. If buf is not already defined, then it
is defined as a buffer of size maxLen. If the length of buf isless
than the number of bytes specified by maxLen, then buf is grown
to be big enough for maxLen bytes. If the parameter maxLen is
not supplied, then maxLen is the size of buf, starting at index O.

Clib.memchr()

Math

Clib.abs()

SYNTAX:

Clib.abs(x)

324

WHERE! X - number to work with.

RETURN: number - absolute value of x.

DESCRIPTION: This method returns the absolute, non-negative, value of x.

SEE: Clib.labs(), Clib.fabs()

Clib.acos()

SYNTAX: Clib.acos(x)

WHERE: X - number to work with.

RETURN: number - arc cosine of x.

DESCRIPTION: This method returns the arc cosine of x in the range of 0 to pi
radians.

SEE: Clib.cos()

Clib.asin()

SYNTAX: Clib.asin(x)

WHERE:! X - number to work with.

RETURN: number - arc sine of x.

DESCRIPTION: This method returns the arc sine of x in the range of -pi/2to pi/2
radians.

SEE: Clib.sin()

Clib.atan()

SYNTAX: Clib.atan(x)

WHERE:! X - number to work with.

RETURN: number - arc tangent of x.

DESCRIPTION: This method returns the arc tangent of x in the range of -pi/2 to

pi/2 radians.

325

SEE: Clib.tan()

Clib.atan2()

SYNTAX: Clib.atan2(x, y)

WHERE:! X - number to work with, numerator.
y - number to work with, denominator.

RETURN: number - arc tangent of x/y.

DESCRIPTION: This method returns the arc tangent of x/y, in the range of -pi to
+pi radians.

SEE: Clib.atan()

Clib.atof()

SYNTAX: Clib.atof (str)

WHERE! str - string to convert to a number.

RETURN: number - str converted.

DESCRIPTION: This method converts the ASCII string str to a floating-point
value, if str can be converted.

SEE: Clbib.atol()

Clib.atoi()

SYNTAX: Clib.atoi(str)

WHERE! str - string to convert to a number.

RETURN: number - str converted.

DESCRIPTION: This method converts the ASCII string str to an integer, if str can
be converted.

SEE: Clib.atol()

326

Clib.atol()

SYNTAX: Clib.atol(str)
WHERE! str - string to convert to a number.
RETURN: number - str converted.

DESCRIPTION: This method converts the ASCII string str to along integer, if str
can be converted. This method isthe sameasthed i b. at oi ()
method, since longs and integers are the same in ScriptEase.

SEE: Clib.atoi()

Clib.ceil()

SYNTAX: Clib.ceil(x)

WHERE! X - number to work with.

RETURN: number - smallest integer greater than Xx.

DESCRIPTION: This method returns the smallest integer value not less than x.
SEE: Clib.floor()

Clib.cos|()

SYNTAX: Clib.cos(x)

WHERE! X - number to work with.
RETURN: number - cosine of x.

DESCRIPTION: This method returns the cosine of x in radians.

SEE: Clib.acos(), Clib.cosh()
Clib.cosh()

SYNTAX: Clib.cosh(x)

WHERE! X - number to work with.

327

RETURN: number - hyperbolic cosine of x.
DESCRIPTION: This method returns the hyperbolic cosine of x.
SEE: Clib.cos()

Clib.div()
SYNTAX: Clib.div(x, y)
WHERE: X - number to work with, numerator.

y - number to work with, denominator.

RETURN: object - astructure with the results of division in the following
two properties:

. quot quoti ent
.rem r emai nder

DESCRIPTION: This method performs integer division and returns a quotient and
remainder in an object, a structure. Since integers and long
integers are the same in ScriptEase, d i b. di v() isthesameas
Cib.1div().Thevauereturned isastructure with two
elements or properties.

SEE: Clib.Idiv()
Clib.exp()

SYNTAX: Clib.exp(x)

WHERE! X - number to work with.
RETURN: X - exponential value of x.

DESCRIPTION: This method returns the exponential value of x.

SEE: Clib.frexp(), Clib.ldexp(), Clib.pow()
Clib.fabs()
SYNTAX: Clib.fabs(x)

328

WHERE! X - number to work with.

RETURN: number - absolute value of x, afloat.

DESCRIPTION: This method returns the absolute, non-negative, value of afloat
X.

SEE: Clib.abs()

Clib.floor()

SYNTAX: Clib.floor(x)

WHERE:! X - number to work with.

RETURN: number - largest integer not greater than x.

DESCRIPTION: This method returns the largest integer value not greater than x.

SEE: Clib.ceil()

Clib.fmod()

SYNTAX: Clib.fmod(x, y)

WHERE:! X - number to work with, numerator.
y - number to work with, denominator.

RETURN: This method returns the remainder of x/y.

DESCRIPTION: This method returns the remainder of x/y, that is, the modulus of
two floats..

SEE! Clib.modf(), Clib.div()

EXAMPLE:

Clib.frexp()

SYNTAX: Clib.frexp(x, exp)

WHERE! X - number to work with.

exp - exponent used with a mantissa.

329

RETURN:

number - mantissa with and absolute value between 0.5 and 1.0.
If xisO, return 0.

DESCRIPTION: This method breaks x into a normalized mantissa between 0.5
and 1.0 and calculates an integer exponent of 2 such that x ==
mantissa * 2 A exponent . Thereturnisnormalized
mantissa between 0.5 and 1.0, or 0. The exponent used isin Xx.

SEE! Clib.exp(), Clib.ldexp(), Clib.pow()

Clib.labs()

SYNTAX: Clib.labs(x)

WHERE:! X - number to work with.

RETURN: number - absolute value of along integer.

DESCRIPTION: This method returns the absolute, non-negative, value of an
integer.

Since integers and long integers are the same in ScriptEase,
Clib.labs() isthesameasd i b. abs().

SEE! Clib.abs(), Clib.fabs()

Clib.ldexp()

SYNTAX: Clib.ldexp(man, exp)

WHERE:! man - mantissa to work with
exp - exponent used with a mantissa.

RETURN: number - mantissa* 2 " exp.

DESCRIPTION: This method istheinverseof C i b. f rexp() and calculatesa

SEE!

floating point number using the following equation:
mantissa* 2 raised to the power of exp.
Clib.frexp(), Clib.exp()

330

Clib.Idiv()

SYNTAX: Clib.Idiv(x, y)
WHERE: X - number to work with, numerator.
y - number to work with, denominator.

RETURN: object - a structure with the results of division in the following
two properties:
. quot quoti ent
.rem r emai nder
DESCRIPTION: This method performs integer division and returns a quotient and
remainder in an object, a structure. Since integers and long
integers are the same in ScriptEase, d i b. di v() isthe sameas
Clib.1div().Thevauereturned isastructure with two
elements or properties.

SEE: Clib.div()

Clib.log()

SYNTAX: Clib.log(x)

WHERE:! X - number to work with.
RETURN: number - natural logarithm of x.

DESCRIPTION: This method returns the natural logarithm of x.

SEE: Clib.exp(), Clib.log10(), Clib.pow()
Clib.log10()

SYNTAX: Clib.log10(x)

WHERE! X - number to work with.

RETURN: number - base ten logarithm of x.

DESCRIPTION: This method returns the base ten logarithm of x.
SEE! Clib.log()

331

Clib.max()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

Clib.max(x[, ...])
X - number or list of numbersto work with.
number - maximum number passed.

This method is similar to the standard C macro, max(), with the
differences that only one variable must be supplied and any
number of other variables may be supplied for the comparison.

Clib.min()

Clib.min()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.min(x[, ...])
X - number or list of numbersto work with.
number - minimum number passed.

This method is similar to the standard C macro, min(), with the
differences that only one variable must be supplied and any
number of other vari ables may be supplied for comparison.

Clib.max()

Clib.modf()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Clib.modf(x, i)

X - float to work with.

i - variable to receive the integral part of x.
number - signed fractional part of x.

This method splits a floating point number x into integer and
fractional parts, where the integer and frac tion both have the
same sign as X. The method sets the parameter i to the integer
part of x and returns the fractional part of x.

Clib.fmod(), Clib.Idiv()

332

Clib.pow()

SYNTAX:

Clib.pow(x, exp)

WHERE! X - number to raise to a power.
exp - exponent of x, power to which to raise x.

RETURN: number - x * exp.

DESCRIPTION: This method returns x to the power of y.

SEE: Clib.exp()

Clib.rand()

SYNTAX: Clib.rand()

RETURN: number - random number between 0 and RAND MAX, inclusive.

DESCRIPTION: This method returns pseudo-random number between 0 and
RAND_MAX, inclusive. The sequence of pseudo-random numbers
is affected by theinitial generator seed and by earlier callsto
Clib.rand().Seed ib. srand() forinformation about the
initial generator seed.

SEE! Clib.srand(), RAND_MAX

Clib.sin()

SYNTAX: Clib.sin(x)

WHERE:! X - number to work with.

RETURN: number - sine of x.

DESCRIPTION: This method returns the sine of x in radians.

SEE: Clib.asin(), Clib.sinh()

Clib.sinh()

333

SYNTAX: Clib.sinh(x)

WHERE! X - number to work with.

RETURN: number - hyperbolic sine of x.

DESCRIPTION: This method returns the hyperbolic sine of the float x.
SEE: Clib.sin()

Clib.sqgrt()

SYNTAX: Clib.sgrt(x)

WHERE! X - number to work with.
RETURN: number - square root of x.

DESCRIPTION: This method returns the square root of x.

SEE! Clib.exp(), Clib.pow()

Clib.srand()

SYNTAX: Clib.srand(seed)

WHERE! seed - number with which to seed a random number generator.
RETURN: void.

DESCRIPTION: This method initializes arandom number generator using the
parameter seed. If seed is not supplied, then arandom seed is
generated in an a manner that is specific to different operating
systems. Use this method first when generating a sequence of
random numbers.

SEE: Clib.rand()
Clib.tan()

SYNTAX: Clib.tan(x)

WHERE! X - number to work with.
RETURN: number - tangent of x.

334

DESCRIPTION: This method returns the tangent of x in radians.

SEE: Clib.atan(), Clib.tanh()

Clib.tanh()

SYNTAX: Clib.tanh(x)

WHERE:! X - number to work with.

RETURN: number - hyperbolic tangent of x.

DESCRIPTION: This method calculates and returns the hyperbolic tangent of the

SEE!

parameter x, afloat.
Clib.tan()

Variable argument lists
Clib.va_arg()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Clib.va_arg([valist[, offset])

Clib.va_arg(offset)

Clib.va_arg()

valist - avariablelist of arguments passed to a function.
offset - index of a particular argument.

value - parameter being retrieved. If no parameters, the number
of parameters.

The method d i b. va_ar g() provides an aternate way to
retrieve a function's parameters. It's most often used when the
number of parameters passed to the function is not constant.
This method covers the same territory as the

Functi on. ar gunent s[] property and is provided for those
who prefer C functions for handling variable arguments.

When called with no parameters, it returns the number of
parameters passed to the current function. If an offset is supplied,
it returns the input variable at index: offset. A i b. va_ar g(0) is

335

the first parameter passed, C i b. va_ar g(1) the second, etc. It
isafatal error to retrieve an argument offset beyond the number
of parameters in the function or the valist.

The vaist form, with an optional offset, uses avalist variable
that has been previoudly initialized withd i b. va_start ().
Eachcaltod i b.va_arg(valist) returnsthe next parameter
passed to afunction. If an offset is passed in the variable at that
offset from the original starting place of the valist will be
returned.

SEE: Clib.va_start(), Clib.va_end(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()
EXAMPLE: /1 The follow ng script:
function main()
lips(0, 1, 2, 3, 4)
}
l'ips()
{
Cib.va_start(valist)
Cib.printf("va_arg(0) = %\n", va_arg(0));
Cib.printf("va_arg(l) = %\n", va_arg(l));
Aib.printf("va_arg(valist) = %\ n",
va_arg(valist));
Aib.printf("va_arg(valist, 2) = %\n",
va_arg(valist, 2));
Adib.printf("va_arg(valist, 2) = %\n",
va_arg(valist, 2));
Cib.printf("va_arg(valist) = %\n",
va_arg(valist));
Cib.getch()
}
/'l produces the follow ng output:
/l va_arg(0) =0
/1l wva_arg(l) =1
/1l va_arg(valist) =0
/'l va_arg(valist, 2) =3
/'l va_arg(valist, 2) =3
/1 wva_ arg(valist) =1
Clib.va_end()

336

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Clib.va_end(valist)
valist - avariablelist of arguments passed to a function.
void.

Terminates a variable arguments list. This method makes valist
invalid. Many implementations of C require the calling of this
function. ScriptEase does not. But, since people may expect it,
ScriptEase providesiit.

Clib.va_arg(), Clib.va_start(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

Clib.va_start()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Clib.va_start(valist[, inputVar])
valist - avariablelist of arguments passed to a function.

number - callsto Clib.va_arg(), that is, the number of variables
invalist.

inputVar -

This method initializes valist for a function with avariable
number of arguments. After the first call to this function,
subsequent callsto Clib.va_arg() may be used to get the rest of
the parameters in sequence.

The parameter inputVar must be one of the parameters defined
on the function line of afunction. The first argument returned by
thefirstcall tod i b. va_ar g() will be the variable passed after
inputVar. If inputVar is not provided, then the first parameter
passed to a function will be the first one returned by
Aib.va_arg(valist).

Clib.va_end(), Clib.va_start(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

/'l The foll ow ng exanpl e uses and accepts
/1 a variable nunber of strings and
/'l concatenates themall together.

function Miulti Strcat(Result, Initial String);

337

/1 Append any nunber of strings to InitialString.
/] e.g., MiltiStrcat(Result,
[l "C\\","FOO, "L, " OVDY)

Cib.strcpy(Result,""); // initialize result;
var Count = Clib.va_start(ArgList, Initial String);
for (var i = 0; i < Count; i++)

Resul t, va_arg(ArgList));

Clib.vfprintf()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Clib.vfprintf(filePointer, formatString[, valist])
filePointer - pointer to file to use.
formatString - string that specifies the fina format.

valist - avariablelist of arguments to be formatted according to
formatString..

number - characters written, else a negative number on error.

This method formats a string with a variable number of
arguments and prints it to the file specified by filePointer. It
returns the number of characters written, or a negative number if
there was an output error.

Clib.fprintf(), Clib.sprintf()

Clib.vfscanf()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

Clib.vfscanf(filePointer, formatString[, valist])
filePointer - pointer to file to use.
formatString - string that specifies the final format.

valist - avariablelist of variablesto hold data input according to
formatString.

number - input fields successfully scanned, converted, and
stored, €lse ECF.

Thismethod issimilar tod i b. f scanf () except that it takesa

338

SEE!

EXAMPLE!

variable argument list. Seed i b. f scanf () for more details.
Clib.va_arg(), Clib.fscanf()

Clib.vsscanf()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Clib.vsscanf(str, formatString, valist)

str - string holding the data to read into variables according to
formatString.

formatString - specifies how to read and store data in variables.

valist - avariablelist of variables to hold data according to
formatString.

number - input fields successfully scanned, converted, and
stored, €lse ECF.

This method issimilar to d i b. sscanf () except that it takesa
variable argument list. The parameters following the format
string will be assigned values according to the specifications of
the format string.

The function returns the number of input items assigned. This
number may be fewer than the number of parameters requested if
there was a matching failure.

Clib.va_arg(), Clib.sscanf()

339

Unix Object

platform Unix GS, all versions of SE

Unix object static methods

Unix.fork()
SYNTAX: Unix.fork()
RETURN: number - O or achild processid. O is returned to the child

process, the id of the child processis returned to the parent.

DESCRIPTION: A call to this function creates two duplicate processes. The
processes are exact copies of the currently running process, so
both pick up execution from the next statement. Because these
processes are duplicates, they share identical all resources the
origina one had at the time of fork()ing, but not any allocated
later. For instance, any open file handles or sockets are shared. If
both processes write to them, the output will be intermixed since
each write from either process advances the file pointer for both.
Uni x. wai t () alowsyou to wait for completion of a Child.
Using Uni x. wai t () or Uni x. wai t pi d() isimportant to
prevent annoying zombie processes from building up.

SEE: Unix.kill(), Unix.wait(), Unix.waitpid()

EXAMPLE: /1 Here is a sinple exanple:

function main()

{
var id = Unix.fork();
if(id==0)
Cib.printf("Child herel\n");
Aib.exit(0);
}
el se
Cib.printf("started child process %\ n", id);
}
}

341

Unix.kill()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

Unix.kill(pid, signal)

pid - process to kill.

signal - the signal to send the process.
number - O for success, -1 for error.

Thisissimply adirect wrapper for the Unix kill command. To
get documentation on it for your particular Unix system, just
type 'man 2 kill'

Unix.fork()

/1 Typically you would use this to kill a child,
/1 for instance:

if(var id = Unix.fork())

whi | e(1)
Cib.printf("l aman annoying child.\n");
}
el se
{
/* child would be too annoying, so kill it */
Uni x. kill(id,9); /19 is SIXKILL
Uni x. wait (var status); //wait until child is dead
Aib.printf(
"l hope DSS doesn't here about this...\n");
}

Unix.setgid()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

Unix.setgid(id)
id - group id to set.
number - O for success, -1 for error.

Changesthe group ID to the given ID, if allowed. | used it in the
mini web-server to make sure not running as root (it changesto

nobody.)
Unix.setuid()

342

Unix.setsid()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Unix.setsid()
number - O for success, -1 for error.

Creates a new session with no terminal, must useful for having
commands that when run immediately have the terminal prompt
reappear, but continue to run in the background.

Unix.fork()

/1 A typical daenmon programhas a line like this:

#if defined(_UNIX)
Uni x. setsid(); if(Unix.fork()) dib.exit(0);
#endi f

/'l which detaches the programfromthe term nal and
/1 continues. Notice, this for |line neans that

/1 only the child is running. Because the parent

/'l has exited and the child does not have the

/1 original file handles, the shell thinks

/! the programis done and goes back to the pronpt.

Unix.setuid()

SYNTAX: Unix.setuid(id)

WHERE:! id - user id to set.

RETURN: number - O for success, -1 for error.

DESCRIPTION: Changes the user ID to the given ID, if alowed. | used it in the
mini web-server to make sure not running as root (it changesto
nobody.)

SEE: Unix.setgid()

Unix.wait()

SYNTAX: Unix.wait(status)

WHERE! status - status of the process.

343

RETURN: number - processid of the exiting child, else -1 for error.

DESCRIPTION: A call towait() will suspend execution until a child process
terminates, then return the id of the particular child that exited.
The status parameter is afilled in with the status code for the
process (thisisthe raw data exactly as returned by the underlying
C wait() call provided for Unix gurus who find this information
useful.) Any resources used by the Child are cleaned up.

SEE: Unix.kill(), Unix.waitpid()

EXAMPLE: /'l Here is a sinple exanple:

function main()

{
var id = Unix.fork();

if(id==0)

Cib.printf("Child herel\n");
Cib.exit(0);

}

el se

{
Cib.printf("started child process %\n", id);
Clib.assert(Unix.wait(var dontcare)==id);
Cib.printf("child process is dead neat.\n");

}

}

Unix.waitpid()

SYNTAX: Unix.waitpid(pid, status, flags)
WHERE: pid - child process interested in or -1 for any.
status - status of the process.
flags - WNOHANG or 0.
RETURN: number - process id of the exiting child, else -1 for error.

DESCRIPTION: Very similar to Uni x. wai t (), except you can specify which
child process you care about as well as some flags. The only flag
currently given a name is WNOHANG, which means that if no
child is ready to exit, the call returnsimmediately. Unix gurus
who need the full functionality can put the other possible flag

344

values here.
SEE: Unix.kill(), Unix.waitpid()

EXAMPLE: /1 This function is nost useful in the nain | oop
/1 of a server daenon
/'l (see inn.jse, unix/daenon.jse sanples.)
/! By calling it each time through the |oop such as:

Uni x. wai t pid(-1, var status, WNOHANG);
/1 Child processes will get cleaned up and

/'l zonbi e processes will not stick around
/! wasting resources.

345

Boolean Object

Boolean object instance methods
Boolean()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

new Boolean(value)
value - avalue to be converted to a boolean.

object - a Boolean object with the parameter value converted to a
boolean value.

This function creates a boolean object that has the parameter
value converted to a boolean value. If the function is called
without the new constructor, then the return is smply the
parameter value converted to a boolean.

Boolean.toString()

var nane = "Joe";
var b = new Bool ean(name == "Joe");
/| The Bool ean object "b" is now true.

Boolean.toString()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

boolean.toString()

string - "true” or "false" according to the value of the Boolean
object.

Thist oSt ri ng() returns a string corresponding to the value of
a Boolean object or primitive data type.

Boolean.toString(), boolean data type

var nane = "Joe";

var bb = fal se;
Screen.witeln(b.toString()); /1 "true"
Screen.witeln(bb.toString()); // "false"

347

Date Object

ScriptEase shines in its ability to work with dates and provides two
different systems for working with them. One is the standard Date object
of JavaScript and the other is part of the Clib object which implements
powerful routines from C. Two methods, Dat e. f r onByst en() and

Dat e. t 0Syst en() , convert dates in the format of one system to the format
of the other. The standard JavaScript Date object is described in this
section.

To create a Date object which is set to the current date and time, use the
new operator, as you would with any object.
var currentDate = new Date();

There are several waysto create a Date object which is set to a date and time.
The following lines all demonstrate ways to get and set dates and times.

var aDate = new Date(mlliseconds);

var bDate = new Date(datestring);

var cDate = new Date(year, nonth, day);

var dDate = new Date(year, nonth, day, hours, mnutes, seconds);

The first syntax returns a date and time represented by the number of
milliseconds since midnight, January 1, 1970. This representation in milliseconds
isastandard way of representing dates and times that makes it easy to calculate
the amount of time between one date and another. Generally, you do not create
datesin thisway. Instead, you convert them to milliseconds format before doing
calculations.

The second syntax accepts a string representing a date and optional time. The
format of such adatestring is:

nonth day, year hours: m nutes: seconds

For example, the following string:
"Friday 13, 1995 13:13:15"

specifies the date, Friday 13, 1995, and the time, one thirteen and 15 seconds
p.m., which, expressed in 24 hour time, is 13:13 hours and 15 seconds. The time
specification is optiona and if included, the seconds specification is optional.

349

The third and fourth syntaxes are self- explanatory. All parameters passed to
them are integers.

year

If ayear isin the twentieth century, the 1900s, you need only supply the final
two digits. Otherwise four digits must be supplied.

month

A month is specified as a number from 0 to 11. January is 0, and December
is1l.

day

A day of the month is specified as a number from 1 to 31. Thefirst day of a
month is 1 and the last is 28, 29, 30, or 31.

hours

An hour is specified as a number from 0 to 23. Midnight is0, and 11 p.m. is
23.

minutes

A minute is specified as a number from 0 to 59. The first minute of an hour is
0, and the last is 59.

seconds

A second is specified as a number from 0 to 59. The first second of a minute
is0, and the last is 59.

For example, the following line of code:
var aDate = new Date(1492, 9, 12)

creates a Date object containing the date, October 12, 1492.

ScriptEase has arich and full set of methods to work with dates and times. A
programmer has a very complete set of tools to use when including date and time
routines in a script. The Clib object aso has methods for working with date and
times that extend the power of ScriptEase beyond standard JavaScript.

The following list of methods has brief descriptions of the methods of the Date
object. Instance methods are shown with a period, ".", in the SYNTAX line. A
specific instance of avariable should be put in front of the period to call a
method. For example, the Date object aDate was created above, and, to call the
get Dat e() method, the call would be: aDat e. get Dat e() . Static methods
have "Dat e. " at their beginnings since these methods are called with literal calls,
such as Dat e. par se() . These methods are part of the Date object itself instead
of instances of the Date object.

350

Date object instance methods
Date getDate()

SYNTAX: date.getDate()
RETURN: number - aday of amonth.

DESCRIPTION: This method returns the day of the month, as a number from 1 to
31, of aDate object. Thefirst day of amonthis1, and thelast is
28, 29, 30, or 31.

Date getDay()

SYNTAX: date.getDay()
RETURN: number - aday in aweek.

DESCRIPTION: This method returns the day of the week, as a number from O to
6, of aDate object. Sunday is 0, and Saturday is 6.

Date getFullYear()

SYNTAX: date.getFullY ear()
RETURN: number - four digit year.

DESCRIPTION: This method returns the year, as a number with four digits, of a
Date object.

Date getHours()

SYNTAX: date.getHours()
RETURN: number - an hour in aday.

DESCRIPTION: This method returns the hour, as a number from 0 to 23, of a
Date object. Midnight is0, and 11 p.m. is 23.

Date getMilliseconds()

351

SYNTAX:

RETURN:

DESCRIPTION:

date.getMilliseconds()
number - amillisecond in a second.

This method returns the millisecond, as a number from O to 999,
of aDate object. Thefirst millisecond in a second is 0, and the
last is 999.

Date getMinutes()

SYNTAX:

RETURN:

DESCRIPTION:

date.getMinutes()
number - aminute in an hour.

This method returns the minute, as a number from 0 to 59, of a
Date object. The first minute of an hour is 0, and the last is 59.

Date getMonth()

SYNTAX:

RETURN!

DESCRIPTION:

date.getMonth()
number - of amonth in ayear.

This method returns the month, as a number from 0to 11, of a
Date object. January is 0, and December is 11.

Date getSeconds()

SYNTAX:

RETURN:

DESCRIPTION:

date.getSeconds()
number - asecond in a minute.

This method returns the second, as number from 0 to 59, of a
Date object. The first second of aminute is 0, and the last is 59.

Date getTime()

SYNTAX:

RETURN:

DESCRIPTION:

date.getTime()
number - the milliseconds representation of a Date object.

Gets time information in the form of an integer representing the

352

number of seconds from midnight on January 1, 1970, GMT, to
the date and time specified by a Date object.

Date getTimezoneOffset()

SYNTAX:

RETURN!

DESCRIPTION:

date.getTimezoneOffset()
number - minutes.

This method returns the difference, in minutes, between
Greenwich Mean Time (GMT) and local time.

Date getUTCDate()

SYNTAX:

RETURN:

DESCRIPTION:

date.getUTCDate()
number - aday of a month.

This method returns the UTC day of the month, as a number
from 1to 31, of a Date object. Thefirst day of amonth is1, and
thelast is 28, 29, 30, or 31.

Date getUTCDay()

SYNTAX:

RETURN:

DESCRIPTION:

date.getUTCDay()
number - aday in aweek.

