
ScriptEase 4.20

Copyright Notice

Copyright © 1993-2000 Nombas Incorporated.
All rights reserved.

No part of this manual may be copied without written permission by Nombas
Incorporated. To request permission to use a Nombas logo, or any section of this
manual, please contact:

Nombas Incorporated
64 Salem Street
Medford, MA 02155
USA
1-781-391-6595

Nombas home page. USA.
 http://www.nombas.com/us/
ScriptEase Desktop home page.
 http://www.sedesk.com

All Nombas products are trademarks or registered trademarks of Nombas
Incorporated. Other brand names are trademarks or registered trademarks or their
respective holders. Windows, as used in this manual, refers to Microsoft's
implementation of a windows system.

Technical documentation by Ronald Terry Constant

 3

Table of Contents
Table of Contents .. 3
Introduction... 9

ScriptEase Desktop.. 9
ScriptEase package .. 10

ScriptEase JavaScript... 13
Basics of ScriptEase... 14
Identifiers .. 17
Data types.. 21
Automatic type conversion... 27
Properties and methods of basic data types... 27
Operators... 28
Flow decisions statements.. 34
Exception handling .. 40
Functions... 42
Objects .. 49
Dynamic objects .. 55

Preprocessor .. 59
Variables in the environment.. 59
Preprocessor Directives.. 61
Executing a script .. 66
ScriptEase shell command-line .. 66
Running a script... 68
Command-line switches ... 72

Predefined Values.. 75
Preprocessor values.. 75
Predefined constants and values ... 77

Quick Start Tutorial ... 81
ScriptEase Shell... 81
Simple script.. 82
Date and time display... 82
Function with parameters ... 84
Terminology .. 86
Function with a return.. 87
Screen.write improved ... 88
Library file .. 91
Library and sample files... 94

 4

Using library files .. 95
Integrated Debugger .. 99

Using the ScriptEase Debugger .. 100
Main menu bar... 106

ScriptEase versus C language... 113
Data types in C and SE .. 114
Automatic type declaration .. 114
Array representation .. 115
Automatic array allocation ... 115
Literal strings... 116
Structures .. 119
Passing variables by reference.. 120
Pointer operator * and address operator & .. 122
Case statements ... 122
Initialization code which is external to functions .. 123
Unnecessary tokens.. 123
Macros... 124
Token replacement macros... 124
Back quote strings.. 125
Converting existing C code to ScriptEase... 125

Array object... 127
Creating arrays... 128
Array object instance properties ... 130
Array object instance methods ... 131

Blob Object ... 141
Blob object static methods ... 141
blobDescriptor object... 145

Number Object .. 147
Number object instance methods.. 147

SElib Object .. 149
SElib object static methods .. 149

Buffer Object... 187
Buffer object instance properties .. 187
Buffer object instance methods .. 189

Screen Object .. 197
Screen object static methods .. 197

String Object ... 205
String as data type.. 205
String as object .. 207

 5

String object instance properties... 208
String object instance methods ... 208
String object static methods ... 216

RegExp Object .. 217
RegExp object instance methods .. 217

Object Object .. 219
Object object instance methods .. 219

Math Object... 221
Math object static properties .. 221
Math object static methods... 223

Global object ... 233
Conversion or casting .. 233
global object properties.. 234
global object methods/functions ... 235

Function Object ... 249
Function object instance methods... 249

Dos Object... 253
Dos object static methods... 253

Clib Object .. 259
Console I/O functions .. 259
Time functions... 268
Script execution ... 274
Error.. 277
File I/O.. 279
Directory ... 293
Sorting... 295
Environment variables ... 298
Character classification .. 299
String manipulation.. 303
Memory manipulation.. 322
Math.. 324
Variable argument lists .. 335

Unix Object ... 341
Unix object static methods ... 341

Boolean Object .. 347
Boolean object instance methods.. 347

Date Object ... 349
Date object instance methods ... 351
Date object static methods.. 364

 6

Link Libraries.. 367
UUCode Link Library.. 369

UU object static methods ... 369
DSP Link Library .. 371

DSP Object.. 371
Creating a DSP object.. 371
Using a DSP object .. 372
DSP object instance methods ... 374
DSP object static properties ... 380

GD Link Library.. 381
GD Object ... 381

MD5 Checksum Link Library .. 405
md5 Object .. 405
md5 object instance methods.. 405

SEDBC Link Library... 407
Cursor Object .. 407
Database Object... 416
SimpleDataset Object... 427
Stproc Object... 440

Socket Link Library... 447
Socket Object .. 447
Socket object instance methods .. 447
Socket object static methods .. 454

Com Object Link Library... 459
Com Object ... 459

Script Libraries .. 461
Common script libraries... 462
Common utility and sample scripts .. 464
Win32 script libraries... 464
Win32 utility and sample scripts .. 466

Appendix B Instance and Static Notation .. 467
String instance properties ... 468
String instance methods ... 468
String static properties ... 468
String static methods.. 469
Prototype property ... 469

Appendix A Grouped Functions.. 471
Routines for arrays... 471
Routines for Buffers... 471

 7

Routines for character classification ... 472
Routines for console I/O .. 472
Routines for conversion/casting ... 473
Routines for data/variables... 473
Routines for date/time.. 474
Routines for diagnostic/error.. 475
Routines for directory, file, and OS.. 475
Routines for display control ... 476
Routines for execution control ... 476
Routines for file/stream I/O.. 477
Routines for math .. 477
Routines for memory manipulation .. 479
Routines for miscellaneous .. 479
Routines for strings/byte arrays.. 480
Routines for variable argument lists ... 481

Index ... 482

 9

Introduction
Welcome to ScriptEase, the exciting world of scripting. ScriptEase is built on
JavaScript, which is perhaps the most popular scripting language in the world,
and is supported by C script, which is based on the most popular and powerful
programming language in the world. The guiding principles for the development
of ScriptEase are: simplicity, power, and safety. Prepare to take control of your
computer and to guide your computer destiny through the use of simple and
powerful scripts written in ScriptEase.

The foundation of ScriptEase is JavaScript which emphasizes simplicity and
flexibility. But what about the C scripting? Do you have to know the C language?
No, you do not need to know C to use ScriptEase, but the power of C is available
to you anytime you want to take advantage of it. Many scripts are written without
using C at all. Some programmers, especially those from a C background, write
scripts using C script also. The choice is yours.

ScriptEase Desktop
ScriptEase Desktop, which is part of the Nombas product line of scripting
solutions, is designed to be used on individual computers, whether alone or in
networks. ScriptEase not only allows you to control your computer, but you may
control computers on a network through powerful networking capabilities. Even
more, ScriptEase Distributed Scripting Protocol allows a user on one computer in
a network, including the Internet, to run scripts on and control another computer
on the network. But, enough of previews into the awesome power available to
you in ScriptEase Desktop. The emphasis here is on simplicity for average
computer users, though experienced and professional programmers appreciate the
power of ScriptEase that allows them to accomplish more tasks in less time.

Most users want simple scripting ability so that they may control their computers
instead of their computers controlling them. ScriptEase allows you to take control
of your computer life and not be completely at the mercy of the whims and
mistakes of commercial programmers. Consider WordPad, the standard word
processor that comes with Windows95/98. Every time a user clicks the WordPad
icon, another instance of WordPad starts. Some users become frustrated. They
start an instance of WordPad to work on a document, not remembering that they
already have WordPad running with that same document in it. They lose work as

 10

they save new changes over the other document. The result is lost work and
frustration.

Some people like WordPad's ability to run multiple instances, but others dislike
it. For those who do not like to run multiple instances, ScriptEase provides a
solution. A simple script of a few lines can make sure that only one instance of
WordPad is run at a time. You are in control.

Perhaps you have important data that you want backed up in a special way. A
ScriptEase script allows you to accomplish the task easily. Are these the only
ways to use ScriptEase. Of course not! The only real limitation is your
imagination and desire.

ScriptEase package
The ScriptEase Desktop package that you have received may be broken down
into the following categories.

The interpreter
The interpreter is comprised of the executable files that are often as the
interpreter. The interpreter is the main program that interprets script or program
files. Scripts are plain text files that are normally written using any text editor.
For versions that support the integrated debugger, scripts may be written and
debugged in the debugger.

The debugger
Some versions of ScriptEase support the use of the Integrated Debugging
Environment (IDE). The IDE is a powerful source code debugger that allows you
to execute code using up-to-date features such as trace, stepping, break points,
and watches. These features are implemented through menus, shortcut keys, and
a multiple document interface (MDI), which means you can debug a script using
several windows to view the debugging process.

Library files
ScriptEase comes with many library files that have useful and powerful routines
for use in your own scripts. These library files can be easily included in your
scripts giving you instant access to routines such as the dialog routines in
dialog.jsh. When ScriptEase is installed, these library files are installed with
appropriate information provided to your computer system to use them
immediately and easily.

 11

Prewritten routines
ScriptEase comes with many scripts that are complete and useful programs. An
example of such a file is deltree.jsh which allows you to delete an entire directory
tree, including files. Another example is filecomp.jse which allows you to
compare two files. Like library files, these prewritten routines put into place
during installation with appropriate information provided to your computer
system to use them immediately and easily.

Sample files
Many sample files are installed with ScriptEase. These sample files range from
being examples and tutorials for writing scripts to being complete and use
programs.

Documentation
Up to the minute information and documentation about ScriptEase and installed
files is kept in documentation files that come in various formats such as text, rtf,
and HTML. Further documentation, information about platform specific issues,
and information about installation are included as printed material accompanying
the main manual.

Installation
The installation procedure is self-explanatory and prompts for any information
that it needs. However, printed installation instructions are found in the printed
material that accompanies the main manual.

 13

ScriptEase JavaScript
ScriptEase is a scripting or programming language that allows a computer user or
programmer to write simple scripts with tremendous power. The guiding
principles for ScriptEase are simplicity and power which add up to easy
elegance in scripting. Scripts are much easier to write and use than the source
code for compiled languages such as C++.

ScriptEase uses JavaScript, one of the most popular scripting language in today's
world, as its core language. In fact, ScriptEase uses the ECMAScript standard for
JavaScript. ECMAScript is the core version of JavaScript which has been
standardized by the European Computer Manufacturers Association and is the
only standardization of JavaScript. ScriptEase closely follows and will follow
this standardized JavaScript.

ScriptEase is not limited to JavaScript, as good as it may be. ScriptEase has
enhanced the power of JavaScript by adding two objects, Clib and SElib, that
have the power of the C programming language. Indeed, ScriptEase implements
a scripting version of C which has the power of C in a simple scripting language.
With the power of C readily available, computer users or programmers are able
to accomplish any tasks that they pursue. Both JavaScript and C script can be
intermingled in ScriptEase code, which allows scripters flexibility, power, and
simplicity.

The following line is a complete script which could be saved as a script file and
run as a program. The program simply displays a message, "A simple one line
script," on a computer screen

Screen.writeln("A simple one line script")

The following code fragment uses a more structured approach to accomplish the
same task. JavaScript and C share similar programming styles, such as the main()
function shown in this fragment.

function main()
{
 Clib.puts("A simple one line script");
}

A ScriptEase script may be written using a very straightforward scripting
approach as shown in the first example above, which is similar to the simple

 14

scripting of a DOS batch file. A second line could be added to the single line as
shown in the following fragment.

Screen.writeln("A simple one line script")
Clib.puts("Now there are two lines")

The example using the main() function could be expanded as follows.

function main()
{
 Clib.puts("A simple one line script");
 Screen.writeln("Now there are two lines");
}

These examples illustrate how easily ScriptEase can be used in a simple scripting
mode and how easily the power of functions can be put in a script, and not just
the power of functions, but the power of C. They show how easily JavaScript and
C script can be intermingled, since C is implemented as a JavaScript object.
Functions and other programming concepts are explained in the following
descriptions of the ScriptEase language. A tutorial section provides illustrations
of scripts in addition to the example code fragments in the text.

Most JavaScript, other than ScriptEase, is part of web browsers and is used while
users are connected to the Internet. Usually people are unaware that JavaScript is
commonly being executed on their computers when they are connected to various
Internet sites. Not only are they unaware, they are unable to write and execute
scripts on their computers for their own uses. ScriptEase steps in at this point.
ScriptEase Desktop is designed for users to control their own computers in a
stand alone mode. Users do not have to be connected to the Internet to use
ScriptEase, as they must be with other JavaScript interpreters.

Whether the desire is to write a simple script to copy a document to a backup
folder or to write an entire data processing program, ScriptEase can do the job or
any other job desired. ScriptEase has joined JavaScript and C. Further,
ScriptEase adds commands and functions not available in standard
implementations of either. In short, ScriptEase is the most powerful and
advanced scripting language available today, and it achieves its power while still
being simple to use.

The following sections of this manual will help you to start enjoying the power of
ScriptEase.

Basics of ScriptEase

 15

Case sensitivity
ScriptEase is case sensitive. A variable named "testvar" is a different variable
than one named "TestVar", and both of them can exist in a script at the same
time. Thus, the following code fragment defines two separate variables:

var testvar = 5
var TestVar = "five"

All identifiers in ScriptEase are case sensitive. For example, to display the word
"dog" on the screen, the Screen.write() method could be used:
Screen.write("dog"). But, if the capitalization is changed to something like,
Screen.Write("dog"), then the ScriptEase interpreter generates an error message.
Control statements and preprocessor directives are also case sensitive. For
example, the statement "while" is valid, but the word "While" is not. The
directive "#if" works, but the letters "#IF" fail.

White space characters
White space characters, space, tab, carriage-return and new-line, govern the
spacing and placement of text. White space makes code more readable for
humans, but is ignored by the interpreter.

Lines of script end with a carriage-return, and each line is usually a separate
statement. (Technically, in many editors, lines end with a carriage-return and
linefeed pair, "\r\n".) Since the interpreter usually sees one or more white space
characters between identifiers as simply white space, the following ScriptEase
statements are equivalent to each other:

var x=a+b
var x = a + b
var x = a + b
var x = a
 + b

White space separates identifiers into separate entities. For example, "ab" is one
variable name, and "a b" is two. Thus, the fragment, "var ab = 2" is valid, but
"var a b = 2" is not.

Many programmers use all spaces and no tabs, because tab size settings vary
from editor to editor and programmer to programmer. By using spaces only, the
format of a script will look the same on all editors. All scripts provided by
Nombas with ScriptEase use spaces only.

 16

Comments
A comment is text in a script to be read by humans and not the interpreter which
skips over comments. Comments help people to understand the purpose and
program flow of a program. Good comments, which explain lines of code well,
help people alter code that they have written in the past or that was written by
someone else.

There are two formats for comments: end of line comments and block comments.
End of line comments begin with two slash characters, "//". Any text after two
consecutive slash characters is ignored to the end of the current line. The
interpreter begins interpreting text as code on the next line. Block comments are
enclosed within a beginning block comment, "/*", and an end of block comment,
"*/". Any text between these markers is a comment, even if the comment extends
over multiple lines. Block comments may not be nested within block comments,
but end of line comments can exist within block comments.

The following code fragments are examples of valid comments:

// this is an end of line comment

/* this is a block comment
 This is one big comment block.
 // this comment is okay inside the block
 Isn't it pretty?
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "this line is not a comment";

Expressions, statements, and blocks
An expression or statement is any sequence of code that performs a computation
or an action, such as the code "var TestSum = 4 + 3" which computes a sum and
assigns it to a variable. ScriptEase code is executed one statement at a time in the
order in which it is read. Many programmers put semicolons at the end of
statements, although they are not required. Each statement is usually written on a
separate line, with or without semicolons, to make scripts easier to read and edit.

A statement block is a group of statements enclosed in curly braces, "{}", which
indicate that the enclosed individual statements are a group and are to be treated
as one statement. A block can be used anywhere that a single statement can.

 17

A while statement causes the statement after it to be executed in a loop. By
enclosing multiple statements in curly braces, they are treated as one statement
and are executed in the while loop. The following fragment illustrates:

while(ThereAreUncalledNamesOnTheList() == true)
{
 var name = GetNameFromTheList();
 CallthePerson(name);
 LeaveTheMessage();
}

All three lines after the while statement are treated as a unit. If the braces were
omitted, the while loop would only apply to the first line. With the braces, the
script goes through all lines until everyone on the list has been called. Without
the braces, the script goes through all names on the list, but only the last one is
called. Two very different procedures.

Statements within blocks are often indented for easier reading.

Identifiers
Identifiers are merely names for variables and functions. Programmers must
know the names of built in variables and functions to use them in scripts and
must know some rules about identifiers to define their own variables and
functions. The following rules are simple and intuitive.

• Identifiers may use only ASCII letters, upper or lower case, digits, the
underscore, "_", and the dollar sign, "$". That is, they may use only
characters from the following sets of characters.
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789"
"_$"

• Identifiers may not use the following characters.
"+- <>&|=!*/%^~?:{};()[].'"`#,"

• Identifiers must begin with a letter, underscore, or dollar sign, but may have
digits anywhere else.

• Identifiers may not have white space in them since white space separates
identifiers for the interpreter.

• Identifiers may be as long a programmer needs.

The following identifiers, variables and functions, are valid:

 18

Sid
Nancy7436
annualReport
sid_and_nancy_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
_Divide$All()

The following identifiers, variables and functions, are not valid:

1sid
2nancy
this&that
Sid and Nancy
ratsAndCats?
=Total()
(Minus)()
Add Both Figures()

Prohibited identifiers
The following words have special meaning for the interpreter and cannot be used
as identifiers, neither as variable nor function names:

break case catch class const continue debugger
default delete do else enum export extends
false finally for function if import in
new null return super switch this throw
true try typeof while with var void

Variables
A variable is an identifier to which data may be assigned. Variables are used to
store and represent information in a script. Variables may change their values,
but literals may not. For example, if programmers want to display a name
literally, they must use something like the following fragment multiple times.

Screen.writeln("Rumpelstiltskin Henry Constantinople")

But they could use a variable to make their task easier, as in the following.

var Name = "Rumpelstiltskin Henry Constantinople"
Screen.write(Name)

Then they can use shorter lines of code for display and use the same lines of code
repeatedly by simply changing the contents of the variable Name.

 19

Variable scope
Variables in ScriptEase may be either global or local. Global variables may be
accessed and modified from anywhere in a script. Local variables may only be
accessed from the functions in which they are created. There are no absolute
rules for preferring or using global or local variables. Each type has value. In
general, programmers prefer to use local variables when reasonable since they
facilitate modular code that is easier to alter and develop over time. It is generally
easier to understand how local variables are used in a single function than how
global variables are used throughout an entire program. Further, local variables
conserve system resources.

To make a local variable, declare it in a function using the var keyword:

var perfectNumber;

A value may be assigned to a variable when it is declared:

var perfectNumber = 28;

The default behavior of ScriptEase is that variables declared outside of any
function or inside a function without the var keyword are global variables.
However, this behavior can be changed by the DefaultLocalVars and
RequireVarKeyword settings of the #option preprocessor directive. This directive
is explained in the section on preprocessing. For now, consider the following
code fragment.

var a = 1;
function main()
{
 b = 1;
 var d = 3;
 someFunction(d);
}

function someFunction(e)
{
 var c = 2
 ...
}

In this example, a and b are both global variables, since a is declared outside of a
function and b is defined without the var keyword. The variables, d and c, are
both local, since they are defined within functions with the var keyword. The
variable c may not be used in the main() function, since it is undefined in the

 20

scope of that function. The variable d may be used in the main() function and is
explicitly passed as an argument to someFunction() as the parameter e. The
following lines show which variables are available to the two functions:

main(): a, b, d
someFunction(): a, b, c, e

It is possible, though not usually a good idea, to have local and global variables
with the same name. In such a case, a global variable must be referenced as a
property of the global object, and the variable name used by itself refers to the
local variable. In the fragment above, the global variable a can be referenced
anywhere in its script by using: "global.a".

Function identifier
Functions are identified by names, as variables are. Functions perform script
operations, and variables store data. Functions do the work of a script and will be
discussed in more detail later. The reason they are mentioned here is simply to
point out that they have identifiers, names, that follow the same rules for
identifiers as variable names do.

Function scope
Functions are all global in scope, much like global variables. A function may not
be declared within another function so that its scope is merely within a certain
function or section of a script. All functions may be called from anywhere in a
script. If it is helpful, think of functions as methods of the global object. The
following two code fragments do exactly the same thing. The first calls a
function, SumTwo(), as a function, and the second calls SumTwo() as a method
of the global object.

// fragment one
function SumTwo(a, b)
{
 return a + b
}

Screen.writeln(SumTwo(3, 4))

// fragment two
function SumTwo(a, b)
{
 return a + b
}

 21

Screen.writeln(global.SumTwo(3, 4))

Data types
Data types in ScriptEase can be classified into three groupings: primitive,
composite, and special. In a script, data can be represented by literals or
variables. The following lines illustrates variables and literals:

var TestVar = 14;
var aString = "test string";

The variable TestVar is assigned the literal 14, and the variable aString is
assigned the literal "test string". After these assignments of literal values to
variables, the variables can be used anywhere in a script where the literal values
could to be used.

In the fragment above which defines and uses the function SumTwo(), the
literals, 3 and 4, are passed as arguments to the function SumTwo() which has
corresponding parameters, a and b. The parameters, a and b, are variables for the
function the hold the literal values that were passed to it.

Data types need to be understood in terms of their literal representations in a
script and of their characteristics as variables.

Data , in literal or variable form, is assigned to a variable with an assignment
operator which is often merely an equal sign, "=" as the following lines illustrate.

var happyVariable = 7;
var joyfulVariable = "free chocolate";
var theWorldIsFlat = true;
var happyToo = happyVariable;

The first time a variable is used, its type is determined by the interpreter, and the
type remains until a later assignment changes the type automatically. The
example above creates three variables, each of a different type. The first is a
number, the second is a string, and the third is a boolean variable. Variable types
are described below. Since ScriptEase automatically converts variables from one
type to another when needed, programmers normally do not have to worry about
type conversions as they do in strongly typed languages, such as C.

Primitive data types
Variables that have primitive data types pass their data by value, by actually
copying the data to the new location. The following fragment illustrates:

 22

var a = "abc";
var b = ReturnValue(a);

function ReturnValue(c)
{
 return c;
}

After "abc" is assigned to variable a, two copies of the string "abc" exist, the
original literal and the copy in the variable a. While the function ReturnValue is
active, the parameter/variable c has a copy, and three copies of the string "abc"
exist. If c were to be changed in such a function, variable a, which was passed as
an argument to the function, would remain unchanged. After the function
ReturnValue is finished, a copy of "abc" is in the variable b, but the copy in the
variable c in the function is gone because the function is finished. During the
execution of the fragment, as many as three copies of "abc" exist at one time.

The primitive data types are: Number, Boolean, and String.

Number type
Integer
Integers are whole numbers. Decimal integers, such as 1 or 10, are the most
common numbers encountered in daily life. ScriptEase has three notations for
integers: decimal, hexadecimal, and octal.

Decimal
Decimal notation is the way people write numbers in everyday life and uses base
10 digits from the set of 0-9. Examples are:

1, 10, 0, and 999
var a = 101;

Hexadecimal
Hexadecimal notation uses base 16 digits from the sets of 0-9, A-F, and a-f.
These digits are preceded by 0x. ScriptEase is not case sensitive when it comes to
hexadecimal numbers. Examples are:

0x1, 0x01, 0x100, 0x1F, 0x1f, 0xABCD
var a = 0x1b2E;

Octal
Octal notation uses base 8 digits from the set of 0-7. These digits are preceded by
0. Examples are:

 23

00, 05, and 077
var a = 0143;

Floating point
Floating point numbers are number with fractional parts which are often
indicated by a period, for example, 10.33. Floating point numbers are often
referred to as floats.