This method returns the day of the week, as a number from O to
6, of aDate object. Sunday is0, and Saturday is 6.

Date getUTCFullYear()

SYNTAX:

RETURN:

DESCRIPTION:

date.getUTCFullY ear()
number - four digit year.

This method returns the UTC year, as a number with four digits,
of aDate object.

353

Date getUTCHours()

SYNTAX: date.getUTCHours()
RETURN: number - an hour in aday.

DESCRIPTION: This method returns the UTC hour, as a number from 0 to 23, of
aDate object. Midnight is0, and 11 p.m. is 23.

Date getUTCMilliseconds|()

SYNTAX: date.getUTCMilliseconds()
RETURN: number - amillisecond in a second.

DESCRIPTION: This method returns the UTC millisecond, as a number from 0 to
999, of a Date object. The first millisecond in a second is 0, and
the last is 999.

Date getUTCMinutes()

SYNTAX: date.getUTCMinutes()
RETURN: number - aminute in an hour.

DESCRIPTION: This method returns the UTC minute, as a number from 0 to 59,
of aDate object. The first minute of an hour is 0, and the last is
50.

Date getUTCMonth()

SYNTAX: date.getUTCMonth()
RETURN: number - of amonth in ayear.
DESCRIPTION: number - of amonth in ayear.

Date getUTCSeconds()

SYNTAX: date.getUTCSeconds()

354

RETURN:

DESCRIPTION:

number - asecond in a minute.

This method returns the UTC second, as number from 0O to 59, of
a Date object. The first second of aminute is O, and the last is 59.

Date getYear()

SYNTAX:

RETURN!

DESCRIPTION:

date.getY ear()
number - two digit year.

This method returns the year, as a number with two digits, of a
Date object.

Date setDate()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

date.setDate(day)
day - aday in amonth.
number - time in milliseconds as set.

This method sets the day, as a number from 1 to 31, of a Date
object to the parameter day. The first day of amonth is 1, and the
last is 28, 29, 30, or 31.

Date setFullYear()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

date.setFullY ear(year[, month[, date]])
year - afour digit year.

month - amonth in ayear.

day - aday in amonth.

number - time in milliseconds as set.

This method sets the year of a Date object to the parameter year.
The parameter year is expressed with four digits.

The parameter month is the same asfor set Mont h() .

355

The parameter day isthe same asfor set Dat e() .

Date setHours()

SYNTAX: Date.setHours(hour[, minute], second[, millisecond]]])
WHERE:! hour - an hour in a day.

minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the hour, as a number from O to 23, of a Date
object to the parameter hours. Midnight is0, and 11 p.m. is 23.

The parameter minute is the same asfor set M nut es() .
The parameter second is the same asfor set Seconds() .

The parameter millisecondsis the same as for
setM I liseconds().

Date setMilliseconds|()

SYNTAX: date.setMilliseconds(millisecond)
WHERE: millisecond - amillisecond in a minute.
RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the millisecond, as a number from O to 59, of a
Date object to the parameter millisecond. The first millisecond in
asecond is 0, and the last is 999.

Date setMinutes()

SYNTAX: date.setMinutes(minute], second[, millisecond]])

WHERE! minute - aminute in an hour.

356

RETURN:

DESCRIPTION:

second - a second in a minute.
millisecond - amillisecond in a second.
number - time in milliseconds.

This method sets the minute, as a number from 0 to 59, of a Date
object to the parameter minute. The first minute of an hour is 0,
and the last is 59.

The parameter second is the same asfor set Seconds() .

The parameter millisecondsis the same asfor
setM I liseconds().

Date setMonth()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Date.setMonth(month[, day])
month - amonth in ayear.
day - aday in amonth.
number - time in milliseconds.

This method sets the month, as a number from 0 to 11, of a Date
object to the parameter month. January is 0, and December is 11.

The parameter day isthe same asfor set Dat e() .

Date setSeconds()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

date.setSeconds(second[, millisecond])
second - a second in a minute.
millisecond - a millisecond in a second.
number - time in milliseconds.

This method sets the second, as a number from 0 to 59, of a Date
object to the parameter second. The first second of a minute is 0,
and the last is 59.

The parameter millisecondsis the same as for

357

setM I liseconds().

Date setTime()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

date.setTime(millisecond)
millisecond - the time in milliseconds.
number - time in milliseconds as set.

This method sets a Date object to the date and time specified by
the parameter milliseconds which is the number of milliseconds
from midnight on January 1, 1970, GMT.

Date setUTCDate()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

date.setUTCDate(day)
day - aday in amonth.
number - time in milliseconds as set.

This method sets the UTC day, as a number from 1 to 31, of a
Date object to the parameter day. Thefirst day of amonthis1,
and the last is 28, 29, 30, or 31.

Date setUTCFullYear()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

date.setUTCFullY ear(year[, month[, dat€]])
year - afour digit year.

month - amonth in ayear.

day - aday in amonth.

number - time in milliseconds as set.

This method sets the UTC year of a Date object to the parameter
year. The parameter year is expressed with four digits.

The parameter month is the same asfor set UTCMont h() .

358

The parameter day isthe same asfor set UTCDat e() .

Date setUTCHours()

SYNTAX: Date.setUTCHours(hour[, minute[, second[, millisecond]]])
WHERE! hour - an hour in a day.

minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the UTC hour, as a number from 0 to 23, of a
Date object to the parameter hours. Midnight is0, and 11 p.m. is
23.

The parameter minute is the same asfor set UTCM nut es() .
The parameter second is the same as for set UTCSeconds() .

The parameter millisecondsis the same as for
setUTCM | | i seconds() .

Date setUTCMilliseconds()

SYNTAX: date.setUTCMuilliseconds(millisecond)
WHERE: millisecond - amillisecond in a minute.
RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the UTC millisecond, as a number from O to
59, of a Date object to the parameter millisecond. The first
millisecond in asecond is 0, and the last is 999.

Date setUTCMinutes()

SYNTAX: date.setUTCMinutes(minute], second[, millisecond]])

359

WHERE:!

RETURN:

DESCRIPTION:

minute - a minute in an hour.

second - a second in a minute.
millisecond - amillisecond in a second.
number - time in milliseconds.

This method sets the UTC minute, as a number from 0 to 59, of a
Date object to the parameter minute. The first minute of an hour
is0, and the last is 59.

The parameter second is the same as for set UTCSeconds() .

The parameter millisecondsis the same as for
setUTCM | | i seconds() .

Date setUTCMonth()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

Date.setUTCMonth(month[, day])
month - amonth in ayear.

day - aday in amonth.

number - time in milliseconds.

This method sets the UTC month, as a number from 0 to 11, of a
Date object to the parameter month. January is 0, and December
is11.

The parameter day isthe same asfor set UTCDat e() .

Date setUTCSeconds()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

date.setUTCSeconds(second[, millisecond])
second - a second in a minute.

millisecond - a millisecond in a second.
number - time in milliseconds.

This method sets the UTC second, as a number from 0 to 59, of a
Date object to the parameter second. The first second of a minute

360

is0, and the last is 59.

The parameter millisecondsis the same asfor
set UTCM | | i seconds() .

Date setYear()

SYNTAX: date.setY ear(year)

WHERE:! year - four digit year, unlessin the 1900s in which case it may be
atwo digit year.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the year of a Date object to the parameter year.
The parameter year may be expressed with two digits for ayear

in the twentieth century, the 1900s. Four digits are necessary for
any other century.

Date toGMTString()

SYNTAX: date.toGM T String()
RETURN: string - string representation of the GMT date and time.

DESCRIPTION: This method converts a Date object to a string, based on
Greenwich Mean Time.

EXAMPLE: var d = new Date();
Screen.writeln(d.toGUIstring());

/1 The fragnment above woul d produce sonething |ike:
/1 NMon May 1 15:48:38 2000 GV

Date toDateString()

SYNTAX: date.toDateString()
RETURN: string - representation of the date portion of the current object.
DESCRIPTION: Returns the Date portion of the current date as a string. This

string is formatted to read "Month Day, Year", for example,
"May 1, 2000". This method usesthe local time, not UTC time.

361

SEE: Date.toString(), Date.toTimeString(), Date.toL ocaleDateString()

EXAMPLE: var d = new Date();
var s = d.toDateString();

Date toLocaleDateString()

SYNTAX: date.toL ocaleDateString()

RETURN: string - locale-sensitive string representation of the date portion
of the current date.

DESCRIPTION: This function behaves in exactly the same manner as
Date.toDateString(). This function is designed to take in the
current locale when formatting the string. Locale reflects the
time zone of a user.

SEE: Date.toString(), Date.toL ocaleTimeString(),
Date.tolLocaleString()
EXAMPLE: var d = new Date();

var s = d.tolLocal eDateString();

Date toLocaleString()

SYNTAX: date.toL ocaleString()
RETURN: string - locale-sensitive string representation of the current date.

DESCRIPTION: This function behaves in exactly the same manner as
Date.toString(). Thisfunction is designed to take in the current
locale when formatting the string, though this functionality is
currently unimplemented. Locale reflects the time zone of a user.

SEE: Date.toString(), Date.toL ocaleTimeString(),
Date.toL ocaleDateString()

EXAMPLE: var d = new Date();
var s = d.tolLocal eString();

Date toLocaleTimeString()

SYNTAX: date.toL ocaleTimeString()

RETURN: string - locale-sensitive string representation of the time portion

362

DESCRIPTION:

of the current date.

This function behaves in exactly the same manner as
Date.toTimeString(). Thisfunction is designed to take in the
current locale when formatting the string. Locale reflects the
time zone of a user.

Date toString()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

date.toString()
string - representation of the date and time data in a Date object.

Converts the date and time information in a Date object to a
string in aform such as: "Mon May 1 09:24:38 2000"

Date.toDateString(), Date.toL ocaleString(), Date.toTimeString()

new Dat e();
d.toString();

var d
var s

Date toSystem()

SYNTAX:

RETURN:

DESCRIPTION:

date.toSystem()

number - the Date object date and time value converted to the
system date and time.

This method converts a Date object to a system time format
which is the same as that returned by the Clib.time() method. To
create a Date object from avariable in system time format, see
the Date.fromSystem() method.

Date toTimeString()

SYNTAX:

RETURN:

DESCRIPTION:

date.toTimeString()
string - representation of the Time portion of the current object.

This function returns the time portion of the current date as a
string. This string is formatted to read "Hours:Minutes: Seconds”,
asin "16:43:23". Thisfunction uses the local time, rather than

363

the UTC time.

SEE: Date.toString(), Date.toDateString(), Date.toL ocaleDateString()
EXAMPLE: var d = new Date();
var s = d.toTimeString();

Date toUTCString()

SYNTAX: date.toUTCString()
RETURN: string - representation of the UTC date and time datain a Date
object.

DESCRIPTION: Converts the UTC date and time information in a Date object to
astring in aform such as: "Mon May 1 09:24:38 2000"

SEE: Date.toDateString(), Date.toL ocaleString(), Date.toTimeString()
EXAMPLE: var d = new Date();
var s = d.toString();

Date valueOf()

SYNTAX: date.valueOf()
RETURN: number - the value of the date and time information in a Date
object.

DESCRIPTION: The numeric representation of a Date object.
SEE: Date.toString()

Date object static methods

The Date object has three special methods that are called from the object
itself, rather than from an instance of it: Date.fromSystem(), Date.parse(),
and Date.UTC().

Date.fromSystem()

SYNTAX: Date.fromSystem(time)
WHERE: time - time in system data format, the same format as returned by

364

RETURN!

DESCRIPTION:

EXAMPLE!

Cib.tinme()
object - Date object with the time passed.

This method converts the parameter time, which isin the same
format as returned by the <code>Clib.time()</code>, to a
standard JavaScript Date object.

/1 To create a Date object

/1 fromdate information obtained using
// Cdib, use code sinmlar to:

dib.tine();
Dat e. f ronByst en{ SysDat e) ;

var SysDate
var oj Date

/1 To convert a Date object to system fornat
/1 that can be used by

/1 the nethods of the dib object,

/'l use code sinilar to:

var SysDate = Obj Date.toSysten();

Date.parse()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Date.parse(datestring)
datestring - A string representing the date and time to be passed

number - milliseconds between the Dat est ri ng and midnight ,
January 1, 1970 GMT.

This method converts the string datestring to a Date object. The
string must be in the following format: Fri day, October 31,
1998 15:30: 00 - 0500 Thisformat is used by the
toGMTString() method and by email and Internet applications.
The day of the week, time zone, time specification or seconds
field may be omitted.

Date(), Date.setTime(), Date.toGMTString(), Date.UTC

/1 The follow ng code sets the date to March 2, 1992
var theDate = Date.parse("March 2, 1992")

/[Not e:

var theDate = Date. parse(datestring);

/1is equival ent to:

var theDate = new Date(datestring);

365

Date.UTC()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

Date UTC(Y ear, Month, Day[, Hourg[, Minutes[, Secondd,
Milliseconds]]]])

Year - A year, represented in four or two-digit format after 1900.
NOTE: For year 2000 compliance, this year MUST be
represented in four-digit format

Month - A number between 0 (January) and 11 (December)
representing the month

Day - A number between 1 and 31 representing the day of the
month. Note that Mont h uses 1 asits lowest value whereas many
other arguments use O

Hours - A number between 0 (midnight) and 23 (11 PM)
representing the hours

Minutes - A number between 0 (one minute) and 59 (59 minutes)
representing the minutes. Thisis an optional argument which
may be omitted if Seconds and M nut es are omitted as well.

Seconds - A number between 0 and 59 representing the seconds.
This parameter is optional.

Milliseconds - A number between 0 and 999 which represents
the milliseconds. Thisis an optional parameter.

number - milliseconds from midnight, January 1, 1970, to the
date and time specified.

The method interprets its parameters as a date. The parameters
are interpreted as referring to Greenwich Mean Time (GMT).

Date, Date.parse(), Date.setTime().

/1 The followi ng code creates a Date object
/1 using UTC tine:
foo = new Date(Date. UTC(1998, 3, 9, 1, 0, 0, 8))

366

Link Libraries

Link libraries are dynamic link library files (.dll files) developed specifically to
work with ScriptEase. ScriptEase can use any DLL, but the calling conventions
needed to call routinesin a DLL are necessarily more cumbersome than calling
internal routines. ScriptEase extends the power and ease of using itslink libraries
by tying them to the internal data structures of ScriptEase. In this way, the data
and routinesin alink library are available with the same calling conventions of
internal routines. Consider the two following code fragment:

/] Using dynam cLi nk

var vl = SElib.dynam cLink("YourDl.dll", "FunctionOne", STDCALL,
args ...);
var v2 = SElib.dynam cLink("YourDl.dll", "Functi onTwo", STDCALL,
args ...);

/1 Using a link library
#link <SElink.dll>
var vl = FunctionOne(args ...);
var v2 Functi onTwo(args ...);

Asyou can see in the first three lines, every time you want to call a routine from
ageneral DLL, you must use the more cumbersome SEIl i b. dynam cLi nk()
method and its cumbersome calling conventions. Cumbersome calling
conventions exist in any language that alows general DLL filesto be called. But,
notice the difference after a ScriptEase link DLL is linked into a script, as
illustrated by theline, #1 i nk <SEl i nk. dI | >. The routines and datain the DLL
are accessible in the same way as internal routines such as Screen. writel n().

Script libraries, scripts that end with j sh, can be used to define objects, methods,
properties, functions, and data. The advantage of script librariesis that you may
develop them quickly and alter them at any time. An advantage of link librariesis
that they execute faster since they compiled executables.

The following sections explain various link libraries. To use these link libraries,
they must be included in a script with the #1 i nk <> preprocessor directive.
Most link libraries have a corresponding script library, j sh file, that simplifies
their use even more.

367

UUCode Link Library

The Unix-To-Unix encoding library provides two functions for encoding and
decoding datain a text format.

platform Mac, OS2, Wndows; Al versions of SE
source: #link <uucode.dl|>

UU object static methods
UU.encode()

SYNTAX: UU.encode(infile[, outfile])
WHERE! infile - Name of input file
outfile - Name of output file
RETURN: boolean - Whether or not the operation was successful

DESCRIPTION: This method uses the Unix-to-Unix encoding mechanism, still
popular in newsgroups, as away of trandating binary data into
printable text data. 1f <code>ouitfile</code> is not supplied, then
an appropriate filename is generated by either adding or
replacing the extension with ".uue". Thefile "foo.c" would
become "foo.uue". Thisfile later can be decoded with any
popular UUdecoding program, or a call to UU.decode();

SEE: UU.decode()

UU.decode()

SYNTAX: UU.decode(infile[, outfile])
WHERE! infile - Name of input file
outfile - Name of output file
RETURN: boolean - Whether or not the operation was successful

DESCRIPTION: This method decodes afile stored using the Unix-to-Unix
encoding mechanism. |f <code>ouitfile</code> is not supplied,

369

then the filename that is stored in the infile (the original name of
thefile) is used instead.

SEE: UU.encode()

370

DSP Link Library

Distributed Scripting Protocol is implemented by the ScriptEase DSP link library
as the DSP object.

DSP Object

platform Al platforms except Dos; Al versions of SE
source: #link <sedsp.dll>

The DSP object provides a framework for implementing distributed scripting
across avariety of computers and networks.

Creating a DSP object

The Distributed Scripting Protocol provides no internal method for managing a
connection or transporting packets. It is simply a framework, with the physical
transport method being supplied by the user. Assuch, it isimpossible to smply
create a DSP object, because it is incapable of doing anything by itself. The user
must supply a set of functions to manage the connection with the server. To
create a DSP object, you call new DSP(nyOpenFuncti on, mnyParaneters).
The function that you supply must open the connection and return a reference to
it. Itispossible in some instances that you do not need to open anything special,
and so you can ignore this parameter. Here is an example of an open function for
a DSP connection, using internet sockets:

function idspQpen(host, port)
{

return new Socket(host, port);

}

We will see this function passed to the DSP constructor in a moment. First, to
accomplish sending/receiving packets, the user needs to define two functions,
dspSend and dspRecei ve. These functions must be inherited through the
prototype chain, because otherwise when DSP objects are copied implicitly
through reference construction (see below), the functions will not get passed.
Because we want to keep the DSP functions (such as dspService), we need to
preserve the original DSP prototype, and a constructor looks like the following:

function i DSP(host, port)

{
var ret = new DSP(idspOpen, host, port);

371

/1 Now we override the ._prototype to insert our functions
if(ret '=null)

ret._prototype = i DSP. prot ot ype;
return ret;

}

/! Here we set up the i DSP. prototype to keep the DSP functions
/1 in the chain

i DSP. pr ot ot ype. _prototype = DSP. pr ot ot ype;

Once this constructor is called, we have a valid DSP object, assuming we add the
transport functions. To do this, we must add dspSend and dspRecei ve to the
prototype. The actual syntax of these functionsissimilar tod i b. fread and
dib.fwite,and adescription can be found in the function reference. For our
iDSP example, they would look something like this:

function i DSP. prot ot ype. dspSend(conn, buffer, timeout)

{ /I lgnore tineout
return conn.wite(buffer);

}
function i DSP. prot ot ype. dspRecei ve(conn, &buffer, |ength,
ti meout)
{
return conn.read(buffer, length);
}

Note that both these functions ignore the timeout parameter and do not correctly
handle errors. A full-featured version of these functions can be found in the file
idsp.jsh. Thefinal function that we must provide isthe dspd oseConnect i on
function, which is responsible for closing the connection. This function looks like
the following:

function i DSP. prot ot ype. dspd oseConnecti on(conn)

{
}

Once al of these transport functions have been defined, new iDSP objects can be
instantiated with a call to new i DSP and used as any other DSP object. Because
the transport level of DSP is separate from the core library, DSP can be adapted
to communicate between any serversin any way. In addition, communication
can be done during the call to the open function. This allows for password
authentication or any other information to be shared.

conn. cl ose();

Using a DSP object

372

Once a DSP object is created using the method described above, every DSP
object behaves in exactly the same way. Once the functions are set up, the
transport layer of the protocol is hidden.

The basic ideais that all DSP objects are in fact references to objects on the
remote side, and they will remain so except under certain circumstances
(described below). When a connection isfirst established, it is areference to the
global object. Members of the remote global object can be accessed as members
of the connection. But they remain references, sovar print =

connection. dib. printf will not actually make aremote call to the server.
At the appropriate time, pri nt will beresolved into d i b. printf and sent to the
server in the appropriate manner. The circumstances which can trigger a de-
referencing and remote call are:

Calling functions - When a DSP reference is called as afunction, it gets
resolved into the appropriate path and the function is called on the remote server.
All parameters are converted to source with ToSour ce() and passed to the server,
and set back afterwards (in case any were passed by reference). The client waits
for the return value from the server and returns that as the result of the function
call. This makes calling functions transparent to the client, so

connection. Screen.witeln("hi") will actually call Screen. writeln
on the server and print out "hi".

Setting a value - When avalueis put to a DSP reference, such as

connect i on. gl obal Count = 5, aremote call to the server is generated, and
the remote value is updated. The above case actsjust asif gl obal Count = 5
was executed on the server.

Implicitly - When a DSP reference is converted to a primitive, then it gets de-
referenced. Thisimplicit conversion happens mostly in operator expressions, in
which both values are converted to primitivesfirst. Sovar nyCount =
connect i on. gl obal Count + 1 will get the value of gl obal Count from the
server and add oneto it. This can also be accomplished explicitly with
ToPrimitive(), but the method below is more straightforward and
understandable. The explicit use of ToPrimitive() on DSP referencesis
discouraged.

Explicitly - Any DSP reference can be explicitly de-referenced with a call
to. dspGet Val ue. Once an object has been de-referenced this way, any
subsequent accesses will not cause aremote call, and changes will only affect the

373

local copy. Note that calling afunction in thisway will result in the function
being called on the local client, not the server.

DSP object instance methods

DSP()

SYNTAX: new DSP([openFunction[, paraml[, ...]]])

WHERE:! openFunction - The function to call to initialize the connection.
paramN - Additional parameters to pass to the open function

RETURN: object - A new DSP object, or null on error

DESCRIPTION: This function creates a new DSP object, or returns null on error.

EXAMPLE!

Note that calling this function itself accomplishes very little
unless you build up an appropriate DSP object by adding open,
close, and transport functions. A new DSP object can be created
with just new DSP() , but it will be unusable without transport
functions. See the introduction for more information about
setting up a proper DSP object. Thefirst optional parameter is
the open function to use. Once the object has been created, this
function is called with any additional parameters passed to
DSP(). Theresult of thiscall isset thedspConnecti on
member of the newly created object, and is only used to pass as
the first parametersto the dspSend, dspRecei ve, and

dspC oseConnect i on methods. If openFuncti onis
supplied and returns null, then it is considered an error and the
DSP construction fails.

function fileQpen(fil enane)

{

return dib.fopen(filenanme, "wh");
}
var connection = new DSP(fileOpen, "c:\tenpfile.dat"
/1 Tﬁis will call fileOpen and assign the result to
/'l connection.dspConnection. If it was null,
/1 then the DSP connection will fail

DSP dspCloseConnection()

374

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

dsp.closeConnection(connection)

connection - The original connection that was created with the
openFunction passed to new DSP()

void.

This function is responsible for terminating the connection that
was opened at the time the DSP object was created. Thisisan
optional function, and if not supplied then nothing will be done
with the connection. See the introduction for an example of how
to implement this function.

DSP()

DSP dspReceive()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

dsp.dspReceive(connection, buffer, bufferLength, timeout)

connection - The original connection that was returned from the
openFunction passed to new DSP()

buffer - A buffer which isto be filled with data. Thisvariable
must be passed by reference (with the & operator).

bufferLength - The maximum amount of data to read

timeout - The maximum amount of time to wait (in milliseconds)
for datato be ready for reading on the connection

number - The number of bytes read, or -1 on error

Thisfunction is responsible for getting data from the connection.
This function should wait up to t i meout milliseconds for data
to be available on the connection. If thereis no data available,
then this function should return 0. Otherwise, the function should
read up to buf f er Lengt h bytes from the connection and put the
datainto buf f er . Note that this means that buf f er must be
passed by reference. If thereis some sort of error, then this
function should either throw an error, or return -1. See
introduction for an example of how to implement this function.
Note that the function need not wait for the entire buffer to be
filled, it should read only as much data asis available to be read.

375

SEE!

dspSend()

DSP dspSend|()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

dsp.dspSend(connection, buffer, timeout)

connection - The original connection that was returned from the
openFunction passed to new DSP()

buffer - The buffer to send

timeout - The maximum amount of time to wait (in milliseconds)
for data to be ready for writing on the connection

number - The number of bytes written, or -1 on error

This function is responsible for sending data across the
connection (the one returned by the openFunction passed to the
DSP constructor). It's behavior is similar to that of dspReceive().
It should wait up until t i meout for datato be ready, and then
send as much as possible along the connection (up to the length
of buf f er). If the timeout expires, the function should return O.
If there was some sort of error, then an error should be thrown,
or -1 returned. Otherwise, the number of bytes written should be
returned. Throwing an error is often more descriptive than the
generic failure message. See introduction for an example of how
to implement this function.

dspReceive()

DSP dspLoad()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

dsp.dspL oad(code)
code - String of code to load on the remote server
void.

This function loads the specified code into the global context on
the remote server. Any code that you execute will remain on the
remote server. Thisfunction is designed to load functions on the
remote server so that they may be called by the client. This

376

EXAMPLE!

function does not wait for areturn value from the host. Asa
consequence, remote errors will not be immediately reported.
They will be reported next time a client routine (calling a
function, getting/putting a value) queries the server. Note that if
you wish to execute remote code and get areturn value, the
global eval() method for the server should be used, although the
changes will not be permanent.

function foo() { Screen.witeln("Hello!"); }

/1 This code will nmake "foo = new Function(...)"

/! to set up the function on the renote server.
connection. dspLoad("foo = " + ToSource(foo));

connection. foo();
/1 foo is now a global function on the server

DSP dspService()

SYNTAX:

RETURN:

DESCRIPTION:

EXAMPLE!

dsp.dspService()
boolean - A value indicating whether the connection is till open.

Thisisthe main server-side function. Although it can be used by
any DSP object, it is intended to be the server side of the client-
server model. When called, it will wait until an incoming packet
isreceived and then service that packet appropriately. The
method will return false if the packet received was a close
command, in which case the connection has been closed, and an
explicit call to dspd ose isnot necessary. It isdesigned to be
called repeatedly until the connection is closed.

/! Assune 'connection' is a valid connection
whi | e(connection. dspService())

/1 At this point, the connection has been
/'l successfully closed

DSP dspClose()

SYNTAX:

RETURN:

DESCRIPTION:

dsp.dspClos«()
void.

This function closes the DSP connection. First, it sends a close
command to the remote host, signaling that the connection is

377

EXAMPLE!

closing. It then callsthe dspd oseConnect i on method if it
exists, passing the original connection variable returned by the
open function when this connection was created.

connecti on. dspd ose();

DSP dspGetValue()

SYNTAX:

RETURN!

DESCRIPTION:

EXAMPLE!

dsp.dspGetValue()
variable - remote value of the current DSP reference.

This function provides an explicit way to convert a DSP
reference into avalue. Such conversion is done automatically
when the reference is converted to a primitive, or avaueis
assigned to areference. See the introductory section for more
information on DSP references and getting remote val ues.

var reference = connection. gl obal Val ue;
var val ue = connecti on. gl obal Val ue. dspCet Val ue();

reference = 5; // This will change the renote val ue
val ue = 6;
// This will change the | ocal copy, not the renote

DSP dspSecuritylnit()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

dsp.dspSecurityInit(secureVar)

secureVar - private storage for the DSP security. The member
'dsp' is preset to the DSP object. Remember, the DSP object can
be seen by the running script, but not the secure variable itself.

void.

The dspSecurityInit function turns on security for a DSP object.
This means when the remote client tries to run a script on your
machine using DSP, it will be run with your security manager in
effect. See the security document for a complete description of
how it works. In the case of DSP, each security function
(jseSecuritylnit, jseSecurity Term, and jseSecurityGuard) has an
exactly corresponding function, i.e. dspSecuritylnit,
dspSecurityTerm, and dspSecurityGuard. I1n the security
initialization function, you'll typically select some functions to

378

SEE!

EXAMPLE!

be allowed, and let al others be vetoed.

DSP.dspSecurity Term, DSP.dspSecurityGuard

function i DSP. dspSecurityGuard(conn)

{
nyfunc. set Security(j seSecureAl |l ow);

nyot her func. set Security(j seSecureCuard);
}

DSP dspSecurityTerm()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

dsp.dspSecurity Term(secureVar)
secureVar - private storage for the DSP security.
void.

Thisfunction is typically not needed, but you can useit to
cleanup anything you initialized in the DSP security initialization
function.

DSP.dspSecuritylnit, DSP.dspSecurityGuard

DSP dspSecurityGuard()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

dsp.dspSecurityGuard(secureVar, function, params)
function - the function being called

secureVar - private storage for the DSP security.
params - whatever parameters are passed to the function
void.

If aDSP object is given a dspSecurityGuard function (exactly
like any of the other DSP callback functions), when it tries to call
any function not part of the script (i.e. one of your functions or a
wrapper function), the security guard is called for approval. See
the security document for a description on how this al works.

Y ou must provide a dspSecuritylnit for security to be activated.
Only those functions the security initialization function marks as
guarded will use this function.

379

SEE!

dsp.dspSecuritylInit, dsp.dspSecurity Term

DSP object static properties

DSP.remote
SYNTAX: DSP.remote
DESCRIPTION: This globa property of the DSP object is used to make calls back

EXAMPLE!

to the remote client from within afunction. When the first DSP
object in ascript is created, this gets assigned to that value.
From then on, whenever a packet needs to be serviced, this value
is set (and later restored) to the object representing the incoming
connection. This allows for multiple connections, and lets the
function easily call back the appropriate client. Note that within
adspLoad cal, the client does not wait for a response, and so
trying to call on the client will yield no result until the server is
gueried again.

/!l Assune the client calls this:

server Conn. pri nt Remote("hi");

/! And the server side |ooks like this:
function printRenote(string)

DSP. renote. Screen.wite(string);

/1 This will print out "hi" on the client nachine

380

GD Link Library

GD Object

title: GD Object
platform Al OGS except Dos; Al versions of SE
source: #link <gd.dll>

The GD object provides a set of routines for manipulating GIF images.

Point specifications

A number of GD routines expect a Point Specification as one of the parameters.
This is a pseudo-type that can take one of several forms. It is either an object
with two members, 'x' and'y', representing the two coordinates of the point, or an
array with two members, element 0 being the x coordinate and element 1 being
they coordinate. All of the following are equivalent:

{x:1, y:2};
[1, 2];

var pointl
var point2

Note also that every routine can aso have the x and y coordinates passed as
separate parameters, so these are equivalent:

gd.getPixel (1, 2);
gd.getPixel ([1,2]);

As such, the Point object isreally just a matter of convenience to help distinguish
points as a unit.

Font specifications

The character drawing routines expect afont parameter which describes the font
to use. The font selection, though limited, should be enough for the basic
purposes for which thislibrary is used. Valid font types are the strings "tiny",
"small”, "mediumBold", "large’, or "giant". Each one is a different size. fontTiny
is 5x8, fontSmall is 6x12, fontMediumBold is 7x13, fontLarge is 8x16, and
fontGiant is 9x15.

Color styles

381

In addition to simple color indexes, all drawing routines can a so take a color
stype, which is a special string value that alows for more complex fills and
shapes. Thevalid types are:

"styled" - Use the style specified with GD. set Styl e() . A styleis a sequence of
colors to be used when drawing lines. It isonly valid for line-drawing routines,
and is used to make dashed lines.

"brushed" - Use the brush specified with GD. set Brush() . A brush is another
GD image which is drawn instead of aregular pixel. Using transparent colors, it
is possible to create a brush of any size.

"styledBrushed" - A combination of both "styled" and "brushed". The brushis
used, but is only drawn when non-transparent pixels are encountered in the style.

"tiled" - Use thetile specified with GD. set Ti | e() . Thisstyle can only be used
with fill routines. It uses the current tile, which can be any GD image, and fills
the region with that tile, laying the images side-by-side sequentialy.

GD object instance methods

GD()
SYNTAX: new GD(X, Y)
WHERE! X - Horizontal size, in pixels.
y - Vertical size, in pixels.
RETURN: object - anew GD object of the specified size.

DESCRIPTION: Thex andy parameters determine the horizontal and vertical
size of the image, respectively. The object returned isa GD

object.
GD arc()
SYNTAX: gd.arc(centerX, centerY, width, height, startDegree, endDegree,
color)
gd.arc(centerPoint, width, height, startDegree, endDegree, color)
WHERE:! centerX - horizontal position of center.

centerY - vertical position of center.

382

RETURN:

DESCRIPTION:

EXAMPLE!

centerPoint - center point specification.
height - height of arc.

startDegree - degree value of starting position in standard
coordinate plane. Values greater than 360 are interpreted as
modulo 360.

endDegree - degree value of ending position in standard
coordinate plane. Vaues greater than 360 are interpreted as
modulo 360.

color - color index to use for arc, or one of the strings "styled",
"brushed", "styledBrushed".

void.

This method draws an arc in the specified format. The center
position is specified, along with the width and the height. The
arc is then draw between the two given degree values. A full
ellipse can be drawn from degree 0 to degree 360, and acircle
can be drawn in the same manner while setting wi dt h and

hei ght to be the same. If there is a out-of-bounds error or some
other error, then the arc is not drawn at all.

/!l Draw a circle with a dianmeter of 16 pixels

/1 in the mddle of the image

var gd = new GD(65, 65);
gd.arc([32,32], 16, 16, 0, 360, 0);

GD blue()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

gd.blue(index)
index - color index to look up.
number - blue component of the specified color index.

This method looks up the color indicated by i ndex and returns
the blue component of that color.

GD.red(), GD.green()

var index = gd.col orAll ocate(0, 100, 200);
gd. blue(index); // This will return 200

383

GD boundsSafe(

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

EXAMPLE!

gd.boundsSafe(x, y)

gd.boundsSafe(point)

X - horizonta pixel location.

y - vertical pixel location.

point - Point specification. See GD.getPixel() for a description.
boolean - whether the specified coordinates are within bounds.

This method sees if the specified pixel location is within the
bounds of the image. If so, then true is returned, false otherwise.

var gd = new G5, 5);

gd. boundsSafe(4, 3); [l True
gd. boundsSafe([4,5]); /1 Fal se
gd. boundsSafe({x:6,y:2}) // False

GD drawChar()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

gd.drawChar(font, x, y, char, color)

gd.drawChar(font, point, char, color)

font - Font specification

X - horizontal position of upper-left corner of character
y - vertical position of upper-left corner of character
point - Point specification.

char - The specified character to draw

color - color index or styleto use

void.

This method draws a character in the image at the specified
location in the appropriate font. If the coordinates are out of
bounds, then no drawing is done. The reason that it is named
‘drawChar' and not smply ‘char' isthat ‘char' is areserved
keyword and an invalid variable name.

GD.charUp(), GD.string()
/1 Wite "hi" at the starting position

384

var gd = new GD(50, 50);

gd. drawChar(G&. fontSmall, 5, 5, "h", 0);
gd. drawChar(GD.fontSmall, [11,5], "i", 0);
/1 This is the equivalent of GD. string()

/! with the string "hi"

GD charUp()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

gd.charUp(font, x, y, char, color)

gd.charUp(font, point, char, color)

font - Font specification

X - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - point specification. See GD.getPixel() for a description.
char - specified character to draw

color - color index or styleto use

void.

This method is exactly the same as GD.drawChar(), except that
the character is drawn vertically, pointing upwards.

GD.drawChar(), GD.stringUp()

GD colorAllocate()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

gd.colorAllocate(red, green, blue)

red - Red value, from 0 to 255

green - Green value, from 0 to 255

blue - Blue value, from 0 to 255

number - Color index of allocated color, or -1 if none available.

This method searches through the color table for the next
available color index, and sets it to be the supplied RGB color.
If no color indexes are available, then -1 isreturned. If the
supplied RGB colors are invalid, a runtime error is generated.
When creating a new image, the first time you call this function,

385

SEE!

EXAMPLE!

you set the background color for the image.

GD.colorExact(), GD.colorClosest(), GD.colorDeallocate()

var gd = new GD(10, 10);

var index = gd.col or Al l ocat e(255, 255, 255);

/1 index now points to white, and the background
/1 of the image is also white

GD colorClosest()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

gd.colorClosest(red, green, blue)

red - Red value, from 0 to 255

green - Green value, from 0 to 255

blue - Blue value, from 0 to 255

number - index of the closest color to the one supplied.

This method searches through the color table and finds the
closest color to the one supplied. The algorithm uses Euclidian
distance to calculate closeness. This function is most useful
when unable to allocate a new color, and the closest must be
used instead.

GD.colorAllocate()

/* Attenpt to allocate a specific color,

* but if unable to (the image

* has the nmaxi mum nunber of colors),

* then attenpt to find the cl osest

* color as a suitable replacenent

*/

var gd = GD.fronGf("test.gif");

var index;

if(-1 == (index = gd.col orAll ocate(234, 12,107)))
i ndex = gd. col or 0 osest (234, 12, 107) ;

GD colorDeallocate()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

gd.colorDeallocate(col or)
color - color index to deallocate.
void.

This method frees up the color at index col or for later use. The

386

SEE!

color index will remain the same, but it may be re-allocated at
any point and changed. Note that this function simply marks the
color for reuse, so that the total colors allocated in the image still
remains the same. If acall to colorAllocate() immediately
follows this cdl, then the old index will be re-used for the new
color, and all pixels within the image with that index will be
dtered as well.

GD.colorAllocate()

GD colorExact()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

gd.colorExact(, green, blue)

red - Red value, from 0 to 255
green - Green value, from 0 to 255
blue - Blue value, from 0 to 255

number - The first index matching the supplied color, or -1 if it
doesn't exist.

This method searches through the color table and tries to find the
first index whose red, green, and blue values are exactly equal to
the supplied values. If no index isfound, then -1 is returned.

GD.colorClosest(), GD.colorAllocate()

/! Attenpt to get the color,

/! and create it if it does not exist

var gd = GD.fronGf("test.gif");

var index;

if(-1 == (index = gd.colorExact(1,1,1)))
i ndex = gd.colorAllocate(l,1,1);

GD colorsTotal()

SYNTAX:

RETURN:

DESCRIPTION:

gd.colorsTotal()
void.

This method returns the total number of colors allocated in the
current GD image. Note that colors deallocated with
colorDedllocate() are still considered 'allocated’, because they

387

have simply been marked for reuse.

GD colorTransparent()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

EXAMPLE!

gd.colorTransparent(color)
color - color index to make transparent.
void.

This method sets the specified color index to be the transparent
index. To indicate that there is to be no transparent color, the
value -1 should be passed as the color index.

var gd = new GD(64, 64);

var index = gd.col orAllocate(0,0,0);

gd. col or Transpar ent (i ndex) ;

/1 The background (and all bl ack pixels)
/1 is transparent

GD copy()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

gd.copy(source, dstX, dstY, srcX, srcY, width, height)
gd.copy(source, dstPoint, srcPoint, width, height)
source - A gd object to copy from

dstX - Horizontal destination pixel in current object
dstY - Vertical destination pixel in current object
dstPoint - Destination pixel in current object.

srcX - Horizontal source pixel in source object
srcY - Vertical source pixel in source object
srcPoint - Source pixel in source object.

width - Width of section to copy

height - Height of section to copy

void.

This method copies a section from one GD image to ancther.
The portion of sour ce, starting at the specified point (which is
the upper-left corner of the region) and extending wi dt h and

388

SEE!

EXAMPLE!

hei ght in either direction. Thisregion isthen copied to the
current GD object at the specified location (which is again the
upper-left corner of the region). In copying the region, this
method attempts to preserve the colors of the original source as
best as possible. The method first tries calling colorExact() on
the current image, and if that doesn't work then colorAllocate(),
and finaly if that fails, then colorClosest(). If you specify the
same source image as the current image, then the method will
work appropriately aslong as the regions to not overlap. If they
do, then the result is undefined.

GD.copyResized()

/1 Copy top-left 16x16 from"test.gif"

/1 while attenpting to preserve

/'l necessary colors.

var source = GD.fronG f("test.gif");

var dest = new G 16, 16);

dest . copy(source, [0,0], [0,0], 16, 16);

GD copyResized()

SYNTAX:

WHERE!

gd.copyResized(source, dstX, dstY, srcX, srcY, dstW, dstH,
srcW, srcH)

gd.copyResized(source, dstPoint, srcPoint, dstW, dstH, srcw,
srcH)

source - A gd object to copy from

dstX - Horizontal destination pixel in current object
dstY - Vertical destination pixel in current object
dstPoint - Destination pixel in current object.

srcX - Horizontal source pixel in source object
srcY - Vertical source pixel in source object
srcPoint - Source pixel in source object.

dstW - Width of region in current object

dstH - Height of region in current object

srcW - Width of region in source object

389

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

srcH - Height of region in source object
void.

This method is very similar to GD.copy(), except that it has the
additional option of resizing the image in the process of copying.
This method will stretch or shrink the region as appropriate in
order to fit in the destination area. Specifying the same
destination and source sizesis the equivalent of calling
GD.copy(). See GD.copy() for more description.

GD.copy()

/1 Copy top-left 4x4 square from"test.gif"

/1 and magnify it four tines

/!l to a size of 16x16 in the destination inage

var source = GD.fronG f("test.gif");

var dest = new G 16, 16);

dest . copyResi zed(source, [0,0], [0,0], 16, 16, 4, 4);

GD dashedLine()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

gd.dashedLine(x1, y1, x2, y2, color)
gd.dashedLine(point1, point2, color)

x1 - horizontal pixel location of starting point

y1 - vertical pixel location of starting point

x2 - horizontal pixel location of ending point

y2 - vertical pixel location of ending point

pointl - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line
void.

This method is exactly the same as GD.ling(), except that a
dashed lineisdrawn. Thisfunction isonly for backwards
compatibility, as much greater control is achieved by using the
combination of GD.setStyle() and GD.line().

GD.line(), GD.setStyle()

390

EXAMPLE!

var gd = new GD(10, 10);
gd. dashedLine([2,3], [9,7], 0);

/'l The above code has been replaced by the foll ow ng
var gd = new GD(10, 10);

/'l Four pixel wi de dash

gd.setStyle([O, O, O, O, -1, -1, -1, -1);

gd.line([2,3], [9,6], "styled");

GD destroy()

SYNTAX: gd,des[roy()

RETURN: void.

DESCRIPTION: This method cleans up al the memory associated with this GD
object. Once it has been called, the object is no longer valid.

GD fill()

SYNTAX: gd fill(x, y, color)
gd.fill(point, color)

WHERE:! X - Horizontal position of starting pixel
y - Vertical position of starting pixel
point - Point of starting pixel. See GD.getPixel() for a
description
color - Fill color index or style

RETURN: void.

DESCRIPTION: This method is very similar to GD.fill ToBorder(), except that
instead of filling until another color is hit, this method fills all
pixels that are the same color as the original, until it hits any
other color pixel. The pixels are changed to the color indicated
by col or.

SEE: GD.fillToBorder()

EXAMPLE: /* Draw a circle with color index 1 and

* a smaller one with col or

* index 3. The call to G.fill() will fill

* the inner circle with col or

* index 2. The fill will stop at the first circle,

391

* since it is not the

* same color as the starting pixel.

*/

var gd = new GD(65, 65);

gd.arc([32,32], 16, 16, 0, 360, 1);

gd.arc([32,32], 14, 14, 0, 360, 3); [// wll be
erased

gd. fill([33,34], 2);

GD filledPolygon()

SYNTAX: gd.filledPolygon(pointl[, x2, y2], ...], color)
WHERE:! pointN - Point specification for Nth point
XN - x coordinate of Nth point
yN -y coordinate of Nth point
color - color index or style to use for fill

RETURN: void.

DESCRIPTION: This method is exactly the same as GD.polygon(), except that it
fills in the polygon, managing intersections in the process.

SEE: GD.polygon()

GD filledRectangle()

SYNTAX: gd.filledRectangle(x1, y1, x2, y2, color)
gd.filledRectangle(pointl, point2, color)
WHERE:! x1 - horizontal pixel location of first corner
y1 - vertical pixel location of first corner
x2 - horizontal pixel location of second corner
y2 - horizontal pixel location of second corner
pointl - First point specification.
point2 - Second point specification.
color - color index or style to use for fill

RETURN: void.

392

DESCRIPTION: This method is exactly the same as GD.rectangle(), except that it
fills the rectangle, instead of drawing an outline. Aswith
GD.rectangle(), if either point is out of bounds, then no drawing

is done.
SEE: GD.rectangle(), GD.filledPolygon()

GD fillToBorder()

SYNTAX: gd.fillToBorder(x, y, border, color)
gd.fillToBorder(point, border, color)
WHERE:! X - Horizontal position of starting pixel
y - Vertical position of starting pixel
point - Point specification of starting pixel.
border - Index border color to stop at

color - Fill color or style index

RETURN: void.

DESCRIPTION: This method fills the image with the selected color, until it hitsa
border with the color specified by bor der . bor der must bea
color index, not one of the styled colors. col or can be anything.

SEE: GDfill()
EXAMPLE: /* WIIl draw a circle with color index 1,
* and then fill it with color

index 2. The fill will stop

*
* at the specified border, which means that

* the second circle drawn, using color index 3,
*

will be erased as the
* outer circle is filled.

var gd = new GD(65, 65);

gd.arc([32,32], 16, 16, 0, 360, 1);

gd.arc([32,32], 14, 14, 0, 360, 3);
// will be erased

gd.fill ToBorder([33,34], 1, 2);

GD getinterlaced()

393

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

gd.getinterlaced()
boolean - Whether thisimage is interlaced.

If the current image has the interlace flag set, then this method
returns true. Otherwise, it returnsfalse.

GD.interlace()

GD getPixel()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

gd.getPixel(x, y)

gd.getPixel (point)

X - horizontal position of pixel, measured from left

y - vertical position of pixel, measured from top

point - A point specification.

number - a color index indicating the color at the selected pixel.

This method accesses the pixel at position (x, y), and returns the
color of that pixel. If the pixel coordinates are out of bounds,
then zero is returned.

GD.SetPixel()

var gd = GD.fronGf("test.gif");
gd. get Pi xel (0, 0);

gd. getPixel ([0,0]);

gd. get Pixel ({x:0,y:0});

GD getTransparent()

SYNTAX: gd.getTransparent()

RETURN: number - The color index of the current transparent color for this
image.

DESCRIPTION: This method looks up the transparent color that was set by
GD.transparent() or read from the file originally.

SEE: GD.transparent()

GD green()

394

SYNTAX:

gd.green(index)

WHERE: index - The color index to look up

RETURN: number - The green component of the specified color index

DESCRIPTION: This method looks up the color indicated by i ndex and returns
the green component of that color.

SEE! GD.blue(), GD.red()

GD height()

SYNTAX: gd.height()

RETURN: number - The height of the image

DESCRIPTION:

This method returns the height of the current GD image

GD interlace()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

gd.interlace(flag)

flag - A boolean value indicating whether thisimage is interlaced
or not

void.

This method sets the interlace flag for the current image. 1If the
f 1 ag parameter is true, then the image is interlaced, otherwise it
isnot. Interlaced GIF images alow viewsto gradually fadein
the image, rather than having to read in the whole file and then
display it. Thisflag only affects theimage onceit issaved asa
GIFfile. It has no affect on any other methods. Viewerswhich
don't support interlacing will still be able to display the image, it
will just appear al at once like any other image.

GD.getInterlaced()

GD line()

SYNTAX:

gd.line(x1, y1, x2, y2, color)
gd.ling(pointl, point2, color)

395

WHERE:!

RETURN:

DESCRIPTION:

SEE!

x1 - horizontal pixel location of starting point

y1 - vertical pixel location of starting point

x2 - horizontal pixel location of ending point

y2 - vertical pixel location of ending point

pointl - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line
void.

This method draws aline using color index col or, starting from
position (x1, y1) and going to position (x2, y2). Alternatively,
the line is drawn from pointl to point2, if the coordinates are
given in this manner. If either coordinate is out of bounds, then
no drawing is done.

GD.dashedLine()

GD polygon()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

gd.polygon(point1[, x2, y2, ...], color)
pointN - Point specification for Nth point
XN - x coordinate of Nth point

yN -y coordinate of Nth point

color - color index or styleto usefor line
void.

This method draws a polygon by connecting sequential points
with lines. The parameters are either a pair of parameters
indicating the two coordinates of the point, or a point
specification type. A point type can either be an array with two
elements, element 0 being the x coordinate and element 1 being
they coordinate, or an abject with members 'x' and 'y,
representing the x and y coordinates.

GD filledPolygon()

396

EXAMPLE!

/1 Draw a rectangl e
function nyRectangl e(gd, x1, y1, x2,y2, col or)

gd. pol ygon([x1,y1], x1, y2, {x:x2,y:y2}, [x2,yl],
[x1,yl], color);

GD rectangle()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

gd.rectangle(x1, y1, x2, y2, color)
gd.rectangle(pointl, point2, color)

x1 - horizontal pixel location of first corner

y1 - vertical pixel location of first corner

x2 - horizontal pixel location of second corner

y2 - horizontal pixel location of second corner
pointl - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line
void.

This method draws a rectangle with one corner located at
position (x1, y1) and the other at position (x2, y2). The color
used is specified by the col or parameter. Alternatively, the
coordinates can be specified with the point format. If either
corner is out of bounds, then no drawing is done. Note that this
is a shorthand function, as this can be accomplished in severa
other ways.

GD filledRectangle(), GD.polygon()

var gd = new GD(10, 10);
gd.rectangle(4, 5 8, 9, 0);

/'l is equivalent to:

var gd = new GD(10, 10);
gd.line([4,5], [8,5],
gd.line([4,9], [8,9],
gd.line([4,5], [4, 9],
gd.line([8,5], [8,9],

[eNeoloNe]
—_————

397

/1 which is al so equival ent to:
var gd = new GD(10, 10);
gd. polygon([[4,5], [8,5], [4,9], [89]], 0);

GD red()

SYNTAX: gd.red(index)

WHERE: index - The color index to look up

RETURN: number - The red component of the specified color index
DESCRIPTION:

SEE!

This method looks up the color indicated by i ndex and returns
the red component of that color.

GD.blug(), GD.green()

GD setBrush()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

gd.setBrush(brush)
brush - A GD image to use as the current brush in thisimage
void.

This method sets the current brush for this image to be the image
specified by br ush. Thisimage isthen used for drawing when
the "brushed" string is used as a color parameter to a drawing
function. This method attempts to preserve the colors of the
brush in the current image, including the transparent color.
Transparent pixels are not draw when using the brush, allowing
for brushes of any shape. The origina brush must remain avalid
image. Once destroy() has been called on the supplied brush, the
style "brushed" can no longer be used until another brush is set.
Note that because this can allocate colors in the image, do not set
the brush if you won't be using it, because the color table could
fill up quickly.

GD.setTile()

var brush = GD.fronG f("brush.gif");
var gd = new GD(64, 64);

gd. set Brush(brush);

gd.line([16,3], [52,45], "brushed");
brush. destroy();

398

GD setPixel()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

gd.setPixel(x, y, color)

gd.setPixel (point, color)

X - horizontal position of pixel, measured from left
y - vertical position of pixel, measured from top
point - A point specification.

color - index into color table

void.

This method sets the designated pixel to the appropriate color. If
either x ory isout of bounds, or if col or isnot avalid color
index, then nothing is done.

GD.getPixel(), GD.colorAllocate()

var gd = new GD(4, 4);
var black = gd.col orAll ocate(0,0,0);
gd. set Pi xel (0, 0, bl ack) ;

GD setStyle()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

gd.setStyle(style)
style - style to set for current image.
void.

This method sets the current style for thisimage, which is used
whenever the string "styled" is passed as a color index parameter
to adrawing function. The parameters to the method isalist of
pixels, which are color indexes or the special value -1, which
indicates a transparent pixel. When drawing lines or a series of
pixels, the drawing methods cycle through the sequence defined
in the current style and applies the color to each successive pixel.
If the value of -1 is used, then no color is applied and the
background remains.

GD.setBrush(), GD.setTile()

/* Create a Red, Green, Blue,
* dashed line fromthe upper left
* corner of the image to the |ower right corner.

399

* Each dash will be 3

* pixels wide, and there will be 3 pixels
* of space in between.