Decimal
Decimal floats use the same digits as decimal integers but allow a period to
indicate a fractional part. Examples are:

0.32, 1.44, and 99.44
var a = 100.55 + .45;

Scientific
Scientific floats are often used in the scientific community for very large or small
numbers. They use the same digits as decimals plus exponential notation.
Scientific notation is sometimes referred to as exponential notation. Examples
are:

4.087e2, 4.087E2, 4.087e+2, and 4.087E-2
var a = 5.321e33 + 9.333e-2;

Boolean type
Booleans may have only one of two possible values: false or true. Since
ScriptEase automatically converts values when appropriate, Booleans can be
used as they are in languages such as C. Namely, false is zero, and true is non-
zero. A script is more precise when it uses the actual ScriptEase values, false and
true, but it will work using the concepts of zero and not zero. When a Boolean is
used in a numeric context, it is converted to 0, if it is false, and 1, if it is true.

String type
A String is a series of characters linked together. A string is written using
quotation marks, for example: "I am a string", 'so am I', `me too`, and "344". The
string "344" is different from the number 344. The first is an array of characters,
and the second is a value that may be used in numerical calculations.

ScriptEase automatically converts strings to numbers and numbers to string,
depending on context. If a number is used in a string context, it is converted to a
string. If a string is used in a number context, it is converted to a numeric value.
Automatic type conversion is discussed more fully in a later section

 24

Strings, though classified as a primitive, are actually a hybrid type that shares
characteristics of primitive and composite data types. Strings are discussed more
fully a later section.

Composite data types
Whereas primitive types are passed by value, composite types are passed by
reference. When a composite type is assigned to a variable or passed to a
parameter, only a reference that points to its data is passed. The following
fragment illustrates:

var AnObj = new Object;
AnObj.name = "Joe";
AnObj.old = ReturnName(AnObj)

function ReturnName(CurObj)
{
 return CurObj.name
}

After the object AnObj is created, the string "Joe" is assigned, by value since a
property is a variable within an Object, to the property AnObj.name. Two copies
of the string "Joe" exist. When AnObj is passed to the function ReturnName, it is
passed by reference. CurObj does not receive a copy of the Object, but only a
reference to the Object. With this reference, CurObj can access every property
and method of the original. If CurObj.name were to be changed while the
function was executing, then AnObj.name would be changed at the same time.
When AnObj.old receives the return from the function, the return is assigned by
value, and a copy of the string "Joe" transferred to the property. Thus, AnObj
holds two copies of the string "Joe": one in the property .name and one in the
property .old. Three total copies of "Joe" exist, counting the original string literal.

The composite data types are: Object and Array.

Object type
An object is a compound data type, consisting of one or more pieces of data of
any type which are grouped together in an object. Data that are part of an object
are called properties of the object. The Object data type is similar to the structure
data type in C and in previous versions of ScriptEase. The object data type also
allows functions, called methods, to be used as object properties. Indeed, in
ScriptEase, functions are considered to be like variables. But for practical
programming, think of objects as having methods, which are functions, and
properties, which are variables and constants.

 25

Objects and their characteristics are discussed more fully in a later section.

Array type
An array is a series of data stored in a variable that is accessed using index
numbers that indicate particular data. The following fragments illustrate the
storage of the data in separate variables or in one array variable:

var Test0 = "one";
var Test1 = "two";
var Test2 = "three";

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

After either fragment is executed, the three strings are stored for later use. In the
first fragment, three separate variables have the three separate strings. These
variables must be used separately. In the second fragment, one variable holds all
three strings. This array variable can be used as one unit, and the strings can be
accessed individually. The similarities, in grouping, between Arrays and Objects
is more than slight. In fact, Arrays and Objects are both objects in ScriptEase
with different notations for accessing properties. For practical programming,
Arrays may be considered as a data type of their own.

Arrays and their characteristics are discussed more fully in a later section.

Special values
undefined
If a variable is created or accessed with nothing assigned to it, it is of type
undefined. An undefined variable merely occupies space until a value is assigned
to it. When a variable is assigned a value, it is assigned a type according to the
value assigned. Though variables may be of type undefined, there is no literal
representation for undefined. Consider the following invalid fragment.

var test;
if (test == undefined)
 Screen.writeln("test is undefined")

After var test is declared, it is undefined since no value has been assigned to it.
But, the test, "test == undefined", is invalid because there is no way to
literally represent undefined.

null

 26

Null is a special data type that indicates that a variable is empty, a condition that
is different from being undefined. A null variable holds no value, though it might
have previously. The null type is represented literally by the identifier, null.
Since ScriptEase automatically converts data types, null is both useful and
versatile. The code fragment above will work if "undefined" is changed to
"null", as shown in the following:

var test;
if (test == null)
 Screen.write("test is undefined")

Since null has a literal representation, assignments like the following are valid:

var test = null;

Any variable that has been assigned a value of null can be compared to the null
literal.

NaN
The NaN type means "Not a Number". NaN is merely an acronym for the phrase.
However, NaN does not have a literal representation. To test for NaN, the
function, isNaN(), must be used, as illustrated in the following fragment:

var Test = "a string";
if (isNaN(parseInt(Test)))
 Screen.writeln("Test is Not a Number");

When the parseInt() function tries to parse the string "a string" into an integer, it
returns NaN, since "a string" does not represent a number like the string "22"
does.

Number constants
Several numeric constants can be accessed as properties of the Number object,
though they do not have a literal representation.

Constant Value Description
Number.MAX_VALUE 1.7976931348623157e+308 Largest number

(positive)
Number.MIN_VALUE 2.2250738585072014e- 308 Smallest

number
(negative)

Number.NaN NaN Not a Number
Number.POSITIVE_INFINITY Infinity Number above

MAX_VALUE

 27

Number.NEGATIVE_INFINITY - Infinity Number below
MIN_VALUE

Automatic type conversion
When a variable is used in a context where it makes sense to convert it to a
different type, ScriptEase automatically converts the variable to the appropriate
type. Such conversions most commonly happen with numbers and strings. For
example:

"dog" + "house" == "doghouse" // two strings are joined
"dog" + 4 == "dog4" // a number is converted
4 + "4" == "44" // to a string
4 + 4 == 8 // two numbers are added
23 - "17" == 6 // a string is converted
 // to a number

Converting numbers to strings is fairly straightforward. However, when
converting strings to numbers there are several limitations. While subtracting a
string from a number or a number from a string converts the string to a number
and subtracts the two, adding the two converts the number to a string and
concatenates them. String always convert to a base 10 number and must not
contain any characters other than digits. The string "110n" will not convert to a
number, because the ScriptEase interpreter does not know what to make of the
"n" character.

You can specify more stringent conversions by using the global methods,
parseInt() and parseFloat() methods. Further, ScriptEase has many global
functions to cast data as a specific type, functions that are not part of the
ECMAScript standard. These functions are described in the section on global
functions that are specific to ScriptEase.

Properties and methods of basic data
types
The basic data types, such as Number and String, have properties and methods
assigned to them that may be used with any variable of that type. For example,
all String variables may use all String methods.

The properties and methods of the basic data types are retrieved in the same way
as from objects. For the most part, they are used internally by the interpreter, but

 28

you may use them if choose. For example, if you have a numeric variable called
number and you want to convert it to a string, you can use the .toString() method
as illustrated in the following fragment.

 var n = 5
 var s = n.toString()

After this fragment executes, the variable n contains the number 5 and the
variable s contains the string "5".

The following two methods are common to all variables and data types.

toString()
This method returns the value of a variable expressed as a string. Every data type
has toString() as a method. Thus, toString() is documented here and not
in every conceivable place that it might be used.

valueOf()
This method returns the value of a variable. Every data type has valueOf() as a
method. Thus, valueOf() is documented here and not in every conceivable
place that it might be used.

Operators
Object operator
The object operator is a period, ".". This operator allows properties and methods
of an object to be accessed and used. For example, abs() is a method of the Math
object. It may be accessed as follows:

var AbsNum = Math.abs(-3)

The variable AbsNum now equals 3. The variable AbsNum is an instance of the
Number object, not an instance of the Math object. Why? It is assigned the
number 3 which is the return of the Math.abs() method.

The Math.abs() method is a static method, that is, it is used directly with the
Math object instead of an instance of the object. Many methods are instance
methods, that is, they are used with instances of an object instead of the object
itself. The substring() method is an instance method of the String object. An
instance method is not used with an object itself but only with instances of an
object. The substring() method is never used with the String object as

 29

String.substring(). The following fragment declares and initializes a string
variable, which is an instance of the string object, and then uses the substring()
method with this instance by using the object operator.

var s = "One Two Three";
var new = s.substring(4,7);

The variable s is an instance of the String object since it is initialized as a string.
The variable new now equals "Two" and is also an instance of the String object
since the substring() method returns a string.

The main point here is that the period "." is an object operator that may be used
with both static and instance methods and properties. A method or property is
simply attached to an appropriate identifier using the object operator, which then
accesses the method or property.

Mathematical operators
Mathematical operators are used to make calculations using mathematical data.
The following sections illustrate the mathematical operators in ScriptEase.

Basic arithmetic
The arithmetic operators in ScriptEase are pretty standard.

= assignment assigns a value to a variable
+ addition adds two numbers
- subtraction subtracts a number from another
* multiplication multiplies two numbers
/ division divides a number by another
% modulo returns a remainder after division

The following are examples using variables and arithmetic operators.

var i;
i = 2; i is now 2
i = i + 3; i is now 5, (2+3)
i = i - 3; i is now 2, (5- 3)
i = i * 5; i is now 10, (2*5)
i = i / 3; i is now 3, (10/3) (remainder is ignored)
i = 10; i is now 10
i = i % 3; i is now 1, (10%3)

 30

Expressions may be grouped to affect the sequence of processing. All
multiplications and divisions are calculated for an expression before additions
and subtractions unless parentheses are used to override the normal order.
Expressions inside parentheses are processed first, before other calculations. In
the following examples, the information inside square brackets, "[]," are
summaries of calculations provided with these examples and not part of the
calculations.

Notice that:

4 * 7 - 5 * 3; [28 - 15 = 13]

has the same meaning, due to the order of precedence, as:

(4 * 7) - (5 * 3); [28 - 15 = 13]

but has a different meaning than:

4 * (7 - 5) * 3; [4 * 2 * 3 = 24]

which is still different from:

4 * (7 - (5 * 3)); [4 * - 8 = - 32]

The use of parentheses is recommended in all cases where there may be
confusion about how the expression is to be evaluated, even when they are not
necessary.

Assignment arithmetic
Each of the above operators can be combined with the assignment operator, =, as
a shortcut for performing operations. Such assignments use the value to the right
of the assignment operator to perform an operation with the value to the left. The
result of the operation is then assigned to the value on the left.

= assignment assigns a value to a variable
+= assign addition adds a value to a variable
- = assign subtraction subtracts a value from a variable
*= assign multiplication multiplies a variable by a value
/= assign division divides a variable by a value
%= assign remainder returns a remainder after division

The following lines are examples using assignment arithmetic.

var i;
i = 2; i is now 2

 31

i += 3; i is now 5, (2+3) same as i = i + 3
i - = 3; i is now 2, (5- 3) same as i = i - 3
i *= 5; i is now 10, (2*5) same as i = i * 5
i /= 3; i is now 3, (10/3) same as i = i / 3
i = 10; i is now 10
i %= 3; i is now 1, (10%3) same as i = i % 3

Auto- increment (++) and auto- decrement (- -)
To add or subtract one, 1, to or from a variable, use the auto- increment, ++, or
auto- decrement, - - , operator. These operators add or subtract 1 from the value
to which they are applied. Thus, "i++" is a shortcut for "i += 1", which is a
shortcut for "i = i + 1".

These operators can be used before, as a prefix operator, or after, as a postfix
operator, their variables. If they are used before a variable, it is altered before it is
used in a statement, and if used after, the variable is altered after it is used in the
statement. The following lines demonstrates prefix and postfix operations.

i = 4; i is 4
j = ++i; j is 5, i is 5 (i was incremented before use)
j = i++; j is 5, i is 6 (i was incremented after use)
j = - - i; j is 5, i is 5 (i was decremented before use)
j = i- - ; j is 5, i is 4 (i was decremented after use)
i++; i is 5 (i was incremented)

Bit operators
ScriptEase contains many operators for operating directly on the bits in a byte or
an integer. Bit operations require a knowledge of bits, bytes, integers, binary
numbers, and hexadecimal numbers. Not every programmer needs to or will
choose to use bit operators.

<< shift left i = i << 2;
<<= assignment shift left i <<= 2;
>> shift right i = i >> 2;
>>= assignment shift right i >>= 2;
>>> shift left with zeros i = i >>> 2
>>>= assignment shift left with zeros i >>>= 2
& bitwise and i = i & 1
&= assignment bitwise and i &= 1;
| bitwise or i = i | 1

 32

|= assignment bitwise or i |= 1;
^ bitwise xor, exclusive or i = i ^ 1
^= assignment bitwise xor, exclusive or i ^= 1
~ Bitwise not, complement i = ~i;

Logical operators and conditional expressions
Logical operators compare two values and evaluate whether the resulting
expression is false or true. The value false is zero, and true is not false, that is,
anything not zero. A variable or any other expression may be false or true, that is,
zero or non-zero. An expression that does a comparison is called a conditional
expression.

Many values are evaluated as true, in fact, everything except 0. It is often safer to
make comparisons based on false, which is only one value, rather than to true,
which can be many. Expressions can be combined with logic operators to make
complex true/false decisions.

Logical operators are used to make decisions about which statements in a script
will be executed, based on how a conditional expression evaluates. As an
example, suppose that you are designing a simple guessing game. The computer
thinks of a number between 1 and 100, and you guess what it is. The computer
tells you if you are right or not and whether your guess is higher or lower than
the target number. This procedure uses the if statement, which is introduced in
the next section. Basically, if the conditional expression in the parenthesis
following an if statement is true, the statement block following the if statement is
executed. If false, the statement block is ignored, and the computer continues
executing the script at the next statement after the ignored block. The script
might have a structure similar to the one below in which GetTheGuess() is a
function that gets your guess.

var guess = GetTheGuess(); //get the user input
if (guess > target_number)
{
 ...guess is too high...
}

if (guess < target_number)
{
 ...guess is too low...
}

if (guess == target_number)

 33

{
 ...you guessed the number!...
}

This example is simple, but it illustrates how logical operators can be used to
make decisions in ScriptEase.

The logical operators are:

! not reverses an expression. If (a+b) is true, then
!(a+b) is false.

&& and true if, and only if, both expressions are true.
Since both expressions must be true for the
statement as a whole to be true, if the first
expression is false, there is no need to
evaluate the second expression, since the
whole expression is false.

|| or true if either expression is true. Since only one
of the expressions in the or statement needs to
be true for the expression to evaluate as true,
if the first expression evaluates as true, the
interpreter returns true and does not bother
with evaluating the second.

== equality true if the values are equal, else false. Do not
confuse the equality operator, ==, with the
assignment operator, =.

!= inequality true if the values are not equal, else false.
=== identity true if the values are identical or strictly equal,

else false. No type conversions are performed
as with the equality operator.

!== non-identity true if the values are not identical or not
strictly equal, else false. No type conversions
are performed as with the inequality operator.

< less than a < b is true if a is less than b.
> greater than a > b is true if a is greater than b.
<= less than or equal to a <= b is true if a is less than or equal to b.
>= greater than or equal

to
a >= b is true if a is greater than b.

Remember, the assignment operator, =, is different than the equality operator,
==. If you use one equal sign when you intend two, your script will not function

 34

the way you want it to. This is a common pitfall, even among experienced
programmers. The two meanings of equal signs must be kept separate, since there
are times when you have to use them both in the same statement, and there is no
way the computer can differentiate them by context.

instanceof operator
The instanceof operator, which also may used as instanceof(), determines if a
variable is an instance of a particular object. Since the variable s is created as an
instance of the String object in the following code fragment, the second line
displays true.

var s = new String("abcde");
Screen.writeln(s instanceof String); // Displays true

The second line could also be written as:

Screen.writeln(s instanceof(String));

typeof operator
The typeof operator, which also may be used as typeof(), provides a way to
determine and to test the data type of a variable and may use either of the
following notations, with or without parentheses.

var result = typeof variable
var result = typeof(variable)

After either line, the variable result is set to a string that is represents the
variable's type: "undefined", "boolean", "string", "object", "number", or
"function".

Flow decisions statements
This section describes statements that control the flow of a program. Use these
statements to make decisions and to repeatedly execute statement blocks.

if
The if statement is the most commonly used mechanism for making decisions in
a program. It allows you to test a condition and act on it. If an if statement finds
the condition you test to be true, the statement or statement block following it are
executed. The following fragment is an example of an if statement.

if (goo < 10)

 35

{
 Screen.write("goo is smaller than 10\n");
}

else
The else statement is an extension of the if statement. It allows you to tell your
program to do something else if the condition in the if statement was found to be
false. In ScriptEase code, it looks like the following.

if (goo < 10)
{
 Screen.write("goo is smaller than 10\n");
}
else
{
 Screen.write("goo is not smaller than 10\n");
}

To make more complex decisions, else can be combined with if to match one out
of a number of possible conditions. The following fragment illustrates using else
with if.

if (goo < 10)
{
 Screen.write("goo is less than 10\n");
 if (goo < 0)
 {
 Screen.write("goo is negative; so it's less than 10\n");
 }
}
else if (goo > 10)
{
 Screen.write("goo is greater than 10\n");
}
else
{
 Screen.write("goo is 10\n");
}

while
The while statement is used to execute a particular section of code, over and over
again, until an expression evaluates as false.

while (expression)
{

 36

 DoSomething();
}

When the interpreter comes across a while statement, it first tests to see whether
the expression is true or not. If the expression is true, the interpreter carries out
the statement or statement block following it. Then the interpreter tests the
expression again. A while loop repeats until the test expression evaluates to false,
whereupon the program continues after the code associated with the while
statement.

The following fragment illustrates a while statement with a two lines of code in a
statement block.

while(ThereAreUncalledNamesOnTheList() != false)
{
 var name=GetNameFromTheList();
 SendEmail(name);
}

do {...} while
The do statement is different from the while statement in that the code block is
executed at least once, before the test condition is checked.

var value = 0;
do
{
 value++;
 ProcessData(value);
} while(value < 100);

The code used to demonstrate the while statement could also be written as the
following fragment.

do
{
 var name = GetNameFromTheList();
 SendEmail(name)
} while (name != TheLastNameOnTheList());

Of course, if there are no names on the list, the script will run into problems!

for

 37

The for statement is a special looping statement. It allows for more precise
control of the number of times a section of code is executed. The for statement
has the following form.

for (initialization; conditional; loop_expression)
{
 statement
}

The initialization is performed first, and then the expression is evaluated. If the
result is true or if there is no conditional expression, the statement is executed.
Then the loop_expression is executed, and the expression is re- evaluated,
beginning the loop again. If the expression evaluates as false, then the statement
is not executed, and the program continues with the next line of code after the
statement. For example, the following code displays the numbers from 1 to 10.

for(var x=1; x<11; x++)
{
 Screen.write(x);
}

None of the statements that appear in the parentheses following the for statement
are mandatory, so the above code demonstrating the while statement would be
rewritten this way if you preferred to use a for statement:

for(; ThereAreUncalledNamesOnTheList() ;)
{
 var name=GetNameFromTheList();
 SendEmail(name)
}

Since we are not keeping track of the number of iterations in the loop, there is no
need to have an initialization or loop_expression statement. You can use an
empty for statement to create an endless loop:

for(;;)
{
 //the code in this block will repeat forever,
 //unless the program breaks out of the for loop somehow.
}

break
Break and continue are used to control the behavior of the looping statements:
for, while, and do. The break statement terminates the innermost loop of for,
while, or do statements. The program resumes execution on the next line

 38

following the loop. The following code fragment does nothing but illustrate the
break statement.

for(;;)
{
 break;
}

The break statement is also used at the close of a case statement, as shown below.

continue
The continue statement ends the current iteration of a loop and begins the next.
Any conditional expressions are reevaluated before the loop reiterates.

switch, case, and default
The switch statement makes a decision based on the value of a variable or
statement. The switch statement follows the following format:

switch(switch_variable)
{
case value1:
 statement1
 break;
case value2:
 statement2
 break;

...

default:
 default_statement
}

The variable switch_variable is evaluated, and then it is compared to all of the
values in the case statements (value1, value2, . . . , default) until a match is
found. The statement or statements following the matched case are executed until
the end of the switch block is reached or until a break statement exits the switch
block. If no match is found, the default statement is executed, if there is one.

For example, suppose you had a series of account numbers, each beginning with
a letter that determines what type of account it is. You could use a switch
statement to carry out actions depending on that first letter. The same task could
be accomplished with a series of nested if statements, but they require much
more typing and are harder to read.

 39

switch (key[0])
{
case 'A':
 Screen.write("A"); //handle 'A' accounts...
 break;
case 'B':
 Screen.write("B"); //handle 'B' accounts...
 break;
case 'C':
 Screen.write("C"); //handle 'C' accounts...
 break;
default:
 Screen.write("Invalid account number.\n");
 break;
}

A common mistake is to omit a break statement to end each case. In the
preceding example, if the break statement after the Screen.write("B") statement
were omitted, the computer would print both "B" and "C", since the interpreter
executes commands until a break statement is encountered.

Normally, if a switch and series of case statements reference array variables, then
a comparison is performed whether or not the reference the same array data. But
if either the switch variable or one of the case values is a literal string, then the
comparison of the strings is done using the values of the strings in a .strcmp()
type comparison.

goto and labels
You may jump to any location within a function block by using the goto
statement. The syntax is:

goto LABEL;

where label is an identifier followed by a colon (:). The following code fragment
continuously prompts for a number until a number less than 2 is entered.

beginning:
Screen.write("Enter a number less than 2:")
var x = getche(); //get a value for x
if (a >= 2)
 goto beginning;
Screen.write(a);

As a rule, goto statements should be used sparingly, since they make it difficult
to track program flow.

 40

Conditional operator
The conditional operator, "? :", provides a shorthand method for writing if
statements. It is harder to read than conventional if statements, and so is
generally used when the expressions in the if statements are brief. The syntax is:

test_expression ? expression_if_true : expression_if_false

First, test_expression is evaluated. If test_expression is non- zero, true, then
expression_if_true is evaluated, and the value of the entire expression replaced
by the value of expression_if_true. If test_expression is false, then
expression_if_false is evaluated, and the value of the entire expression is that of
expression_if_false.

The following fragment illustrates the use of the conditional operator.

foo = (5 < 6) ? 100 : 200; // foo is set to 100
Screen.write("Name is " + ((null==name) ? "unknown" : name));

Exception handling
Exception handling statements consist of: throw, try, catch, and finally.
The concept of exception handling includes dealing with unusual results in a
function and with errors and recovery from them. Exception handling that uses
the try related statements is most useful with complex error handling and
recovery. Testing for simple errors and unwanted results is usually handled most
easily with familiar if or switch statements. In this section, the discussion and
examples deal with simple situations, since explanation and illustration are the
goals. The exception handling statements might seem clumsy or bulky here, but
do not lose sight of the fact that they are very powerful and elegant in real world
programming where error recovery can be very complex and require much code
when using traditional statements.

Another advantage of using try related exception handling is that much of the
error trapping code may be in a function rather than in the all the places that call
a function.

Before getting to specifics, here is some generalized phrasing that might help
working with exception handling statements. A function has code in it to detect
unusual results and to throw an exception. The function is called from inside a
try statement block which tries to run the function successfully. If there is a

 41

problem in the function, the exception thrown is caught and handled in a catch
statement block. If all exceptions have been handled when execution reaches the
finally statement block, the final code is executed.

Remember these execution guides:

• When a throw statement executes, the rest of the code in a function is
ignored, and the function does not return a value.

• A program continues in the next catch statement block after the try
statement block in which an exception occurred., and any value thrown is
caught in a parameter in the catch statement.

• A program executes a finally statement block if all exceptions, that have
been thrown, have been caught and handled.

The following simple script illustrates all exception handling statements. The
main() function has try, catch, and finally statement blocks. The try
block calls SquareEven(), which throws an exception if an odd number is
passed to it. If an even number is passed to the function, then the number is
squared and returned. If an odd number is passed, it is fixed, and an exception is
thrown. When the throw statement executes, it passes an object, as an argument,
with information for the catch statement to use.

For example, the script below, as shown, displays:

16
We caught odd and squared even.

If you change rtn = SquareEven(4) to rtn = SquareEven(3), the display
is:

Fixed odd number to next higher even. 16
We caught odd and squared even.

function main(argc, argv)
{
 var rtn;

 try
 {
 rtn = SquareEven(4);
 // No display here if number is odd
 Screen.writeln(rtn);
 }
 catch (err)

 42

 {
 // Catch the exception info
 // that was thrown by the function.
 // In this case, the info was returned
 // in an object.
 Screen.writeln(err.msg + err.rtn);
 }
 finally
 {
 // Finally, display this line after normal processing
 // or exceptions have been caught.
 Screen.writeln("We caught odd and squared even.");
 }

 Screen.write("Paused..."); Clib.getch();
} //main

 // Check for odd integers
 // If odd, make even, simplistic by adding 1
 // Square even number
function SquareEven(num)
{
 // Catch an odd number and fix it.
 // "throw an exception" to be caught by caller
 if ((num % 2) != 0)
 {
 num += 1;
 throw {msg:"Fixed odd number to next higher even. ",
 rtn:num * num};

 // We throw an object here. We could have thrown
 // a primitive, such as:
 // throw("Caught and odd");
 // We would have to alter the catch statement
 // to expect whatever data type is used.
 }
 // Normal return for an even number.
 return num * num;
} //SquareEven

This example script does not actually handle errors. Its purpose is to illustrate
how exception handling statements work. For purposes of this illustration,
assume that an odd number being passed to SquareEven() is an error or
extraordinary event.

Functions

 43

A function is an independent section of code that receives information from a
program and performs some action with it. Once a function has been written, you
do not have to think again about how to perform the operations in it. Just call the
function, and let it handle the work for you. You only need to know what
information the function needs to receive, that is, the parameters, and whether it
returns a value to the statement that called it.

Screen.write() is an example of a function which provides an easy way to display
formatted text. It receives a string from the function that called it and displays the
string on the screen. Screen.write is a void function, meaning it has no return
value.

In JavaScript, functions are considered a data type, evaluating to whatever the
function's return value is. You can use a function anywhere you can use a
variable. Any valid variable name may be used as a function name. Like
comments, using descriptive function names helps you keep track of what is
going on with your script.

Two things set functions apart from the other variable types: instead of being
declared with the "var" keyword, functions are declared with the "function"
keyword, and functions have the function operator, "()", following their names.
Data to be passed to a function is included within these parentheses.

Several sets of built- in functions are included as part of the ScriptEase
interpreter. These functions are described in this manual. They are internal to the
interpreter and may be used at any time. In addition, ScriptEase ships with a
number of external libraries or .jsh files. External libraries must be explicitly
included in your script to use the functions in them. See the description of the
#include preprocessor directive.

ScriptEase allows you to have two functions with the same name. The interpreter
uses the function nearest the end of the script, that is, the last function to load is
the one that to be executed when the function name is called. By taking
advantage of this behavior, you can write functions that supersede the ones
included in the interpreter or .jsh files.

Function return statement
The return statement passes a value back to the function that called it. Any code
in a function following the execution of a return statement is not executed.

function DoubleAndDivideBy5(a)
{
 return (a*2)/5

 44

}

Here is an example of a script using the above function.

function main()
{
 var a = DoubleAndDivideBy5(10);
 var b = DoubleAndDivideBy5(20);
 Screen.write(a + b);
}

This script displays12.

Passing information to functions
JavaScript uses different methods to pass variables to functions, depending on the
type of variable being passed. Such distinctions ensure that information gets to
functions in the most complete and logical ways. To be technically correct, the
data that is passed to a function are called arguments, and the variables in a
function definition that receive the data are called parameters.

Primitive types, namely, Strings, numbers, and Booleans, are passed by value.
The value of theses variables are passed to a function. If a function changes one
of these variables, the changes will not be visible outside of the function where
the change took place.

Composite types, Objects and Arrays, are passed by reference. Instead of passing
the value of the object, that is, the values of each property, a reference to the
object is passed. The reference indicates where in a computer's memory that
values of an object's properties are stored. If you make a change in a property of
an object passed by reference, that change will be reflected throughout in the
calling routine.

In ScriptEase it is possible to pass primitive types by reference instead of by
value, which is the default. When a function is defined, an ampersand, &, may be
put in front of one or more of its parameters. Thus, when the function is called,
an argument, corresponding to a parameter with an ampersand, is passed by
reference instead of by value. The following fragment illustrates.

var num1 = 4;
var num2 = 4;
var num3;
SetNumbers(num1, num2, num3, 6)

function SetNumbers(&n1, n2, &n3, &n4)
{

 45

 n1 = n2 = n3 = n4 = 5;
}

After executing this code, the values of variables is:

n1 == 5
n2 == 4
n3 == 5

The variable num1 was passed by reference to parameter n1. When n1 was set to
5, num1 was actually set to 5 since n1 merely pointed to num1. The variable
num2 was passed by value to parameter n2. When n2, which received an actual
value of 4, was set to 5, num2 remained unchanged. The variable num3 was
undefined when passed by reference to parameter n3. When n3, which pointed to
num3, was set to 5, num3 was actually set to 5 and defined as an integer type.
The literal value 6 was passed to parameter n4, but not by reference since 6 is not
a variable that can be changed. Though n4 has an ampersand, the literal value 6
was passed by value to n4 which, in this example, becomes merely a local
variable for the function SetNumbers().

Passing information to cfunctions
All variables passed as arguments to the parameters of cfunctions are passed by
reference. If the cfunction called alters a parameter variable, the original variable
from where the cfunctions was called is actually altered. Since cfunction
parameters receive values by reference, they only point to the original variables,
and thus, any changes made to them are made to the original variables.

Function property arguments[]
The arguments[] property is an array of all of the arguments passed to a function.
The first variable passed to a function is referred to as arguments[0], the second
as arguments[1], and so forth.

The most useful aspect of this property is that it allows you to have functions
with an indefinite number of parameters. Here is an example of a function that
takes a variable number of arguments and returns the sum of them all.

function SumAll()
{
 var total = 0;
 for (var ssk = 0; ssk < SumAll.arguments.length; ssk++)
 {
 total += SumAll.arguments[ssk];
 }

 46

 return total;
}

Function recursion
A recursive function is a function that calls itself or that calls another function
that calls the first function. Recursion is permitted in ScriptEase. Each call to a
function is independent of any other call to that function. (See the section on
variable scope.) Be aware that recursion has limits. If a function calls itself too
many times, a script will run out of memory and abort.

Do not worry if recursion is confusing, since you rarely have to use it. Just
remember that a function can call itself if it needs to. For example, the following
function, factor(), factors a number. Factoring is an ideal candidate for recursion
because it is a repetitive process where the result of one factor is then itself
factored according to the same rules.

function factor(i) // recursive function to print all factors of
i,
{// and return the number of factors in i
 if (2 <= i)
 {
 for (var test = 2; test <= i; test++)
 {
 if (0 == (i % test))
 {
 // found a factor, so print this factor then call
 // factor() recursively to find the next factor
 return(1 + factor(i/test));
 }
 }
 }
 // if this point was reached, then factor not found
 return(0);
}

Error checking for functions
Some functions return a special value if they fail to do what they are supposed to
do. For example, the Clib.fopen() method opens or creates a file for a script
to read from or write to. But suppose that the computer is unable to open a file. In
such a case, the Clib.fopen() method returns null.

If you try to read from or write to a file that was not properly opened, you get all
kinds of errors. To prevent these errors, make sure that Clib.fopen() does not

 47

return null when it tries to open a file. Instead of just calling Clib.fopen() as
follows:

var fp = Clib.fopen("myfile.txt", "r");

check to make sure that null is not returned:

if (null == (var fp = Clib.fopen("myfile.txt", "r")))
{
 ErrorMsg("Clib.fopen returned null");
}

You may abort a script in such a case, but at least you will know why. See the
section on the Clib object.

main() function
If a script has a function called main(), it is the first function executed. (For
more information on what takes place when a script is run, see the section on
running a script.) Other than the fact that main() is the first function executed, it
is like other functions. If the main() function returns a value, that value is
returned to the operating system or whatever process called the script.

The main() function automatically receives two parameters, which, by
convention, are called argc and argv. The parameter argc, argument count, is the
number of parameters passed to the script and the parameter argv is an array of
strings, with each element being one of the parameters. The first element,
argv[0], of this array is always the name of the script, thus if argc == 1, then no
variables were passed to a script.

Arguments are passed to a script as parameters when it is called from a command
line as illustrated in the following line.

sewin32.exe jseedit.jse document.txt

In the example above, argc == 2, argv[0] == "jseedit.jse" and argv[1] ==
"document.txt".

cfunction keyword
The cfunction keyword defines a function whose behavior is somewhat different
than that of standard functions. In a cfunction, variables and operators behave
more as they would in C, specifically in the ScriptEase implementation of C as a
scripting language. The cfunction is provided for the convenience of C
programmers who are used to the way the C language handles functions and

 48

variables and for those situations in which the underlying logic of C is more
efficient for a particular procedure.

Strings are treated as null- terminated character arrays. The first character of a
string is assigned to string[0], the second to string[1], and so on until the end of
the string. The last character of a string is always '\0', which defines the end of
the string. If you assign a variable to a string, using double quotes, the '\0'
character is automatically appended to the end of the string. To assign a string to
a variable without appending the '\0' character, put the string in single quotes.
Single quotes are most often used with single characters. For example, if

var boy = "m";
var girl = 'm';

the variable boy is a character array in which: boy[0] = 'm' and boy[1] = '\0'. The
variable girl is a character, containing the letter 'm'. Internally, characters are
converted to numbers according to the ASCII standard.

You can change the contents of strings or parts of them by assigning a new
character value to a element of a character array. For example:

var string = "file"
string[0] = 'b'

This fragment creates a string containing the word "bile".

Array arithmetic
If you try to add a number to a string, instead of converting the number to a string
and concatenating the two, the starting point of the string will be shifted forward
by the number of characters in number. For example, the statement:

"This is a test" + 3

evaluates to "This is a test3", in a standard JavaScript. In a cfunction, however,
this statement evaluates to "s is a test". The starting point of the string has been
shifted by three, so that string[0] is now 's' instead of 'T'. The 'T', 'h', and 'i' of the
original string are at indices [- 3], [- 2], and [- 1], respectively.

Variables passed to cfunctions are passed by reference. In other words, if you
have two variables:

var George = "one"
var Martha = "one"

and you compare them with the == operator, the comparison evaluates to false
and not to true, as you might expect. The reason is that while George and Martha

 49

have the same value, they are not the same variable since they point to different
memory locations, and therefore are not equal to each other. In functions
declared with the function keyword, string variables are compared by value, so
the actual values of George and Martha are compared. In such cases the result of
comparing identical strings with == comparison is true.

Objects
Variables and functions may be grouped together in one variable and referenced
as a group. A compound variable of this sort is called an object in which each
individual item of the object is called a property. In general, it is adequate to
think of object properties, which are variables or constants, and of object
methods, which are functions.

To refer to a property of an object, use both the name of the object and of the
property, separated by the object operator ".", a period. Any valid variable name
may be used as a property name. For example, the code fragment below assigns
values to the width and height properties of a rectangle object and calculates the
area of a rectangle and displays the result:

var Rectangle;

Rectangle.height = 4;
Rectangle.width = 6;

Screen.write(Rectangle.height * Rectangle.width);

The main advantage of objects occurs with data that naturally occurs in groups.
An object forms a template that can be used to work with data groups in a
consistent way. Instead of having a single object called Rectangle, you can have
a number of Rectangle objects, each with their own values for width and height.

Predefining objects with constructor functions
A constructor function creates an object template. For example, a constructor
function to create Rectangle objects might be defined like the following.

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

 50

The keyword this is used to refer to the parameters passed to the constructor
function and can be conceptually thought of as "this object." To create a
Rectangle object, call the constructor function with the "new" operator:

var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);

This code fragment creates two rectangle objects: one named joe, with a width of
3 and a height of 4, and another named sally, with a width of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object
created by a constructor function is called an instance of that class. The examples
above creates a Rectangle class and two instances of it. All of the instances of a
class share the same properties, although a particular instance of the class may
have additional properties unique to it. For example, if we add the following line:

joe.motto = "ad astra per aspera";

we add a motto property to the Rectangle joe. But the rectangle sally has no
motto property.

Initializers for objects and arrays
Variables may be initialized as objects and arrays using lists inside of "{}" and
"[]". By using these initializers, instances of Objects and Arrays may be created
without using the new constructor. Objects may be initialized using a syntax
similar to the following:

var o = {a:1, b:2, c:3};

This line creates a new object with the properties a, b, and c set to the values
shown. The properties may be used with normal object syntax, for example, o.a
== 1.

Arrays may initialized using a syntax similar to the following:

var a = [1, 2, 3];

This line creates a new array with three elements set to 1, 2, and 3. The elements
may be used with normal array syntax, for example, a[0] == 1.

The distinction between Object and Array initializer might be a bit confusing
when using a line with syntax similar to the following:

var a = {1, 2, 3};

 51

This line also creates a new array with three elements set to 1, 2, and 3. The line
differs from the first line, Object initializer, in that there are no property
identifiers and differs from the second line, Array initializer, in that it uses "{}"
instead of "[]". In fact, the second and third lines produce the same results. The
elements may be used with normal array syntax, for example, a[0] == 1.

The following code fragment shows the differences.

var o= {a:1, b:2, c:3};
Screen.writeln(typeof o +" | "+ o._class +" | "+ o);

var a = [1, 2, 3];
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

var a= {1, 2, 3};
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

The display from this code is:

object | Object | [object Object]
object | Array | 1,2,3
object | Array | 1,2,3

As shown in the first display line, the variable o is created and initialized as an
Object. The second and third lines both initialize the variable a as an Array.
Notice that in all cases the typeof the variable is object, but the class, which
corresponds to the particular object and which is reflected in the _class
property, shows which specific object is created and initialized.

Methods - assigning functions to objects
Objects may contain functions as well as variables. A function assigned to an
object is called a method of that object.

Like a constructor function, a method refers to its variables with the "this"
operator. The following fragment is an example of a method that computes the
area of a rectangle.

function rectangle_area()
{
 return this.width * this.height;
}

Because there are no parameters passed to it, this function is meaningless unless
it is called from an object. It needs to have an object to provide values for
this.width and this.height.

 52

A method is assigned to an object as the following lines illustrates.

joe.area = rectangle_area;

The function will now use the values for height and width that were defined
when we created the rectangle object joe.

Methods may also be assigned in a constructor function, again using the this
keyword. For example, the following code:

function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
 this.area = rectangle_area;
}

creates an object class Rectangle with the rectangle_area method included as one
of its properties. The method is available to any instance of the class:

var joe = Rectangle(3,4);
var sally = Rectangle(5,3);

var area1 = joe.area;
var area2 = sally.area;

This code sets the value of area1 to 12, and the values of area2 to 15.

Object prototypes
An object prototype lets you specify a set of default values for an object. When
an object property that has not been assigned a value is accessed, the prototype is
consulted. If such a property exists in the prototype, its value is used for the
object property.

Object prototypes are useful for two reasons: they ensure that all instances of an
object use the same default values, and they conserve the amount of memory
needed to run a script. When the two Rectangles, joe and sally, were created in
the previous section, they were each assigned an area method. Memory was
allocated for this function twice, even though the method is exactly the same in
each instance. This redundant memory waste can be avoided by putting the

 53

shared function or property in an object's prototype. Then all instances of the
object will use the same function instead of each using its own copy of it.

The following fragment shows how to create a Rectangle object with an area
method in a prototype.

function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

Rectangle.prototype.area = rectangle_area;

The rectangle_area method can now be accessed as a method of any Rectangle
object as shown in the following.

var area1 = joe.area();
var area2 = sally.area();

You can add methods and data to an object prototype at any time. The object
class must be defined, but you do not have to create an instance of the object
before assigning it prototype values. If you assign a method or data to an object
prototype, all instances of that object are updated to include the prototype.

If you try to write to a property that was assigned through a prototype, a new
variable will be created for the newly assigned value. This value will be used for
the value of this instance of the object's property. All other instances of the object
will still refer to the prototype for their values. If, for the sake of this example,
we assume that joe is a special Rectangle, whose area is equal to three times its
width plus half its height, we can modify joe as follows.

joe.area = function joe_area()
{
 (this.width * 3) + (this.height/2);
}

This fragment creates a value, which in this case is a function, for joe.area that
supercedes the prototype value. The property sally.area is still the default value
defined by the prototype. The instance joe uses the new definition for its area
method.

 54

for/in
The for/in statement is a way to loop through all of the properties of an object,
even if the names of the properties are unknown. The statement has the following
form.

for (var property in object)
{
 DoSomething(object[property]);
}

where object is the name of an object previously defined in a script. When using
the for . . . in statement in this way, the statement block will execute once for
every property of the object. For each iteration of the loop, the variable property
contains the name of one of the properties of object and may be accessed with
"object[property]". Note that properties that have been marked with the
DontEnum attribute are not accessible to a for . . . in statement.

with
The with statement is used to save time when working with objects. It lets you
assign a default object to a statement block, so you need not put the object name
in front of its properties and methods. The object is automatically supplied by the
interpreter. The following fragment illustrates using the Clib object.

with (Clib)
{
 printf("I am a camera");
 srand();
 xxx = rand() % 5;
 putchar(xxx);
}

The Clib methods, Clib.printf(), Clib.srand(), Clib.rand(), and
Clib.putchar(), in the sample above are called as if they had been written
with Clib prefixed. All code in the block following a with statement seems to be
treated as if the methods associated with the object named by the with statement
were global functions. Global functions are still treated normally, that is, you do
not need to prefix "global." to them unless you are distinguishing between two
like- named functions common to both objects.

If you were to jump, from within a with statement, to another part of a script, the
with statement would no longer apply. In other words, the with statement only

 55

applies to the code within its own block, regardless of how the interpreter
accesses or leaves the block.

You may not use a goto statement or label to jump into or out of the middle of a
with statement block.

Dynamic objects
ScriptEase allows for direct access to the interior workings of how object
properties are called. If you wish, you may specify how an object accesses its
data by replacing one of the following routines which are internal to ScriptEase.
The following methods are available for modifying how an object calls its
members. In all cases, the parameter, property, is the name of the property being
called.

_get(property)
Whenever the value of a property is accessed, the _get() method is called. By
defining a new _get() method for an object, you modify the way it accesses
property values. If the new _get() method has no return value, the value that
the function would normally return is returned.

The example below modifies the Rectangle object created earlier with a new
_get() method. Whenever you access the value of one of the object's properties,
it will inform you if the Rectangle is a square. After the object is initialized, the
main() function creates an instance of the object with the width and height
properties both set to 3. When the value of the Rectangle.area() method is
retrieved, used in a Clib.printf() statement, the dynamic _get() function is
called, which displays, "The rectangle is a square," since width and height are
equal. Since no value is returned from the dynamic _get() function, the value
normally returned, 9 in this case, is returned to the main() function.

function rectangle_area()
{
 return this.width * this.height;
}

function rectangle_get()
{
 if (this.width == this.height)
 Clib.printf("The rectangle is a square.");
}

function Rectangle(width, height)

 56

{
 this.width = width;
 this.height = height;
 this._get = rectangle_get;
}

Rectangle.prototype.area = rectangle_area;

main()
{
 var rect = new Rectangle(3, 3);
 Clib.printf("The area of the rectangle is %d.", rect.area());
 Clib.getch();
}

_put(property, value)
This method controls the way that new data is assigned to a property.

_canPut(property)
This method returns a boolean value indicating whether the property can be
written to or not, that is, whether it is read- only or not. For example, you could
modify this property to notify users when they try to change read- only values.

_hasProperty(property)
This method returns a boolean value indicating whether or not a property exists.

_delete(property)
This method is called whenever a property is deleted with the delete operator.

_defaultValue(hint)
This method returns the primitive value of a variable.

The parameter hint should be either a string or a number that indicates the
preferred data type to return. If hint is a string, the method will return a string if
possible, otherwise a different type. The actual value of hint is ignored.

_construct(...)
This method is called whenever a new object is created with the new operator.
The object will have been already created and passed as the this variable to the
.construct() method.

 57

_call(...)
The call function is called whenever an object method is called. Whatever
parameters are passed to the original function will be passed to the call()
function.

The following example creates an Annoying object that beeps whenever it
retrieves the value of a property.

function myget(prop)
{
 System.beep();
 return this[property];
}

var Annoying = new Object;

Annoying.get = myget;

Note that the System.beep() method is used only for this example and must be
explicitly created for actual use.

 59

Preprocessor
ScriptEase programs, such as sewin32.exe, read, preprocess, interpret, and
execute scripts. A ScriptEase executable program is sometimes referred to as the
processor, interpreter, or engine. There is a different version of the processor for
each operating system that ScriptEase supports. Each version interprets
ScriptEase code in a manner appropriate to its operating system. For example, the
.directory() function parses a DOS directory differently than a Unix directory
because of differences in the operating systems. But, the end result for the user is
the same.

The term ScriptEase is used generically for all versions of ScriptEase. The names
of executable programs for each operating system are different, for example:

• Win32
Sewin32.exe
Secon32.exe

• Win16
Sewin16.exe

• DOS
Sedos.exe
Sedos32.exe

• OS/2
Seos2.exe

Many of the scripts that ship with ScriptEase work with any version, but some
scripts work only with specific versions or operating systems. When ScriptEase
is installed, the scripts are placed into directories indicating which versions they
work with.

This section describes environment variables and preprocessor directives that
affect the processing of a ScriptEase script prior to finally compiling, tokenizing,
and executing the script. The description then covers the sequence of events
when a script is executed, the ScriptEase shell, stand, finally, command-line
switches.

Variables in the environment

 60

The environment variables covered in this section are those which are important
when a script is being preprocessed. Other environment variables that ScriptEase
uses are covered in the sections most appropriate to them.

SEDESKPATH
SEDESKPATH is an environment variable that the processor uses to search for
scripts and libraries. It functions like a PATH variable for the processor. When
looking for scripts and libraries, the processor first searches the current directory
and then the directory that has the ScriptEase executable. If the file needed is not
found, it searches through the directories specified by the SEDESKPATH
variable. If the needed files are still not found, the processor looks for them in the
regular PATH variable.

In Windows systems, the processor searches the SEDESKPATH profile value in
win.ini (in Windows 3.x) or the Registry (in Windows 95/98 and NT) before
searching the SEDESKPATH environment variable.

PATH
The PATH variable is used to find ScriptEase files if they are not found in the
current directory or in the directories of SEDESKPATH.

SEDESKPREFS
SEDESKPREFS is an environment variable that should be set before loading and
executing a script. SEDESKPREFS allows you to specify one or more files that
the interpreter will automatically load and run every time a script is started. The
files specified may be files with the extensions, .jsh, .jse, or any other file
extensions that a programmer chooses to use. SEDESKPREFS takes a form
similar to a PATH environment variable. Multiple files are separated by
semicolons. An example setting for SEDESKPREFS is:

SEDESKPREFS=C:\SEDESK\JSH\GLBLS.JSH;C:\SEDESK\GENERAL.JSE

The two files in this example are files that a programmer might choose to create
and are not standard files distributed with ScriptEase. Glbls.jsh might have
various definitions, globals variables, and so forth that a programmer uses
regularly, and General.jse might have several functions that are regularly used.
Every time these files are needed by a script, they must be included with code
similar to the following.