*/

var gd = new GD(64, 64);

var red = gd.colorAllocate(255 0, 0);
var green = gd.colorAllocate(0, 255, 0);
var blue = gd.colorAllocate(0, 0, 255);
gd.set Style(red, red, red,

1, -1, -1,
green, green, green,
-1, -1, -1,

bl ue, bl ue, blue,

1, -1, -1)

gd. 1ine([0,0]. £63,;33],;"styled")

GD setTile()

SYNTAX: gd.setTile(tile)

WHERE! tile- A GD image to use as the repeating tile for thisimage
RETURN: void.

DESCRIPTION: This method sets the current tile for this image in a manner
similar to GD.setBrush(). Thistile image is then used whenever
the style "tiled" is used as a color parameter in afunction. The
"tiled" style only works when calling afilling function, such as
GD fill() or GD.filledPolygon(). This method attempts to
preserve the colors of the original tile, by either finding exact
colors, alocating new colors, or finding the closest color if
necessary. Transparent pixelsin the image allow the underlying
image to shown through. Oncethetileis set with setTilg(), the
original tile must be retained as long as the image is being used.
Otherwise, the result is undefined.

SEE: GD.setBrush()

EXAMPLE: var tile = GCD.fronG f("tile.gif");
var gd = new GD(64, 64);
gd.setTile(tile);
gd.fill edRectangle([0,0], [63,63], "tiled");
tile.destroy();

GD string()

400

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

gd.string(font, x, y, char, color)

gd.string(font, point, char, color)

font - Font specification to use

X - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - Point specification. See GD.getPixel() for a description.
string - The string to draw.

color - color index or styleto use for string

void.

This method draws a string on the current image, at the specified
location and in the appropriate color. If the coordinates are out
of bounds, then no drawing is done.

GD.drawChar(), GD.stringUp()

GD stringUp()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

gd.stringUp(font, x, y, char, color)

gd.stringUp(font, point, char, color)

font - Font specification to use

X - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - Point specification. See GD.getPixel() for a description.
string - The string to draw.

color - color index or style to use for string

void.

This method is exactly the same as GD.string(), except that this
method draws the string vertically, facing upwards.

GD.charUp(), GD.string()

401

GD toGd()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

gd.toGd(filename)
filename - Name of file to output to
boolean - Whether the operation was successful

This method outputs the gd object to the file in the native format
of the library, which is unreadable by any other program, but can
be read and written quickly. Itismostly used to store a
commonly used base-image in native format, which can then be
worked with from there.

GD.toGd(), GD.fromGif()

GD toGif()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

gd.toGif(filename)
filename - Name of file to output to
boolean - Whether the operation was successful.

This method compresses the GIF data in the appropriate manner,
and outputs the contents of the image to the specified filein GIF
form.

GD.toGd(), GD.fromGif()

GD width()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

gd.width()

number - The width of the image

This method returns the width of the current GD image
GD.height()

GD object static methods
GD.fromGd()

SYNTAX:

GD.fromGd(filename)

402

WHERE:!

RETURN!

DESCRIPTION:

SEE!

filename - name of GD file to open.

object - new GD object with the contents of the specified file, or
null if there was an error.

This method attempt to open the specified GD file, and then
readsin the data. A GD fileis one created with the toGd()
method, and iswritten in the library's native format. If thereis
an error opening the file or reading the data, then null is returned.

GD.fromGd(), GD.toGd()

GD.fromGif()

SYNTAX:

GD.fromGif(filename)

WHERE! filename - name of GIF file to open.

RETURN: object - new GD object with the contents of the file, or null if
there was an error.

DESCRIPTION: This method attempts to open the specified file, and then
attempts to read in the GIF data. If thereis an error opening the
file or reading the data, then null isreturned. Otherwise, the
method constructs a new GIF object whose contents is the GIF
read from thefile.

SEE: GD.fromGd(), GD.toGif()

GD.fromXbm()

SYNTAX: GD.fromXbm(filename)

WHERE! filename - name of XBm file to open.

RETURN: object - new GD object with the contents of the specified file, or
null if there was an error.

DESCRIPTION: This method attempts to open the specified XBM file, and then

SEE!

reads in the data. If thereis an error opening the file or reading
the data, then null is returned.

GD.fromGif()

403

MD5 Checksum Link Library

The md5 object provides a simple means of calculating checksums based on the
md5 algorithm, a well-known and accepted method.

md5 Object

platform Mac, OS2, Wndows, all versions of SE

source:

#l i nk <md5.dl | >

md>5 object instance methods

md5()

SYNTAX:

RETURN:

DESCRIPTION:

new mds()
object - a new md5 checksum object.

This method creates a new object, and initializes it to be used for
md5 sum computation. MD5 is an old, well-established
checksum calculation formulathat is still used for File download
verification. The checksum verifies the integrity of the data,
because if any bit is changes in the source, then the checksum
will be drastically different.

term()

SYNTAX:

RETURN:

DESCRIPTION:

EXAMPLE!

md>5.term()
buffer - The computed checksum for this md5 object

This method MUST be called in order to correctly dispose of the
md>5 object. It returns a buffer, 16 bytes long, representing the
md5 checksum for this object. It also frees up any memory
being used by the object.

var nmd5sum = new nmd5();

nd5. update("hi");

var digest = md5.term();
/1 digest is now equal to the checksumof "hi"

405

update()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

EXAMPLE!

md>5.update(buffer[, length])
buffer - A string or buffer of data to add into this checksum

length - Length of datato be added. If not supplied, then the
length of buffer is used.

void.

This method adds the supplied buffer into the running md5
checksum. If | engt h is greater than the length of buf f er , then
the buffer is expanded asiif filled with null bytes.

var nmd5sum = new nd5();

nd5sum updat e("hel | 0");

nmd5sum updat e(", world!", 4);
miS5sumtern(); // Return the checksum of "hello, wo"

406

SEDBC Link Library

Thelink library, sedbc.dll, has methods and properties for working with a
database in ScriptEase. These methods and properties provide a high-level
interface for working with ODBC databases. The Database object alows the
user to create a connection to a database which can then be queried, manipulated,
and so forth through direct SQL statements or by the Cursor object. SQL
statements stored inside the database are known as stored procedures and can be
called using the Stproc object, allowing for the use of complex database-specific
procedures from a script. Finally, true ease of useis provided by the
SimpleDataset object, which is a combination of a Database object and a Cursor
object. Asapackage, sedbc.dll alows a script to have detailed, low-level control
of an ODBC database through SQL statements and easy to use, high-level
routines at the same time.

Cursor Object

pl atform Wn32; all versions of SE
sour ce: #l i nk <sedbc.dl | >

A Cursor object represents a database cursor for a specified SQL SELECT
statement or specified database table.

Description of the Cursor object

A Cursor isastructure, created from a database table, which represents a subset
of that table. When performing a query on a database, the results of the query are
returned as a Cursor.

A Cursor object can be used to perform the following operations:

Modify datain a database table.
Navigate in a database table.
Customize the display of the virtual table returned by a database query.

A Cursor object can be constructed in the following manners:

The cursor method of a database object.
The table method of a database object.
The cursor method of a Stproc object.

407

Thereis no need to cal a Cursor constructor.

A Cursor object has the notion of a"current” row. When operations are
performed on a Cursor, they usually affect thisrow. The current row can be
moved forward and backward through a Cursor using the next and pr evi ous
methods, respectively. Similarly, thefirst and| ast methods set the current
row to thefirst or last row in the cursor. Each of these methods will return

f al se if the desired row does not exist within the Cursor. Thus, if the Cursor
does not have any rowsin it (perhaps because the SELECT statement used to
create the cursor did not return any results), each of these methods will return
false. Don't forget to check for this condition!

Important - A Cursor does not guarantee the order or positioning of its rows.
For example, if arow is added to a Cursor, there is no way of knowing where
that row will actually appear within in the cursor. Thus, do not make any
assumptions about the ordering of rows within the Cursor. When finished with a
Cursor object, use the cl ose method to close it and release the memory it uses.
If a database connection that has an open Cursor is released, the runtime engine
waits until that Cursor is closed before actually releasing the connection to the
database, o it isimportant to remember to close Cursors. If a Cursor has not
been not explicitly closed using the close method by the time the associated
Database or DbPool object goes out of scope, the runtime engine will try to close
it. Thismay tie up system resources unnecessarily and/or lead to unpredictable
results. Use the pr ot ot ype property of the Cursor class to add a property to all
Cursor instances. The addition applies to all Cursor instances running in all
applications on the server, not just the application that made the change. This
allows the capabilities of the object to be expanded for the entire server.

Cursor Instance Properties

The properties of Cursor objects vary from instance to instance. Each Cursor
object has a property for each named column in the Cursor. Thus, when a Cursor
is created, it acquires a property for each column in the virtual table, as
determined by the SELECT statement.

Note - Unlike other properties in JavaScript, cursor properties corresponding to
column names are not case sensitive, because SQL is not case sensitive and some
databases are not case sensitive.

Properties of a Cursor object can be referred to as elements of an array. The O-
index array element corresponds to the first column, the 1-index array element
corresponds to the second column, and so on.

408

SELECT statements can retrieve values that are not columns in the database,
such as aggregate values and SQL expressions. Display these values by using the
Cursor's property array index for the value.

Cursor filter

SYNTAX: cursor.filter

DESCRIPTION: A property containing a conditional expression that determines
which subset of rows are retrieved by a cursor. This expression
isastring containing the WHERE clause of an SQL statement
describing the rows to be included. The string does not include
the reserved word WHERE, however. Initidly, the filter
property valueis set to the empty string, indicating that all of the
Cursor rows areto beretrieved. Call r el oad after changing the
filter to update the contents of the Cursor.

SEE: Cursor.reload()

EXAMPLE: /| assune 'database’ is a valid Database object
var curs = database.tabl e("custoner")

/1 Set cursor filter so that the Cursor only
retrieves objects

/'l whose 'City' fieldis set to 'Berlin’
curs.filter = "Cty = "Berlin'";

/! Rel oad the cursor
err = curs.reload();

Cursor sort

SYNTAX: cursor.sort

DESCRIPTION: A property containing the sort order of acursor. The Cursor sort
order will determine the order that the rows are returned in when
iterating the Cursor. The sort property is a string that contains
the ORDER BY clause of an SQL statement. It does not include
the reserved word ORDER BY, however. Initidly, the sort
property is set to the empty string, and, therefore, no item sort
order is guaranteed. Call r el oad after changing the sort order
to update the contents of the Cursor.

SEE: Cursor.reload()

EXAMPLE: /| assune 'database' is a valid Database object

409

var curs = dat abase.tabl e("custoner")

/!l Set sort order so that the Cursor is sorted first
by the

/1 '"city' field, and, for records with the sanme
"city' value,

/'l descending by the field 'nane'.

curs.sort = "city, name DESC';

/1 Rel oad the cursor
err = curs.reload();

Cursor Instance Methods

Cursor close()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

cursor.closg()

number - O if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the associated
Database maj or Er r or Code and maj or Er r or Message
methods to interpret the meaning of the error.

The cl ose method closes a cursor or result set and releases the
memory it uses. If acursor isnot explicitly closed using the

cl ose method, it will automatically be closed by the runtime
engine when the corresponding client object goes out of scope.

Database.majorErrorCode(), Database.minorErrorCode()

err = curs.close()

Cursor columnName()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

cursor.columnName(n)

n - zero-based integer corresponding to the column in the query.
The first column in the result set is O, the second is 1, and so on.

string - the name of column number nin the cursor.

Given a column number, col utmNane() returns the name of
the column.

When using SELECT statements with wildcards (*) to select all

410

SEE!

EXAMPLE!

the columns in a table, the columnName method does not
guarantee the order in which it assigns numbers to the columns.
Thus, use col umNane to find which name corresponds to
which column number.

Cursor.columns()

/1 assune 'database' is a valid, open Database object
var curs = database. cursor (SELECT * FROM cust oner);

/'l get the name of the first colum in the cursor
header = cust oner Set. col utmNane(0) ;

Cursor columns()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

cursor.columns()
number - columnsin a Cursor object.

This function returns the number of named and unnamed
columns that are present in the given Cursor.

Cursor.columnName()

nunCol s = curs. colums();

Cursor deleteRow()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

cursor.deleteRow()

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the associated
Database's maj or Er r or Code and maj or Er r or Message
methods to interpret the meaning of the error.

This function, only available on up datable cursors, deletes the
current row from the Database object.

Database.commitTransaction(), Database.rollback Transaction()

/'l assune 'database' is a valid Database object
var curs = database.tabl e("custoner");

/1 delete all rows fromthe Database where Gty is
" Medf or d"
while (curs.next())

{

411

if(curs.Cty == "Medford")
err = curs. del et eRow();

dat abase. conmi t Transacti on();

Cursor first()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

cursor.first()

boolean - falseif the cursor is empty or if cursor is forward-only
cursor and the current row is not the first row, otherwise true.

This method moves the current row to the first row in the Cursor
and returnstrue so long asthereisafirst row. Notethat if the
cursor is empty, this method always returns false. Also note that,
if the cursor does not alow backwards movement of the current
row, false will be returned.

Cursor.next(), Cursor.previous(), Cursor.last()

/'l assune 'database' is a valid Database object
var curs = database.tabl e("custoner");

/!l set the current rowto the first rowin the Cursor
curs.first();

Cursor insertRow()

SYNTAX:

RETURN:

DESCRIPTION:

cursor.insertRow()

number - O if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the associated
Database's maj or Er r or Code and maj or Er r or Message
methods to interpret the meaning of the error.

This function, only available on undatable cursors, inserts arow
into the associated database table. The location of the inserted
row may vary depending on the database vendor's
implementation, and thus row ordering is not guaranteed. There
are several ways to specify values for the row being inserted:

Explicitly assigning values to each column in the cursor and then
calingi nsert Row.

Choosing to arow using the next or pr evi ous methods,

412

SEE!

EXAMPLE!

changing the values of some of the columns and then calling
i nsert Row. Columnsthat were not explicitly assigned values
will receive values from that initially chosen row.

Do not choose arow with next or pr evi ous and call
i nsert Row. Sincethereisno current row in thiscase, al of the
columns for the new row will be null.

Any columns in the cursor that contain unassigned values when
i nsert Rowis called will be null in the new row.

Cursor.next(), Cursor.previous(), Database.commitTransaction(),
Database.rollback Transaction()

/'l assune 'database' is a valid Database object
var curs = dat abase. tabl e("custoner");

/1 choose the first rowto act as a "tenplate" for
the new row
curs. next();

/'l plug in sonme values for the new row
curs.Nanme = "Fred Flintstone";
curs.Gty = "Bedrock";

/1 add the row to the database
err = curs.insertRow();

dat abase. conmi t Transacti on();

Cursor last()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

cursor.last()
boolean - falseif the cursor is empty; otherwise true.

This method moves the current row to the last row in the Cursor
and returns true so long as thereisalast row. Notethat if the
cursor is empty, this method always returns false.

Cursor.next(), Cursor.previous, Cursor.first()

/'l assune 'database' is a valid Database object
var curs = database.tabl e("custoner");

// set the current rowto the last rowin the Cursor
curs.last();

413

Cursor next()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

cursor.next()
boolean - false if the current row is the last row; otherwise true.

The current row of a Cursor isinitially positioned "before” the
first row. Using the next method, the current row can be moved
forwards through the records in the Cursor. The next method
moves the pointer and returns true as long as there is another row
available. When the current row has reached the last row of the
Cursor, next returnsfase. Notethat, in the event of an empty
Cursor, this method will aways return false.

Cursor.previous(), Cursor.first(), Cursor.last()

/'l assune 'database' is a valid Database object
var curs = database. cursor("select * from custoner",
true);

/'l visit each object in the cursor
while (curs.next())

]

Cursor previous()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

cursor.previous()
boolean - false if the current row is the first row; otherwise true.

Using the pr evi ous method, the current row can be moved
backwards through the records in the Cursor. The pr evi ous
method moves the pointer and returns true as long as thereis
another row available. When the current row has reached the
first row of the Cursor, next returnsfalse. Note that, in the
event of an empty Cursor, this method will always return false.

Cursor.next(), Cursor first(), Cursor.last()

/'l assune 'database' is a valid Database object
var curs = database. cursor("select * from custoner",
true);

/!l set the current rowto the last rowin the cursor
curs.last();

/'l visit each object in the cursor, backwards
whil e (curs. previous())

414

Cursor reload()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

cursor.reload()

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the associated
Database's maj or Er r or Code and maj or Er r or Message
methods to interpret the meaning of the error.

Requeries the database and recreates the rows of the cursor,
taking into account the filter and sort properties of the Cursor.

Database.majorErrorCode(), Database.minorErrorCode(),
Cursor.sort, Cursor.filter
/1 assune 'curs' is a valid Cursor object

/| Change sort order of the cursor rows
curs.sort = "Year";

/! reload the cursor's contents
err = cursor.reload();

Cursor updateRow()

SYNTAX:

RETURN:

DESCRIPTION:

cursor.updateRow()

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the associated
Database's maj or Er r or Code and maj or Er r or Message
methods to interpret the meaning of the error.

This method uses the values in the current row of an undatable
cursor to modify arow in atable. Before an updat eRow can be
performed, make sure the next method has been called at least
once, so that the current row of the Cursor is assigned.

To update arow in a database table, assign values to columnsin
the current row of the cursor, and call updat eRow. Column
valuesthat are not explicitly assigned are not changed by the
updateRow method.

415

SEE: Cursor.next(), Cursor.previous(), Database.commitTransaction(),
Database.rollback Transaction()

EXAMPLE: /1 assune 'database’ is a valid Database object
var curs = database.tabl e("custoner");

/'l choose the first row to be updated
curs. next();

/'l update the values for the new row
curs. Paid = Fal se;

/! update the row in the Cursor
curs. updat eRow() ;
dat abase. conmi t Transacti on();

Database Object

platform Wn32; all versions of SE
source: #link <sedbc>
| ocation: [|ink

The Database object allows an application to access and interact with a
relational database.

Description of the Database object

Use the database object to connect to a remotely stored relational database stored
on a server.

The database object can be used to perform the following tasks on a relationa
database:

Execute SQL statements and queries on the database server
Iterate the results of a query in order to process or display them
Manage database transactions

Run stored procedures

When closing down a database, be sure to close any associated open cursors,
result sets, and stored-procedure objects, or € se unpredictable results may occur.

Transactions

A transaction is a group of database actions that are performed together. Either
all the actions succeed together or they all fail together. When a group of

416

database actions is made permanent, it is called committing a transaction. Rolling
back atransaction cancels al of the actions of a non-committed transaction.

Explicit transaction control is available for any set of actions using the

begi nTransact i on, commi t Transacti on,andr ol | backTransacti on
methods. If transactions are not controlled explicitly, the runtime engine uses the
underlying database's autocommit feature to treat each database modification as a
separate transaction. Each statement is either committed or rolled back
immediately, based on the success or failure of the individual statement.
Explicitly managing transactions overrides this default behavior.

NOTE: When making changes to a database, it is recommended that explicit
transaction control be used. If not, the database may report errors. However,
even if errors are not specifically reported, data integrity cannot be guaranteed
unless explicit transactions are used. In addition, any time a Cursors object is
used to update a database, it is aso recommended that explicit transactions be
used to ensure the consistency of the data.

For the database object, the scope of atransaction is limited to lifetime of the
connection. If the database object is disconnected before calling

commi t Transacti on or rol | backTr ansact i on method, then the transaction
isautomatically rolled back.

Database beginTransaction()

SYNTAX: database.beginTransaction()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the
maj or Er r or Code and maj or Er r or Message methods to
interpret the meaning of the error.

DESCRIPTION: After calling begi nTr ansact i on, al subsequent actions that
modify the database are grouped within this transaction, known
asthe current transaction. Nested transactions are not supported.
If begi nTransacti on is called when atransaction is aready
open, an error message will be returned.

SEE: Database.commitTransaction(), Database.rollback Transaction()

EXAMPLE: var err = db. begi nTransaction();

417

Database commitTransaction()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

database.commitTransaction()

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the

maj or Er r or Code and maj or Er r or Message methods to
interpret the meaning of the error.

This method commits all of the actions performed since the last
call to begi nTransact i on. If thereis no current transaction
(for instance, the application has not called

begi nTransacti on), calstoconmi t Transact i on are
ignored.

Database.beginTransaction(), Database.rollback Transaction()

var err = db.comm t Transaction();

Database connect()

SYNTAX:

WHERE!

RETURN:

database.connect(dbtype, server, username, password)

dbtype - A string representing the database type. Currently only
"ODBC" is supported.

server - Data source name. On Windows systems using ODBC,
thisis specified in the ODBC Administrator Control Panel; on
UNIX, in the .odbc.ini file. See your database or system
administrator for more information.

username - Name of the user to connect to the database. Some
relational database management systems (RDBMS) require that
this be the same as your operating system login name; others
maintain their own collections of valid user names. If in doubt,
see your system administrator.

password - User's password. |f the database does not require a
password, use an empty string.

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the

maj or Er r or Code and maj or Er r or Message methods to

418

DESCRIPTION:

SEE!

EXAMPLE!

interpret the meaning of the error.

Creates and caches a database connection to the specified
database of the given type, using the username and password
passed-in. When the connection goes out of scope, any pending
transactions are rolled back. If any database connections are
open when connect iscalled, they are closed and released
before the new connection is opened.

Database.disconnect(), Database.connected()

/'l This exanple creates a new dat abase and then
connects it to

/'l the database nanmed "CLI ENTS" using the usernane
"ADM N' and

/1 the password "adm n-password”

var db = new dat abase();

var err = db. connect ("ODBC', "CLIENTS", "ADM N',
"adm n- passwd") ;

Database connected()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

database.connected()

boolean - true if the Database object is currently connected to a
data source, false otherwise.

This method returnstrue if the Database object is currently
connected to a database. If connect ed returns false, reconnect
the database before performing any further database actions,
otherwise the actions will result in errors.

Database.connect(), Database.disconnect()

/'l This exanple first checks to see if the database
is
// connected to a data source. If not, it connects
it to the
/| database naned " CLI ENTS" using the usernane
"ADM N' and the
/'l password "adm n-password"
if (!db.connected())
err = db. connect("ODBC', "CLIENTS",
"ADM N', "adm n- passwd");

Database cursor()

419

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

database.cursor(sglstatement[, updateable])

sl statement - String containing a SQL SELECT statement
supported by the database server. updateable - Boolean
parameter indicating whether the cursor can be modified.

object - anew Cursor object, representing the results of the
specified SQL statement.

This method creates a Cursor object that contains the rows
returned by the specified SQL SELECT statement in the

sql st at ement parameter. If the SELECT statement does not
return any rows, the resulting Cursor object also has no rows.

The optional updat eabl e parameter specifies whether the
Cursor object created can be modified. If no value is specified in
the updat eabl e parameter, the cursor is created non-
updateable.

If an updateable Cursor object is desired, the virtual table
returned by the sqgl st at ement parameter must be updateable.
For example, the SELECT statement passed as the

sql st at enent parameter cannot contain a GROUP BY clause.
In addition, the query usually must retrieve key values from a
table. For more information on constructing updateable queries,
consult your database vendor's documentation.

Cursor object

/'l This exanple creates the updateable cursor 'custs'
and
/1 returns the colums 'ID, '"CUST_NAME , and 'CITY
fromthe
/'l custoner table:
custs = db.cursor("select id, cust_nanme, city from
cust omer ",

true);

Database disconnect()

SYNTAX:

RETURN:

database.disconnect()

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the

420

DESCRIPTION:

SEE!

EXAMPLE!

maj or Er r or Code and maj or Er r or Message methodsto
interpret the meaning of the error.

Disconnects Database object from its data source.

Database.connect(), Database.connected()

/1l The exanpl e checks to see if the Database object
is
// connected to a data source, and, if so,
di sconnects it.
i f (db.connected())
err = db. di sconnect ();

Database execute()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

database.execute(sglstatement)
sglstatement - string representing the SQL statement to execute.

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the

maj or Er r or Code and maj or Er r or Message methodsto
interpret the meaning of the error.

This method allows execution of any data definition language
(DDL) or data manipulation language (DML) SQL statement
supported by the database server that does not return a cursor
(such as CREATE, ALTER, or DROP). Each database supports a
standard core of DDL and DML statements. In addition, a
database may support DDL and DML statements specific to that
database vendor. Use execut e to call any of those statements.
However, a database vendor may provide functions that are not
DDL or DML statements. Do not use execut e to call those
functions. For example, do not call the Oracledescri be
function or the Informix | oad function from the execut e
method.

Although the execut e method can be used to perform data
modification (I NSERT, UPDATE, or DELETE statements), it is
recommended that Cursor objects be used instead to achieve the
same functionality. Using the Cursor object for these sorts of
actions alows better database-type independence and also alows

421

SEE!

EXAMPLE!

the use of binary large object (BLODb) data.

When using the execut e method, the SQL statement must
strictly conform to the syntax requirements of the database
server. For example, some serversrequire each SQL statement
be terminated with a semicolon. See the server documentation
for more information. If atransaction has not been started with
begi nTransact i on, the single statement is automatically
immediately committed when execut e is called.

Database.cursor(), Database.beginTransaction(),
Database.commitTransaction(), Database.rollback Transaction()

/1 This exanple deletes all records fromthe database
/! whose IDis 'requestedlD . It is recomended,

/'l however, that the Cursor object be used to perform
this action.

err = db. execute("del ete from custoner where
custoner.ID =" + requestedI D);

Database majorErrorCode()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

database.majorErrorCode()

variable - the result returned by this method varies depending on
the database server being used, but contains an error code
indicating why the most recent database activity failed.

SQL statements can fail for a variety of reasons, including
referential integrity constraints, lack of user privileges, record or
table locking in a multiuser database, and so on. When an action
fails, the database server returns an error code indicating the
reason for failure. Use this method to fetch that error code.

Database.majorErrorM essage(), Database.minorErrorCode(),
Database.minorErrorM essage()

err Code = db. maj or Err or Code() ;

Database majorErrorMessage()

SYNTAX:

RETURN:

database.majorErrorM essage()

variable - the result returned by this method varies depending on
the database server being used, but contains an error message

422

DESCRIPTION:

SEE!

EXAMPLE!

explaining why the most recent database activity failed.

SQL statements can fail for a variety of reasons, including
referential integrity constraints, lack of user privileges, record or
table locking in a multiuser database, and so on. When an action
fails, the database server returns an error message indicating the
reason for failure. Use this method to fetch that error message.

Database.majorErrorCode(), Database.minorErrorCode(),
Database.minorErrorM essage()

err Message = db. maj or Err or Message() ;

Database minorErrorCode()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

database.minorErrorCode()

variable - the result returned by this method varies depending on
the database server being used. In general, the method returns a
secondary error code indicating a condition where the last
database activity may not have completed as expected.