#include "Glbls.jsh"
#include "General.jse"

 61

If SEDESKPREFS, as shown above, exists in the environment, then no scripts
need to contain the include the statements shown immediately above.

SE_ESET
Two Clib methods Clib.getenv() and Clib.putenv() allow you to retrieve
and set values or system environment variables. Operating systems that do not
allow direct modification of environment variables (such as 32-bit Windows and
OS/2) use the environment variable, SE_ESET, to hold the name of a file used to
change the system=s environment variables indirectly.

Preprocessor Directives
The following ScriptEase statements that begin with a # character are collectively
called preprocessor directives, since they are processed before a script is actually
executed and direct the way the script commands are interpreted. Preprocessor
directives can only be used with the ScriptEase interpreter. Other JavaScript
interpreters will not recognize them.

define
The #define directive is used to replace a token or almost any identifier with
other characters. The #define directive is executed while the script is being read
into the interpreter, before the script itself is executed. The #define directive
causes one string to be replaced by another in the script that goes to the
interpreter. All substitutions are made before the code is interpreted. A #define
directive has the following structure.

#define token replacement

This line results in all subsequent occurrences of "token" being replaced by
"replacement". Consider the following line.

#define NumberOfCountriesInSouthAmerica 13

The define statement increases program legibility and makes it easier to change
code later. If Bolivia and Peru decide someday to unite, you only have to change
the #define statement to update your program. Otherwise, you would have to go
through your script looking for all occurrences of the number 13, decide when
they refer to the number of countries in South America, and change them to the
number 12.

 62

Likewise, if you write screen routines for a 25�line monitor, and then later
decide to make it a 50�line monitor, you are better off altering the following
#define directive from:

#define ROW_COUNT 25

to

#define ROW_COUNT 50

and using ROW_COUNT in your code. You only have to make one change in
your script instead of many.

The ScriptEase interpreter has default tokens that are defined, such as true and
false.

include
The #include directive lets you include other scripts, and all of the functions
contained therein, as a part of the code you are writing. Usually #include lines are
placed at the beginning of the script and consist only of the #include statement
and the name of the file to be included, as in the following.

#include <gdi.jsh>
#include "gdi.jsh"
#include 'gdi.jsh'

Any one of these lines makes all of the functions in the library file gdi.jsh
available to the script that has the line. If the file to be included is in one of the
directories in SEDESKPATH, you do not need to specify anything more than the
name and extension of the file. If it is not, you must supply a full path so the
interpreter can find the file, as shown next.

#include <c:\CMM\LIB.JSH>

The quote characters, ' or ", may be used in place of the angled brackets < and >.

To include several files in one program simply use multiple #include directives
as shown.

#include <screen.jsh>
#include <keyboard.jsh>
#include <init.jsh>
#include <comm.jsh>

The ScriptEase interpreter will not include a file more than once, so if a file has
already been included, a second or subsequent #include directive, with the same

 63

file specification, has no effect. ScriptEase ships with a large number of libraries
of pre-written functions that you can use. Library files are plain text files, as are
all ScriptEase scripts, and have the extension .jsh as a default. See the section on
ScriptEase versus the C language for more information about library files and
including them in scripts. See the tutorial section about writing and including the
write.jsh library file.

if, ifdef, elif, else, endif
These directives are all preprocessor conditionals and allow you to specify a
different set of global variables and constants based on different conditions at
load and tokenize time. Conditional directives are frequently used in scripts
designed to run on different operating systems by ensuring that scripts include
files that are appropriate for the operating system being used.

#if is used like an if statement. #else corresponds to an else statement. #elif
corresponds to an else if statement. These directives define which block of code
is actually used when a script is interpreted and executed. You must use them
with terminating #endif directives to mark the ends of code blocks.

For example, suppose you have a script that builds long path names from
directories supplied to it in different variables. If you are working in a
DOS�based environment, the backslash character is used to separate d irectories,
so you could indicate the full path of a file in DOS as follows:

var fullPathOfFile = Clib.rsprintf("%s\\%s\\%s\\%s",
rootdirectory, subdirectory1, subdirectory2, filename);

If you ported this script to a UNIX machine, however, you would run into
problems since UNIX uses forward slashes to separate directories.

You can get around this problem by defining the separator character differently
for each operating system:

#if defined(_UNIX_)
 #define PathChar '/'
#elif defined(_MAC_)
 #define PathChar ':'
#else
 #define PathChar '\\'
#endif

By putting the separator character in a variable, you can make the script work on
any operating system:

 64

var fullPathOfFile = Clib.rsprintf("%s%c%s%c%s%c%s",
rootdirectory,
PathChar, subdirectory1,
PathChar, subdirectory2,
PathChar, filename);

The #ifdef directive is a limited form of the #if statement and is equivalent to #if
defined(var). The example above could be rewritten with #ifdef statements like
this:

#ifdef (_UNIX_)
 #define PathChar '/'
#ifdef (_MAC_)
 #define PathChar ':'
#else
 #define PathChar '\\'
#endif

link
The #link command incorporates pre�compiled libraries, dynamic link library
(.dll) files, into the ScriptEase interpreter. The #link directive is similar to the
#include statement with no parameters. For example, the directive

#link <oleautoc>

lets the interpreter use the functions for OLE automation. #link takes no
parameters other than the name of the library being linked.

Although you could write these functions in JavaScript, the functions in the #link
libraries are processor intensive and run much more quickly from a compiled
source.

Nombas currently supplies the following #link libraries:

• GD
for generating .gif files and other graphics functions

• ODBC
for working with ODBC databases

• OLEAUTOC
for doing OLE automation

• REGEXPSN
to perform complex searches

• SESOCK
for working with sockets

 65

Please contact Nombas for more information on the #link developer's kit, which
lets users to create customized #link libraries. The most recent versions of #link
libraries are listed on the Nombas downloads page at the following web site:

http://www.sedesk.com/

http://www.nombas.com/us/

option
The #option directive has four useful options that are available when a file is
being parsed before it begins executing. Many programmers will appreciate the
help that these options provide while developing scripts. Each of the following
options may be preceded by the not operator, "!", to turn an option off.

• DefaultLocalVars
With this option set, all variables declared inside functions are local
variables. The default is that variables declared in functions without the var
keyword or variables declared outside functions are global. Thus, with this
option set, only variables declared outside of functions are global.

• MathErrorWarnings
With this option set, ScriptEase provides warning messages on division by
zero, operations on NaN, and invalid automatic type conversions to numbers.

• RequireFunctionKeyword
This option requires that the "function" or "cfunction" keywords precede
functions. This option is similar to requiring the var keyword for variables.

• RequireVarKeyword
With this option set, all variables, both global and local, must be declared
with the var keyword. This option is useful while developing a script. It helps
to insure that variable names are typed correctly and to avoid common
mistakes when undefined variables are expected to be defined.

The default behavior for ScriptEase Desktop is consistent with normal JavaScript
and is represented by the following list of #option settings.

#option !DefaultLocalVars
#option MathErrorWarning
#option !RequireFunctionKeyword
#option !RequireVarKeyword

 66

Remember that the #option directive must begin in the first column of the line
on which it appears in a script. This directive may be used multiple times but
must always begin in the first column.

Executing a script
The sequence of events when a script is executed are:

• When a script is run, the interpreter first checks for the SEDESKPREFS
environment variable and then executes preprocessor directives. It locates
any files that are included or linked, assigns values to any #defined tokens,
and the statements between #if and #endif directives are executed, if the
directives evaluate to true. Settings for the #option directive are observed
when encountered.

• Then any code that is not included as part of a function is executed. Any
variables referenced are global variables and are available to all functions in
the script.

• Finally, the main() function is executed, if there is one. If there is no function
main(), the program will end after running through all of the steps in the
initialization. Code may be set to execute when the program exits using the
Clib.atexit() method.

ScriptEase shell command-line
Except for the Unix version, when any version of ScriptEase is run without
command line arguments, a user is put in a ScriptEase shell. In a shell,
ScriptEase scripts can be run from the command line. Other programs may also
be run from a shell command line. In Windows versions, though the shell
resembles a DOS command prompt, Windows applications may be run from the
text command prompt. To exit any ScriptEase shell, simply type "exit" at the
command prompt.

File redirection
The input and output of commands executed from a ScriptEase shell may be
redirected from or to a file with redirection operators.

• <
This command line operator redirect standard input from a file to a file so
that a program gets input from the redirected file instead of the keyboard.

 sort < list.txt

 67

• >
This command line operator redirect standard output from a file to a file
instead of to the screen. The file receiving the redirected output is created
new every time.

 dir > dir.txt

• >>
This command line operator is similar to the > operator, except if the file
receiving the redirected output exists, then the output is appended to the file.
If the file does not exist, it is created new.

 dir >> dir.txt

In the first example, the sort program receives the lines of text from list.txt file as
its input, and it displays those lines to the screen in alphabetical order.

In the second example, the directory listing that the dir command would normally
display to the screen is saved to the file dir.txt. If the file dir.txt already exists, it
is over written by the new directory listing.

In the third example, the directory listing is appended to the file dir.txt, unless the
file does not exist, in which case, the file is created.

Auto files
When a ScriptEase shell starts, three files are executed automatically if they
exist: autoload.jse, autoexec.jse, and shellchr.jse. These files modify and extend
the functionality of the ScriptEase shell. Various extensions to a ScriptEase shell
are implemented through the hooks: ShellFilterCharacter() and
ShellFilterCommand().

The following list has descriptions of some of the features implemented by the
autoload.jse file that ships with ScriptEase. To see a complete list of shell
commands, type "help" at a shell command prompt. For help with a specific
command, type "help command". The word "command" should be replaced by
the name of the actual command for which you want help.

• CD - this command changes the directory.
• CD implicit - a ScriptEase shell has the ability to automatically change

directory. If the name of an existing directory is entered at a shell prompt, the
current directory is changed to it.

• ChDir - this command changes directory.
• Cls - this command clears a ScriptEase screen.

 68

• History - a ScriptEase shell maintains a history of the commands that have
been entered in it. The up and down arrow keys may be used to scroll
through this list of commands.

• Start - this command is used in operating systems that support multitasking.
When a program is started with this command, a ScriptEase shell does not
wait till the program finishes executing before returning to the command
prompt. Thus, another application can be launched while the previous
program is still running. For example, the following command line launches
the program notepad.exe and immediately returns to the shell prompt.

 start notepad.exe

When launching a program with the start command, any arguments needed
by the program follow the program name as normally done.

• Tab - the tab key functions as a speed key for entering directory or program
names. A user can enter the first letters of an existing directory or file name
and then press the tab key. The initial letters are filled out to the name of the
first directory or file that fits these letters. For example, suppose the directory
documents and the file dinosaurs.txt exist in the current directory. If a user
enters "do" and presses the tab key, the entry is filled out to "documents".
But, if a user enters "di" and presses the tab key, the entry is filled out to
"dinosaurs.txt".

• Type - this command displays the contents of a text file to the screen.

Running a script
There are several ways to run a ScriptEase script: from an operating system
command prompt, a ScriptEase shell prompt, a GUI interface, or a batch file. All
examples in this section assume that files are either in the same directory or can
be found in the directories specified by either SEDESKPATH or PATH. See the
description of the SElib.compileScript() method, on page ?, for more information
about executing scripts as text, object, or executable files.

Operating system command prompt
At the command prompt of most operating systems, the ScriptEase interpreter
program is the first program entered on the command line. Short fragments of
ScriptEase code may be passed to the interpreter directly. The following
command line displays "hello" to screen.

Secon32.exe "Screen.write('hello')"

 69

The quotes are required around script commands when they are passed directly to
an interpreter. If quotation marks are required in a script command, then one of
or a combination of the following must be used: single quotes, back quotes, or
escape sequences. In this example, single quotes are used.

Passing commands directly to a ScriptEase interpreter is seldom done. Usually, a
script is contained in a text file created with a text editor. The following
command line illustrates using a script file.

Secon32.exe Myscript.jse Myarg1 Myarg2 . . .

The ScriptEase interpreter secon32.exe receives the script myscript.jse and its
arguments as parameters. When the script itself executes, it receives the
arguments after it as its parameters. If a script does not require arguments, none
need to be specified. The file myscript.jse may be put on the command line
without its extension .jse, since the interpreter automatically adds the default
extension .jse if it is absent. Thus, the above command line could look like the
following.

Secon32.exe Myscript Myarg1 Myarg2 . . .

Some operating system command processors, such as 4Dos.com which replaces
Command.com in a DOS environment, allow extensions to be defined as
executable extensions. If the extension .jse is defined as an executable extension,
then the above two lines may be shortened to one of following lines.

Myscript.jse Myarg1 Myarg2 . . .
Myscript Myarg1 Myarg2 . . .

ScriptEase shell command prompt
A ScriptEase shell command prompt accepts every form of a command line
shown above in the section about an operating system command prompt. Unless
a user has an enhanced command processor as mentioned above, a ScriptEase
shell provides, perhaps, the most flexible command prompt environment from
which to execute scripts.

GUI environment
Graphic User Interfaces are the most popular operating environments for most
computer users in today's world. Most people are familiar with the process of
double-clicking an icon to launch an application. ScriptEase scripts may be
launched in the same way. When ScriptEase installs, it puts appropriate

 70

information in the settings of an operating environment, such as in the registry of
Windows. As with all applications in a Graphic User Interface, parameters are
not automatically passed to an application when it is launched by clicking on it.

DOS batch files
ScriptEase scripts may be imbedded into batch files by putting them between
special marker statements. These special marker statements are coordinated with
how an operating system processes batch files so that ScriptEase statements are
ignored. There are two special marker statements for a DOS batch file: "GOTO
SE_EXIT" and ":SE_EXIT". The statement, GOTO SE_EXIT, is put before
ScriptEase code, and the statement, :SE_EXIT, is put after. When the operating
system is processing a batch file, the goto statement simply instructs the batch
processor to skip over the ScriptEase code. The ScriptEase interpreter knows to
process lines of text between the statements as ScriptEase code and to ignore
other lines of text in the batch file. The following example, mybatch.bat, is a
batch file using special statements for ScriptEase.

@Echo off

Secon32.exe Mybatch.bat
GOTO SE_EXIT
Screen.writeln("ScriptEase: line one")
Screen.writeln("ScriptEase: line two")
:SE_EXIT

This batch file may be called from a command prompt into ways. The first way
is:

Mybatch.bat

and the second way is:

Secon32.exe Mybatch.bat

Both ways result in the following output.

ScriptEase: line one
ScriptEase: line two

When the batch file is called as a batch file, it calls a ScriptEase interpreter with
the batch file as a parameter. The ScriptEase interpreter knows to process only
lines of text between the two special statements. After the ScriptEase interpreter
has finished and control has returned to the batch processor, the next statement to

 71

be executed is the statement, GOTO SE_EXIT, with skips the ScriptEase
statements.

When the batch file is called as a parameter for a ScriptEase interpreter, the
interpreter simply executes the code between the special statements.

Mybatch.bat may be altered as follows to demonstrate more fully how ScriptEase
script may be embedded in a batch file. In this altered file, one line of normal
batch code has been put before any lines concerned with ScriptEase and one line
after them. The batch file may be called by both methods shown above.

@Echo off

echo Mybatch.bat has started.

Secon32.exe Mybatch.bat
GOTO SE_EXIT
Screen.writeln("ScriptEase: line one")
Screen.writeln("ScriptEase: line two")
:SE_EXIT

echo Mybatch.bat has finished.

When this batch file is called as a batch file, it results in the following output.

Mybatch.bat has started.
ScriptEase: line one
ScriptEase: line two
Mybatch.bat has finished.

When this batch file is called as a parameter for a ScriptEase interpreter, it results
in the following output.

ScriptEase: line one
ScriptEase: line two

This output is identical with the output of the original batch file, since the
ScriptEase interpreter processes only the ScriptEase code, which is identical in
both batch files.

OS/2 batch file
An OS/2 .cmd file has a command, EXTPROC, which allows and external
processor to be called to process a batch or source file. The statement,
EXTPROC, must be the first statement in the file and must be followed by a
single space and the name of the external processor. For ScriptEase, the
processor is SEOS2. The following file, mysource.cmd, displays the arguments

 72

passed to it from a command line and illustrates the use of the statement
EXTPROC.

EXTPROC SEOS2

function main(argc, argv)
{
 for (var i=0; i < argc; i++)
 Clib.printf("Input argument %d = \%s\n", i, argv[i]);
}

OS/2 REXX file
Running ScriptEase script from a REXX file is similar to the process described
for DOS batch files above. The main difference is that the two special statements
surrounding ScriptEase code are different. For a REXX file, the two statements
are: "SIGNAL SE_EXIT" and "SE_EXIT:". The following example file may be
called in ways similar to the process described for a DOS batch file. The
behavior, in regards to the ScriptEase code between the special statements, is also
similar.

`call SD.bat %0.cmd %1 %2 %3 %4 %5 %6 %7 %8 %9`
SIGNAL SE_EXIT

function main(argc, argv)
{
 var SUM = 0;
 for (var i=1; i < argc; i++)
 SUM += Clib.atoi(argv[i]);
}

SE_EXIT:

Unix
Unix also allows the specification of an external processor. To specify an
external processor, use the statement #! followed by the full and name of an
external processor program. The following example is a simple illustration.
#! /usr/local/bin/se
Screen.writeln("Hello");

Command-line switches

 73

Bind
The professional versions of ScriptEase processors have a /bind option which
allows scripts to be compiled into stand-alone executable programs. These
executable programs are completely independent and do not require any
ScriptEase programs to run. Assume that the script myscript.jse exists and
executes properly. The script may be compiled into a stand-alone executable
program using a command line similar to the following.

Secon32.exe /Bind=Myscript.exe Myscript.jse

Such a command line instructs a ScriptEase processor to compile the script
myscript.jse to the executable program myscript.exe. The name for the
executable program specified after the /bind option does not have to be the same
as the name of the script.

OS/2 and seos2pm.exe
Some scripts in the OS/2 operating system might require the presence of the file
seos2pm.exe for an executable program that has been created using the /bind
option. Some methods, such as .pmDynamicLink() and other .pm*() methods,
always require the presence of seos2pm.exe. The file seos2pm.exe may be
distributed free of royalty.

 75

Predefined Values
ScriptEase has many predefined values that are useful when writing scripts.
Predefined values are available to the shell, the preprocessor, and various
methods and functions. Some values are available at all levels of script
interpretation.

Preprocessor values
The following preprocessor values are defined and available during the
preprocessing phase of script interpretation and are not available as values during
the running of a script if they apply. For example, _WIN32_ and _95CON_ are
defined if SEcon32.exe is the current interpreter. If a preprocessor value is
defined, it has a value of 1. Normally, these preprocessor values are used with the
preprocessor directives: #if, #ifdef, and #if defined(). See the section on
the Processor for detailed information.

The distinction between compile time and run time is important if a script is
being compiled into a jsb file. If decisions are being made based on preprocessor
directives, then those decisions are made at compile time. Thus, if certain
behavior depends on being run by a particular interpreter, then the script must be
run by the same program with which it was compiled. An example is in order.

Consider the following fragment:

#ifdef _95WIN_
 var n = 10;
#else
 var n = 20;
#endif

If this fragment is compiled with SEwin32.exe and run with SEwin32.exe, the
variable n is initialized to 10 as expected. But if this fragment is compiled with
SEcon32.exe and run with SEwin32.exe, the variable n is still initialized to 10,
though the intent might have been for it to be initialized to 20 under any platform
but Windows 95/98. This difference in behavior does not occur when a text script
is being interpreted and only applies to scripts that have been compiled. If a
script is being interpreted as a text file, the results are consistent.

If you want consistent behavior in a compiled script, do the test at run time. The
above fragment could be written as:

 76

if (defined(_95WIN_)
 var n = 10
else
 var n = 20;

In this case, a compiled script always makes the expected decision. One warning.
The #option RequireVarKeyword preprocessor directive is important here.
If the var keyword is being required, the fragment above will cause an error
since _95WIN_ is not declared using var. If you are requiring that variables be
declared using the var keyword, rewrite the above fragment to be:

#option !RequireVarKeyword
if (defined(_95WIN_)
 var n = 10
else
 var n = 20;
#option RequireVarKeyword

Platform
The following values indicate which ScriptEase interpreter is currently running.
These values are useful when writing scripts to be used on multiple platforms
that perform operations that are specific to different platforms.

DOS MS-DOS

DOS32 MS-DOS with extended memory

MAC Macintosh

NWNLM Netware Network Lan Manager

OS2 OS/2

UNIX UNIX

WINDOWS Windows

WIN32 Windows 32 bit 95/98/NT

If Win32 is defined, one of the following is defined also,
which allows more precision in determining the operating
environment being used.

 95CON Windows 95/98 in a DOS or console session

 95WIN Windows 95/98 as a window

 77

 NTCON Windows NT in a DOS or console session

 NTWIN Windows NT as a window

Shell
SHELL Defined if any ScriptEase interpreter is running as a shell

Strictness of interpretation
The following values are used with the #option preprocessor directive

DefaultLocalVars Variables inside functions default to being
local

MathErrorWarnings Ensures that warning messages are displayed
for various invalid math operations

RequireVarKeyword All variables must be declared with the
keyword var

RequireFunctionKeyword All functions must be declared with the
keywords function or cfunction

Predefined constants and values
The following values are predefined values in ScriptEase and are available
during runtime, during the execution of a script. These values may be used in any
normal statements in scripts.

false Boolean false

null A null value with multiple uses

true Boolean true

BIG_ENDIAN Indicates whether a processor stores a

multi-byte value as Big_Endian or
Little_Endian.

0 0, false, indicating that the processor stores
the low byte of a value in low memory,

 78

the low byte of a value in low memory,
such as Intel.

1 1, true, indicating that the processor stores
the low byte of a value in high memory,
such as Motorola.

CLOCKS_PER_SEC
EOF In file operations, indicates that the end of

a file has been reached

EXIT_FAILURE Indicates an error when exiting a script, 1-
255

EXIT_SUCCESS Indicates success when exiting a script, 0

FATTR_NORMAL Attribute for a normal file

FATTR_RDONLY Attribute for a read only file

FATTR_HIDDEN Attribute for a hidden file

FATTR_SYSTEM Attribute for a system file

FATTR_SUBDIR Attribute for a directory

FATTR_ARCHIVE Attribute for a changed file

INTERP_COMPILED_SCRIPT Run a script compiled with the

compileScript() method. This flag only
works with the INTERP_TEXT flag.

INTERP_LOAD Load code into same function and variable
space as the code that is calling .interpret().
All functions, and variables are supplied to
the code being called, which can modify
and use them. If the code being called has
similarly named functions or variables as
the calling code, the functions in the called
code replace those in the calling code.

INTERP_NOINHERIT_GLOBAL Global variables will not be inherited as
global variables in the interpreted code.

 79

INTERP_NOINHERIT_LOCAL Local variables will not be inherited by the
interpreted code.

INTERP_FILE Code must be the name of a ScriptEase
source file, followed by any arguments.

INTERP_TEXT Code is ScriptEase source code with no
arguments.

LOCK_EX File lock exclusive (in Windows equivalent

to LOCK_SH)

LOCK_SH File lock share (in Windows equivalent to
LOCK_EX)

LOCK_NB File lock non-blocking (use in a bitwise or
with LOCK_EX or LOCK_SH)

LOCK_UN File unlock

NaN Not a Number

Number.MAX_VALUE Largest positive number that can be
represented in ScriptEase

Number.MIN_VALUE Small negative number that can be
represented in ScriptEase

Number.NaN Not a Number

Number.POSITIVE_INFINITY Any number greater than MAX_VALUE

Number.NEGATIVE_INFINITY Any number smaller than MIN_VALUE

P_NOWAIT Do not wait for a child process, started by

SElib.spawn(), to finish before continuing
script execution.