The result returned by this method varies depending on the
database server being used. In general, the method returns a
secondary error code indicating a condition where the last
database activity may not have completed as expected.

Database.majorErrorCode, Database.majorErrorM essage,
Database.minorErrorM essage()

err Code = db. m nor Error Code();

Database minorErrorMessage()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

database.minorErrorM essage()

variable - the result returned by this method varies depending on
the database server being used. In general, the method returns a
secondary error message indicating a condition where the last
database activity may not have completed as expected.

This method returns the secondary error message returned by
database vendor library.

Database.majorErrorCode, Database.majorErrorM essage,

423

EXAMPLE!

Database. minorErrorCode()
err Code = db. m nor Error Message();

Database procedureName()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

database.procedureName(n)

n - Zero-based integer corresponding to the stored procedurein
the database.

The name of the stored procedure with index n.

This method returns the name of the stored procedure
corresponding to the specified index, n.

Stproc object, Database.storedProc(), Database.prodecureName()

/1 fetch the nane of stored procedure 0O
procNanme = db. procedur eNane(0);

Database procedures()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

database.procedures()
number - number of stored procedures in the database.

This method returns the number of procedures stored in the
database.

Stproc object, Database.storedProc(), Database.procedureName()

/1 get the nunber of stored procedures in 'db'
procCount = db. procedures();

Database rollbackTransaction()

SYNTAX:

RETURN:

DESCRIPTION:

database.rollback Transaction()

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the

maj or Er r or Code and maj or Er r or Message methods to
interpret the meaning of the error.

This method undoes all actions performed since the last call to
begi nTransact i on. If thereis no current transaction (for

424

SEE!

EXAMPLE!

instance, the application has not called begi nTr ansact i on),
calstorol | backTransacti on areignored.

Database.beginTransaction, Database.commitTransaction()

err = db.roll backTransaction()

Database storedProc()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

database.storedProc(procName)

procName - String specifying the name of a stored procedure or
SQL statements with parameters.

object - new St pr oc object.

This method creates a stored procedure object (St pr oc) from
either the named stored procedure contained within the Database
object, or from the passed-in SQL statement.

Stproc object, Database.procedures(),
Database.procedureName()

/'l this exanple create a new dat abase,

//and then executes

/1 a stored procedure contained w thin

var db = new Dat abase;

db. connect (DBEngi ne, DataSource, User, Password);
var sp = db. storedProc("SoneProc");

sp.ltem D = 123;

sp. execut e();

/'l now, execute an SQ. Stproc

sp = db.storedProc("delete fromltens where Wight =
")

sp[0] = 1000;

sp. execut e();

/'l clean up
sp. cl ose();
db. cl ose();

Database table()

SYNTAX:

WHERE:!

database.table(tableName[, updateable])
tableName - The name of an existing table in the database.

425

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

updateable - Boolean flag indicating if the created cursor should
be able to be modified (is updateable).

object - Cursor object representing the specified database table.

This method creates anew Cur sor object from the specified
table stored in the database. The resulting Cur sor has one row
for each row in the database table and will be empty if the
database table has no rows. The optiona updat eabl e parameter
specifies whether the created Cursor object can be modified. If
no value is specified for the updat eabl e parameter, it isfalse
by default.

To create an updateable Cur sor object, the table specified in
parameter must aso be updateable.

Cursor object, Database.tables(), Database.tableName()

/'l create a new Cursor object fromthe "clients"
dat abase tabl e
clientsCurs = db.table("clients", false);

Database tableName()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

database.tableName(n)
N - Zero-based integer corresponding to the table in the database.
string - name of the table in the database with index n.

This method returns the name of the database table
corresponding to the specified index, n.
Database.table(), Database.tables()

/1l fetch the nane of database table 0
t abl eNane = db. tabl eNane(0);

Database tables()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

database.tables()

number - number of tablesin the database.

This method returns the number of tables stored in the database.
Database.table(), Database.tableName()

426

EXAMPLE: /1 get the nunber of tables in 'db
t abl eCount = db. tabl es();

SimpleDataset Object

title: SinpleDataset object
platform Wn32; all versions of SE
source: #include <sndtset.jsh>

A SimpleDataset object is a easy-to-use database-access object that combines
database and cursor functionality into a single object.

Description of the SimpleDataset object

SimpleDataset is a JavaScript class that combines the concept of atable and a
cursor into a single, easy-to-use object. No more than one table may be
represented by a SimpleDataset, so inserting items into the dataset doesn't require
atarget table to be specified. SQL is not needed to use a SimpleDataset and all
operations can be performed through simple method calls.

When a SimpleDataset is created, it initially contains al of the rows ("records’)
in the specified table. The find() method allows this set to be reduced to only
those records that match specified templates.

A SimpleDataset has the notion of the "current record”. Thisis the record that
SimpleDataset operations will affect. When the SimpleDataset is first created,
the current record is the record "before" the first record, and is thus undefined.

Use the firstRecord(), lastRecord(), nextRecord(), and prevRecord() methods, to
step through the records in the SimpleDataset. The current record is returned by
currentRecord(). The objects returned by these routines have one property for
each of the current record's fields.

The current record can be deleted using deleteRecord(). All itemsin the dataset
can be deleted by deleteAll().

Records can be inserted to the SimpleDataset's table by insertRecord(). The
"current" record can be replaced by a specified record using replaceRecord().

A Cursor object representing the SimpleDataset can be obtained by using the
cursor() method. 1t may be necessary to use this to perform more powerful
operations on the dataset.

427

Although the SimpleDataset can be closed through its close() method, it is
automatically closed when the object goes out of scope.

Using the SimpleDataset object, the following five-line script can be used to print
out the contents of a database:

function print_all (db, table, user, passwd)
{
var ds = new Sinpl eDat aset (db, table, user, passwd);
whi l e(var rec = ds. next Record())
for(var prop in rec)
Cib.printf(prop +" =" + rec[prop] + "\n");

ds. cl ose();

SimpleDataset instance methods
SimpleDataset()

SYNTAX: new SimpleDataset(database, table, username, password)

WHERE:! database - The name of the ODBC database to open. On
Windows systems using ODBC, thisis specified in the ODBC
Administrator Control Panel; on UNIX, in the .odbc.ini file. See
your database or system administrator for more information.

table - the name of the database table to use.

username - name of the user to connect to the database. Some
relational database management systems (RDBMS) require that
this be the same as your operating system login name; others
maintain their own collections of valid user names. If in doubt,
see your system administrator.

password - user's password. |If the database does not require a
password, use an empty string.

RETURN: object - anew Si npl eDat aset, or nul | on error.

DESCRIPTION: Constructor for the Si npl eDat aset object. When the
Si npl eDat aset iscreated, it contains all of the elementsin the
table. The current e ement is set to the one "before” the first
element in the dataset (and thusis "out of range").

EXAMPLE: /'l create a SinpleDataset connected to the database

428

/1 named "corporate", table named "clients" using

/1 the usernane "ADM N' and the password

/1 "adm n- password"

var ds = new Si npl eDat aset ("corporate”, "clients",
"ADM N', "adm n- password");

SimpleDataset close()

SYNTAX: simpledataset.close()

RETURN: boolean - value indicating success. In the case that the operation
failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

DESCRIPTION: This method closes the Si npl eDat aset object, freeing up the
system resources being used by it. It also closes the associated,
hidden, dat abase and Cur sor objects.

EXAMPLE: var success = ds.close();

SimpleDataset currentRecord()

SYNTAX: simpledataset.currentRecord()

RETURN. object - the SimpleDataset's current record, or null if the current
record is out of range.

DESCRIPTION: This method returns the record for the current record in the
Si npl eDat aset . If the current element isundefined, nul | is
returned. The returned object has one property for each field of
the SimpleDataset's current record.

SEE: SimpleDataset.nextRecord(), SimpleDataset.prevRecord(),
SimpleDataset.firstRecord(), SimpleDataset.|astRecord()
EXAMPLE: /1 get the current record

var cr = ds.currentRecord();

/1 print out all of the fields of the object
for(var prop in cr)
dib.printf(prop +" =" + cr[prop] + "\n");

SimpleDataset nextRecord()

SYNTAX: simpledataset.nextRecord()

RETURN: object - the next record in the Si npl eDat aset . If thereisno

429

next record, nul | isreturned.

DESCRIPTION: This method moves the current record forward in the
Si npl eDat aset and returns the new current record. If the
previous current record was the last record or the
Si npl eDat aset isempty, nul | isreturned.

SEE: SimpleDataset.currentRecord(), SimpleDataset.prevRecord(),
SimpleDataset.firstRecord(), SimpleDataset.|astRecord()
EXAMPLE: /'l get the next record

var rec = ds.nextRecord();

/!l so long as the record isn't null, print out al
/1 of the fields of the object
if(null '=rec)
for(var prop inrec)
Cdib.printf(prop +" =" + rec[prop] + "\n");

SimpleDataset prevRecord()

SYNTAX: simpledataset.prevRecord()

RETURN: object - the previous record in the Si npl eDat aset . If thereis
no previous record, nul | isreturned.

DESCRIPTION: object - the previousrecord in the Si npl eDat aset . If thereis
no previous record, nul | isreturned.

SEE: see: SimpleDataset.currentRecord(),
SimpleDataset.nextRecord(), SimpleDataset.firstRecord(),
SimpleDataset.|astRecord()

EXAMPLE: /1 get the previous record
var rec = ds. prevRecord()

/!l so long as the record isn't null, print out al
/1 of the fields of the object
if(null '=rec)
for(var prop inrec)
Cib.printf(prop +" =" + rec[prop] + "\n");

SimpleDataset firstRecord()

SYNTAX: simpledataset.firstRecord()
RETURN: object - thefirst record in the Si npl eDat aset . If the

430

Si npl eDat aset isempty, nul | isreturned.

DESCRIPTION: This method moves the current record to the first record in the
Si npl eDat aset and returns the new current record. If the
Si npl eDat aset isempty, nul | isreturned.

SEE: SimpleDataset.currentRecord(), SimpleDataset.nextRecord(),
SimpleDataset.prevRecord(), SimpleDataset.|astRecord()
EXAMPLE: /1 get the first record

var rec = ds.firstRecord();

/!l so long as the record isn't null, print out all
/1 of the fields of the object
if(null '=rec)
for(var prop inrec)
Cib.printf(prop +" =" + rec[prop] + "\n");

SimpleDataset lastRecord()

SYNTAX: simpl edataset.lastRecord()

RETURN: object - the last record in the Si npl eDat aset . If the
Si npl eDat aset isempty, nul | isreturned.

DESCRIPTION: This method moves the current record to the last record in the
Si npl eDat aset and returns the new current record. If the
Si npl eDat aset isempty, nul | isreturned.

SEE: SimpleDataset.currentRecord(), SimpleDataset.nextRecord(),
SimpleDataset.prevRecord(), SimpleDataset.firstRecord()
EXAMPLE: /'l get the last record

var rec = ds.lastRecord();

/! so long as the record isn't null, print out all of
t he
/1 of the fields of the object
if(null '=rec)
for(var prop inrec)
Cib.printf(prop +" =" + rec[prop] + "\n");

SimpleDataset find() with template

SYNTAX: simpledataset.find(templatel[, template?], ...])

WHERE:! templateN - Item template to search for. When more than one

431

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

template is present, the templates are OR'd together.

Templates contain properties to match. Only those records which
have properties that match those values will be included in the
result set.

boolean - value indicating success. In the case that the operation
failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

This method searches the Si npl eDat aset 's database table for
all items that match the given templates. The contents of the

Si npl eDat aset are changed to reflect the results of the search.
The previous contents of the Si npl eDat aset are cleared and
the complete database table is searched to create the new
contents.

After thef i nd has completed, the current record is set to the
record "before" the first record. Fill out the propertiesin the
template to indicate which itemsto find. For instance, to find all
records whose 'city’ field equals "Metropolis’, set the value of
the 'city' property to "Metropolis’. If atemplate has more than
one property, the properties will be combined with an AND to
form the search term.

More than one template can be used. If multiple templates are
used, the template values will be combined using an OR to form
the search term.

SimpleDataset.findAll(), SimpleDataset.findDistinct(),
SimpleDataset.caseSensitive

/1 the following function will print out the fields
/1 of each of the records that have either Boston,
// USA or Paris, France as
/1 their city, country val ues
function print_BostonParis(db, table, user, passwd)
{

/] create the SinpleDataset

var ds = new Sinpl eDat aset (db, table, user,

passwd) ;

var tenplatel, tenplate2;

tenplatel.city = "Boston";

432

tenpl atel. country = "USA";

tenplate2.city = "Paris";
t enpl at e2. country = "France";

ds.find(tenplatel, tenplate2);
whil e(var rec = ds.nextRecord())
for(var prop in rec)
dib.printf(prop +" =" + rec[prop] +
)

ds. cl ose();

SimpleDataset find() with clause

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

simpledataset.find(whereClause)

whereClause - A string containing the WHERE clause of an SQL
statement (without the word WHERE) indicating which itemsto
find.

Boolean value indicating success. In the case that the operation
failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

This method searches the Si npl eDat aset 's database table for
all items that match the given SQL WHERE clause. The contents
of the Si npl eDat aset are changed to reflect the results of the
search. The previous contents of the Si npl eDat aset are
cleared and the complete database table is searched to create the
new contents.

After thef i nd has completed, the current record is set to the
record "before" the first record.

The string passed into f i nd contains a SQL WHERE clause. This
allows more elaborate searches to be performed.

SimpleDataset.findAll(), SimpleDataset.findDistinct()

/1 the following function will print out the fields
// of each of the records that have either Boston
/'l or Paris as their city val ues

function print_BostonParis(db, table, user, passwd)

{

433

/] create the SinpleDataset
var ds = new Sinpl eDat aset (db, table, user,
passwd) ;

var wher ed ause;

whered ause = "(CGty
(Gty

\'"Boston\') OR
\'Paris\')";

ds.find(tenplatel, tenplate2);

whi l e(var rec = ds. next Record())
for(var prop in rec)
dib.printf(prop +" =" + rec[prop] +
Il\nll).

ds. cl ose();

SimpleDataset findAll()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

simpledataset.findAll()

boolean - value indicating success. In the case that the operation
failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

This method clears the contents of the Si npl eDat aset and
replaces them with the entire contents of the database table.
Effectively, thisresetsthe Si npl eDat aset toitsinitia state.

After setting the new contents, the current record is set to the
record "before" the first record.

SimpleDataset.find(), SimpleDataset.findDistinct()

/'l reset the contents of the SinpleDataset
err = ds.findAll();

SimpleDataset findDistinct()

SYNTAX:

WHERE:!

RETURN!

simpledataset.findDistinct(field)

field - string indicating for which field duplicate values should
be filtered out.

boolean - value indicating success. 1n the case that the operation

434

DESCRIPTION:

SEE!

EXAMPLE!

failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

This method removes all records from the Si npl eDat aset that
have duplicate values for the indicated fields. In other words, for
the given field, only one record with each valueis left in the

Si npl eDat aset .

Note that no guarantees are made as to which records are left in
the Si npl eDat aset for each value of the field.

SimpleDataset.find(), SimpleDataset.findAll()

/1 print the unique country val ues
/1 in a Sinpl eDataset
function uni que_countries(db, table, user, passwd)
{
var ds = new Sinpl eDat aset (db, table, user,
passwd);

/1 find the distinct country val ues
ds.findD stinct("country");

whil e(var rec = ds. nextRecord())
Cib.printf(var.country + "\n");

SimpleDataset addRecord()

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

simpl edataset.addRecord(record)

record - Object whose properties contain the values of the fields
of the record to be added to the database table.

boolean - value indicating success. In the case that the operation
failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

This method inserts the specified record into the

Si npl eDat aset and its associated database table. The record
to be inserted will have the field values indicated by the
properties of the object passed into addRecor d. After inserting a
new record, the current record is left unchanged.

Note that no guarantees are made about the position of the
inserted record within the Si npl eDat aset .

435

SEE: SimpleDataset.deleteRecord(), SimpleDataset.deleteAll ()

EXAMPLE: /1 The follow ng function opens a Sinpl eDat aset,
/1 adds the city
/| Boston, Massachusetts to it,
/1 and then closes it down
function add_city(db, table, user, passwd)
{
var ds = new Sinpl eDat aset (db, table, user,
passwd);

/1 set up the field val ues

/!l of the itemto be added

var record;

record.city = "Boston";

record. country = "USA";

record. state = "Massachusetts";
record. popul ati on = 500000;

/! add the itemand cl ean up
ds. addRecord(record);
ds. cl ose();

SimpleDataset deleteRecord()

SYNTAX: simpledataset.del eteRecord()

RETURN: boolean - value indicating success. In the case that the operation
failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

DESCRIPTION: This method removes the current record from the
Si npl eDat aset and its associated database table. After
deleting the record, the current record is set to the record
"before” the first record.

SEE: SimpleDataset.deleteAll()

EXAMPLE: /!l This function will delete all records
/1 with USA as their country
function del ete_USA(db, table, user, passwd)
{
var ds = new Sinpl eDat aset (db, table, user,
passwd);

/1 find the entries whose country is USA
var tenpl ate;

436

tenpl ate.country = "USA";
ds.find(tenplate);

/] delete the records fromthe Sinpl eDataset
/1 and clean up
while(ds.next())
ds. del et eRecord();
ds. cl ose();

SimpleDataset deleteAll()

SYNTAX: simpledataset.deleteAll()

RETURN: boolean - value indicating success. In the case that the operation
failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

DESCRIPTION: This method removes al records from the Si npl eDat aset . The
corresponding rows will also be deleted from the associated

database table.
SEE: SimpleDataset.del eteRecord()
EXAMPLE: /!l This function will delete all records

/1 with USA as their country
function del ete_USA(db, table, user, passwd)
{
var ds = new Sinpl eDat aset (db, table, user,
passwd);

/1 find the entries whose country is USA
var tenplate;

tenpl ate.country = "USA";
ds.find(tenplate);

/] delete the records fromthe Sinpl eDataset
/1 and clean up

ds. deleteA |l ();

ds. cl ose();

SimpleDataset replaceRecord()

SYNTAX: simpl edataset.replaceRecord(record)

WHERE: record - object whose properties contain the values of the fields

437

of the record to replace the current record with.

RETURN: boolean - value indicating success. 1n the case that the operation
failed, usethe get Last Er r or Code() and get Last Error ()
methods to determine the reason for the failure.

DESCRIPTION: This method replaces the current record in the Si npl eDat aset
with the specified record. The record that the current record will
be replaced with will have the field values indicated by the
properties of the object passed into addRecor d. After inserting
anew record, the current record remains unchanged; that is, the
current record is the record that replaced the previous current

record.
SEE: SimpleDataset.addRecord(), SimpleDataset.del eteRecord()
EXAMPLE: /1 This function will set the popul ation

/1 of the first record

/1 with USA as its country to 100, 000

function replace_popul ati on(db, table, user,
passwd)

{

var ds = new Sinpl eDat aset (db, table, user,
passwd);

/1 find the entries whose country is USA
var tenplate;

tenpl ate.country = "USA";
ds.find(tenplate);

/! advance to first record in the result set
var rec = ds.nextRecord();

if(null '=rec)

{

/1 set the new popul ation val ue
rec. popul ati on = 100000;

/] replace the record and cl ean up
ds. repl aceRecord(rec);

ds. cl ose();

SimpleDataset cursor()

438

SYNTAX:

RETURN:

DESCRI PTI ON:

SEE!

EXAMPLE!:

simpledataset.cursor()

object - the Cur sor object that represents the current contents of
the Si npl eDat aset

This method returns the Cursor object that represents the
SimpleDataset. This may be useful if functionality beyond that
of the SimpleDataset is required.

Cursor object

/1 get the SinpleDataset as a Cursor
var curs = ds.cursor();

Si npl eDat aset get Last Err or Code()

SYNTAX:

RETURN:

DESCRI PTI ON:

SEE!

EXAMPLE!:

simpledataset.getL astErrorCode()
number - integer specifying error code

This method returns an integer containing the code of any error
encountered by the last SimpleDataset method call. The error
codeg/strings are reset whenever a SimpleDataset method is
called (excluding getL astErrorCode() and getL astError()).

SimpleDataset.getL astError()

/'l get the error code
err Code = ds. get Last Error Code();

SimpleDataset getLastError()

SYNTAX:

RETURN:

DESCRI PTI ON:

EXAMPLE!

simpledataset.getL astError()
string - message describing the last error encountered.

This method returns a string explaining the error encountered by
the last SimpleDataset method call. The error codes/strings are
reset whenever a SimpleDataset method is called (excluding
getLastErrorCode() and getL astError()).

SimpleDataset.getL astErrorCode()

/'l get a string describing the error
error = ds.getlastError()

SimpleDataset static properties

439

SimpleDataset.caseSensitive

SYNTAX: SimpleDataset.caseSensitive

DESCRIPTION: Boolean value indicating whether or not Si npl eDat aset 's
fi nd calls are case sensitive. By default, searches are not case
sensitive.

SEE: SimpleDataset.find()

EXAMPLE: /] turn on case sensitivity

/'l for SinpleDataset searches
ds. caseSensitive = true;

Stproc Object

title: Stproc bject
platform Wn32; all versions of SE
source: #link <sedbc>

A Stproc object represents a call to a database stored procedure or SQL statement
with parameters.

Description of the Stproc object

The Stproc object represents a stored procedure. A stored procedure is an SQL
statement or other procedure that can be saved in a database object. The
procedure object can be recalled and executed, if necessary returning its results
as a Cursor object.

Stproc instance properties

The properties of Stproc objects vary from instance to instance. Each Stproc
object has a property for each parameter in the stored procedure or SQL
statement. Thus, when a Stproc object is created, it acquires a property for each
of its parameters.

Parameters of a Stproc object may also be referred to as elements of an array.
The 0-index array element corresponds to the first parameter, the 1-index array
element corresponds to the second parameter, and so forth.

The following example demonstrates how to call a stored procedure using named
parameter properties. A Get G t yAr ea procedure might be definedinaMS
Access database as follows:

PARAMETERS Ar eaPar am Text, CityParam Text;

440

SELECT Tabl e3.* FROM Tabl e3
VWHERE ((Tabl e3. Area=[AreaParanj) AND
(Table3. G ty=[CityParani));

/! Recall the Stproc object 'GetCtyArea’ fromthe database
sp = db.storedProc("GetCityArea");

/'l Set the parameter val ues
sp. AreaParam = OEur opeQ
sp. G tyParam = CPari sQ

/| Execute the stored procedure
citySet = sp.cursor();

/'l Clean up
citySet.close();
sp. cl ose();

Thi s exanpl e uses the sane procedure, but accesses the
paraneters through array indexes.

/! Recall the Stproc object 'GetCtyArea’ fromthe database
sp = dat abase. storedProc("GetCG tyArea");

/1 Set the parameter val ues
sp[0] = OEuropeG

sp[1] = OParisQ

/| Execute the stored procedure
citySet = sp.cursor();

/1l Cean up

citySet.close();
sp. cl ose();

Stproc instance methods
Stproc close()

SYNTAX: stproc.close()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the associated
Database's maj or Er r or Code and maj or Er r or Message
methods to interpret the meaning of the error.

DESCRIPTION: This method closes a St pr oc object and rel eases the memory it

441

SEE!

EXAMPLE!

uses. If a St pr oc object is not explicitly closed with thecl ose
method, the runtime engine automatically it when the
corresponding dat abase object goes out of scope.

Database.majorErrorCode(), Database.minorErrorCode()

/1 C ose down the Stproc
err = sp.close();

Stproc parameterName()

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

stproc.parameterName(n)

N - zero-based integer corresponding to the parameter in the
Stproc object. The first parameter is O, the second is 1, etc.
return:

string - the name of parameter n.

This method returns the name of the parameter corresponding to
the given index.

Stproc.parameters()

/| fetch the second paraneter nane
/1 of the Stproc 'sp'
paranNane = sp. paraneterNane(1);

Stproc parameters()

SYNTAX:

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

stproc.parameters()
number - parametersin the Stproc.

This method returns the number of named and unnamed
parameters for the stored procedure or SQL statement.

Stproc.parameterName()

/'l create an array of paraneter nanes

/1 for Stproc 'sp'

for(i=0; i<sp.paraneters(); i++)
pNanmes[i] = sp.paranmeterName(i);

Stproc cursor()

SYNTAX:

stproc.cursor([updateabl€])

442

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

updateable - Boolean parameter indicating whether the cursor
can be modified.

A new Cursor object, representing the results of the stored
procedure.

This method creates a Cursor object that contains the rows
returned by the SQL SELECT statement of the stored procedure
object. If the SELECT statement does not return any rows, the
resulting Cur sor object also has no rows.

The optional updat eabl e parameter specifies whether the
Cursor object created can be modified. If no valueis specified in
the updat eabl e parameter, the cursor is created non-
updateable.

If an updateable Cur sor object is desired, the virtua table
generated by the stored procedure must be updateable. For
example, the SELECT statement cannot contain a GROUP BY
clause. In addition, the query usually must retrieve key values
from atable. For more information on constructing updateable
gueries, consult your database vendor's documentation.

Cursor object, Stproc.execute()

/'l create a SQL stored procedure

SQ = "select id, cust_nane, city from custoner"
"where (id >=?) and (id <=?)";

sp = dat abase. storedProc(SQ);

/'l set the paraneters
sp[0] 1000;
sp[1] 2000

/'l create the cursor
custs = sp.cursor(true)

Stproc execute()

SYNTAX:

RETURN:

stproc.execute()

number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. 1f
the method returns a nonzero status code, use the associated
Database's maj or Er r or Code and maj or Er r or Message

443

DESCRIPTION:

SEE!

EXAMPLE!

methods to interpret the meaning of the error.

This method executes the stored procedure of SQL statement. It
allows execution of any stored procedure or SQL statement that
uses data definition language (DDL) or data manipulation
language (DML) statements supported by the database server
and that do not return a cursor (such as CREATE, ALTER, or
DROP).

Each database supports a standard core of DDL and DML
statements. In addition, a database may support DDL and DML
statements specific to that database vendor. Use execut e to call
any of those statements. However, a database vendor may
provide functions that are not DDL or DML statements. Do not
useexecut e to call astored procedure using those functions.
For example, do not call the Oracledescr i be function or the
Informix | oad function from a stored procedure's execut e
method. Although the execut e method can be used to perform
data modification (I NSERT, UPDATE, or DELETE statements), it
is recommended that Cur sor objects be used instead to achieve
the same functionality. Using the Cur sor object for these sorts
of actions allows better database-type independence and also
allows the use of binary large object (BLOb) data.