P_OVERLAY Current program exit and new process
executes in its place.

P_SWAP Swap ScriptEase to expanded or extended
memory and then execute a child process
as P_WAIT does.

 80

as P_WAIT does.

P_WAIT Wait for a child process, started by
SElib.spawn(), to finish before continuing
script execution.

RAND_MAX Maximum value that can be returned by

the Clib.rand() method.

SEDESKTOP Defined if the current interpreter is

ScriptEase Desktop, in distinction from
other ScriptEase interpreters.

SEEK_CUR Position in a file relative to the current

position in a file

SEEK_END Position in a file relative to the end of the
file

SEEK_SET Position in a file relative to the beginning
of the file

stderr FILE stream for standard error output

stdin FILE stream for standard input

stdout FILE stream fro standard output

VERSION_MAJOR The major version number of ScriptEase,

for example, 4 in 4.10b

VERSION_MINOR The minor version number of ScriptEase,
for example, 10 in 4.10b

VERSION_STRING The revision letter of ScriptEase, for
example, b in 4.10b

 81

Quick Start Tutorial
This tutorial section provides examples and information to get started with
ScriptEase and is not intended to be a complete tutorial on ScriptEase or
JavaScript. Keep in mind that ScriptEase scripts may be written as simple scripts,
much like simple batch files, in which lines of code execute sequentially, or they
may be written as structured programs. The examples in this tutorial illustrate
both kinds of scripts. While in this tutorial section, the two kinds of scripts are
sometimes referred to as: batch scripts and program scripts. When a script has
code outside of functions and code inside of functions, it shares characteristics of
both batch and program scripts. For example, the following fragment:

Screen.writeln("first ");

function main()
{
 Screen.writeln("third.");
}

Screen.writeln("second ");

results in the following output:

first second third.

ScriptEase Shell
When a ScriptEase interpreter program, such as sewin32.exe or secon32.exe, is
run by itself with no script as a parameter, it starts a ScriptEase shell. A
ScriptEase shell provides an interface for a user to use ScriptEase. The interface
is a command line interface using text commands. Most users will not use
ScriptEase as a shell but will use it to execute, as illustrated later, various scripts
that they have written. As examples, both of the following lines start a ScriptEase
shell.

Sewin32.exe

Secon32.exe

These lines, like all examples in this section, assume that ScriptEase executables
are in the current directory or that their paths are in a PATH variable. When you
are in a shell, you may exit by typing "exit" at the prompt. For simplicity, the

 82

ScriptEase interpreters, Secon32.exe and Sewin32.exe, are used in examples. If a
different platform is being used, substitute the name of the appropriate ScriptEase
interpreter.

Simple script
The following line is a simple and complete script.

Screen.write('A simple script')

The following command line will execute the script.

Secon32.exe "Screen.write('A simple script')"

However, executing script fragments that fit on a command line is of limited
value. The more common way to handle scripts is to save the them to a file and
execute the file. Any text editor may be used to work with script files. Assume
that the single line of this example has been saved to a file named simple.jse. The
script could then be executed with the following command line.

Secon32.exe simple.jse

This line, like all examples in this section, assumes that a script file is in the same
directory as a ScriptEase interpreter program or is visible to the program through
the use of SEDESKPATH or PATH variables.

The most common way to display information on a computer screen is to use the
statements: Screen.write() and Screen.writeln(). The statements are
methods in the Screen object provided by ScriptEase. The Screen object provides
multiple methods for working with ScriptEase screens or windows. The
write() method displays a value, which is not limited to being a string, on the
screen. The writeln() method does the same thing but automatically adds
carriage return and new line characters to the end of a displayed value. Both of
these methods display information to the default screen or window of a
ScriptEase interpreter. ScriptEase ships with library files which have routines for
displaying information in other ways, such as in windows on a Windows
platform.

Date and time display
The following fragment:
var d = new Date
Screen.writeln(d.toLocaleString())

 83

produces output similar to the following.

Fri Oct 23 10:29:05 1998

The first line creates a variable d as a new Date object, or more accurately, as a
new instance of a Date object. The second line uses the toLocaleString()
method of the Date object to display local date and time information. This batch
script could be written as a program script as shown in the following fragment.

function main()
{
 var d = new Date;
 Screen.writeln(d.toLocaleString());
}

The function main(), if it exists, is the first function to be executed in a script.
This script, using a structured programming style, produces the exact same result
as the first two lines, which follow a batch style. The following fragment is
another variation that produces the same result.

var d = new Date;

function main()
{
 Screen.writeln(d.toLocaleString());
}

Remember that lines of script outside of functions are executed before the
main() function. The following fragment is yet another variation.

function main()
{
 DisplayTime();
}

function DisplayTime()
{
 var d = new Date;
 Screen.writeln(d.toLocaleString());
}

To repeat, the first fragment shown consists of two lines of code written as a
simple batch script. The fragments, shown after it, are all written as program
scripts. All of the fragments accomplish the same thing, namely, displaying local
day, date, and time information. All fragments work equally well. What are the
differences? If a user wanted a simple script to display date and time information,

 84

then the first batch script would likely be the best choice. However, if a user
wanted to write a more involved program, one in which the display of the date
and time was only a small part, then one of the program scripts would be the best
choice. Remember, ScriptEase scripts may be as simple or as powerful as a user
chooses.

Function with parameters
In the section above on date and time display, several variations of scripts were
presented showing different ways to accomplish the same result. The last
variation shown defined the function DisplayTime() which was called from the
main() function. When DisplayTime() was called, no parameters, that is, no
information or arguments, were passed to the function. Many times such
functions are used, but often scripts need to be able to pass data or information to
a function which then works with different data when called for differing reasons
in a script. See the section on passing information to functions for more
information about arguments and parameters.

The following script fragment illustrates the use of a function with parameters.
The purpose of the fragment is to terminate a script if the day of the week is
Saturday. A detailed explanation follows.

var dat = new Date();
 // Sun == 0 . . . Sat == 6
if (dat.getDay() == 6)
{
 var FirstLine = "The host is closed on Saturday.";
 var SecondLine = "Terminating program.";
 ExitOnError(FirstLine, SecondLine, EXIT_FAILURE);
} //if

function ExitOnError(LineOne, LineTwo, ExitCode)
{
 Screen.writeln(LineOne);
 Screen.writeln(LineTwo);
 Clib.exit(ExitCode);
} //ExitOnError

// The rest of the script follows
Screen.writeln("The program is continuing.");

The first line creates a new Date object which holds information about the
current date and time that can be retrieved in various formats. In this script, the
only date information used is the day of the week.

 85

The third line of the script calls the method getDay() which returns the day of
the week as a number. Sunday is the first day of the week and is zero. The Date
object has many methods, such as getDay(), that are available to all Date
objects that are created as in this example. The variable dat is only one instance
of a Date object. A script can create or construct as many Date objects as desired,
and each one may use all the methods of the Date object. However, if date
information is altered in one instance, the date information in the other instances
is not affected. This behavior, of constructing an object which is insulated from
operations within other instances of the same type of Object, is the same for all
objects, not just Date objects.

The third line tests, with an if statement, whether the current day is day number
6, Saturday. If the day is 6, then two variables, FirstLine and SecondLine, are
created with string information in them. Then the function ExitOnError() is
called with the two variables as the first two parameters of the function. The
parameter is EXIT_FAILURE, which is a predefined value in ScriptEase, is
passed as the third parameter.

The function ExitOnError() uses the information passed to it in its parameters:
LineOne, LineTwo, and ExitCode. Notice that the variables, FirstLine and
SecondLine, do not have the same names as the parameters, LineOne and
LineTwo. Arguments, such as FirstLine and SecondLine, do not have to have the
same names as the parameters to which they are passed, in this case, LineOne
and LineTwo. Further, arguments do not have to be variables as parameters are.
In this example, EXIT_FAILURE is not a variable but is a predefined value. The
variables FirstLine and SecondLine did not have to be created at all. The function
ExitOnError() could have been called with two literal strings instead of two
variable names. But such a line could become too long. The use of variables in
the if statement makes the code easier to read and to alter. Without the variables,
the call to ExitOnError() would have been:

ExitOnError("The host is closed on Saturday.", "Terminating
program.", EXIT_FAILURE);

Specifically, what does the function ExitOnError() do? It displays the parameter
LineOne on a line by itself, displays the parameter LineTwo on the next line, and
exits the script with an error code. The rest of the script, no matter how long, is
not executed on Saturday. The display to the screen is:

The host is closed on Saturday.
Terminating program.

 86

The exit from the script is accomplished in line 14 with the Clib.exit()
method. The identifier Clib is the Clib object and gets its name from "C library"
since the Clib object has almost all of the functions of the standard C library.
These C functions are implemented as methods of the Clib object. Though
documentation with ScriptEase covers this library of methods, other books and
documentation that cover the standard C library are useful, especially for users
new to the C language. Experienced C programmers will be able to use the Clib
object quickly and easily. See the section on the Clib object for more
information.

If the day of the week is not 6, then the statements in the if statement block of the
code are ignored. The script is not terminated, and all code after the if statement
is executed. In this script, the string "The program is continuing." is displayed to
the screen by the last line in the script.

Terminology
Before going further, a little explanation of terminology might help. One problem
with terminology is that it is has developed over the years and is not used
uniformly. But in general, the term routine refers to a function or procedure that
may be called in a program. A procedure is a routine that does something but
does not return a value. A function is a routine that returns a value. Said another
way, a procedure is a function that does not return a value.

In JavaScript, the terms used are methods and functions, and these terms do not
make the distinction between a function that returns a value and one that does
not. The term procedure is not used. In the current discussion, the term routine is
a general term used for functions and methods (and procedures, though this term
is not used). The term method is normally used for a function that has been
attached as a property of an object. The term function is used for functions of the
global object and functions that a user defines that are not attached to a specific
object. Such functions are actually methods of the global object.

The methods of the global object may be called without placing global. in front
of the method name. Thus, they look like and act like plain functions in other
languages, such as C. For example, the function parseFloat() is actually a
method of the global object. The following fragment calls parseFloat() like a
function.

var n = parseFloat("3.21");
Screen.writeln(typeof n);
Screen.writeln(n);

 87

The following fragment, which is the same as the one above with the addition of
global, calls parseFloat() as a method, but both fragments are identical in
behavior.

var n = global.parseFloat("3.21");
Screen.writeln(typeof n);
Screen.writeln(n);

Thus, parseFloat() may be referred to as a function reflecting these calling
conventions. The line displaying typeof n displays number in both cases. The
typeof operator returns the type of data of the value following it. The typeof
operator may be invoked with "()". For example, typeof n and typeof(n)
are the same.

The following fragment has a user defined function, MyFunction(), that is called
like a function and then as a method. Both calls to MyFunction() are identical in
behavior.

function MyFunction()
{
 Screen.writeln("My function has been called.");
}

MyFunction();
global.MyFunction();

In the current ScriptEase manual, the following distinctions generally are
followed.

• The term routine is generally used for functions and methods. Some writers
use function this general sense.

• The term function is used for methods of the global object, that is, for
methods that do not require an object name or name of an instance of an
object to precede the method name. Such functions were described
immediately above.

• The term method is used for methods that require an object name or name of
an instance of an object. The getDay() method, which was used above in
the section about a function with parameters, is an example of such a method.

Function with a return
Functions may simply do something as the function ExitOnError() above does, or
they may return a value to a calling routine. Of course, functions may do things

 88

and return values. The following fragment illustrates a function that returns a
value.

function Cubed(n)
{
 return n * n * n;
} //Cubed

var CubedNumber = Cubed(3);
Screen.writeln(CubedNumber);

The function Cubed() simply receives a number as parameter n, multiplies the
number times itself three times, and returns the result. The variable
CubedNumber is assigned the return value from the function Cubed().
CubedNumber is displayed to the screen, and in this example, the number 9 is
displayed.

Screen.write improved
The methods, Screen.write() and Screen.writeln(), are useful and easy
to use, but they can be improved. For example, the first line in the following
fragment works, but the second line causes an error since these methods can have
only one parameter.

Screen.writeln(1)
Screen.writeln(1,2)

The first step in writing our improved display functions is to write a function that
uses Screen.write() and that accepts a variable number of arguments. The
Write() function in the following fragment accomplishes our goal.

function Write()
{
 for (var i=0; i < arguments.length; i++)
 Screen.write(arguments[i]);
} //Write

This function uses a for loop to display, using the Screen.write method, all
arguments passed to it. The key element in the loop is the special property,
arguments. Every function has an arguments property which may be used as an
Object or an Array. In the initialization section of the for loop, the arguments
property behaves like an object since arguments.length is a property of arguments
that returns the number of arguments which have been passed to a function. The
line that uses Screen.write() to display the values that have been passed to

 89

the function uses the arguments property like an array. The first argument in the
array is indexed by the number 0, that is, the first argument is arguments[0]. The
last argument is indexed by arguments.length minus 1, that is, arguments.length -
1. See the section on function properties for more information about the
arguments property of functions.

Our second step is to write a similar function that automatically adds end of line
characters to the display. The following fragment accomplishes our goal by
writing a blank line at the end of the display of all values passed to the function.

function Writeln()
{
 for (var i=0; i < arguments.length; i++)
 Screen.write(arguments[i]);
 Screen.writeln();
} //Writeln

What has been accomplished? We can now display multiple values with a single
call to a function. The following fragment:

Write(1,2,3)
Write(4,5)

produces the following display.

12345

And the following fragment:

Writeln(1,2,3)
Writeln(4,5)

produces the following display.

123
45

We can add a few touches to make such routines more useful, especially when
developing and debugging a script. First, we can write routines that allow us to
put characters or strings between displayed values.

function WriteSep(Sep)
{
 for (var i=1; i < arguments.length; i++)
 {
 Screen.write(arguments[i]);
 Screen.write(Sep);
 } //for

 90

} //WriteSep

function WritelnSep(Sep)
{
 for (var i=1; i < arguments.length; i++)
 {
 Screen.write(arguments[i]);
 Screen.write(Sep);
 } //for
 Screen.writeln();
} //WritelnSep

Now we can display multiple values separated by characters of our choice. The
following fragment:

WriteSep('--',1,2,3)
WriteSep('--',4,5)

produces the following display.

1--2--3--4--5--

And the following fragment:

WritelnSep('--',1,2,3)
Writeln('--',4,5)

produces the following display.

1--2--3--
4--5--

The separator character or characters must be a string which is passed as the first
parameter to the functions. A modified form of these two routines makes them
especially useful when developing and debugging scripts that depend on precise
strings. The following fragment defines the modified routines.

function WriteBar()
{
 for (var i=0; i < arguments.length; i++)
 {
 Screen.write(arguments[i]);
 Screen.write('|');
 } //for
} //WriteBar

function WritelnBar()
{
 for (var i=0; i < arguments.length; i++)

 91

 {
 Screen.write(arguments[i]);
 Screen.write('|');
 } //for
 Screen.writeln();
} //WritelnBar

These two routines simply use the pipe bar, |, as a separator between values. The
following fragment:

var s1 = "one";
var s2 = "one ";
WriteBar(s1);
WriteBar(s2);

produces the following display.

one|one |

And the following fragment:

var s1 = "one";
var s2 = " one ";
WritelnBar(s1);
WritelnBar(s2);

produces the following display.

one|
one |

If these variables were displayed using Screen.write() or Screen.writeln(), the
difference between them would not be apparent on the screen. But, by using the
pipe bar separator, the difference between the two strings is obvious.

Library file
We have now written six useful functions. If we want to use them over and over
again, we can put them into a single library file that we include in other scripts.
The following fragment is an entire script to be saved as a library file with the
name write.jsh. Since these are general use routines, we can save write.jsh in a
directory for general library routines. The likely choice is \sedesk\jsh which is
created when ScriptEase is installed.

// Write routines library file

function Write()

 92

{
 for (var i=0; i < arguments.length; i++)
 Screen.write(arguments[i]);
} //Write

function Writeln()
{
 for (var i=0; i < arguments.length; i++)
 Screen.write(arguments[i]);
 Screen.writeln();
} //Writeln

function WriteSep(Sep)
{
 for (var i=1; i < arguments.length; i++)
 {
 Screen.write(arguments[i]);
 Screen.write(Sep);
 } //for
} //WriteSep

function WritelnSep(Sep)
{
 for (var i=1; i < arguments.length; i++)
 {
 Screen.write(arguments[i]);
 Screen.write(Sep);
 } //for
 Screen.writeln();
} //WritelnSep

function WriteBar()
{
 for (var i=0; i < arguments.length; i++)
 {
 Screen.write(arguments[i]);
 Screen.write('|');
 } //for
} //WriteBar

function WritelnBar()
{
 for (var i=0; i < arguments.length; i++)
 {
 Screen.write(arguments[i]);
 Screen.write('|');
 } //for
 Screen.writeln();
} //WritelnBar

 93

var wb = WriteBar;
var wlb = WritelnBar;

Notice the last two lines that assign the functions, WriteBar() and
WritelnBar(), to the variables, wb and wlb. These assignments illustrate how
JavaScript treats almost all identifiers, whether variables, arrays, objects, or
functions, like variables. Both wb and wlb may be used in place of the functions
assigned to them. In the following example, both lines of code do the same thing.

WriteBar("Line one")
wb("Line one")

Likewise, both lines of code in the following fragment do the same thing.

WritelnBar("Line two");
wlb("Line two");

The only reason for adding the two assignments at the end of write.jsh is for the
ease of a programmer. The functions WriteBar() and WritelnBar() are
mainly useful while developing and debugging a script. Typing wb() is simply
faster than typing WriteBar(). Plus, the assignments illustrate how JavaScript
handles many identifiers as variables. Though not officially accurate, the
variables, wb and wlb, may be thought of as aliases, if that metaphor is helpful.

Two more observations should be made concerning write.jsh. First, the functions
defined do not list a specific number of parameters to receive, which is the most
common way to define functions. The following fragment illustrates the more
common method of defining functions.

function MoreCommonWrite(Str1, Str2)
{
Screen.write(Str1);
Screen.write(Str2);
}

The function MoreCommonWrite() explicitly defines, expects, and uses two
parameters. Whereas, the functions defined in write.jsh were written to expect
and use a variable number of parameters. A programmer has the choice of which
way to define and use parameters in a function.

Second, each function end with a comment that is the function name. For
example, the Write() function ends with "} //Write". The function name in a
comment at this point is not required nor particularly useful in very short
functions such as the ones in write.jsh. However, they are useful when writing

 94

functions of many lines and are shown here mainly because of programming
habits, hopefully good ones.

The following fragment illustrates how to include our newly created library file
in another script.

#include 'write.jsh'

var s1 = "This fragment illustrates "
var s2 = "how to include "
var s3 = "our library file "
var s4 = "in a script."

Writeln(s1,s2,s3,s4)

The #include statement is a preprocessor directive which instructs a ScriptEase
interpreter to include the text of a file in a script before the file is executed. In
effect, the text of the included file replaces the include directive as if the text had
been originally typed in the script at that point. Thus, the six functions and two
variables used as aliases that we defined in the library file are available to us in
the current script.

Library and sample files
ScriptEase Desktop ships with a number of files that are sample scripts. Many of
these scripts are useful programs that perform both useful and powerful tasks.
When ScriptEase Desktop is installed, it puts these sample scripts in various
subdirectories of the installation directory. The default installation directory is
C:\Sedesk, and all other ScriptEase Desktop directories are subdirectories. Of
course, a user may specify a different installation directory, but for now, SEdesk
is assumed. Sample files are put into the following directories.

• SEdesk\Utility
• SEdesk\Sample

In addition, scripts that are specific to a particular operating system or platform
are put into the directory with the files for that platform. For example, scripts for
Win32 are put into the following directory.

• Sedesk\Win32

Many library files are provided in the following directory.

• Sedesk\Include

 95

These library files provide very powerful routines that are not part of the actual
JavaScript or ScriptEase languages. Some of the library files are specific to a
particular platform, such as the dialog library files for Windows.

ScriptEase users and programmers will find that many of the routines and
programs that they want have already been written and provided as sample and
library files. Before writing a script, it is usually beneficial to check these files.
Sample and library files are self documented, that is, the documentation
explaining the files and routines in them is included in the files as comments.
These comments are explicitly written to be similar to a reference manual. In
addition, files that document these sample and library files are provided in the
directories with them. These documentation files may be found in text (txt), rich
text (rtf), or hyper text markup (htm) formats.

The reason for documenting library and sample files in this manner is that they
are continually being improved and updated. The latest library, sample, and
documentation files may be found in the ScriptEase Desktop pages of the
Nombas web site at:

http://www.sedesk.com/
http://www.nombas.com/us/
Feel free to visit this site often and download updated files and documentation.

Using library files
Whether users write their own library files, as illustrated above with the
improved Screen.write routines, or use the library files provided by Nombas, they
need to include them with their scripts. As shown above, the #include
preprocessor directive is a commonly used way, as it is in other programming
languages. See the section on preprocessor directives for more information on
using the include directive.

ScriptEase provides another, simple and powerful, way to include files that is not
standard in other programming languages. The SEDESKPREFS environment
variable is an innovation that many ScriptEase users will learn to appreciate. To
use this variable, simply set it to the files, usually library files, that should be
included with all scripts. In DOS and Windows platforms, appropriate lines may
be added to the autoexec.bat file.

 96

To include the write.jsh library file, as shown above, add the following line to the
autoexec.bat file.

set SEDESKPREFS=write.jsh

With this setting, every script that is run by a ScriptEase interpreter will include
write.jsh at the beginning of the script. More than one file may be included as a
SEDESKPREFS setting. If more than one file is to be included, separate the file
names with a semicolon, as is done with the PATH variable. The following line
illustrates.

set SEDESKPREFS=write.jsh;file.jsh

With this setting, both write.jsh and file.jsh will be included at the beginning of
the interpretation of scripts. The SEDESKPREFS setting only affects scripts,
such as .jse files, that are being interpreted. Scripts that have been compiled into
a stand alone executable file, using the /Bind option of ScriptEase:Desktop Pro,
are not affected by the settings of SEDESKPREFS. The SEDESKPREFS will be
used when a script is compiled but ignored when it is run as an executable
program.

Both of the example lines shown above assume that the SEDESKPATH
environment variable or registry key has been set to point to the directories
holding library files, or any files to be included in a script. SEDESKPATH is set
when ScriptEase is installed. SEDESKPATH may be altered by a user, but
normally will not need to be changed.

Path names may be included in the SEDESKPREFS setting. For example,
assume that a user wants to keep certain library files in a directory not included
in SEDESKPATH. Then SEDESKPREFS could be set with a full specification
of the file, such as in the following.

set SEDESKPREFS=C:\Sedesk\MyLibraries\write.jsh;file.jsh

With this setting, the file, C:\Sedesk\MyLibraries\write.jsh, will be included with
all scripts, even if a file named write.jsh exists in the standard library directories.
The file, file.jsh, which is in the Sedesk\Jsh library directory will also be
included. The library file, file.jsh, is a useful file when working with files on a
disk.

A user might have certain routines and settings that he wants included with all
scripts. The settings and include statements could be put into every script written,
or they could be put into one library file that is included with every script. For

 97

example, the following script could be saved as general.jsh in the Sedesk\Include
directory.

#option RequireVarKeyword
#option !DefaultLocalVars
#option RequireFunctionKeyword
#option MathErrorWarnings

#include 'write.jsh'

Then set SEDESKPREFS as follows.

set SEDESKPREFS=general.jsh

Now what has been accomplished? Every interpreted script will include
general.jsh. The library file general.jsh sets the strictest options for scripts. These
option settings facilitate the writing and development of scripts by reducing the
number of bugs that enter a script by common errors. Further, general.jsh
includes write.jsh that has the improved write routines developed above. Thus,
write.jsh will also be included with all interpreted scripts.

There is no absolutely right or best way to use the flexibility provided by
SEDESKPREFS, but the flexibility is there to meet differing needs and styles.

 99

Integrated Debugger

ScriptEase comes with a source debugger that provides a complete Integrated
Debugging Environment, which means you can edit a script while you are
debugging it.

The debugger is a Windows application with a standard Multiple Document
Interface (MDI) like many other applications. The image above has four
windows showing: the script, Watches, Locals, and the Globals window. The
specifics about windows are explained later. The script window is explained in
the section about the File menu options, and the other three in the section about
the window menu options. For now, just understand that the tiled arrangement
shown above is just one out of many ways to display windows in the debugger.
You may have multiple script window or only one. You may have only one
window showing or any combination of windows. Like any MDI application,
you may maximize, minimize, tile, and cascade windows. In short, the user
interface of the ScriptEase debugger is a standard windows interface.

 100

ScriptEase debuggers are available only for Windows operating environments.
There are debuggers for Windows 95/98, Windows NT, and Windows 3.x.

Using the ScriptEase Debugger

The ScriptEase debugger is a source code debugger which means that you may
debug programs while watching the execution of a program line by line in the
original source code. You may set breakpoints, trace lines of code as they
execute, step into and over functions, watch variables that you choose, keep up
with global and local variables, and other powerful options that you expect in a
good source code debugger.

The main window of the ScriptEase debugger consists of the following
components, listed in top to bottom order.

Components of main MDI window

Menu bar

All commands in the ScriptEase debugger may be accessed through menus. The
menu bar is described completely in the following section, "Main menu bar."

Tool bar

The toolbar has buttons for the common and useful debugger commands. Instead
of clicking menus, you may click a button on the toolbar as a shortcut. The
commands that are available on the toolbar are exactly the same as the
corresponding commands in menus. In the section, "Main menu bar," commands
that are available on the toolbar are indicated by the notation: "In toolbar."

Document window

The document window is a standard Windows Multiple Document Interface
(MDI) window. You may open four kinds of windows within the document
window: Source, Watches, Locals, and Globals.

Status bar

The status bar at the bottom of the window provides useful information
concerning the currently active window. The current cursor position in a script
window is displayed as line and column numbers. The status of the Caps, Num,
and Scroll lock keys is displayed. When the mouse cursor is over menu and

 101

toolbar items, help or hint information displays in the status bar. The general
state of the IDE is also displayed, such as "Ready" or "Program Terminated."

MDI windows

Source

Source windows may be called script windows since they display the source code
of a script file. These script windows are actually text editing windows in which
scripts may be viewed, edited, or used for source line debugging.

When used for editing, the editor is capable of writing an entire script, but the
editing features of a script window are basic and adequate for simple scripts.
Normally, you will use a more powerful editor for most writing and editing of
sophisticated scripts, an editor such as the ScriptEase Editor that accompanies
ScriptEase products. The ScriptEase Editor has features that allow you to
coordinate your work effectively with the ScriptEase debugger. Currently, when
you change text in a script while it is still loaded in a script window in the
debugger, you must manually reload the file in the debugger. However, when
you make changes in a script while in a script window, the ScriptEase Editor can
automatically detect the changes and reload the file. Thus, for most editing of
scripts use the ScriptEase Editor for major writing and script windows in the
debugger for minor changes while debugging a script.

The current position in a source file is indicated by a special marker, icon, that
can be chosen from several options. In addition, breakpoints may be set in a
script window. Breakpoints display as small red hexagons at the beginning of the
lines of scripts to which they apply.

You may open multiple script windows at the same time. Remember, that various
debugging commands apply to the currently active script window. For example, a
command such as "Debug | Run in Debugger" runs the script in the currently
active source window, not any other scripts that might be open in source
windows.

Source windows have gray backgrounds when in debugging, as opposed to
editing, mode. You may not edit scripts while in debugging mode. When script
windows have gray backgrounds, remember that you may only use debugging
commands, such as "Debug | Step Into."

Globals

 102

The Globals window displays all global variables that are available to the point in
a script. The source marker indicates in a script where execution is currently
occurring. The information for each variable displayed is the variable name, type,
and value.

Locals

The Locals window displays all local variables that are available at the point in a
script where execution is occurring. The source marker indicates in a script
where execution is currently occurring. The variables in a local window
constantly change as functions that have local variables are entered and
debugged. The information for each variable displayed is the variable name, type,
and value.

Watches

The Watches window is a place where you can view variables and expressions
that you want to see. You may put plain variables here, and when they are active,
these variables will show as in other windows. In addition you may set variables
to be watched and used as breakpoints. You may set execution to break if a
variable changes or is equal to true or false. But the watch window may be used
with more than just variables, it may be used with expressions. For example,

the following code:

var arr = Array(false,1, 2, 3, "four");

creates an array with four elements. In the Locals and Globals windows, the array
arr is shown as type object with no value shown.

You might want to keep up with one or more elements in the array. To keep up
with the second element in the array arr, set a watch for arr[1] and it will
appear as an expression to be watched with its format type and value, which in
this case is 1. Perhaps you want to keep up with the addition or concatenation of
the fourth and fifth elements. If so, set a watch or arr[3] + arr[4], which in this
case would display a value of "four3".

In fact, the watch window is designed to watch expressions rather than variables.
When a variable by itself is watched, the debugger simply considers it to be an
expression. Notice that the second column in the watch window provides format
information instead of the type of a variable.

Setting watches

 103

The Watch dialog, Figure 2, is the main window used to set watch information.

Add

The Add button adds the current expression, in the Expression edit box, to the list
of expressions to be watched in the Watches window.

Remove

The Remove button removes the expression which is currently highlighted in the
list of expressions to be watched.

Remove All

The Remove All button removes all expressions to be watched.

Expression

The Expression edit box allows entry of expressions and variables to be watched
in the Watches window.

 104

Format String

The Format String edit box allows some control over the format of expression,
that is, how an expression value will appear.

Break when Expression

The four options in this group allow watches to serve as conditional breakpoints.
To simply watch an expression or variable, set [No Break], which is the default.
Set Changes if you want program execution to pause when the expression or
variable changes value. Set True or False if you want program execution to pause
when an expression becomes true or false. You may use "Debug | Change
Variables..." to set a variable to a different value and watch execution with the
changed variable.

Setting breakpoints

The Breakpoint dialog, Figure 3, is the main window used to set breakpoints.

 105

Add breakpoint

The Add button adds a breakpoint at the line specified, in the Line Number edit
box, to the script specified in the File Name edit box. Of course, the script itself
is not altered since scripts are plain text files. Breakpoints are retained as settings
within the ScriptEase debugger.

Remove breakpoint

The Remove button removes the breakpoint which is currently highlighted in the
Breakpoints list box.

File Name for breakpoint

 106

The File Name edit box indicates which script is presently being used for add and
remove operations

Line Number for breakpoint

The Line Number edit box indicates which line in a script is affected by add and
remove operations

Breakpoints listing

The Breakpoints list box shows all breakpoints currently active in a script.

Main menu bar

The main menu bar consists of the seven menus across the top of the windows
just below the title of bar. The seven menus are: File, Edit, View, Search, Debug,
Window, and Help. Some menu commands may be accessed from the toolbar or
by shortcut keys, and those that can are indicated by the notations: "In toolbar"
and a keystroke description.

File menu

The file menu has options for starting, opening, closing, saving, and printing
script files. Plus, an exit option to exit the debugger. All of the commands
concerning files operate on script or source files. These files are opened in the
integrated editor which allows the use of all debugging options in the integrated
debugger. The editor is also a standard editor that can be used to do plain text
editing in any text file, such as one created by Notepad.

The editor can be used to write complete scripts. Normally, however, scripters
use their favored editors to write and edit most scripts and use the integrated
editor while debugging a script.

New In toolbar and Ctrl+N

Start a new script or source file. The file is opened in the editor which is
integrated with all debugging features.

Open... In toolbar and Ctrl+O

Open dialog to open a script file.

Close Ctrl+W

Close the currently active script file.

 107

Save In toolbar and Ctrl+S

Save the currently active script file.

Save As...

Save the currently active script file to a new filename. The title of the currently
active script will change to the new filename. Immediately after a script is saved
to a new filename, the script will exist in two separate files with the old and new
filenames. But, the new filename will be the active script. To edit the previous
file, it must be opened again.

Print... In toolbar and Ctrl+P

Print the currently active script file using straightforward print settings. The print
dialog that opens is a standard Windows print dialog.

Print Preview

Preview how the printed script file will look before actually printing the file.
When previewing a page, there are various options to page through the pre-
printed document, examine pages one or two at a time, zoom in and out, print the
document, or close the preview window without printing.

Print Setup...

Change printer settings. These settings are for the printer and are not a page
setup. The print setup dialog that opens is a standard Windows print dialog.

 (Recent files list)

List up to four of the most recent script files that have been opened in the editor.

Exit

Exit the entire ScriptEase debugger program. Some settings, such as the size and
location of open windows is saved. Thus, when the ScriptEase debugger is
started again, it is easier to restore various windows to their previous state.

Edit menu

Undo Ctrl+Z

Undo the last editor operation in the script window.

Cut In toolbar and Ctrl+X

 108

Cut selected text from the script window.

Copy In toolbar and Ctrl+C

Copy selected text from the script window.

Paste In toolbar and Ctrl+V

Paste text at the insertion point, where the cursor is, or into the selection in the
script window.

Options

Font...

Display a dialog to set the style, size, and color of the font used in the debugger
windows.

Tabs...

Set how many spaces should be used when displaying a tab character in the
debugger windows.

Trace On

When a script is run using the Debug | Run in Debugger menu item, the active
script runs until it encounters a breakpoint or the script ends. If the Edit | Options
| Trace On option is checked, then when a script is run in the debugger, the lines
executed are traced. The source marker visibly moves from source line to source
line as the script is run. The effect is similar to choosing the Debug | Step Into
and Step Over menu items. The difference is that with Trace On checked, the
stepping is done automatically.

Trace Speed

When the Trace On menu item is checked, the Trace Speed options determine
how fast the trace operation executes each line of a script. The options are: Fast,
Normal, Slow, and Slowest.

Trace over

When the Trace On menu item is checked, the Trace Over menu item determines
if the tracing steps over functions that are called or steps into them. When Trace
Over is checked, the tracer steps over functions, and when it is not checked, the
tracer steps into functions.

Source Mark

 109

When debugging a script, the current position in a script is visibly marked by an
icon or graphic. The Source Mark option allows a choice of the appearance of the
marker.

Default Interpreter...

The default interpreter is the ScriptEase executable that the debugger uses when
executing a script. In Win32, the two valid programs are SEwin32.exe and
SEcon32.exe. There are differences between a windowed application and a
console application. You may want to set the default interpreter to be the same
interpreter that you will use to execute a script.

View menu

Toolbar view

View the push button toolbar, just below the menu bar, if checked.

Status Bar view

View the status bar at the bottom of the debugger window. The status bar
displays various helpful messages and the position of the cursor or insertion point
in the editor in terms of line and column.

Search menu

Find... Ctrl+F

Find text in the script window using a find dialog.

Replace... Ctrl+R

Find text in the script window and replace it with other text using a find and
replace dialog.

Debug menu

Start Debug Session

Start executing the active script in a debug session. The source marker is
positioned at the first executable line in the script awaiting further commands.

Restart

Restart a debugging session. The source marker is positioned at the first
executable line in the script awaiting further commands.

 110

Run in Debugger In toolbar and F5

Run the current script in the debugger. The source mark appears. The script
executes until a break point is reached or the script is finished.

Go Ctrl+F5

Execute the current script as a program, that is, not in the debugger.

Stop In toolbar

Stop the execution of a script that is running in the debugger. The script may be
actively executing or paused at a source line or breakpoint.

Step Into In toolbar and F9

Steps into any user defined functions in the current source line and begins
displaying source lines in the function as they are executed. Does not step into
built in functions. If a script has not begun execution in the debugger, then the
first line of executable code is executed.

Step Over In toolbar and F10

Steps over any user defined functions in the current source line and simply
executes the line and pauses at the next line in the current script. If a script has
not begun execution in the debugger, then the first line of executable code is
executed.

Step to Cursor In toolbar and F11

Executes all lines of executable code till reaching the line where the cursor is
located. In effect, the cursor behaves like a temporary breakpoint.

Step Out In toolbar and F12

Executes lines of code in the current function until the function is finished.

Parameters...

Opens a dialog box to set command line parameters to be sent to a script when it
is executed in the debugger. The parameters are handled by a script in the same
way as they are when part of a command line.

Breakpoint

Toggle current In toolbar and F8

Toggle the breakpoint at the current line, off or on.

 111

Add/Remove...

Opens a dialog box to add or remove breakpoints on any line in the current script.

Remove all In toolbar

Removes all breakpoints in the current script.

Watch

Add/Remove... Toolbar

Opens a dialog box for adding variables and expressions to the watch window or
removing them.

Remove all Toolbar

Remove all watches from the current script and debugging session.

Change Variables

The menu item allows a variable to be changed while a script is executing.

Window menu

Cascade

Display the open windows in the debugger in a cascaded fashion.

Tile

Tile open windows horizontally. If two or three windows are open, they are all
tiled horizontally extending the entire width of the main debugger window. If
four or more windows are open, then two columns of windows are begun, and all
windows are tiled horizontally in the two columns. For example, if a script
window, the global, the local, and the watch window are opened, the resulting
window is quartered. Each window will be in the four corners of the main
window. The screen shot, Figure 1, at the beginning of this section is an example
of four tiled windows.

Arrange Icons

As in all MDI applications, open windows may be minimized inside the main
window. The Arrange Icons menu item arranges these minimized icons at the
bottom of the main debugger window.

Global... Ctrl+Shft+G

 112

Open the Globals window to view global variables while debugging a script.

Local... Ctrl+Shft+L

Open the Locals window to view local variables while debugging a script.

Watch... Ctrl+Shft+W

Open the Watches window to view variables and expressions that have been
defined by a user.

 (Open windows list)

A list of the currently open windows in the debugger.

Help menu

Help Topics... F1

Display a help file for the debugger.

About ScriptEase Debugger... In toolbar

Displays program information, version number, and copyright notice for the
debugger.

 113

ScriptEase versus C language
This section is primarily for those who already know how to program in C,
though novice programmers can learn more about the Clib and SElib objects and
C concepts by reading it. The emphasis is on those elements of ScriptEase that
differ from standard C. Most of the pertinent differences involve the Clib object,
SElib object, and cfunction function. Users who are not familiar with C should
first read the section on ScriptEase JavaScript.

The assumption here is that readers of this section already know C. Thus, only
those aspects of the C portion of ScriptEase that differ from C are described. If
something is not mentioned here, ScriptEase follows standard C behavior. While
in this section on the differences from C, the term ScriptEase is used for the
portion of ScriptEase that implements the standard C library and ScriptEase
additions to that library. Almost all of the implementation of C in ScriptEase
involves the use of Clib objects, SElib objects, or cfunctions. Thus, references to
ScriptEase as the C portion of ScriptEase usually involve Clib, SElib, or
cfunction. The differences between a function and a cfunction are also discussed
in the section on ScriptEase JavaScript.

Deviations from C result from following several principles:

• simplicity
• power
• safety

The C portion of ScriptEase is different from C where changes make ScriptEase
more convenient for scripting, writing small programs, and entering command
line code or where unaltered C rules encourage coding that is potentially unsafe.
Keep in mind, that most issues involved in this section involve the use of Clib,
SElib, and cfunction.

The C portion of ScriptEase is C without type declarations and pointers. If you
already know C and can forget these two aspects of C while using ScriptEase,
then you already know the C portion of ScriptEase. If you were to take C code
and delete all the lines, code words, and symbols that either declare data types or
explicitly point to data, then you would be left with code that would work with
Clib, SElib, and cfunction. Though you would be altering source code, you
would not be removing capabilities.

 114

The most basic idea underlying this section is that the C portion of ScriptEase is
C without type declarations and pointers.

Data types in C and SE
ScriptEase uses the same data types as JavaScript.

Automatic type declaration
There are no type declarations nor type castings as found in C. Types are
determined from context. In the statement, var i = 6, the variable i is a
number type. For example, the following C code:

int max(int a, int b)
{
 int result;
 result = (a < b) ? b : a;
 return result;
}

could be converted to the following ScriptEase code:

Clib.max(a, b)
{
 var result = (a < b) ? b : a;
 return result;
}

The code could be made even more like C by using a with statement as in the
following fragment.

with (Clib)
{
 max(a, b)
 {
 var result = (a < b) ? b : a;
 return result;
 }
}

A with statement can be used with large blocks of code which would allow Clib
and SElib methods to be called like C functions. C programmers will appreciate
this ability. Other users who decide to use the extra power of C functions will
come to appreciate this ability.

 115

Array representation
This section on the representation of arrays in memory only deals with automatic
arrays which are part of the C portion of ScriptEase. JavaScript uses constructor
functions that create instances of JavaScript arrays which are actually objects
more than arrays. Everything said in this section is about automatic arrays
compared to C arrays. The methods and functions used to work with JavaScript
constructed arrays and ScriptEase automatic arrays are different. The following
fragment creates a JavaScript array.

var aj = new Array();

The following line creates an automatic array in ScriptEase.

var ac[3][3];

The two arrays are different entities that require different methods and functions.
For example, the property aj.length provides the length of the aj array, but the
function getArrayLength(ac)provides the length of the ac automatic array.
When the term array is used in the rest of this section, the reference is to an
automatic array. JavaScript arrays are covered in the section on ScriptEase
JavaScript.

Arrays are used in ScriptEase much like they are in C, except that they are stored
differently. A single dimension array, for example, an array of numbers, is stored
in consecutive bytes in memory, just as in C, but arrays of arrays are not in
consecutive memory locations. The following C declaration:

char c[3][3]; // this is the C version

indicates that there are nine consecutive bytes in memory. In ScriptEase a similar
statement such as the following:

var c[2][2] = 'a'; // this is the ScriptEase version

indicates that there are at least three arrays of characters, and the third array of
arrays has at least three characters in it. Though the characters in c[0] and the
characters in c[1] are in consecutive bytes, the two arrays c[0] and c[1] are not
necessarily adjacent in memory.

Automatic array allocation

 116

Arrays are dynamic, and any index, positive or negative, into an array is always
valid. If an element of an array is referenced, then ScriptEase ensures that such
an element exists. For example, if a statement in a script is:

var foo[4] = 7;

then ScriptEase makes an array of 5 integers referenced by the variable foo. If a
later statement refers to foo[6] then ScriptEase expands foo, if necessary, to
ensure that the element foo[6] exists. The same is true for negative indices. When
foo[- 10] is referenced, foo is grown in the negative direction if necessary, but
foo[4] still refers to the initial 7. Arrays can be of any order of dimensions, thus
foo[6][7][34][- 1][4] is a valid variable or array.

Literal strings
A literal string in ScriptEase is any array of characters, that is, a string, appearing
in source code within double, single, or back quotes. Back quotes are sometimes
referred to as back-ticks. The following lines show examples of literal strings in
ScriptEase:

"dog" // literal string (double quote)
'dog' // literal string (single quotes)
`dog` // literal string (back- ticks)
{'d','o','g','\0'} // not a literal string, rather
 // an array initialization

Literal strings have special treatment for certain ScriptEase operations for the
following reasons.

• To protect literal string data from being overwritten accidentally
• To reduce confusion for novice programmers who do not think of strings

as arrays of bytes
• To simplify writing code for common operations, for example, the

statement:

TestStr == "MYLONGPASSWORD"

is simpler than :

Clib.strcmp(TestStr, "MYLONGPASSWORD").

In general, literal strings adhere to the two following rules.

• Comparisons are intrinsically handled by Clib.strcmp()

 117

• Assignment and passing of literal strings is done by making copies of the
literal string

Literal strings and assignments
When a literal string is assigned to a variable, a copy is made of the string, and
the variable is assigned the copy of the literal string. For example, the following
code:

for (var i = 0; i < 3; i++)
{
 var str = "dog";
 Clib.strcat(str, "house");
 Clib.puts(str);
}

results in the following output:

doghouse
doghouse
doghouse

A strict C interpretation of this code would not only overwrite memory, but
would also generate the following output:

doghouse
doghousehouse
doghousehousehouse

Literal strings and comparisons
If both sides of a comparison operator are strings, and at least one of them is a
literal string, then the comparison is performed as if Clib.strcmp() were
being used. If one or both variables are literal strings, then the following
translation of the comparison operation is performed.

lvar operator rvar Clib.strcmp(lvar, rvar) operator 0

The following examples demonstrate how literal strings follow the logic of
Clib.strcmp().

if (animal == "dog") // if (Clib.strcmp(animal, "dog") == 0)
if (animal < "dog") // if (Clib.strcmp(animal, "dog") < 0)
if ("dog" <= animal) // if (Clib.strcmp("dog", animal) <= 0)

In ScriptEase, the following fragment:

 118

var animal = "dog";
if (animal == "dog")
Clib.puts("hush puppy");

displays:

"hush puppy"

Literal strings and parameters
When a literal string is a parameter to a function, it is passed as a copy, that is, by
value. For example, the following code:

for (var i = 0; i < 3; i++)
{
 var str = Clib.strcat("dog", "house");
 Clib.puts(str)
}

results in the following output:

doghouse
doghouse
doghouse

Literal strings and returns
When a literal string is returned from a function by a return statement, it is
returned as a copy of the string. The following code:

for (var i = 0; i < 3; i++)
{
 var str = Clib.strcat(dog(),"house");
 Clib.puts(str)
}

function dog()
{
 return "dog";
}

results in the following output:

doghouse
doghouse
doghouse

Literal Strings and switch statements

 119

If either a switch expression or a case expression is a literal string, then the case
statement match is based on a string comparison using Clib.strcmp() logic.
The following fragment illustrates.

switch(Clib.strlwr(temp, argv[1]))
{
case "add":
{
 DoTheAddThing();
 break;
}
case "remove":
{
 DoTheRemoveThing();
 break;
}
default:
{
 Clib.puts("Whaddya want?");
}
}

Structures
Structures are created dynamically, and their elements are not necessarily
contiguous in memory. When ScriptEase encounters a statement such as:

foo.animal = "dog"

it creates a structure element of foo that is referenced by "animal" and that is a an
array of characters. The "animal" variable becomes an element of the "foo"
variable. Though foo, in this example, may be thought of and used as a structure
and animal as an element, in actuality, foo is a JavaScript object and animal is a
property. The resulting code looks like regular C code, except that there is no
separate structure definition anywhere. The following C code:

struct Point
{
 int Row;
 int Column;
}

struct Square
{
 struct Point BottomLeft;
 struct Point TopRight;

 120

}

void main()
{
 struct Square sq;
 int Area;
 sq.BottomLeft.Row = 1;
 sq.BottomLeft.Column = 15;
 sq.TopRight.Row = 82;
 sq.TopRight.Column = 120;
 Area = AreaOfASquare(sq);
}

int AreaOfASquare(struct Square s)
{
 int width, height;
 width = s.TopRight.Column - s.BottomLeft.Column + 1;
 height = s.TopRight.Row - s.BottomLeft.Row + 1;
 return(width * height);
}

can be easily converted into ScriptEase code as shown in the following.

cfunction main()
{
 var sq.BottomLeft.Row = 1;
 sq.BottomLeft.Column = 15;
 sq.TopRight.Row = 82;
 sq.TopRight.Column = 120;
 var Area = AreaOfASquare(sq);
}

cfunction AreaOfASquare(s)
{
 var width = s.TopRight.Column - s.BottomLeft.Column + 1;
 var height = s.TopRight.Row - s.BottomLeft.Row + 1;
 return(width * height);
}

Structures can be passed, returned, and modified just as any other variable. Of
course, structures and arrays are different and independent, which allows a
statement like the following.

foo[8].animal.forge[3] = bil.bo

Some operations, such as addition, are not defined for structures.