When using the execut e method, the stored procedure's SQL
statement must strictly conform to the syntax requirements of the
database server. For example, some servers require each SQL
statement be terminated with a semicolon. See the server
documentation for more information. If a transaction has not
been started with begi nTr ansact i on, the single statement is
automatically immediately committed when the stored
procedure's execut e method is called.

Stproc.cursor(), Database.majorErrorCode(),
Database.majorErrorM essage()

/! Create a new dat abase object, and

/! connect it to a data source

var a = new Dat abase;

a. connect (DBEngi ne, Dat aSource, User, Password);

/| execute the stored procedure ' SoneProc'
var sp = a.storedProc("SonmeProc");

444

sp.ltem D = 123
sp. execut e();

/| execute an SQ stored procedure

sp = a.storedProc("delete fromltens where Wight =
?");

sp[0] = 1000;

sp. execut e();

/'l clean up
sp. cl ose();
a.cl ose();

445

Socket Link Library

The Socket object is used to communicate between computers over the internet

through sockets.

Socket Object

platform Al OS except DOS and OS2; Al Versions of SE

source:

#l i nk <sesock. dl | >

Socket object instance methods
Socket() with hostname

SYNTAX:

WHERE:!

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

new Socket(hostname, port)

hostname - Name of remote host to connect to
port - Port of remote host to connect to

object - A new Socket object, or null on error

This method attempts to connect to the specified remote host. 1f
the library is unable to connect to the remote host, then null is
returned and error is set. Once the connection is established, the
socket can be read from / written to until it is closed or the
connection is lost.

Socket.error()

function connect(hostnanePort)

{

var i ndex;
var port = 1000; // Default port

if((index = hostnanePort.indexCOF(":")) !'=-1)
port = ToNunber (host nanePort. substri ng(i ndex,

host nanePort. | ength));
host nanePort = host nanePort. substring(0, i ndex);

}

var socket = new Socket (host nanePort, port);

447

return socket;

Socket() with port

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

new Socket(port)
port - Port to listen on
object - A Socket object, or null on error.

There are two types of sockets, in general. One type is a socket
which is an established connection between aclient and a server.
This socket can be read to and written from just like afile. The
other type of socket is a listening socket, which is a server-side
socket which is not connected to a specific client, but rather to a
certain port. Itislistening for any new requests on that port.
Requests can be checked for using the select() method. Once it
is established that there is arequest waiting, the peer-to-peer
connection can be established using the accept() method. This
creates a new connection socket on another port, leaving the
original socket still listening for incoming connections.

Socket.select(), Socket.accept()
var |istenSocket = new Socket(1000);

if(listenSocket !'= null)

if(listenSocket.ready())

{
var connect Socket = |istenSocket. accept();
i f(connectSocket !'= null)

/1 Finally! we have the socket
/[l ... do stuff with socket ...
connect Socket . cl ose();

}

}
}

~

E I

This will create a socket to listen on port 1000
and wait for any incom ng

connections. The no-paraneter form

of ready() uses an infinite

timeout, so the programwaits indefinitely

448

for a connection. This is
al so equi avalent to
"Socket.select(-1,listenSocket)", which is a
generic formwhich allows for
listening on nultiple sockets.

/

EE N

Socket accept()

SYNTAX: socket.accept()

RETURN: object - A new socket object connected to the client of the
incoming request, or null if thereis an error.

DESCRIPTION: If there is no incoming request waiting on the socket, or this
socket is not listening on a certain port, then it is an error and
null isreturned. Otherwise, the method establishes a socket
connection on another port and returns a socket object
representing this connection. The returned socket can later be
used for reading/writing and other communication between the
client and server.

SEE: Socket.select(), Socket.ready()

Socket blocking()

SYNTAX: socket.blocking(flag)

WHERE:! flag - A boolean value indicating whether this socket isto be
blocking or non-blocking.

RETURN: boolean - Whether the operation was successful.

DESCRIPTION: This method sets the state of the socket to be blocking if f | ag is
true, and non-blocking otherwise. A blocking socket will wait
indefinitely for data on reads, while a non-blocking socket will
immediately exit with an error indicating that there is no data to
beread. By default, al sockets are blocking when they are
created.

SEE: Socket.select(), Socket.read()

449

Socket close()

SYNTAX:

RETURN:

DESCRIPTION:

SEE!

socket.clos()
boolean - Whether the operation was successful or not

This method closes the specified socket and frees up any
memory associated with the object. It must be called to
appropriately dispose of the socket. If not explicitly called, then
the socket will be automatically closed when the library is
unloaded. If the socket is successfully closed, thentrueis
returned, otherwise false. The nature of the error can be
retrieved with Socket.error().

Socket.error()

Socket linger()

SYNTAX:

WHERE:!

RETURN!

DESCRIPTION:

SEE!

socket.linger(flag[, timeout])

flag - A boolean value indicating whether this socket will linger
or not

timeout - A timeout, in seconds, to wait for when closing the
socket, only used when linger ison. This defaultsto 10 if not
supplied.

boolean - Whether the operation was successful

If f 1 ag istrue, then this socket is set to linger, otherwise it is
not. A lingering socket will remain active after closing it if there
remains data to be read or written. If linger is not set, then the
socket will immediately close, but any remaining data will be
sent, if possible, before closing the socket. If linger is active,
and timeout O, then the socket isimmediately closed and any
unsent datais lost, simulating a hard close. Otherwise, the
socket remains open until the dataistransferred or t i meout is
reached. By default, all sockets are non-lingering.

Socket.close()

Socket read()

450

SYNTAX:

WHERE!

RETURN!

DESCRIPTION:

SEE!

EXAMPLE!

socket.read(destination, description)

destination - A destination variable which will be converted to
the appropriate type based on description.

descript - A variable description, either one of the specia Blob
variables UWORDS8, SWORDS8, UWORD16, SWORD16,
UWORD24, SWORD24, UWORD32, SWORD32, FLOAT32,
FLOAT64, FLOATS80, a blobDescriptor object describing a
structure, or a positive value indicating the length of a buffer to
read.

number - e ements read.

This method is almost identical to Clib.fread(), except that it
reads from the current socket rather than a supplied file. The
descri pti on variable acts in the same way as Clib.fread(). If it
isapositive value, then dest i nat i on istreated as a buffer and
filled with raw data. Otherwise, one of the blob types or blob
descriptors can be used to read data values. For buffers, the
length of the buffer read is returned. For all other values, 1is
returned if theitem is read successfully, -1 or O otherwise. Use
Socket.error() to determine the nature of the error. Typically, -1
means the socket is non-blocking and no data is available to
read. O usually indicates that the program at the other end of the
socket closed it.

Clib.fread(), Socket.write(), Socket.error()

function readl nfo(socket)
{
var description = new bl obDescriptor();
description. name = 12;
descri pti on. age = UADORDS;
descri pti on. ext ensi on = UANDRD16;
var info;

if(!socket.read(info, description))

return null;
el se
return info;
}
/* The above function will read the speci al

* info data structure from
* the socket, returning null

451

* if there is sone sort of error.
*/

Socket ready()

SYNTAX: socket.ready ([timeout])

WHERE: timeout - Maximum time to poll, in milliseconds, or -1 for no
timeout

RETURN: boolean - Whether the socket is ready for reading in the specified
time.

DESCRIPTION: This method is very similar to " Socket.select()", except that it
only polls the current socket for input. If no timeout is specified
or itis-1, then the socket is polled indefinitely, unless thereis an
error. This method is useful for simple applications, when there
are just a few sockets open, or in specia instances where the
select() method isimpractical or impossible.

SEE: Socket.select()

EXAMPLE: var |istenSocket = new Socket(1000);

/'l Assune 'done' is a global flag
if(listenSocket !'= null)

whi | e(!'done)
if(listenSocket.ready(10))

/1 Open connection with accept()

}

/! Do other idle stuff...
}

l'i stenSocket . cl ose();

}

/* This code creates a socket |istening

* on port 1000, and continuously

* polls it to see if thereis

* an incom ng connection, alternatively doing
* jdle code when there is no connection ready.
*/

452

Socket remoteHost()

SYNTAX: socket.remoteHost()

RETURN: string - The host this socket is connected to, or null if it is not
connected.

DESCRIPTION: For listening sockets that are only connected to a port, then this

method returns null. Otherwise, it returns the name of the
remote host, either the server that the socket connected to, or the
client from an incoming request. This method can be used to tell
whether or not a socket is listening or is connected.

EXAMPLE: var |istenSocket = new Socket(1000);
if(listenSocket !'= null)

if(listenSocket.ready())
{

var connection = |istenSocket.accept();
if(connection !'= null)

/1 Print out nane of incom ng request
Screen.writel n(connection.renmoteHost());
// .. do other stuff ...
connection. cl ose();

}

l'i stenSocket . cl ose();

}

Socket write()

SYNTAX: socket.write(source, description)
WHERE: source - Source variable to write to the socket

description - Variable description describing how to write the
source variable to the socket.

RETURN: number - The number of e ements read.

DESCRIPTION: This method is almost identical to Clib.fwrite(), except that it
writes to the current socket, rather than to a supplied file. The
descri pti on variable acts in the same way asin Clib.fwrite().
If it isa pogitive value, then sour ce istreated as a buffer of the

453

SEE!

EXAMPLE!

specified length. Otherwise, descri pti on must be aBlob
value (SWORDS8, UWORD32, etc) or a blobDescriptor object
describing how the data should be written to the socket. If

sour ce isabuffer, then the number of bytes written is returned,
otherwise 1 isreturned if the datum is successfully written, -1
otherwise. Use Socket.error() to determine the nature of the
error.

Clib.fwrite(), Socket.read(), Socket.error()

function witelnfo(socket, info)

if(!socket.wite(info.nane, 12) ||
I'socket.wite(info.age, UANDRDS) ||
I'socket.wite(info.extension, UNORD16))
return fal se;

el se
return true;

}

/* This function will wite the contents

* of the info object to the

* specified socket in a native data format.
*/

Socket object static methods
Socket.addressByName()

SYNTAX:

WHERE!

RETURN:

DESCRIPTION:

SEE!

Socket.addressByName(address)
address - Address of host to look up
string - The address of the specified host.

This method attempits to find the address of the specified host
through areverse DNS lookup. If thislookup is successful, then
the address is returned as a string. Otherwise, null is returned.

Socket.hostByName()

Socket.error()

454

SYNTAX: Socket.error()
RETURN: number - The last error from the socket library

DESCRIPTION: When there is some sort of error within the socket library, the
specia errno value gets set indicating the error number. If a
method returns a value indicating an error, this method can be
used to determine the exact nature of the error. The actud
meaning of the value depends what system is being run.

Socket.hostByName()

SYNTAX: Socket.hostByName(name)
WHERE! name - Name of host to look up
RETURN: string - The name of the specified host

DESCRIPTION: This method looks up the specified host through a DNS lookup
and returnsit. This method can be used to convert between
numerical addresses and domain names, as well as resolving
local names appropriately. If unable to find the host name, then
null is returned.

SEE: Socket.addressByName()
EXAMPLE: var hostnane = Socket. host ByNane("44.55. 66.77");

Socket.hostName()

SYNTAX: Socket.hostName()
RETURN: string - The name of the host

DESCRIPTION: This method attempts to find the name of the local host. If the
call is successful, then a string is returned with the name of the
host. Otherwise, the empty string is returned.

Socket.select()

SYNTAX: Socket.select([timeout ,] socket[, socket? ...])
WHERE: timeout - Maximum time to poll, in milliseconds, -1 for no

455

RETURN:

DESCRIPTION:

SEE!

EXAMPLE!

timeout
socketN - A list of sockets to poll for data, or an array of sockets

object - The first supplied socket object which is ready for
reading, or null if none is ready before the timeout is reached.

This method is an aternate form of "socket.ready()". The other
ready method is a property of Socket instances, and only polls
the current socket for data. This global method allows for
polling of multiple sources, which is needed when multiple
sockets are open. When any of the specified sockets are ready to
be read from, then this method returns the first socket which is so
ready. Note that these sockets can be either connected sockets or
listening sockets. A listening socket that is ready to be read from
means that a request iswaiting. If no timeout is specified, then -
1 (infinite) timeout is used.

Socket.ready()

var |istenSocket 1
var |i stenSocket 2

new Socket (1000);
new Socket (1001);

/'l Assune 'done' is a global flag sonewhere
if(listenSocketl !'= null && listenSocket2 != null)

whi l e(!done)
{
var accept Socket ;
i f((accept Socket = Socket. sel ect (100,
[listenSocketl, |istenSocket2])) != null)

/1 Connect with socket

}

/! Do other stuff

Thi s code opens two sockets for |istening,
and then continuously polls

these two sockets for incom ng connections.
Note that in a real

program it would be better to create

a dynam c array which holds all

of the open sockets.

EE T A

~

456

457

Com Object Link Library

The Com Object consists of only one function to create a Com object link.

Com Object

title: COMobject link library
platform WNDOAS; All versions except WW.Scri pt Ease
source: #link <conobj.dll>

The COM object library provides utilities for using COM objects from within
scripts.

COMCreateObject()

SYNTAX: COM CresateObj ect(COM Object)

WHERE! COMODbject - the name of a COM object.

RETURN: object - Aninstance of the specified COM object.

DESCRIPTION: Create an instance of a COM object to be used in a script.

EXAMPLE: var excel 1 = COMCr eat e(bj ect (" Excel . Application");

459

Script Libraries

Script librariesscript libraries and library filedlibrary files are normal text script
files with the extension jsh. The core language, both JavaScript and C, of
ScriptEase is found in ScriptEase interpreters, such as sewin32.exe and
secon32.exe. ScriptEase uses dll files, known as link libraries, to add objects,
functions and power to the core language. The advantage of link librariesis that
they are precompiled machine language libraries that execute as fast as internal
routines. The disadvantages are that they are static and take much programming
effort to develop. Script libraries are dynamic and can be developed quickly.

Script libraries are written using the same program statements and structure as
normal scripts. They are included in scripts using the #i ncl ude#include
preprocessor directive. The following fragment is an example of including a
script library:

#i ncl ude <dl gobj . jsh>

function main()

{
/*
Put your normal code here.
Use the Dial og object, defined in dlgobj.jsh, and
call its methods as if they were a part of ScriptEase.
*/
}

Nombas ScriptEase products are based on the concept that the core language may
be extended or expanded by writing scripts. For example, Nombas provides the
ScriptEase Integration Software Developer's Kit (ISDKISDK) which allows
programmers to add script and macro ability to their own applications, a scripting
ability based on JavaScript. Nombas also provides the ScriptEase Web Server
Edition (SEWSESEWSE) which allows the use of server-side JavaScript for
CGICGI. Aswith ScriptEase Desktop, programming tasks may be faster,
simplified, improved, and empowered by writing simple text scripts that enhance
the use and power of ScriptEase. To learn more about other Nombas ScriptEase
products, visit us at:

http://www.nombas.com/us/

Many useful and powerful objects, methods, and functions are implemented
using scripts. These scripts have two obvious advantages. First, enhancements

461

can be added to ScriptEase JavaScript quickly and easily. Two, programmers
have access to the source code and can alter it to fit their unique needs.

The following descriptions provide summary information about some common
and useful script library filesscript library files. The details about objects,
properties, methods, and functions are documented in the files themselves. The
documentation isin the form of special comments that are consistent with the
reference tables used in this manual.

Common script libraries

Some script libraries are common to two or more platforms and operating
systems. These libraries are found in C:\SEdesk\include (assuming the use of the
default ScriptEase Desktop directory C:\SEdesk).

ansi.jsh Allows the use of color and other enhancement to text output
when using ansi.sys.

array.jsh Enhances the use of array, both JavaScript arrays and
ScriptEase automatic arrays. Provides methods that allow
both types of arraysto be used more interchangeably.

cmdlinejsh Provides command line handling and is used by ScriptEase
shells.

copyfilejsh Routines for copying files on disks.

datetime.jsh Routines to ssimplify working with date and time stringsin
special formats.

dspfilejsh Provides distributed scripting using file transfer protocol.

exec.jsh Enhancements to calling and executing programs from a
Sscript.

filejsh Various file handling routines for different platforms and
operating systems.

filenamejsh Various routines to work with filenames on different
platforms and operating systems.

fileobj.jsh Defines aFile abject and its methods to enhance working
with files.

filepack.jsh Routines for packing files onto the end of some binary file

462

getopt.jsh

idsp.jsh
inout.jsh
item.jsh

key.jsh

lock.jsh
mail.jsh
nntp.jsh

optparms,jsh

setestjsh

seutil jshseutil jsh

smdtset.jsh

sglconst.jsh
string.jsh

struct.jsh
url.jsh

winini.jsh

write.jsh

and retrieving them from the binary file.

Routines for working with command line arguments using
Unix-like getopt.

Provides distributed scripting using internet protocol.
Routines for user input and output in a text window.

Defines an Item object which works with items of data as a
delimited string or as an array. Both formats of the data are
simultaneously updated. A programmer can use String or
Array methods to work with data.

Defines a Key object with methods to work with keyboards.
Use file locking for exclusive temporary access to resources.
Perform TCP/IP Mailing tasks from scripts.

Routines for working with the Network News Transfer
Protocol, that is, with newsgroups.

Routines for working with command line arguments using
techniques different form Unix-like getopt.

Routines to assist in testing scripts.

The base include file that defines common variables for use
in all scripts. If ascript includes any files, it should include
thisfilefirst.

Defines a SimpleDataset object and methods for working
with data using this object.

Defines SQL constants useful for working with ODBC.

Many methods added to the String object and the Clib object
for enhanced string handling.

Routine for initializing and working with a structure array.
Routines getting and manipulating text pages from URLS.

Routines for working with Windows like
initialization/profile files from a non-Windows operating
system, such as DOS.

Routines to provide enhanced wr i t e type operations, some,

463

such asw b(), are useful for debugging.

Common utility and sample scripts

There are many utility and sample scripts in C:\SEdesk\utility and
C:\SEdesk\sampl e (assuming the use of the default ScriptEase Desktop directory
C:\SEdesk). The utility scriptsutility scripts are useful and ready to run script to
perform tasks on your computer. The sample scriptssample scripts primarily
illustrate how to use script libraries and to perform tasks that are useful to
different scripters.

Win32 script libraries

Script libraries with objects and methods for working in a Win32 Windows
environment are in C:\SEdesk\win32\include (assuming the use of the default
ScriptEase Desktop directory C:\SEdesk).

bmp.jsh Routines for working with bitmap (.bmp) files.

clipbrd.jsh Functions for reading from and writing to the Windows
clipboard.

colors,jsh Routines to control colorsin a ScriptEase text screen.

digobj.jsh Defines the Dialog object and provides many methods and

routines for programming dialog or GUI style windows for
interacting with users.

dropsrc.jsh Functions to facilitate drag-and-drop operations.

gdi.jsh Wrappers for some of Windows GDI graphics routines. For
usein the WS_PAINT message handler function of a
window

getit.jsh The getltem routines are automated routines that allow the

selection of an item in alistbox and the getLine routines are
similar to input boxes. These routines are common dialogs.

hotkey.jsh Library to smplify the creation of hot keys to perform
arbitrary tasks when a key-code combination is pressed.

464

icon.jsh

inputbox.jsh
keypush.jsh

keypushg.jsh
menuctrl.jsh

message.jsh

mouseclk.jsh
msgbox.jsh
pickfilejsh
profilejsh
profobj.jsh
regobj.jsh
screen.jsh

shortcut.jsh
useful.jsh
win32api.jsh

window.jsh

Routines useful for working with icons.

Provides useful InputBox and InfoBox functions that do not
use the Dialog object.

Routines to control or mimic the pushing of keys on the
keyboard for another application.

Routines to control or mimic the pushing of keys on the
keyboard for another application. In German.

Functions for creating and controlling window menusin
another application.

ScriptEase code wrapper for the SendMessage() and
Post Message() Windows functions. With these routines,
any message can be sent or posted to any window.

Routines to control or mimic mouse operations for another
application.

Various message box functions, not based on the Dialog
object, to simplify user interaction.

Routines for working with the open file dialog of the
Common Dialog DLL.

Routines for working with Windows initialization/profile
files.

Defines the Profile object and methods for working with
Windows initialization/profile files.

Defines the Registry abject and methods for working with
the Windows registry.

Methods added to the Screen object that enhancement work
with a ScriptEase text screen.

Routines to create Windows shortcut or Ink files.
A few general utility functions.
Defines for working with the Windows 32 API.

Common defines for creating and defining windows using
the ScriptEase MakeW ndow() , Br eakW ndow() , and

465

DoW ndows() functions.

winexec.jsh Multiple functions for executing scripts and programs using
various techniques in the Windows API.

winobj.jsh Defines the Window object and methods for manipulating
windows on the screen.

wintools.jsh Functions for setting the state of windows.

winvers.jsh Routines for working with version information.

Win32 utility and sample scripts

There are many utility and sample scripts in C:\SEdesk\win32 and
C:\SEdesk\win32\sample (assuming the use of the default ScriptEase Desktop
directory C:\SEdesk). These scripts are geared toward a Win32 environment. The
utility scriptsutility scripts are useful and ready to run script to perform tasks on
your computer. The sample scriptssample scripts primarily illustrate how to use
script libraries and to perform tasks that are useful to different scripters.

466

Appendix B
Instance and Static Notation

ScriptEase uses object properties which are integral to JavaScript. For clarity we
refer to object properties and object methods, not just properties, though both
properties and methods may be referred to by the general term property. When
using the terms property and method, object properties refer to the variables and
data of an object and object methods refer to the functions of an object. We have
clarified one dimension of object properties and methods. But, to be precise, we
must deal with another dimension.

Object properties and methods are either instance, belonging to an instance of an
object, or static, belonging to an object itself. Thus, all properties and methods of
an object may be classified according to two dimensions. Is a property of an
object a property or a method, and isit an instance or a static property? The
following examplesillustrate

Instance property string.length
Instance method string. i ndexCf ()
Staticproperty String.illus

Static method String. f ronChar Code()

Objects may have all four categories of methods and properties, but usualy they
do not. In thisillustration, the String object has three of the categories, but not a
static property, which isthe reason why St ri ng. i | | us had to be made up for
this example.

ScriptEase documentation uses a couple of style conventions to distinguish
between properties and methods and between being instance or static. The four
sections, following the bullet list of explanations, illustrate how these distinctions
are made in reference sections of documentation.

First, headings, such as " String instance properties” below, specifically
identify whether the following reference information applies to instance
properties, instance methods, static properties, or static methods.
Second, properties do not have parentheses ()" but methods do.

467

Third the top lines of reference tables vary in how they refer to instance
and static properties and methods. Instance properties and methods have
object names followed by a space, such as "String ", whereas static
properties and methods have object names followed by a period, such as
"String.".

Fourth, the syntax line for instance properties and methods uses the
object name in all lowercase, whereas, the syntax line for static
properties and methods uses the object name precisely. The significance
isthat instance properties and methods actually use the variable name of
an instance of an abject, whereas, static properties and methods use the
actual object name itself.

Fifth, the use of lowercase for instance properties and methods is used
consistently in text and descriptions, not just the reference tables
themselves.

String instance properties
String length

SYNTAX: string.length

DESCRIPTION:
SEE!

EXAMPLE!

String instance methods
String indexOf

SYNTAX: string.indexOf (substring[, offset])

WHERE!
RETURN!
DESCRIPTION:
SEE!

EXAMPLE!

String static properties

468

String.illus

SYNTAX: String.illus

DESCRIPTION:
SEE!

EXAMPLE!

String static methods
String.fromCharCode()

SYNTAX: String.fromCharCode(charl[, char2 ...])

WHERE!
RETURN!
DESCRIPTION:
SEE!

EXAMPLE!

Prototype property

For the technically inclined, objects have apr ot ot ype property. Instance
properties and methods are attached to the pr ot ot ype property of an object. As
an illustration, assume that two new methods and two new properties are added
to the st ri ng object. The instance property and method are added to the

pr ot ot ype property of the St ri ng object, whereas, the static property and
method are added to the St ri ng object itself.

The following two declaration linesillustrate an instance property and an
instance method:

String. prototype. newl nst anceProperty
String. prot ot ype. newl nst anceMet hod()

The following two declaration lines illustrate a static property and a static
method:

String. newStati cProperty
String. newSt ati cMet hod()

469

The following code fragment illustrates the differences in using these properties
and methods.

/1 Begin an instance of a String object
var newStr = "an exanple string”;
var instVal = newStr.new nstanceProperty;
newst r . newl nst anceMet hod() ;
/'l Use the static property and nethod directly
var statVal = String.newStaticProperty;
String. newStati cMet hod();

470

Appendix A
Grouped Functions

In the current section, the functions and methods of ScriptEase are organized
according to purpose and operation and not according to object. Some functions
and methods are specific to certain operating systems and do not exist in all
versions of ScriptEase. For example, SElib.subclassWindow() does not apply to
the DOS operating system.

Routines for arrays

For dynamic arrays

getArrayLength Determines size of an array.
setArrayLength Sets the size of an array.

For Array objects

Array.join Creates a string from array elements.
Array.sort Sorts array el ements.
Array.reverse Reverses the order of elements of an array.

Array properties
Array.length Returns the length of array.

Routines for Buffers
Buffer methods

Buffer.getString Returns a string starting from the current cursor position.
Buffer.getValue Returns a value from a specified position.
Buffer.putString Puts a string into a Buffer.

Buffer.putVaue Puts a specified value into a buffer.

Buffer.subBuffer Returns a section of a buffer.

471

Buffer.toString Returns string equivalent of the current state of buffer.

Buffer properties

Buffer.bigeEndian Boolean flag for bigEndian byte ordering.
Buffer.cursor Current position within a buffer.
Buffer.data Reference to the internal data of a buffer.
Buffer.size Size of a Buffer object.

Buffer.unicode Boolean flag for the use of unicode strings.

Routines for character classification

Clib.isalnum Tests for alphanumeric character.
Clib.isalpha Tests for alphabetic character.

Clib.isascii Tests for ASCII coded character.
Clib.iscntrl Tests for any control character.
Clib.isdigit Tests for any decimal-digit character.
Clib.isgraph Tests for any printing character except space.
Clib.islower Tests for lower-case al phabetic |etter.
Clib.isprint Tests for any printing character.
Clib.ispunct Tests for punctuation character.
Clib.isspace Tests for white-space character.
Clib.isupper Tests for upper-case a phabetic character.
Clib.isxdigit Tests for hexadecimal-digit character.