Passing variables by reference

 121

By default, lvalues in ScriptEase are passed to cfunctions by reference. If a
cfunction alters a variable, then the variable passed as an argument by the calling
routine is altered also, if it is an lvalue. So instead of the following C code which
uses address and pointer operators:

main()
{
 CQuadrupleInPlace(&i);
 ...
}

void CQuadrupleInPlace(int *j)
{
 *j += 4;
}

a ScriptEase conversion could be:

function main()
{
 ...
 QuadrupleInPlace(i);
 ...
}

cfunction QuadrupleInPlace(j)
{
 j += 4;
}

The following calls to QuadrupleInPlace() are valid in ScriptEase, but the values
passed as arguments are not changed after QuadrupleInPlace() is called. Why?
None of the arguments being passed are lvalues.

QuadrupleInPlace(8);
QuadrupleInPlace(i+1);
QuadrupleInPlace(8+1);

Variables may not be passed by value to cfunctions. However, general
ScriptEase allows functions to have primitive types passed values by value or by
reference, though composite data types can be passed only by reference. See the
sections on data types, passing information to functions, and passing information
to cfunctions for more information.

 122

Pointer operator * and address
operator &
No pointers. None. The * symbol never means pointer in ScriptEase, which
might cause seasoned C programmers to gasp in disbelief. But the situation turns
out not to be such a big deal. The pointer operator is easily replaced. For
example, *var can be replaced by var[0].

Further, in cfunctions, address arithmetic may be used to simulate some to the
functionality of pointers. The following function displays the string in the
variable s. In the first display line shows:

abcde

The second display line, which uses address arithmetic "s+2" shows:

cde

cfunction main(argc, argv)
{
 var s = "abcde";
 Screen.writeln(s);
 Screen.writeln(s+2);
}

Remember that in cfunctions, variables are passed by reference. In functions (not
cfunctions), all variables, except primitive data types, are passed by reference.
ScriptEase adds the address operator & for primitive data types. If you want to
pass a primitive data type by reference in a JavaScript function, use the address
operator in the parameter list. For example,

function SetNumbers(&n1, n2, &n3, &n4)
{
 n1 = n2 = n3 = n4 = 5;
}

Remember, the address operator & is for functions, not cfunctions.

Case statements
Case statements in a switch statement may be constants, variables, or other
statements that can be evaluated to a value. The following switch statement has
case statements which are valid in ScriptEase.

 123

switch(i)
{
 case 4:
 case foe():
 case "thorax":
 case Math.sqrt(foe()):
 case (PILLBOX * 3 - 2):
 default:
}

As described in the section on literal strings above, if either a switch expression
or a case expression is a literal string, then any comparisons are based on the
logic of Clib.strcmp(), that is, as if the comparisons were
!Clib.strcmp(switch_expr, case_expr).

Initialization code which is external to
functions
All code not inside a function block is interpreted before main() is called and can
be thought of as initialization code. When a script has initialization code outside
of functions and code inside of functions, it shares characteristics of both batch
and program scripts. Thus, the following ScriptEase code:

Clib.printf("first ");

cfunction main()
{
 Clib.printf("third.");
}

Clib.printf("second ");

results in the following output:

first second third.

Unnecessary tokens
If symbols are redundant, they are usually unnecessary in ScriptEase which
allows more flexibility in writing scripts and is less onerous for users not trained
in C. Semicolons that end statements are usually redundant and do not do
anything extra when a script is interpreted. C programmers are trained to use
semicolons to end statements, a practice that can be followed in ScriptEase.

 124

Indeed, some programmers think that the use of semicolons in ScriptEase and
JavaScript is a good to be pursued. Many people who are not trained in C wonder
at the use of redundant semicolons and are sometimes confused by their use. The
use of semicolons is personal. If a programmer wants to use them, then he
should, but if he does not want to, then he should not.

In ScriptEase the two statements, "foo()" and "foo();" are identical. It does
not hurt to use semicolons, especially when used with return statements, such as
"return;". But widespread or regular use of semicolons simply is not
necessary. Similarly, parentheses, "(" and ")", are often unnecessary. For
example, the following fragment is valid and results in both of the variables, n
and x, being equal to 7.

var n = 1 + 2 * 3 var x = 2 * 3 + 1

The following fragment is identical and is clearer, but it requires more typing
because of the addition of redundant tokens.

var n = 1 + (2 * 3); var x = (2 * 3) + 1;

The fragments could be rewritten to be:

var n = 1 + 2 * 3
var x = 2 * 3 + 1

and:

var n = 1 + (2 * 3);
var x = (2 * 3) + 1;

Which fragment is better? The answer depends on personal taste. Efforts to
standardize programming styles over the last three decades have been abysmal
failures, not unlike efforts to control the Internet.

Macros
Function macros are not supported. Since speed is not of primary importance in a
scripting language, a macro gains little over a function call. Macros simply
become functions.

Token replacement macros
The #define preprocessor directive, which can be thought of and used as a macro,
is supported by ScriptEase. As an example, the following token replacement is

 125

recognized and implemented during the preprocessing phase of script
interpretation.

#define NULL 0

Back quote strings
Back quotes are not used at all for strings in the C language. The back quote
character, `, also known as a back- tick or grave accent, may be used in
ScriptEase in place of double or single quotes to specify strings. However, strings
that are delimited by back quotes do not translate escape sequences. For example,
the following two lines describe the same file name:

"c:\\autoexec.bat" // traditional C method, which is also
 // valid in ScriptEase
`c:\autoexec.bat` // alternative ScriptEase method

Converting existing C code to
ScriptEase
Converting existing C code to ScriptEase is mostly a process of deleting
unnecessary text. Type declarations, such as int, float, struct, char, and
[], should be deleted. The following two columns give examples of how to make
such changes. C code is on the left and can be replaced by the ScriptEase code on
the right.

C ScriptEase

int i; var i; // or nothing
int foo = 3; var foo = 3;
struct var st; // no struct type
{ // Simply use st.row
 int row; // and st.col
 int col; // when needed.
}
char name[] = "George"; var name = "George";
int goo(int a, char *s, int c); var goo(a, buf, c);
int zoo[] = {1, 2, 3}; var zoo = {1, 2, 3};

Another step in converting C to ScriptEase is to search for pointer and address
operators, * and &. Since the * operator and & operator work together when the
address of a variable is passed to a function, these operators are unnecessary in

 126

the C portion of ScriptEase. Remember, variables are passed by reference to
cfunctions. If code has * operators in it, they usually refer to the base value of a
pointer address. A statement like "*foo = 4" can be replaced by "foo[0] =
4".

 Finally, the - > operator in C which is used with structures may be replaced
by a period for values passed by address and then by reference.

 127

Array object
An Array object is an object in JavaScript and is in the underlying ECMAScript
standard. Be careful not to confuse an array variable that has been constructed as
an instance of the Array object with the automatic or dynamic arrays of
ScriptEase. ScriptEase offers automatic arrays in addition to the Array object of
ECMAScript. The purpose is ease the programming task by providing another
easy to use tool for scripters. The current section is about Array objects.

An Array is a special class of object that refers to its properties with numbers
rather than with variable names. Properties of an Array object are called elements
of the array. The number used to identify an element is called an index in
brackets which follows an array name. Array indices must be either numbers or
strings.

Array elements can be of any data type. The elements in an array do not all need
to be of the same type, and there is no limit to the number of elements an array
may have.

The following statements demonstrate assigning values to arrays.

var array = new Array();
array[0] = "fish";
array[1] = "fowl";
array["joe"] = new Rectangle(3,4);
array[foo] = "creeping things"
array[goo + 1] = "etc."

The variables foo and goo must be either numbers or strings.

Since arrays use a number to identify the data they contain, they provide an easy
way to work with sequential data. For example, suppose you wanted to keep
track of how many jelly beans you ate each day, so you can graph your jelly bean
consumption at the end of the month. Arrays provide an ideal solution for storing
such data.

var April = new Array();
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;

 128

Now you have all your data stored conveniently in one variable. You can find out
how many jelly beans you ate on day x by checking the value of April[x]:

for(var x = 1; x < 32; x++)
 Screen.write("On April " + x + " I ate " + April[x] +
 " jellybeans.\n");

Arrays usually start at index [0], not index [1]. Note that arrays do not have to be
continuous, that is, you can have an array with elements at indices 0 and 2 but
none at 1.

Creating arrays
Like other objects, arrays are created using the new operator and the Array
constructor function. There are three possible ways to use this function to create
an array. The simplest is to call the function with no parameters:

var a = new Array();

This line initializes variable a as an array with no elements. The parentheses are
optional when creating a new array, if there are no arguments. If you wish to
create an array of a predefined size, pass variable a the size as a parameter of the
Array()function. The following line creates an array with a length of the size
passed.

var b = new Array(31);

In this case, an array with length 31 is created.

Finally, you can pass a list of elements to the Array()function, which creates an
array containing all of the parameters passed. For example:

var c = new Array(5, 4, 3, 2, 1, "blast off");

creates an array with a length of 6. c[0] is set to 5, c[1] is set to 4, and so on up to
c[5], which is set to the string "blast off". Note that the first element of the array
is array[0], not array[1].

Arrays may also be created dynamically. By referring to a variable with an index
in brackets, a variable is created as or converted to an array. The array that is
created is an automatic or dynamic array which is different than an instance of an
Array object created as described in this section. Automatic arrays, created as
described in this paragraph, are unable to use the methods and properties
described below, so it is recommended that you use, in most circumstances, the
new Array() constructor function to create arrays.

 129

Initializers for arrays and objects
Variables may be initialized as objects and arrays using lists inside of "{}" and
"[]". By using these initializers, instances of Objects and Arrays may be created
without using the new constructor. Objects may be initialized using a syntax
similar to the following:

var o = {a:1, b:2, c:3};

This line creates a new object with the properties a, b, and c set to the values
shown. The properties may be used with normal object syntax, for example, o.a
== 1.

Arrays may initialized using a syntax similar to the following:

var a = [1, 2, 3];

This line creates a new array with three elements set to 1, 2, and 3. The elements
may be used with normal array syntax, for example, a[0] == 1.

The distinction between Object and Array initializer might be a bit confusing
when using a line with syntax similar to the following:

var a = {1, 2, 3};

This line also creates a new array with three elements set to 1, 2, and 3. The line
differs from the first line, Object initializer, in that there are no property
identifiers and differs from the second line, Array initializer, in that it uses "{}"
instead of "[]". In fact, the second and third lines produce the same results. The
elements may be used with normal array syntax, for example, a[0] == 1.

The following code fragment shows the differences.

var o= {a:1, b:2, c:3};
Screen.writeln(typeof o +" | "+ o._class +" | "+ o);

var a = [1, 2, 3];
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

var a= {1, 2, 3};
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

The display from this code is:

object | Object | [object Object]
object | Array | 1,2,3
object | Array | 1,2,3

 130

As shown in the first display line, the variable o is created and initialized as an
Object. The second and third lines both initialize the variable a as an Array.
Notice that in all cases the typeof the variable is object, but the class, which
corresponds to the particular object and which is reflected in the _class
property, shows which specific object is created and initialized.

Array object instance properties
Array length
SYNTAX: array.length

DESCRIPTION: The length property returns one more than the largest index
of the array. Note that this value does not necessarily
represent the actual number of elements in an array, since
elements do not have to be contiguous.

By changing the value of the length property, you can
remove array elements. For example, if you change
ant.length to 2, ant will only have the first two members,
and the values stored at the other indices will be lost. If we
set bee.length to 2, then bee will consist of two members:
bee[0], with a value of 88, and bee[1], with an undefined
value.

SEE: Array(), getArrayLength(), setArrayLength()

EXAMPLE: // Suppose we had two arrays "ant" and "bee",
// with the following elements:

var ant = new Array();
ant[0] = 3;
ant[1] = 4;
ant[2] = 5;
ant[3] = 6;

var bee = new Array();
bee[0] = 88;
bee[3] = 99;

// The length property of both ant and bee
// is equal to 4, even though ant has twice
// as many actual elements as bee does.

 131

Array object instance methods
Array() with length
SYNTAX: new Array(length)

WHERE: length - If this is a number, then it is the length of the array to be
created. Otherwise, it is the element of a single-element array to
be created.

RETURN: object - an Array object of the length specified.

DESCRIPTION: The array returned from this function is an empty array whose
length is equal to the length parameter. If length is not a
number, then the length of the new array is set to 1, and the first
element is set to the length parameter. Note that this can also
be called as a function, without the new operator.

SEE: Automatic arrays

EXAMPLE: var a = new Array(5);

Array() with list
SYNTAX: new Array([element1, ...])

WHERE: elementN - list of elements to be in the new Array object being
created.

RETURN: object - an Array object with the elements specified.

DESCRIPTION: This function is an alternate form of the Array constructor which
initializes the elements of the new array with the arguments
passed to the function. The arguments are inserted in order into
the array, starting with element 0. The length of the new array is
set to the total number of arguments. If no arguments are
supplied, then an empty array of length 0 is created.

SEE: See Array()

EXAMPLE: var a = new Array(1,"two",three);

 132

Array concat()
SYNTAX: array.concat([element1, ...])

WHERE: elementN - list of elements to be concatenated to this Array
object.

RETURN: object - a new array consisting of the elements of the current
object, with any additional arguments appended.

DESCRIPTION: The return array is first constructed to consist of the elements of
the current object. If the current object is not an array object,
then the object is converted to a string and inserted as the first
element of the newly created array. This method then cycles
through all of the arguments, and if they are arrays then the
elements of the array are appended to the end of the return array,
including empty elements. If an argument is not an array, then it
is first converted to a string and appended as the last element of
the array. The length of the newly created array is adjusted to
reflect the new length. Note that the original object remains
unaltered.

SEE: String.concat()

EXAMPLE: var a = new Array(1,2);
var b = a.concat(3);

Array join()
SYNTAX: array.join([separator])

WHERE: separator - a value to be converted to a string and used to
separate the list of array elements. The default is an empty string.

RETURN: string - string consisting of the elements, delimited by separator,
of an array.

DESCRIPTION: The elements of the current object, from 0 to the length of the
object, are sequentially converted to strings and appended to the
return string. In between each element, the separator is added. If
separator is not supplied, then the single-character string "," is
used. The string conversion is the standard conversion, except
the undefined and null elements are converted to the empty
string "".

 133

string "".

The join() method creates a string of all of array elements. The
join() method has an optional parameter, a string which
represents the character or characters that will separate the array
elements. By default, the array elements will be separated by a
comma. For example:

var a = new Array(3, 5, 6, 3);
var string = a.join();

will set the value of "string" to "3,5,6,3". You can use another
string to separate the array elements by passing it as an optional
parameter to the .join() method. For example,

var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

creates the string "3*/*5*/*6*/*3".

SEE: Array.toString()

EXAMPLE: // The following code:

var array = new Array("one", 2, 3, undefined);
Screen.writeln(array.join("::"));

// Will print out the string "one::2::3::".

Array pop()
SYNTAX: array.pop()

RETURN: value - the last element of the current Array object. The element
is removed from the array after being returned.

DESCRIPTION: This method first gets the length of the current object. If the
length is undefined or 0, then undefined is returned. Otherwise,
the element at this index is returned. This element is then
deleted, and the length of current object is decreased by one. The
pop() method works on the end of an array, whereas, the
shift() method works on the beginning.

SEE: Array.push()

EXAMPLE: // The following code:

 134

var array = new Array("four");
Screen.writeln(array.pop());
Screen.writeln(array.pop());

// Will first print out the string "four", and
// then print out "undefined",
// which is the result of converting
// the undefined value to a string.
// The array will be empty after these calls.

Array push()
SYNTAX: array.push([element1, ...])

WHERE: elementN - a list of elements to append to the end of an array.

RETURN: number - the length of the new array.

DESCRIPTION: This method appends the arguments to the end of this array, in
the order that they appear. The length of the current Array object
is adjusted to reflect the change.

SEE: Array.pop()

EXAMPLE: // The following code:

var array = new Array(1, 2);
array.push(3, 4);
Screen.writeln(array);

// Will print the array converted
// to the string "1,2,3,4".

Array reverse()
SYNTAX: array.reverse()

RETURN: object - a new array consisting of the elements in the current
Array object in reverse order.

DESCRIPTION: If the length of the current Array object is 0, then the current
Array object is simply returned. Otherwise, a new Array object is
created, and the elements of the current Array object are put into
this new array in reverse order, preserving any empty or
undefined elements.

 135

EXAMPLE: var a = new Array(1,2,3);
var b = a.reverse();

// The following code:
var array = new Array;
array[0] = "ant";
array[1] = "bee";
array[2] = "wasp";
array.reverse();

//produces the following array:

array[0] == "wasp"
array[1] == "bee"
array[2] == "ant"

Array shift()
SYNTAX: array.shift()

RETURN: value - the first element of the current Array object. The element
is removed from the array after being returned.

DESCRIPTION: If the length of the current Array object is 0, then undefined is
returned. Otherwise, the first element is returned. This element
is deleted from the array, and any remaining elements are shifted
down to fill the gap that was created. The shift() method
works on the beginning of an array, whereas, the pop() method
works on the end.

SEE: Array.unshift(), Array.pop()

EXAMPLE: //The following code:

var array = new Array(1, 2, 3);
Screen.writeln(array.shift());
Screen.writeln(array);

// First prints out "1",
// and then the contents of the array,
// which converts to the string "2,3".

Array slice()
SYNTAX: array.slice(start[, end])

 136

WHERE: start - the element offset to start from.

end - the element offset to end at.

RETURN: object - a new array containing the elements of the current object
from start up to, but not including, element end.

DESCRIPTION: This method creates a subset of the current array. If end is not
supplied, then the length of the current object is used instead. If
either start or end is negative, then it is treated as an offset
from the end of the array, and the value length+start or
length+end is used instead. If either is beyond the length of
the array, then the length is used instead. If either is less than 0
after adjusting for negative values, then the value 0 is used
instead. The elements are then copied into the newly created
array, starting at start and proceeding to (but not including)
end.

SEE: String.substring()

EXAMPLE: // The following code:

var array = new Array(1, 2, 3, 4);
Screen.writeln(array.slice(1, -1));

// Print out the elements from 1 up to 4,
// which results in the string "2,3".

Array sort()
SYNTAX: array.sort([compareFunction])

WHERE: compareFunction - identifier for a function which expects two
parameters x and y, and returns a negative value if x < y, zero if
x = y, or a positive value if x > y.

RETURN: object - this Array object after being sorted.

DESCRIPTION: This method sorts the elements of the array. The sort is not
necessarily stable (that is, elements which compare equal do not
necessarily remain in their original order). The comparison of
elements is done based on the supplied compareFunction. If
compareFunction is not supplied, then the elements are
converted to strings and compared. Non-existent elements are
always greater than any other element, and consequently are

 137

always greater than any other element, and consequently are
sorted to the end of the array. Undefined values are also always
greater than any defined element, and appear at the end of the
Array before any empty values. Once these two tests are
performed, then the appropriate comparison is done.

If a compare function is supplied, the array elements are sorted
according to the return value of the compare function. If a and b
are two elements being compared, then:

• If compareFunction(a, b) is less than zero, sort b to a lower
index than a.

• If compareFunction(a, b) returns zero, leave a and b
unchanged to each other.

• If compareFunction(a, b) is greater than zero, sort b to a
higher index than a.

By specifying the following function as a sort function, you will
get the desired result when comparing numbers:
function compareNumbers(a, b)
{
 return a � b
}

SEE: Clib.strcmp()

EXAMPLE: // Consider the following code,
// which sorts based on numerical values,
// rather than the default string comparison.

function compare(x, y)
{
 x = ToNumber(x);
 y = ToNumber(y);

 if(x < y)
 return -1;
 else if (x == y)
 return 0;
 else
 return 1;
}

 var array = new Array(3, undefined, "4", -1);
 array.sort(compare);
 Screen.writeln(array);

 138

// Prints out the sorted array,
// which is "-1,3,4,,".
// Notice the undefined value
// at the end of the array.

Array splice()
SYNTAX: array.splice(start, deleteCount[, element1, ...])

WHERE: start - the index at which to splice in the items. If this is
negative, then (length+start) is used instead, and if it beyond the
end of the array, then the length of the array is used.

deletecount - the number of items to remove from the array.

elementN - a list of elements to insert into the array in place of
the ones which were deleted.

RETURN: object - an array consisting of the elements which were removed
from the current Array object.

DESCRIPTION: This method 'splices in' any supplied elements in place of any
elements deleted. Beginning at index start, deleteCount
elements are first deleted from the array and inserted into the
newly created return array in the same order. The elements of the
current object are then adjusted to make room for the all of the
items passed to this method. The remaining arguments are then
inserted sequentially in the space created in the current object.

SEE: Array.push()

EXAMPLE: // The following code:

var array = new Array(1, 2, 3, 4, 5);
Screen.writeln(array.splice(1, 2, 6, 7, 8);
Screen.writeln(array);

// Will print "2,3" and then "1,6,7,8,4,5".//
// The array has been modified to include
// the extra items in place of those
// that were deleted.

Array toString()
SYNTAX: array.toString()

 139

RETURN: string - string representation of an Array object.

DESCRIPTION: This method behaves exactly the same as if Array.join() was
called on the current object with no arguments. The result is a
string consisting of the string representation of the array
elements (except for null and undefined, which are empty
strings) separated by commas.

SEE: Array.join()

EXAMPLE: // The following code:

var array = new Array(1, "two", , null, false);
Screen.writeln(array.toString());

// Will print out the string "1,two,,,false".
// Note that this method is rarely called,
// rather the function ToString() is used,
// which implicitly calls this method.

Array unshift()
SYNTAX: array.unshift([element1, ...])

WHERE: elementN - a list of items to insert at the beginning of the array.

RETURN: number - the length of the new array after inserting the items.

DESCRIPTION: Any arguments are inserted at the beginning of the array, such
that their order within the array is the same as the order in which
they appear in the argument list. Note that this method is the
opposite of Array.push(), which adds the items to the end of the
array.

SEE: Array.shift(), Array.push()

EXAMPLE: var a = new Array(2,3);
var b = a.unshift(1);

 141

Blob Object
This section describes Blobs, Binary Large Objects.

The methods in this section are preceded with the Object name Blob, since
individual instances of the Blob Object are not created. For example,
Blob.get() is the syntax to use to get data from a Blob. Blob and Buffer
variables overlap. The Buffer is the newer construct, and the Blob is retained
mostly for compatibility with previous versions of ScriptEase. When necessary to
work with data in memory, use a Buffer object if possible.

Blob object static methods
Blob.get()
SYNTAX: Blob.get(BlobVar, offset, DataType)

Blob.get(BlobVar, offset, bufferLen)

Blob.get(BlobVar, offset, DataStructureDefinition)

WHERE: BlobVar - binary large object variable to use.

offset - the offset or position in the Blob from which to work.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of a structure (object)
variable.

RETURN: value - the data retrieved according to the defining parameters.

DESCRIPTION: This method reads data from a specified location of a Binary
Large Object, a Blob and is the companion function to
Blob.put(). The parameter BlobVar specifies the Blob to use.
The parameter offset specifies where, in the Blob, to get data.
The last parameter specifies the format of the data in the Blob
and, hence, determines the type of the value returned which is
the data read from the Blob.

 142

Valid values for DataType are:

UWORD8, SWORD8, UWORD16, SWORD16, UWORD24, SWORD24,
UWORD32, SWORD32, FLOAT32, FLOAT64, FLOAT80

See Clib.fread() or blobDescriptor object, below, for more
information on these DataType values.