Routines for console I/O

Clib.kbhit Checksif akeyboard keystroke is available.
Clib.getch Gets a character from the keyboard, no echo.
Clib.getchar Gets character from standard input, keyboard.
Clib.getche Gets character from the keyboard, with echo.
Clib.gets Reads string from standard input, keyboard.
Clib.perror Displays a message describing error in errno.
Clib.printf Formatted output to standard output, screen.
Clib.putchar Writes a character to standard output, screen.
Clib.puts Writes a string to standard output, console.
Clib.scanf Formatted input from standard input, keyboard.
Clib.vprintf Formatted output to stdout, screen, variable args.

472

Clib.vscanf

Formatted input from stdin, keyboard, variable args.

Routines for conversion/casting

parsel nt
parseFloat
escape
unescape

ToBoolean
ToBuffer
ToBytes
Tolnt32
Tolnteger
ToNumber
ToObject
ToPrimitive
ToString
ToUint16
ToUint32

Converts a string to an Integer.
Converts a string to a Float.

Escapes special charactersin a string.
Removes escape sequences in a string.

Converts avalue to a Boolean.

Converts avaue to a Buffer.

Converts avaueto a Buffer, raw transfer.
Converts avaue to alarge Integer.
Converts avalue to an Integer.

Converts avalue to a Number.

Converts avaue to an Object.

Converts avaue to a Primitive.

Converts avalue to a String.

Converts avalue to an unsigned Integer.
Converts avalue to an unsigned large Integer.

Routines for data/variables
Methods for data

Blob.get
Blob.put
Blob.size

defined
getAttributes
isNaN
isFinite
setAttributes
undefine

SElib.getObjectProperties

Reads data from specified location of a BLODb.
Writes data into specified location of a BLOb.
Determine size of a BLODb.

Tests if variable has been defined.
Gets attributes of avariable.
Determines if avalue is Not a Number.
Determines if avalueisfinite.

Sets attributes of avariable.

Makes a variable undefined.

Get name list of members of object/structure.

473

toString Converts any variable to a string representation.
valueOf Returns the value of any variable.

Properties for data
_BigEndianMode Global variable, ScriptEase-data/memory-data.

Routines for date/time

Clib.asctime Converts data and time to an ASCI| string.
Clib.clock Gets processor time.

Clib.ctime Converts date-time to an ASCII string.
Clib.difftime Computes difference between two times.
Clib.gmtime Converts data and timeto GMT.
Clib.localtime Converts date/time to a structure.
Clib.mktime Converts time structure to calendar time.
Clib.time Gets current time.

Clib.strftime Formatted write of date/time to a string.
Date.getDate Returns the day of the month.

Date.getDay Returns the day of the week.

Date.getFullY ear Returns the year with four digits.
Date.getHours Returns the hour.

Date.getMilliseconds Returns the millisecond.

Date.getMinutes Returns the minute.

Date.getMonth Returns the month.

Date.getSeconds Returns the second.

Date.getTime Returns date/time, milliseconds, in Date object.
Date.getTimezoneOffset Returns difference, in minutes, from GMT.
Date.getUTCDate Returns the UTC day of the month.
Date.getUTCDay Returns the UTC day of the week.
Date.getUTCFull Y ear Returns the UTC year with four digits.
Date.getUTCHours Returns the UTC hour.
Date.getUTCMilliseconds Returns the UTC millisecond.
Date.getUTCMinutes Returns the UTC minute.
Date.getUTCMonth Returns the UTC month.
Date.getUTCSeconds Returns the UTC second.

Date.getY ear Returns the year with two digits.
Date.setDate Set day of the month.

474

Date.setFullY ear
Date.setHours
Date.setMilliseconds
Date.setMinutes
Date.setMonth
Date.setSeconds
Date.setTime
Date.setUTCDate
Date.setUTCFullY ear
Date.setUTCHours
Date.setUTCMuilliseconds
Date.setUTCMinutes
Date.setUTCMonth
Date.setUTCSeconds
Date.setY ear
DatetoGMTString
Date.toL ocaleString
Date.toSystem
Date.toUTCString()

Date.fromSystem
Date.parse
Date.UTC

Sets the year with four digits.

Sets the hour.

Sets the millisecond.

Sets the minute.

Sets the month.

Sets the second.

Sets date/time, in milliseconds, in Date object.
Sets the UTC day of the month.

Sets the UTC year with four digits.

Sets the UTC hour.

Sets the UTC millisecond.

Sets the UTC minute.

Sets the UTC month.

Sets the UTC second.

Sets the year with two digits.

Converts a Date object to a string.

Returns a string for local date and time.
Converts a Date object to a system time.
Returns a string that represents the UTC date.

Converts system time to Date object time.
Converts a Date string to a Date object.
Returns date/time, milliseconds, use parameters.

Routines for diagnostic/error

Clib.clearerr
Clib.errno
Clib.ferror
Clib.perror
Clib.strerror
Clib.clearerr

Clears end-of-file and error status for afile.
Returns value of error condition.

Tests for error on afile stream.

Prints an message describing error in errno.
Gets a string describing an error number.
Clears end-of-file and error status for afile.

Routines for directory, file, and OS

Clib.chdir
Clib.flock
Clib.getcwd

Changes directory.
File locking.
Gets current working directory.

475

Clib.mkdir
Clib.rmdir

Clib.getenv
Clib.putenv

SElib.directory
SElib.full Path
SElib.splitFileName

Makes a directory.
Removes a directory.

Gets an environment string.
Sets an environment string.

Searches directory listing for file spec.
Converts partia path spec to full path name.
Gets directory, name, and extension parts of afile

Spec.

Routines for display control

Screen.clear
Screen.cursor
Screen.handle
Screen.setBackground
Screen.setForeground
Screen.size
Screen.write
Screen.writeln

Clears screen.

Gets/sets cursor position in the visible screen.

Gets handle of current ScriptEase window.

Sets background color of current ScriptEase screen.
Sets foreground color of current ScriptEase screen.
Gets the height and width of the screen.
Displaysavalue.

Displays a value with automatic end-of-line
characters.

Routines for execution control

Clib.abort
Clib.assert
Clib.atexit
Clib.exit
Clib.system

global.eva
SElib.compileScript

SElib.inSecurity
SElib.interpret

Terminates program, normally due to error.
Test acondition and abort if it isfalse.

Sets function to be called at program exit.
Normal program termination.

Passes a command to the command processor.

Evaluate string as script code, like SElib.interpret.

Compiles script into executable code.
Calls security manager initialization routine.
Interprets ScriptEase code or sourcefile.

SElib.interpretinNewThread Creates a new thread within a current process.

SElib.spawn

Runs an external executable.

476

SElib.suspend

Suspends program execution for awhile.

Routines for file/stream 1/0O

Clib.fclose
Clib.feof
Clib.fflush
Clib.fgetc
Clib.fgetpos
Clib.fgets
Clib.fopen
Clib.fprintf
Clib.fputc
Clib.fputs
Clib.fscanf
Clib.fread
Clib.freopen
Clib.fseek
Clib.fsetpos
Clib.ftell
Clib.fwrite
Clib.getc
Clib.putc
Clib.remove
Clib.rename
Clib.rewind
Clib.tmpfile
Clib.tmpnam
Clib.ungetc
Clib.vfprintf
Clib.vfscanf

Closes an open file.

Testsif at end of file stream.

Flushes stream for open file(s).

Gets a character from file stream.

Gets current position of afile stream.
Gets a string from an input stream.
Opens afile.

Formatted output to afile stream.
Writes a character to afile stream.
Writes a string to afile stream.
Formatted input from afile stream.
Reads data from afile.

Assigns new file spec to afile handle.
Setsfile position for an open file stream.
Sets position of afile stream.

Gets the current value of the file position.
Writes data to afile.

Gets a character from file stream.
Writes a character to afile stream.
Deletes afile.

Renames afile.

Resets file position to beginning of file.
Creates atemporary binary file.

Gets atemporary file name.

Pushes character back to input stream.

Formatted output to a file stream using variable args.
Formatted input from a file stream using variable args.

Routines for math

Math methods

Clib.abs
Clib.asin

Returns the absolute value of an integer.
Calculates the arc sine.

477

Clib.acos
Clib.atan
Clib.atan2
Clib.atof
Clib.atoi
Clib.atol
Clib.ceil
Clib.cos
Clib.cosh
Clib.div
Clib.exp
Clib.fabs
Clib.fmod
Clib.floor
Clib.frexp
Clib.labs
Clib.ldexp
Clib.ldiv
Clib.log
Clib.log10
Clib.max
Clib.min
Clib.modf
Clib.pow
Clib.rand
Clib.sin
Clib.sinh
Clib.sgrt
Clib.srand
Clib.tan
Clib.tanh

Math.abs
Math.acos
Math.asin
Math.atan
Math.atan2
Math.ceil
Math.cos

Calculates the arc cosine.

Calculates the arc tangent.

Calculates the arc tangent of afraction.
Converts ASCII string to a floating-point number.
Converts ASCII string to an integer.

Converts ASCII string to an integer.

Rounds up.

Calculates the cosine.

Calculates the hyperbolic cosine.

Integer division, returns quotient & remainder.
Computes the exponentia function.

Absolute value.

Modulus, calculate remainder.

Rounds down.

Breaks into a mantissa and an exponential power of 2.
Returns the absolute value of an integer.
Calculates mantissa* 2 ™ exp.

Integer division, returns quotient & remainder.
Calculates the natural logarithm.

Calculates the base-ten logarithm.

Returns the largest of one or more values.
Returns the minimum of one or more values.
Splits avalue into integer and fractional parts.
Calculates x to the power of y.

Generates a random number.

Calculates the sine.

Calculates the hyperbolic sine.

Calculates the square root.

Seeds random number generator.

Calculates the tangent.

Calculates the hyperbolic tangent.

Returns the absolute value of an integer.
Calculates the arc cosine.

Cdculatesthe arc sine.

Calculates the arc tangent.

Calculates the arc tangent of afraction.
Rounds up.

Calculates the cosine.

478

Math.exp Computes the exponential function.

Math.floor Rounds down.

Math.log Calculates the natural logarithm.

Math.max Returns the largest of one or more values.
Math.min Returns the minimum of one or more values.
Math.pow Calculates x to the power of y.

Math.random Returns a random number.

Math.round Rounds value up or down.

Math.sin Calculates the sine.

Math.sqgrt Calculates the square root.

Math.tan Calculates the tangent.

Math properties

Math.E Value of e, base for natural logarithms.
Math.LN10 Value for the natural logarithm of 10.
Math.LN2 Value for the natural logarithm of 2.
Math.LOG2E Value for the base 2 logarithm of e.
Math.LOG10E Value for the base 10 logarithm of e.
Math.PlI Valuefor pi.

Math.SQRT1 2 Value for the square root of 2.
Math.SQRT2 Value for the sguare root of 2.
Number. MAX_VALUE Largest number (positive)
Number.MIN_VALUE Smallest number (negative)
Number.NaN Not a Number

Number.POSITIVE_INFINITY Number above MAX_VALUE
Number.NEGATIVE_INFINITY ~ Number below MIN_VALUE

Routines for memory manipulation

SElib.peek Reads data from memory location.
SElib.pointer Gets address of variable.
SElib.poke Writes data to memory location.

Routines for miscellaneous

Clib.bsearch Binary search for member of a sorted array.

479

Clib.gsort

Sorts an array, may use comparison function.

Routines for strings/byte arrays

Clib.memchr
Clib.memcmp
Clib.memcpy

Clib.memmove

Clib.memset

Clib.rsprintf
Clib.sprintf
Clib.sscanf
Clib.strcat
Clib.strchr
Clib.strcmp
Clib.strcmpi
Clib.strcpy
Clib.strcspn
Clib.stricmp
Clib.strlen
Clib.strlwr
Clib.strncat
Clib.strncmp
Clib.strncmpi
Clib.strncpy
Clib.strnicmp
Clib.strpbrk
Clib.strrchr
Clib.strspn
Clib.strstr
Clib.strtod
Clib.strstri
Clib.strtok
Clib.strtol
Clib.strupr

Clib.toascii
Clib.tolower

Searches a byte array.

Compares two byte arrays.

Copies from one byte array to another.
Moves from one byte array to another.
Copies from one byte array to another.

Returns formatted string.

Formatted output to a string.

Formatted input from a string.

Concatenates strings.

Searches a string for a character.

Compares two strings.

Case-insensitive compare of two strings.

Copies one string to another.

Searches string for first character in a set of characters.
Case-insensitive compare of two strings.

Gets the length of a string.

Converts a string to lowercase.

Concatenates bytes of one string to another.
Compares part of two strings.

Case-insensitive compare of parts of two strings.
Copies bytes from one string to another.
Case-insensitive compare of parts of two strings.
Searches string for character from a set of characters.
Searches string for the last occurrence of a character.
Searches string for character not in a set of characters.
Searches a string for a substring.

Converts a string to a floating-point value.

Case insensitive version of Clib.strstr.

Searches a string for delimited tokens.

Converts a string to an integer value.

Converts a string to uppercase.

Converts to ASCII.
Converts to lowercase.

480

Clib.toupper Converts to uppercase.

Clib.vsprintf Formatted output to string using variable args.
Clib.vsscanf Formatted input from a string.

String.charAt Returns a character in a string.
String.charCodeAt Returns a unicode character in a string.
String.indexOf Returns index of first substring in a string.
String.lastIndexOf Returns index of last substring in a string.
String.split Splits a string into an array of strings.
String.substring Retrieves a section of a string.

String.toLowerCase Converts a string to lowercase.
String.toUpperCase Converts a string to uppercase.
String.fromCharCode Creates a string from character codes.

Routines for variable argument lists

Clib.va_arg Retrieves variable from variable list of args.

Clib.va end Terminates variable list of args.

Clib.va_start Starts avariablelist of args.

Clib.rvsprintf Returns formatted string using variable args.
Clib.vfprintf Formatted output to afile stream using variable args.
Clib.vfscanf Formatted input from file stream using variable args.
Clib.vprintf Formatted output to stdout, screen, using variable args.
Clib.vscanf Formatted input from stdin, using var args.
Clib.vsprintf Formatted output to string using variable args.
Clib.vsscanf Formatted input from a string.

481

I, 33

I=, 33

#include, 94

#optionoption, 77

%, 29

%=, 30

&, 31, 122

&&, 33

&=,31

(Open windows list), 112

(Recent fileslist), 107

*, 29, 122

*=, 30

/,29

/=, 30

[JArray initialzer, 50, 129;
[Jinitialzer:[], 50, 129

A, 32

N=, 32

95CON, 76

95WIN, 76

_arge, 234

_argv, 234

_cal(...),57

_canPut(property), 56

_construct(...), 56

_defaultValue(hint), 56

_delete(property), 56

_DOSs , 76

D0OS32, 76

_9et(), 55

_get(property), 55

_hasProperty(property), 56

MAC, 76

NTCON, 77

NTWIN, 77

NWNLM, 76

0Ss2,76

_put(property, value), 56

482

Index

SEDESKTOP, 80

SHELL, 77

UNIX, 76

WIN32, 76

_WINDOWS , 76

5,125

|, 31

ll. 33

|=, 32

~, 32

+, 29

++, 31

+=,30

<, 33

<<, 31

<<= 31

=, 29,30

==, 33

> 33

>=, 33

>> 31

>>= 31

>>> 31

>>>= 31

0,77

1,78

abort(), 274

About ScriptEase Debugger...In toolbar,
112

abs(), 223, 324

accept(), 449

acos(), 223, 325

Add, 103

Add breakpoint, 105

Add/Remove..., 111

Add/Remove...Toolbar, 111

addition, 29

addRecord(), 435

address arithmetic, 122

address operator, 122

address(), 253

addressByName(), 454

and, 33

andbitwise and, 31

Appendix A Grouped Functions, 471

Appendix B Instance and Static
Notation, 467

apply(), 250

arc(), 382

argc, 47

arguments[], 45

argv, 47

arithmetic operators, 29

Arrange Icons, 111

Array arithmetic, 48

Array concat(), 132

Array constructor function, 128

Array join(), 132

Array length, 130

Array object, 127

Array object instance methods, 131

Array object instance properties, 130

Array pop(), 133

Array properties, 471

Array push(), 134

Array representation, 115

Array reverse(), 134

Array shift(), 135

Array dlicg(), 135

Array sort(), 136

Array splice(), 138

Array toString(), 138

Array type, 25

Array unshift(), 139

Array() with length, 131

Array() with list, 131

arrays, 115

asctime(), 269

asin(), 224, 325

asm(), 253

assert(), 275

assign addition, 30

483

assign division, 30

assign multiplication, 30

assign remainder, 30

assign subtraction, 30

assignment, 29, 30

Assignment arithmetic, 30

assignment bitwise and, 31

assignment bitwise or, 32

assignment bitwise xor, exclusive or, 32

assignment operator, 30

assignment shift left, 31

assignment shift left with zeros, 31

assignment shift right, 31

atan(), 224, 325

atan2(), 225, 326

atexit(), 275

atof (), 326

atoi(), 326

atol(), 327

Auto files, 67

autodecrement, 31

Autoincrement (++) and autodecrement
0,31

Automatic array allocation, 115

automatic arrays, 115

Automatic type conversion, 27

Automatic type declaration, 114

Back quote, 206

Back quote strings, 125

baseWindowFunction(), 149

Basic arithmetic, 29

Basics of ScriptEase, 14

beginTransaction(), 417

BIG_ENDIAN, 77

bigEndian, 187

Bind, 73

Bit operators, 31

bitwise xor, exclusive or, 32

Blob Object, 141

Blab object static methods, 141

Blab.get(), 141

Blob.put(), 142

Blob.size(), 144

blobDescriptor object, 145

blobDescriptor(), 145

blocking(), 449

blue(), 383

Boolean Object, 347

Boolean object instance methods, 347

Boolean type, 23

Boolean(), 347

Boolean.toString(), 347

boundsSafe(), 384

break, 37

Break when Expression, 104

Breakpoint, 110

Breakpoint dialog, 104

Breakpoints listing, 106

breakWindow(), 150

bsearch(), 295

Buffer bigendian, 187

Buffer cursor, 187

Buffer data, 188

Buffer getString(), 191

Buffer getValue(), 191

Buffer methods, 471

Buffer Object, 187

Buffer object instance methods, 189

Buffer object instance properties, 187

Buffer properties, 472

Buffer putString(), 192

Buffer putVaue(), 192

Buffer size, 188

Buffer subBuffer(), 194

Buffer toString(), 195

Buffer unicode, 188

Buffer(), 189

Buffer[] Array, 188

by reference, 121

by referencepassed by reference, 44,
122

by valuepassed by value, 44

cal(), 251

Cascade, 111

case, 38

case expression, 119

484

Case sengitivity, 15
Case statements, 122
caseSensitive, 440
catch, 40

ceil(), 225, 327
cfunction, 45, 113
cfunction keyword, 47
cfunctions, 122
Change Variables, 111
Character classification, 299
charAt(), 208
charCodeAt(), 209
charUp(), 385
chdir(), 293

clear(), 197
clearerr(), 277

Clib, 113

Clib Object, 259
Clib.abort(), 274
Clib.abs(), 324
Clib.acos(), 325
Clib.asctime(), 269
Clib.asin(), 325
Clib.assert(), 275
Clib.atan(), 325
Clib.atan2(), 326
Clib.atexit(), 275
Clib.atof (), 326
Clib.atoi(), 326
Clib.atol(), 327
Clib.bsearch(), 295
Clib.ceil(), 327
Clib.chdir(), 293
Clib.clearerr(), 277
Clib.clock(), 269
Clib.cos(), 327
Clib.cosh(), 327
Clib.ctime(timelnt), 269
Clib.difftime(), 270
Clib.div(), 328
Clib.errno, 277
Clib.exit(), 276
Clib.exp(), 328

Clib.fabs(), 328
Clib.fclose(), 280
Clib.feof(), 281
Clib.ferror(), 277
Clib.fflush(), 281
Clib.fgetc(), 281
Clib.fgetpos(), 282
Clib.fgets(), 282
Clib.flock(), 293
Clib.floor(), 329
Clib.fmod(), 329
Clib.fopen(), 279
Clib.fprintf(), 282
Clib.fputc(), 283
Clib.fputs(), 283
Clib.fread(), 284
Clib.freopen(), 285
Clib.frexp(), 329
Clib.fscanf(), 286
Clib.fseek(), 287
Clib.fsetpos(), 288
Clib.ftell(), 288
Clib.fwrite(), 289
Clib.getc(), 290
Clib.getch(), 262
Clib.getchar(), 263
Clib.getche(), 263
Clib.getcwd(), 293
Clib.getenv(), 298
Clib.gets(), 263
Clib.gmtime(), 270
Clib.isalnum(), 300
Clib.isalpha(), 300
Clib.isascii(), 300
Clib.iscntrl(), 301
Clib.isdigit(), 301
Clib.isgraph(), 301
Clib.islower(), 301
Clib.isprint(), 302
Clib.ispunct(), 302
Clib.isspace(), 302
Clib.isupper(), 302
Clib.isxdigit(), 303

485

Clib.kbhit(), 264
Clib.labs(), 330
Clib.ldexp(), 330
Clib.ldiv(), 331
Clib.localtime(), 270
Clib.log(), 331
Clib.log10(), 331
Clib.max(), 332
Clib.memchr(), 322
Clib.memcmp(), 322
Clib.memcpy(), 323
Clib.memmove(), 323
Clib.memset(), 324
Clib.min(), 332
Clib.mkdir(), 295
Clib.mktime(), 272
Clib.modf(), 332
Clib.perror(), 278
Clib.pow(), 333
Clib.printf(), 259
Clib.putc(), 290
Clib.putchar(), 264
Clib.putenv(), 299
Clib.puts(), 264
Clib.gsort(), 297
Clib.rand(), 333
Clib.remove(), 291
Clib.rename(), 291
Clib.rewind(), 291
Clib.rmdir(), 295
Clib.rsprintf(), 303
Clib.rvsprintf(), 304
Clib.scanf(), 265
Clib.sin(), 333
Clib.sinh(), 333
Clib.sprintf(), 305
Clib.sgrt(), 334
Clib.sscanf(), 304
Clib.strcat(), 306
Clib.strchr(), 307
Clib.stremp(), 307
Clib.strcmpi(), 308
Clib.strcpy(), 308

Clib.strcspn(), 308
Clib.strerror(), 278
Clib.strftime(), 272
Clib.stricmp(), 309
Clib.strlen(), 310
Clib.strlwr(), 310
Clib.strncat(), 311
Clib.strnemp(), 311
Clib.strncmpi(), 312
Clib.strnepy(), 312
Clib.strnicmp(), 313
Clib.strpbrk(), 314
Clib.strrchr(), 314
Clib.strspn(), 315
Clib.strstr(), 315
Clib.strstri(), 316
Clib.strtod(), 316
Clib.strtok(), 317
Clib.strtol(), 318
Clib.strupr(), 319
Clib.system(), 276
Clib.tan(), 334
Clib.tanh(), 335
Clib.time(), 274
Clib.tmpfile(), 292
Clib.tmpnam(), 292
Clib.toascii(), 320
Clib.tolower(), 320
Clib.toupper(), 321
Clib.ungetc(chr, filePointer), 292
Clib.va_arg(), 335
Clib.va_end(), 336
Clib.va_start(), 337
Clib.vfprintf(), 338
Clib.vfscanf(), 338
Clib.vprintf(), 266
Clib.vscanf(), 267
Clib.vsprintf(), 321
Clib.vsscanf(), 339
clock(), 269
CLOCKS PER_SEC, 78
close(), 410, 429, 441, 450
closeConnection(), 375

486

CloseCtrl+W, 106

Color styles, 381

colorAllocate(), 385

colorClosest(), 386

colorDeallocate(), 386

colorExact(colorExact()red, 387

colorsTotal(), 387

colorTransparent(), 388

columnName(), 410

columns(), 411

Com Object, 459

Com Object Link Library, 459

COMCreateObject(), 459

Command-line switches, 72

Comments, 16

commitTransaction(), 418

Common script libraries, 462

Common utility and sample scripts, 464

compile(), 218

compileScript(), 150

complementBitwise not, complement,
32

Components of main MDI window, 100

Composite data types, 24

concat(), 132, 209

conditional expression, 32

Conditional operator, 40

connect(), 418

connected(), 419

Console I/O functions, 259

constructor function, 49

continue, 38

Conversion or casting, 233

Converting existing C code to
ScriptEase, 125

copy(), 388

Copyln toolbar and Ctrl+C, 108

copyResized(), 389

cos(), 226, 327

cosh(), 327

Creating a DSP abject, 371

Creating arrays, 128

ctime(), 269

currentRecord(), 429

cursor, 187

Cursor close(), 410

Cursor columnName(), 410
Cursor columns(), 411

Cursor deleteRow(), 411

Cursor filter, 409

Cursor first(), 412

Cursor insertRow(), 412

Cursor Instance Methods, 410
Cursor Instance Properties, 408
Cursor last(), 413

Cursor next(), 414

Cursor Object, 407

Cursor previous(), 414

Cursor reload(), 415

Cursor sort, 409

Cursor updateRow(), 415
cursor(), 197, 420, 439, 442
Cutln toolbar and Ctrl+X, 107
dashedLine(), 390

data, 188

Datatypes, 21, 114

Datatypesin C and SE, 114
Database beginTransaction(), 417
Database commitTransaction(), 418
Database connect(), 418
Database connected(), 419
Database cursor(), 419

Database disconnect(), 420
Database execute(), 421
Database majorErrorCode(), 422
Database majorErrorM essage(), 422
Database minorErrorCode(), 423
Database minorErrorMessage(), 423
Database Object, 416

Database procedureName(), 424
Database procedures(), 424
Database rollbackTransaction(), 424
Database storedProc(), 425
Database table(), 425

Database tableName(), 426
Database tables(), 426

487

Date and time display, 82

Date getDate(), 351

Date getDay(), 351

Date getFullY ear(), 351

Date getHours(), 351

Date getMilliseconds(), 351
Date getMinutes(), 352

Date getMonth(), 352

Date getSeconds(), 352

Date getTime(), 352

Date getTimezoneOffset(), 353
Date getUTCDate(), 353

Date getUTCDay(), 353

Date getUTCFullY ear(), 353
Date getUTCHours(), 354
Date getUTCMuilliseconds(), 354
Date gatUTCMinutes(), 354
Date getUTCMonth(), 354
Date getUTCSeconds(), 354
Date getY ear(), 355

Date object, 83, 349

Date object instance methods, 351
Date object static methods, 364
Date setDate(), 355

Date setFullY ear(), 355

Date setHours(), 356

Date setMilliseconds(), 356
Date setMinutes(), 356

Date setMonth(), 357

Date setSeconds(), 357

Date setTime(), 358

Date setUTCDate(), 358

Date setUTCFullY ear(), 358
Date setUTCHours(), 359

Date setUTCMilliseconds(), 359
Date setUTCMinutes(), 359
Date setUTCMonth(), 360
Date setUTCSeconds(), 360
Date setY ear(), 361

Date toDateString(), 361

Date toGMTString(), 361

Date toL ocaleDateString(), 362
Date toL ocaleString(), 362

Date toL ocaleTimeString(), 362
Date toString(), 363

Date toSystem(), 363
Date toTimeString(), 363
Date toUTCString(), 364
Date valueOf(), 364
Date.fromSystem(), 364
Date.parse(), 365

Date UTC(), 366

Debug menu, 109
debugger, 10, 99

Dos.offset(), 256
Dos.outport(), 256
Dos.outportw(), 256
Dos.segment(), 257
dowWindows(), 156
drawChar(), 384

DSP dspClose(), 377
DSP dspCloseConnection(), 374
DSP dspGetVaue(), 378
DSP dspLoad(), 376
DSP dspReceive(), 375

decisions, 34 DSP dspSecurityGuard(), 379
decode(), 369 DSP dspSecuritylnit(), 378
default, 38 DSP dspSecurityTerm(), 379

Default Interpreter..., 109
DefaultLocalVars, 77

DSP dspSend(), 376
DSP dspService(), 377

define, 61 DSP Link Library, 371
defined(), 235 DSP Object, 371
deleteAll(), 437 DSP object instance methods, 374

deleteRecord(), 436

deleteRow(), 411

Description of the Cursor object, 407

Description of the SimpleDataset
object, 427

Description of the Stproc object, 440

DSP object static properties, 380
DSP(), 374

dsp.dspClose(), 377
dsp.dspService(), 377
DSP.remote, 380
dspGetValue(), 378

destroy(), 391
difftime(), 270
Directory, 293
directory(), 154
disconnect(), 420

div(), 328

division, 29

do ... while, 36
Document window, 100
Documentation, 11
DOS batch files, 70
Dos Object, 253

Dos object static methods, 253
Dos.address(), 253
Dos.asm(), 253
Dos.inport(), 254
Dos.inportw(), 254
Dos.interrupt(), 255

488

dspLoad(), 376
dspReceive(), 375
dspSecurityGuard(), 379
dspSecuritylnit(), 378
dspSecurityTerm(), 379
dspSend(), 376

Dynamic links, 180
Dynamic objects, 55
dynamicLink() - 0S/2, 183
dynamicLink() - Winl16, 182
dynamicLink() - Win32, 180
E, 221

Edit menu, 107

elements, 127

else, 35

encode(), 369

Environment variables, 298
EOF, 78

equality, 33

errno, 277

Error, 277

Error checking for functions, 46
error(), 455

escape sequences, 125
Escape sequences for characters, 205
escape(), 236

eval(), 236

Exception handling, 40
exec(), 217

execute(), 421, 443
Executing a script, 66
Exit, 107

exit(), 276
EXIT_FAILURE, 78
EXIT_SUCCESS, 78
exp(), 226, 328
expression, 16, 103
Expressions, statements, and blocks, 16
fabs(), 328

fase, 77
FATTR_ARCHIVE, 78
FATTR_HIDDEN, 78
FATTR_NORMAL, 78
FATTR_RDONLY, 78
FATTR_SUBDIR, 78
FATTR_SYSTEM, 78
fclose(), 280

feof(), 281

ferror(), 277

fflush(), 281

fgetc(), 281

fgetpos(), 282

foets(), 282

Filel/O, 279

File menu, 106

File Name for breakpoint, 105
File redirection, 66
fill(), 391
filledPolygon(), 392
filledRectangle(), 392
fillToBorder(), 393

489

filter, 409

finally, 40

find(), 431, 433
Find...Ctrl+F, 109
findAll(), 434
findDistinct(), 434
first(), 412
firstRecord(), 430
Floating point, 23
flock(), 293

floor(), 227, 329

Flow decisions statements, 34
fmod(), 329

Font specifications, 381
Font..., 108

fopen(), 279

for, 36, 54

For Array objects, 471
For dynamic arrays, 471
for/in, 54

for/in statement, 54
fork(), 341

Format String, 104
fprintf(), 282

fputc(), 283

fputs(), 283

fread(), 284

freopen(), 286

frexp(), 329
fromCharCode(), 216
fromGd(), 402
fromGif(), 403
fromSystem(time), 364
fromXbm(), 403
fscanf(), 286

fseek(), 287

fsetpos(), 288

ftell(), 288

fullpath(), 158
Function apply(), 250
Function call(), 251
Function identifier, 20
Function Object, 249

Function object instance methods, 249
Function property arguments[], 45
Function recursion, 46
Function return statement, 43
Function scope, 20

Function toString(), 252
Function with areturn, 87
Function with parameters, 84
Function(), 249

Functions, 20, 42

fwrite(), 289

GD arc(), 382

GD blue(), 383

GD boundsSafe(, 384

GD charUp(), 385

GD colorAllocate(), 385

GD colorClosest(), 386

GD colorDeallocate(), 386
GD colorExact(), 387

GD colorsTotal(), 387

GD colorTransparent(), 388
GD copy(), 388

GD copyResized(), 389

GD dashedLineg(), 390

GD destroy(), 391

GD drawChar(), 384

GD fill(), 391

GD filledPolygon(), 392

GD filledRectangle(), 392
GD fillToBorder(), 393

GD getlinterlaced(), 393

GD getPixel(), 394

GD getTransparent(), 394
GD green(), 394

GD height(), 395

GD interlace(), 395

GD ling(), 395

GD Link Library, 381

GD Object, 381

GD object instance methods, 382
GD object static methods, 402
GD polygon(), 396

GD rectangle(), 397

490

GD red(), 398

GD setBrush(), 398
GD setPixel(), 399
GD setStyle(), 399
GD setTile(), 400

GD string(), 400

GD stringUp(), 401
GD toGd(), 402

GD toGif(), 402

GD width(), 402
GD(), 382
GD.fromGd(), 402
GD.fromGif(), 403
GD.fromXbm(), 403
get(), 141
getArrayLength(), 237
getAttributes(), 238
getc(), 290

getch(), 262

getchar(), 263
getche(), 263
getcwd(), 293
getDate(), 351
getDay(), 351
getenv(), 298

getFullY ear(), 351
getHours(), 351
getlnterlaced(), 394
getLastError(), 439
getL astErrorCode(), 439
getMilliseconds(), 352
getMinutes(), 352
getMonth(), 352
getObjectProperties(), 159
getPixel(), 394

gets(), 263
getSeconds(), 352
getString(), 191
getTime(), 352
getTimezoneOffset(), 353
getTransparent(), 394
getUTCDate(), 353
getUTCDay(), 353

getUTCRullY ear(), 353
getUTCHours(), 354
getUTCMilliseconds(), 354
getUTCMinutes(), 354
getUTCMonth(), 354
getUTCSeconds(), 354
getVaue(), 191

getYear(), 355

global, 19

Global object, 233

global object methods/functions, 235
global object properties, 234
Global variables, 19
Global...Ctrl+Shft+G, 111
global._argc, 234
global._argv, 234

global .defined(), 235
global.escape(), 235
global.eval(), 236
global.getArrayL ength(), 237
global.getAttributes(), 238
global.isFinite(), 237
global.isNaN(), 237
global.parseH oat(), 239
global.parselnt(), 239
global.setArrayL ength(), 240
global.setAttributes(), 240
global. ToBoolean(), 243
global. ToBuffer(), 243
global. ToBytes(), 244
global.Tolnt32(), 244
global . Tolnteger(), 244
global.ToNumber(), 245
global. ToObject(), 245
global. ToPrimitive, 246
global.ToString(), 246
global .Uint16(), 247
global.Uint32(), 248

global .undefine, 242
global.unescape(), 247
Globals, 101

Globals window, 102
gmtime(), 270

491

GoCitrl+F5, 110

goto, 39

goto and labels, 39

greater than, 33

greater than or equal to, 33

green(), 395

GUI environment, 69

handle(), 198

hasOwnProperty(), 219

height(), 395

Help menu, 112

Help Topics...F1, 112

hostByName(), 455

hostName(), 455

Identifiers, 17

if, 34

if, ifdef, dlif, else, endif, 63

in, 54

include, 62

indexOf(), 210

inequality, 33

Initialization code which is external to
functions, 123

Initializers for arrays and objects, 129

Initializers for objects and arrays, 50

inport(), 254

inportw(), 254

inSecurity(), 160

insertRow(), 412

inside of functions, 123

Installation, 11

instance(), 160

instanceof operator, 34

instanceof(), 34

Integer, 22

Integrated Debugger, 99

interlace(), 395

INTERP_COMPILED_SCRIPT, 78

INTERP_FILE, 79

INTERP_LOAD, 78

INTERP_NOINHERIT_GLOBAL, 78

INTERP_NOINHERIT_LOCAL, 79

INTERP_TEXT, 79

interpret(), 161

interpreter, 10
interpretinNewThread(), 162
interrupt(), 255
Introduction, 9

isalpha(), 300

isascii(), 300

iscntrl(), 301

isdigit(), 301

isFinite(), 237

isgraph(), 301

islower(), 301

isNaN(), 237

isprint(), 302
isPrototypeOf(), 219
ispunct(), 302

isspace(), 302

isupper(), 302

isxdigit(), 303

join(), 132

kbhit(), 264

kill(), 342

label, 39

labs(), 330

last(), 413

lastindexOf(), 211
lastRecord(), 431

Idexp(), 330

[div(), 331

length, 130, 208

less than, 33

less than or equal to, 33
Library and samplefiles, 94
Library file, 91

Library files, 10, 82

Line Number for breakpoint, 106
lineg(), 395

linger(), 450

link, 64

Link Libraries, 367

Literal strings, 116

Literal strings and assignments, 117
Literal strings and comparisons, 117

492

Literal strings and parameters, 118

Literal strings and returns, 118

Literal Strings and switch statements,
118

LN10, 221

LN2, 221

local, 19

Local...Ctrl+Shft+L, 112

Locals, 102

Locals window, 102

localtime(), 270

LOCK_EX, 79

LOCK_NB, 79

LOCK_SH, 79

LOCK_UN, 79

log(), 227, 331

log10(), 331

LOGI10E, 222

LOG2E, 222

Logica operators, 32

Logical operators and conditional
expressions, 32

Long Strings, 206

Macros, 124

Main menu bar, 106

main(), 47, 83

main() function, 47

majorErrorCode(), 422

majorErrorMessage(), 422

makeWindow(), 163

Math, 324

Math methods, 477

Math Object, 221

Math object static methods, 223

Math object static properties, 221

Math properties, 479

Math.abs(), 223

Math.acos(), 223

Math.asin(), 224

Math.atan(), 224

Math.atan2(), 225

Math.ceil(), 225

Math.cos(), 226

Math.E, 221
Math.exp(X), 226
Math.floor(), 226
Math.LN10, 221
Math.LN2, 221
Math.log(), 227
Math.LOGI10E, 222
Math.LOG2E, 222
Math.max(), 227
Math.min(), 228
Math.PI, 222
Math.pow(), 228
Math.random(), 229
Math.round(), 229
Math.sin(), 230
Math.sgrt(), 231
Math.SQRT1 2, 222
Math.SQRT2, 223
Math.tan(), 231
Mathematical operators, 29
MathErrorWarnings, 77
max(), 228, 332
MAX_VALUE, 26

MAX_VALUENumber.MAX_VALUE

, 79

MD5 Checksum Link Library, 405

md5 Object, 405

md5 object instance methods, 405

md5(), 405

MDI windows, 101

memchr(), 322

memcmp(), 322

memcpy(), 323

memmove(), 323

Memory manipulation, 322

memset(), 324

Menu bar, 100

messageFilter(), 167

Methods - assigning functions to
objects, 51

Methods for data, 473

min(), 228, 332

MIN_VALUE, 26

493

MIN_VALUENumber.MIN_VALUE,
79

minorErrorCode(), 423

minorErrorMessage(), 423

mkdir(), 295

mktime(), 272

modf(), 332

modulo, 29

multiplication, 29

multiTask(), 168

NaN, 26, 79

NaNNumber.NaN, 79

NEGATIVE_INFINITY, 27

NEGATIVE_INFINITY Number.NEGA
TIVE_INFINITY, 79

new constructorconstructor, 50, 129

Newln toolbar and Ctrl+N, 106

next(), 414

nextRecord(), 429

not, 32, 33

null, 25, 77

Number constants, 26

Number Object, 147

Number object instance methods, 147

Number toL ocaleString(), 147

Number toString(), 147

Number type, 22

numbers to strings, 27

Object hasOwnProperty(), 219

Object initiaizer, 50, 129; initializer:,
50, 129

Object isPrototypeOf(), 219

Object Object, 219

Object object instance methods, 219

Object operator, 28

Object propertylsEnumerable(), 219

Object prototypes, 52

Object toLocaleString(), 220

Object toString(), 220

Object type, 24

Objects, 49

offset(), 256

Open...In toolbar and Ctrl+O, 106

Operating system command prompt, 68
Operators, 28

option, 65

Options, 108

or, 33

orbitwise or, 31

0S/2 and seos2pm.exe, 73

0S/2 batch file, 71

0S/2 REXX file, 72

outport(), 256

outportw(), 257

outside of functions, 123
P_NOWAIT, 79

P_OVERLAY, 79

P_SWAP, 79, 276

P_WAIT, 80

parameterName(), 442
parameters of cfunctions, 45
parameters(), 442

Parameters..., 110

parse(), 365

parseFloat(), 239

parselnt(), 239

pass by referenceby reference, 24
pass by valueby value, 21

pass variables to functions, 44
Passing information to cfunctions, 45
Passing information to functions, 44
Passing variables by reference, 120
Pastel n toolbar and Ctrl+V, 108
PATH, 60, 96

peek(), 168

perror(), 278

PI, 222

Platform, 76

Point specifications, 381

pointer, 122

Pointer operator *, 122

pointer(), 169

poke(), 171

polygon(), 396

pop(), 133
POSITIVE_INFINITY, 26

494

POSITIVE_INFINITY Number.POSITI
VE_INFINITY, 79

pow(), 228, 333

Predefined constants and values, 77

Predefined Values, 75

Predefining objects with constructor
functions, 49

Preprocessor, 59

Preprocessor Directives, 61

Preprocessor values, 75

previous(), 414

prevRecord(), 430

Prewritten routines, 11

Primitive data types, 21, 122

Print Preview, 107

Print Setup..., 107

Print...In toolbar and Ctrl+P, 107

printf(), 259

procedureName(), 424

procedures(), 424

Prohibited identifiers, 18

Properties and methods of basic data
types, 27

Properties for data, 474

propertylsEnumerable(), 220

prototype, 52

Prototype property, 469

pusnh(), 134

put(), 142

putc(), 290

putchar(), 264

putenv(), 299

puts(), 264

putString(), 192

putVaue(), 192

gsort(), 297

Quick Start Tutorial, 81

rand(), 333

RAND_MAX, 80

random(), 229

read(), 451

ready(), 452
rectangle(), 397

recursion, 46

recursive function, 46

red(), 398

RegExp compile(), 218

RegExp exec(), 217

RegExp Object, 217

RegExp object instance methods, 217

RegExp test(), 218

RegExp(), 217

reload(), 415

remote, 380

remoteHost(), 453

Remove, 103

Remove All, 103

Remove dlln toolbar, 111

Remove allToolbar, 111

Remove breakpoint, 105

remove(), 291

rename(), 291

Replace...Ctrl+R, 109

replaceRecord(), 437

RequireFunctionK eyword, 77

RequireVarKeyword, 77

Restart, 109

return, 43, 88

return values, 88

reverse(), 134

rewind(), 291

rmdir(), 295

rollbackTransaction(), 424

round(), 230

Routines for arrays, 471

Routines for Buffers, 471

Routines for character classification,
472

Routines for console 1/0O, 472

Routines for conversion/casting, 473

Routines for data/variables, 473

Routines for date/time, 474

Routines for diagnostic/error, 475

Routines for directory, file, and OS, 475

Routines for display control, 476
Routines for execution control, 476

Routines for file/stream /O, 477

Routines for math, 477

Routines for memory manipulation, 479

Routines for miscellaneous, 479

Routines for strings/byte arrays, 480

Routines for variable argument lists,
481

rsprintf(), 303

Run in Debuggerln toolbar and F5, 110

Running a script, 68

rvsprintf(), 304

Samplefiles, 11

Save As..., 107

Saveln toolbar and Ctrl+S, 107

scanf(), 265

scope, 20

Screen aobject, 82, 197

Screen object static methods, 197

Screen.clear(), 197

Screen.cursor(), 197

Screen.handle(), 198

Screen.setBackground(), 199

Screen.setForeground(), 200

Screen.size(), 201

Screen.write improved, 88

Screen.write(), 82, 201

Screen.writeln(), 82, 203

script, 82

Script execution, 274

Script Libraries, 461

ScriptEase 4.20, 1

ScriptEase Desktop, 9

ScriptEase JavaScript, 13

ScriptEase package, 10

ScriptEase Shell, 81

ScriptEase shell command prompt, 69

ScriptEase shell command-line, 66

ScriptEase versus C language, 113

SE ESET, 61

Search menu, 109

SEDBC Link Library, 407

SEDESKPATH, 60, 96

SEDESKPREFS, 60, 95

SEEK_CUR, 80

SEEK_END, 80

SEEK_SET, 80

segment(), 257

select(), 455

SElib, 113

SElib Object, 149

SElib object static methods, 149
SElib.baseWindowFunction(), 149
SElib.breakWindow(), 150
SElib.compileScript(), 150
SElib.directory(), 154
SElib.dowWindows(), 156
SElib.dynamicLink() - for 052, 183
SElib.dynamicLink() - for Win16, 182
SElib.dynamicLink() - for Win32, 180
SElib.fullpath(), 158
SElib.getObjectProperties(), 159
SElib.inSecurity(), 160
SElib.instance(), 160
SElib.interpret(), 161
SElib.interpretinNewThread(), 162
SElib.makeWindow(), 163
SElib.messageFilter(), 167
SElib.multiTask(), 168
SElib.peek(), 168

SElib.pointer(), 169

SElib.poke(), 171
SElib.ShellFilterCharacter(), 172
SElib.ShellFilterCommand(), 173
SElib.spawn(), 174
SElib.splitFilename(), 176
SElib.subclassWindow(), 177
SElib.suspend(), 178
SElib.windowList(), 179
semicolons, 123

setArrayLength(), 240
setAttributes(), 240
setBackground(), 199

setBrush(), 398

setDate(day), 355
setForeground(), 200

setFullY ear(), 355

496

setgid(), 342

setHours(), 356

setMilliseconds(), 356
setMinutes(), 356

setMonth(), 357

setPixel(), 399

setSeconds(), 357

setsid(), 343

setStyle(), 399

setTile(), 400

setTime(), 358

Setting breakpoints, 104

Setting watches, 102

setuid(), 343

setUTCDate(), 358

setUTCFullY ear(), 358
setUTCHours(), 359
setUTCMilliseconds(), 359
setUTCMinutes(), 359
setUTCMonth(), 360
setUTCSeconds(), 360

setYear(), 361

Shell, 77

ShellFilterCharacter(), 172
ShellFilterCommand(), 173

shift, 31

shift left with zeros, 31

shift right, 31

shift(), 135

Simple script, 82

SimpleDataset addRecord(), 435
SimpleDataset close(), 429
SimpleDataset currentRecord(), 429
SimpleDataset cursor(), 438
SimpleDataset deleteAll(), 437
SimpleDataset deleteRecord(), 436
SimpleDataset find() with clause, 433
SimpleDataset find() with template, 431
SimpleDataset findAll(), 434
SimpleDataset findDistinct(), 434
SimpleDataset firstRecord(), 430
SimpleDataset getl astError(), 439
SimpleDataset getl astErrorCode(), 439

SimpleDataset instance methods, 428
SimpleDataset lastRecord(), 431
SimpleDataset nextRecord(), 429
SimpleDataset Object, 427
SimpleDataset prevRecord(), 430
SimpleDataset replaceRecord(), 437
SimpleDataset static properties, 439
SimpleDataset(), 428
SimpleDataset.caseSensitive, 440
sin(), 230, 333

Single quote, 206

sinh(), 334

size(), 144, 201

slice(), 135, 212

Socket accept(), 449

Socket blocking(), 449

Socket close(), 450

Socket linger(), 450

Socket Link Library, 447

Socket Object, 447

Socket object instance methods, 447
Socket object static methods, 454
Socket read(), 450

Socket ready(), 452

Socket remoteHost(), 453

Socket write(), 453

Socket() with hostname, 447
Socket() with port, 448
Socket.addressByName(), 454
Socket.error(), 454
Socket.hostByName(), 455
Socket.hostName(), 455
Socket.select(), 455

sort, 409

sort(), 136

Sorting, 295

Source, 101

Source Mark, 108

spawn(), 174

Specia values, 25

splice(), 138

split(), 212

splitFilename(), 176

497

sprintf(), 305

sart(), 231, 334

SQRT1 2, 222

SQRT2, 223

srand(), 334

sscanf(), 304

Start Debug Session, 109
statement, 16

statement blockblock, 16
Status bar, 100

Status Bar view, 109

stderr, 80

stdin, 80

stdout, 80

Step Intoln toolbar and F9, 110
Step Outln toolbar and F12, 110
Step Overln toolbar and F10, 110
Step to Cursorin toolbar and F11, 110
Stopln toolbar, 110
storedProc(), 425

Stproc close(), 441

Stproc cursor(), 442

Stproc execute(), 443

Stproc instance methods, 441
Stproc instance properties, 440
Stproc Object, 440

Stproc parameterName(), 442
Stproc parameters(), 442
streat(), 306

strchr(), 307

stremp(), 307

strempi(), 308

strepy(, 308

strespn(), 309

strerror(), 278

stritime(), 272

stricmp(), 309

Strictness of interpretation, 77
String as data type, 205

String as object, 207

String charAt(), 208

String charCodeAt(index), 209
String concat(), 209

String indexOf(), 210

String instance methods, 468
String instance properties, 468
String lastindexOf(), 211

String length, 208

String localeCompare(), 211
String manipulation, 303

String Object, 205

String object instance methods, 208
String object instance properties, 208
String object static methods, 216
String slice(), 212

String split(), 212

String static methods, 469
String static properties, 468
String substring(), 213

String toL ocalel owerCase(), 214
String toL ocaleUpperCas(), 214
String toL owerCase(), 214
String toUpperCase()), 215
String type, 23

String valueOf(), 215

String(), 208, 401
String.fromCharCode(), 216
strings to numbers, 27
stringuUp(), 401

strlen(), 310

striwr(), 310

strncat(), 311

strncmp(), 311

strncmpi(), 312

strnepy(), 312

strnicmp(), 313

strpbrk(), 314

strrchr(), 314

strspn(), 315

strstr(), 315

strstri(), 316

strtod(), 316

strtok(), 317

strtol(), 318

Structures, 119

strupr(), 319

498

subBuffer(), 194
subclassWindow(), 177
substring(), 213
subtraction, 29

suspend(), 178

switch, 38

switch expression, 119
switch, case, and default, 38
system(), 276

table(), 425

tableName(), 426

tables(), 426

Tabs..., 108

tan(), 231, 334

tanh(), 335

term(), 405

Terminology, 86

test(), 218

The debugger, 10

The interpreter, 10

this, 50

throw, 40

Tile, 111

Time functions, 268
time(), 274

tmpfile(), 292

tmpnam(), 292

toascii(), 320
ToBoolean(), 243
ToBuffer(), 243
ToBytes(), 244

toGd(), 402

Toggle currentln toolbar and F8, 110
toGif(), 402
toGMTString(), 361
Tolnt32(), 244

Tolnteger(, 244

Token replacement macros, 124
toL ocaleDateString(), 362
toLocalel owerCase(), 214
toL ocaleString(), 83, 147, 220, 362
toLocaleTimeString(), 362
toLocaleUpperCase(), 214

tolower(), 320 updateRow(), 415

toLowerCase(), 214, 215 Using aDSP object, 372
ToNumber(), 245 Using library files, 95
ToObject(), 245 Using the ScriptEase Debugger, 100
Tool bar, 100 UTC(), 366

Toolbar view, 109 UU object static methods, 369
ToPrimitive(), 246 UU.decode(), 369
toString(), 28, 246 UU.encode(), 369
toSystem(), 363 UUCode Link Library, 369
toTimeString(), 363 va arg(), 335

ToUint16(), 247 va_end(), 337

ToUint32(), 248 va_start(), 337

toupper(), 321 valueOf(), 28, 215
toUTCString(), 364 Variable argument lists, 335
Trace On, 108 Variable scope, 19

Trace over, 108 Variables, 18

Trace Speed, 108 Variables in the environment, 59
Transactions, 416 VERSION_MAJOR, 80
true, 77, 78 VERSION_MINOR, 80

try, 40 VERSION_STRING, 80
tutorial, 81 vfprintf(), 338

Type declarations, 125 View menu, 109

typeof operator, 34 vprintf(), 266

typeof(), 34 vscanf(), 267

undefing(), 242 vsprintf(), 321

undefined, 25 vsscanf(), 339

UndoCtrl+Z, 107 wait(), 343

unescape(), 247 waitpid(), 344

ungetc(), 292 Watch, 111

unicode, 188 Watch dialog, 103

Unix, 72 Watch...Ctrl+Shft+W, 112
Unix Object, 341 Watches, 102

Unix object static methods, 341 Watches window, 102
Unix.fork(), 341 while, 35, 36

Unix.kill(), 342 White space characters, 15
Unix.setgid(), 342 width(), 402

Unix.setsid(), 343 Win32 script libraries, 464
Unix.setuid(), 343 Win32 utility and sample scripts, 466
Unix.wait(), 343 Window menu, 111
Unix.waitpid(), 344 windowList(), 179
Unnecessary tokens, 123 with, 54

unshift(), 139 with statement, 54

update(), 406 write(), 82, 88, 201, 453

499

writeln(), 82, 203

500