SEE: Blob.put(), Blob.size(), _BigEndianMode, Buffer object

Blob.put()
SYNTAX: Blob.put(BlobVar[, offset], variable, DataType)

Blob.put(BlobVar[, offset], buffer, bufferLen)

Blob.put(BlobVar[, offset], SrcStruct, DataStructureDefinition)

WHERE: BlobVar - binary large object variable to use.

offset - the offset or position in the Blob from which to work.

variable - variable with data to put into a Blob.

buffer - buffer with data to put into a Blob.

SrcStruct - structure (object) with data to put into a Blob.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of an object (structure)
variable.

RETURN: number - the byte offset to the next byte following the data that
was just inserted into a Blob. If at the end of a Blob, then return
the value that equals Blob.size(Blob).

DESCRIPTION: This method puts data into a specified location of a Binary Large
Object, Blob and, along with Blob.get(), allows for direct
access to memory within a variable. The contents of such a
variable may be viewed as a packed structure. Data can be
placed at any location within a Blob. The parameter BlobVar
specifies the Blob to use. The parameter offset specifies where,
in the Blob, to write data. The third parameter is the data to

 143

in the Blob, to write data. The third parameter is the data to
write. The last parameter specifies the format of the data in the
Blob.

Blob.put() returns the byte offset for the next byte following
the section where data was just put. If the data is put at the end of
the Blob, then the return is equivalent to the size of the Blob.

If offset is not supplied, then the data is put at the end of the
Blob, or at offset 0 if the Blob is not yet defined.

The data in v is converted to the specified DataType and then
copied into the bytes specified by offset.

If DataType is not the length of a byte buffer, then it must be one
of these types:

UWORD8, SWORD8, UWORD16, SWORD16, UWORD24, SWORD24,
UWORD32, SWORD32, FLOAT32, FLOAT64, FLOAT80

See Clib.fread() or blobDescriptor object, below, for more
information on these DataType values.

SEE: Blob.get(), Blob.size(), _BigEndianMode, Buffer object

EXAMPLE: // If you were sending a pointer to data
// in an external C library and knew
// that the library expected the data
// in a packed DOS structure of the form:

struct foo
{
 signed char a;
 unsigned int b;
 double c;
};

// and if you were building this structure
// from three corresponding variables,
// then such a building function might look
// like the following:

function BuildFooBlob(a, b, c)
{
 var offset = Blob.put(foo, 0, a, SWORD8);
 offset = Blob.put(foo, offset, b, UWORD16);
 Blob.put(foo, offset, c, FLOAT64);
 return foo;

 144

}

// or, if an offset were not supplied:

BuildFooBlob(a, b, c)
{
 Blob.put(foo, a, SWORD8);
 Blob.put(foo, b, UWORD16);
 Blob.put(foo, c, FLOAT64);
 return foo;
}

Blob.size()
SYNTAX: Blob.size(BlobVar[, SetSize])

Blob.size(DataType)

Blob.size(bufferLen)

Blob.size(DataStructureDefinition)

WHERE: BlobVar - binary large object variable to use.

SetSize - size to which to set BlobVar.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of a structure (object)
variable.

RETURN: number - bytes in a Blob variable. If SetSize is passed, then that
value is returned.

DESCRIPTION: This method determines the size of a Binary Large Object, Blob.
The parameter BlobVar specifies the Blob to use. If SetSize is
provided, then the Blob BlobVar is altered to this size or created
with this size.

If DataType, bufferLen, or DataStructureDefinition are used,
Blob.size() returns the size of a Blob that would contain the type
of data item used in by Blob.get() or Blob.put(). In these cases,
these parameters specify the type to be used for converting
ScriptEase data to and from a Blob.

 145

Blob.size returns the size of a Blob which is the number of bytes
in BlobVar. If SetSize is supplied, then the return is SetSize.

SEE: Blob.get(), Blob.put(), _BigEndianMode, Buffer object

blobDescriptor object
When an object (structure) needs to be sent to a process other than the ScriptEase
interpreter, such as to a Windows API function, a blobDescriptor object must be
created that describes the order and type of data in the object to be sent. This
description tells how the properties of the object are stored in memory and is
used with functions, such as Clib.fread() and SElib.dynamicLink().

A blobDescriptor has the same data properties as the object it describes. Each
property must be assigned a value that specifies how much memory is required
for the data held by that property. Consider the following object.

Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

The following code creates a blobDescriptor object that describes the Rectangle
object defined above:

var bd = new blobDescriptor();

bd.width = UWORD32;
bd.height = UWORD32;

You can now pass bd as a blobDescriptor parameter to functions that require one.
The values assigned to the properties depend on what the receiving function
expects. In the example above, the function that is called expects to receive an
object that contains two 32-bit words or data values. If you write a
blobDescriptor for a function that expects to receive an object containing two 16-
bit words, assign the two properties a value of UWORD16.

The following values may be used for blobDescriptors.

UWORD8 Stored as a byte
SWORD8 Stored as an integer
UWORD16 Stored as an integer

 146

SWORD16 Stored as an integer
UWORD24 Stored as an integer
SWORD24 Stored as an integer
UWORD32 Stored as an integer
SWORD32 Stored as an integer
FLOAT32 Stored as a float
FLOAT64 Stored as a float
FLOAT80 Stored as a float (not available in Win32)

If a blobDescriptor describes an object property that is a string, the corresponding
property should be assigned a numeric value that is larger than the length of the
longest string the property may hold. Object methods usually may be omitted
from a blobDescriptor.

 147

Number Object
platform: All OS, All version of SE

Number object instance methods
Number toLocaleString()
SYNTAX: number.toLocaleString()

RETURN: string - a string representation of this number.

DESCRIPTION: This method behaves like Number.toString() and converts a
number to a string in a manner specific to the current locale.
Such things as placement of decimals and comma separators are
affected.

SEE: Number.toString()

EXAMPLE: var n = 8.9;
var s = n.toLocaleString();

Number toString()
SYNTAX: number.toString()

RETURN: string - a string representation of this number.

DESCRIPTION: This method behaves similarly to Number.toLocaleString() and
converts a number to a string using a standard format for
numbers.

SEE: Number.toLocaleString()

EXAMPLE: var n = 8.9;
var s = n.toString();

 149

SElib Object
The methods in the SElib object extend the functionality of JavaScript. Whereas
the Clib object extends the power of JavaScript by providing functions from the
standard C library, the SElib extends power by allowing programmers to work
with such things as directories, files, memory, windows, messages, system
operations, and script execution. The methods in the SElib object are more like
the C functions in the Clib object than JavaScript functions.

When using the methods in this section, they are preceded with the Object name
SElib, since individual instances of the SElib Object are not created. For
example, SElib.directory() is the syntax to use to get directory information in a
script.

SElib object static methods
SElib.baseWindowFunction()
SYNTAX: SElib.baseWindowFunction(hWnd, message, param1, param2)

WHERE: hWnd - a number, a handle of the window receiving the
message.

message - a number, a Windows message ID.

param1 - the first parameter of the message ID.

param2 - the second parameter of the message ID.

RETURN: value - the value returned by the base window function. If the
parameter handle is not a window with a windowFunction
created with SElib.makeWindow() or is not a window subclassed
with SElib.subclassWindow(), then the return is 0.

DESCRIPTION: Calls the base procedure of a window created with a
windowFunction in SElib.makeWindow() or subclassed with
SElib.subclassWindow(). This method is normally used within a
ScriptEase window function to pass the window parameter to the
base procedure before handling it in your own code. Remember
that if your window function returns no value, ScriptEase will
call the base procedure automatically which is the preferred

 150

call the base procedure automatically which is the preferred
method.

SEE: SElib.makeWindow(), SElib.subclassWindow(), Window object
in winobj.jsh

SElib.breakWindow()
SYNTAX: SElib.breakWindow(hWnd)

WHERE: hWnd - a number, the handle of the window being released or
destroyed.

RETURN: boolean - true on success and the window is successfully
destroyed, released, or subclassed, else false on failure.

DESCRIPTION: For Win32 and Win16

Releases control of a window controlled by
SElib.subclassWindow() or destroys a window previously
created with SElib.makeWindow(). No other windows are
affected. If hWnd is not a valid window handle, no action is
taken and true is returned.

When a window is destroyed all appropriate DestroyWindow()
functions, internal to the Windows API, are called. Any child
windows of a main window are destroyed before the main
window.

If hWnd is a window controlled by SElib.subclassWindow(),
then this method removes the WindowFunction for a window
from the message function loop.

If hWnd is not supplied, then all windows created with
SElib.makeWindow() are destroyed and all subclassing ends.

SEE: SElib.makeWindow()

SElib.compileScript()
SYNTAX: SElib.compileScript(codeToCompile[, isFile])

WHERE: codeToCompile - a string with ScriptEase statements or a
filename of a script file.

 151

filename of a script file.

isFile - a boolean telling whether or not codeToCompile is a
filename or a string with statements. The default is false
indicating that codeToCompile is a string consisting of
ScriptEase statements.

RETURN: buffer - the compiled code in a ScriptEase buffer. Normally, this
buffer of compiled code is saved to a file.

DESCRIPTION: Compiles a ScriptEase script into executable code which is
normally written to a file with an extension of ".jsb" and referred
to as a ScriptEase binary file. This compiled code is the same
code that is created when the /bind option is used with the Pro
version of ScriptEase Desktop and the code is bound in an
executable ".exe" file.

Compiled code may be executed in two ways. First, the compiled
code may be passed to the SElib.interpret() method as the Code
parameter. The SElib.interpret() method executes compiled code
in the same way that it does text script. Second, a ScriptEase
binary file may be executed by a ScriptEase interpreter, such as
sewin32.exe. This second way is the most common way to
execute compiled code. There are three basic ways that a
ScriptEase script file may be run:

• A text script, as typed by a programmer, may be called using
an interpreter program, such as sewin32.exe. The interpreter
reads the text and performs all the statements in it. Running a
script in this way results in the slowest overall execution
speed since the interpreter must preprocess, tokenize, and
run the file.

• A text script may be compiled using the
SElib.compileScript() method and written to a ScriptEase
binary file. A ScriptEase binary file may also be called by an
interpreter program, such as sewin32.exe. But overall
execution time is faster since the first two steps,
preprocessing and tokenizing, are already done by
SElib.compileScript(). The compiled code of a script is the
same as the compiled code of an executable file produced
using the /bind option of the Pro version.

• A text script can be compiled using the /bind option of the
Pro version. The script is compiled, into the same form as

 152

Pro version. The script is compiled, into the same form as
when using SElib.compileScript() but is physically attached
to the pertinent executable part of an interpreter, such as
sewin32.exe. The compiled file is an executable file with an
extension of ".exe" and can be run as a stand alone program.

See the section on "Running a script" in the manual or help file
for more information on executing ScriptEase scripts.

ScriptEase binary files are called in the same way as text scripts,
either ".jse" or ".jsh" files. Assume that a file named testobj.jse
has been compiled with SElib.compileScript() to testobj.jsb. The
invocations of either file by an interpreter do the same thing. For
example, both lines below accomplish the same thing when run
as a command line.

sewin32.exe testobj.jse sewin32.exe testobj.jsb

The second line using ".jsb" executes faster, in overall time, that
is, it begins executing more quickly.

In a like manner, assume that a file named testinc.jsh has been
compiled with SElib.compileScript() to testinc.jsb. Either file
may be included in a script using the preprocessor directive
#include. Both lines of script below accomplish the same
thing.

#include "testinc.jsh" #include "testinc.jsb"

The second line executes faster since the code in that file is
precompiled. This include example points to another difference
between the /bind option and the SElib.compileScript() method.
The /bind option results in a stand alone executable file. The
SElib.compileScript() method allows the flexibility of
precompiling sections of code that may be used in other scripts
or of having a complete precompiled program. Complete
programs compiled by either method execute at the same speed,
at actual run time.

A compiled ScriptEase binary file may also be run from a script
by using the SElib.interpret() method, using the
INTERP_COMPILED_SCRIPT flag.

 153

A ScriptEase binary file has 4 bits that identify it as a compiled
script and 16 bytes for a checksum to make sure that the file has
not been altered. Compiled scripts are implemented at a very low
level which allows ScriptEase binary files to be included in a
script, as already described. But, there is another benefit. A
programmer may use file extensions other than the default ".jsb".

ScriptEase comes with a script, compile.jse, which automates the
process of compiling a text script to a ScriptEase binary file.

SEE: SElib.interpret(), SElib.interpretInNewThread(), compile.jse

EXAMPLE: // Compile the script file, myscript.jse,
 // to the ScriptEase
 // binary file, myscript.jsb.
function main(argc, argv)
{
 // Filename of the script to compile
 var infile = "Myscript.jse";
 // Filename for the compiled code
 var outfile = "Myscript.jsb";

 // Compile the script file
 // into compiled code.
 // Argument true indicates that infile is a
filename
 var compiledScript = SElib.compileScript(infile,
true);

 // If the returned buffer has code in it,
 // save it to a file.
 if(compiledScript != null)
 {
 var outfp = Clib.fopen(outfile, "w");
 if(outfp == null)
 {
 Clib.fprintf(stderr,
 "Could not open file \"%s\"\n",
 outfile);
 Clib.fclose(outfp);
 }
 else
 {
 Clib.fwrite(compiledScript,
 getArrayLength(compiledScript), outfp);
 Clib.fclose(outfp);
 }
 }

 154

}

SElib.directory()
SYNTAX: SElib.directory([filespec[, subdirs[, includeAttr[, requireAttr]]]])

WHERE: filespec - string specification for files to find. The specification
must be consistent with the operating system being used and may
include wildcard characters. A file specification may include
path specifications, both full and partial.

subdirs - a boolean as to whether or not to include subdirectories
in file search. The default is false, which limits the search for
filespec to the current directory.

includeAttr - specify the file attributes to include in the file
search. Only files with one of the attributes specified will be
included in the array of file names and information retrieved.
Attribute flags that do not apply to an operating system are
ignored. If includeAttr is 0, only files with no attributes are
included. The default value is:

FATTR_RDONLY|FATTR_SUBDIR|
FATTR_ARCHIVE|FATTR_NORMAL

File attributes are set using the following values:

FATTR_RDONLY Read-only file
FATTR_HIDDEN Hidden file
FATTR_SYSTEM System file
FATTR_SUBDIR Directory
FATTR_ARCHIVE Archive file

More than one file attribute can be specified by using the bitwise
or operator, "|". For example, to find files with the hidden or
system attributes set, use the following expression:

FATTR_HIDDEN | FATTR_SYSTEM

A file attribute may be excluded from array of files returned by
using the bitwise not operator, "~". For example, to exclude
subdirectories, use the following expression:

~FATTR_SUBDIR

 155

requireAttr - specify attributes that files are required to have to
be included in the array of file names and information retrieved.
Files must have at least these attributes. The difference between
the two file attributes specifications is that files must have at
least one of the attributes specified by includeAttr but must have
all the attributes specified by requireAttr. The default value is 0.

RETURN: object - an array of objects with information about the file names
retrieved. If no files or directories match the specifications of the
parameters, a null is returned. Each element of the array has the
following properties:

.name Full file name, including the filespec
path.
.attrib File flags, as defined above in IncAttr.
.size Size of file, in bytes.
.access Date and time of last file access.
.write Date and time of last write to file.
.create Date and time of file creation.

For example, if you use the following line of code:

var FileList = SElib.directory("*.*");

The information for the first file retrieved is accessed using:

FileList[0].name
FileList[0].attrib
FileList[0].size
FileList[0].access
FileList[0].write
FileList[0].create

The information for the second file is accessed using:

FileList[1].name
...

DESCRIPTION: Find files in a directory or subtree that match path and file
specifications and have specified file attributes set. Remember
the directory names are treated like file names and have the
FATTR_SUBDIR attribute set. Matching files and information
about them are retrieved and returned in an array of objects.
These objects are also structures.

This method may be used in many ways. One way, besides the
obvious way of getting information about files, is to test for the

 156

obvious way of getting information about files, is to test for the
existence of a file or file specification. If the file specified does
not exist, the return is null.

SEE: SElib.fullpath(), SElib.splitFilename, File object in fileobj.jsh

EXAMPLE: // The following routine lists
 // all files matching FileSpec,
 // except subdirectory entries,
 // in the current directory of a script.
function ListDirectory(FileSpec)
{
 var FileList = SElib.directory(FileSpec, False,
 ~FATTR_SUBDIR)
 if (null == FileList)
 Clib.printf(
 "No files found for search spec \"%s\".\n",
 FileSpec)
 else
 {
 var FileCount = getArrayLength(FileList);
 for (var i = 0; i < FileCount; i++)
 Clib.printf(
 "%s\tsize = %d\tCreate date/time = %s\n",
 FileList[i].name, FileList[i].size,
 Clib.ctime(FileList[i].Create));
 }
}

SElib.doWindows()
SYNTAX: SElib.doWindows(immediateReturn)

WHERE: immediateReturn - if true return immediately, regardless of
messages. Default is false.

RETURN: boolean - true if any of the windows created with
SElib.makeWindow() or subclassed with
SElib.subclassWindow() are still open, that is, have not received
a WM_NCDESTROY message. Returns false if there are no
valid windows registered with the ScriptEase Window Manager.

DESCRIPTION: For Win32 and Win16

Starts the ScriptEase Window Manager to activate whatever
windows have been created or subclassed with
SElib.makeWindow() or SElib.subclassWindow. All such
windows are registered with the Window Manager. The Window

 157

windows are registered with the Window Manager. The Window
Manager controls the messages sent to the windows in its
registry and routes them to their respective window functions.

There should not be more than one copy of the Window Manager
running at a time. Generally, SElib.doWindows() is called only
once with a succession of windows. All windows created or
subclassed after a call to SElib.doWindows() are automatically
registered with the Window Manager.

The flags that define window messages are kept in the library
file, message.jsh.

If the optional parameter immediateReturn is true, the method
returns immediately, regardless of whether there are messages
for this application or not. Otherwise this method yields control
to other applications until a message has been processed, subject
to filtering by SElib.messageFilter(), for this application or for
any window subclassed by this application.

The example below displays a standard Windows window. If
you click anywhere in the window, the string "You clicked me!"
is displayed briefly in the middle of the window. When the
window is closed, the script terminates.

SEE: SElib.makeWindow(), SElib.subclassWindow(), Window object
in winobj.jsh

EXAMPLE: #include <message.jsh>
#include <window.jsh>
function main()
{
 var hWnd = SElib.makeWindow(null, null,
 WindowFunction, "Display Windows' messages",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT,
 500, 350, null, 0);
 SElib.messageFilter(hWnd, WM_LBUTTONDOWN);
 while(SElib.doWindows()) ;
}

function WindowFunction(hWnd, msg, param1,
 param2, counter)
{
 if (msg == WM_LBUTTONDOWN)
 {

 158

 var msgHwnd = SElib.makeWindow(hWnd,
 "static", null, "You clicked me!",
 WS_CHILD | WS_VISIBLE,
 200, 150, 100, 50, null, 0);
 SElib.suspend(1000);
 SElib.breakWindow(msgHwnd);
 }
}

SElib.fullpath()
SYNTAX: SElib.fullpath(pathspec)

WHERE: pathspec - a partial path specification.

RETURN: string - the pathspec filled out to its full path specification or null
if the path specification is invalid.

DESCRIPTION: Converts pathspec to a full and absolute path specification. The
file name part of the path specification is not affected and may
have wildcards. The drive and directory part of the path
specification is converted or fleshed out to a full and absolute
path.

The exact behavior of SElib.fullpath() depends on the underlying
operating system. Some results can vary when using system
specific path specifications.

SEE: SElib.directory(), SElib.splitFilename(), File object in fileobj.jsh

EXAMPLE: // The following returns the full spec
 // of current dir
function CurDir()
{
 return SElib.fullpath(".")
}
 // The following returns the full spec
 // of a parent dir
function CurDir()
{
 return SElib.fullpath("..\")
}
 // The following works in DOS or OS/2
 // to test whether a drive
 // letter is valid
function ValidDrive(DriveLetter)
{

 159

 Clib.sprintf(CurdirSpec, "%c:.", DriveLetter)
 return (null != SElib.fullpath(CurdirSpec))
}

SElib.getObjectProperties()
SYNTAX: SElib.getObjectProperties(object[, includeUndefined])

WHERE: object - an object from which to get its properties.

includeUndefined - a boolean, determines whether or not to
include properties with undefined values. The default is false,
that is, do not include properties with undefined values.

RETURN: object - an array of strings which are the names of the properties
of the object. The array is terminated with a null, that is, the last
element is always null.

DESCRIPTION: Get the names of the properties of an object in an array of strings
in which each element is a property name and the last element is
null.

The parameter includeUndefined must be true to return
properties that are not defined. If includeUndefined is false, then
only properties that have defined data are included. The default
for includeUndefined is false.

The final member of the returned array returned is always null. If
the parameter object is not defined or contains no properties,
then the return is an array with a single element set to null.

SEE: For/in statement

EXAMPLE: var Point;
Point.row = 5;
Point.col = 8;
Point.height;
DisplayAllStructureMembers(Point);

function DisplayAllStructureMembers(ObjectVar)
{
 Screen.writeln("Object Properties:");
 var MemberList =
SElib.getObjectProperties(ObjectVar);
 for (var i = 0; MemberList[i]; i++)
 Clib.printf(" %s\n", MemberList[i]);
}

 160

// This fragment produces the following output.
// Object Properties:
// row
// col

SElib.inSecurity()
SYNTAX: SElib.inSecurity(infoVar)

WHERE: infoVar - variable to be passed to the ScriptEase security filter.
Your application and its security filter may use it however you
choose.

RETURN: boolean - true if there is a security filter, else false.

DESCRIPTION: Calls the security manager's initialization routine and is the only
way your application can directly interact with the security filter.
It is provided so you can reinitialize the security system,
probably to change the security level of a script.

Typically, you use this method when executing a particularly
insecure piece of code, such as a script received over a network,
to downgrade the security level, restoring it when the script
completes.

SElib.instance()
SYNTAX: SElib.instance()

RETURN: number - instance handle of the current ScriptEase session, that
is, for the current script.

DESCRIPTION: For Win32

Get the instance handle of the currently executing script. This
handle may be used with Windows API functions that use an
instance handle.

SEE: Screen.handle(), SElib.makeWindow(), icon.jsh, pickfile.jsh,
dropper.jse, iconmany.jse

EXAMPLE: var hScript = SElib.instance()

 161

SElib.interpret()
SYNTAX: SElib.interpret(codeToInterpret[,howToInterpret[,security]])

WHERE: codeToInterpret - a string with ScriptEase code statements to be
interpreted as script statements or the file specification, path and
file name, of a script file. If the interpreted code receives
arguments, they are put at the end of the codeToInterpret string--
somewhat like a command line string.

howToInterpret - tells how to handle the interpreted code. The
following flag values may be combined using the bitwise or
operator, "|". The value must be 0 or one of the following
choices:

• INTERP_FILE
CodeToInterpret is the file name of a script, followed by any
arguments.

• INTERP_TEXT
CodeToInterpret is a string of source code with no
arguments attached.

• INTERP_LOAD
Load code into same function and variable space as the script
that is calling SElib.interpret(). All functions, and
variables are supplied to the code being called, which can
modify and use them. If the code being called has similarly
named functions or variables as the calling code, functions in
the called code replace those in the calling code.

• INTERP_NOINHERIT_LOCAL
Local variables are not inherited by the interpreted code.

• INTERP_NOINHERIT_GLOBAL
Global variables are not inherited by the interpreted code as
globals.

• INTERP_COMPILED_SCRIPT
Run a script compiled with SElib.compileScript().This flag
only works with the INTERP_TEXT flag.

INTERP_FILE and INTERP_TEXT are mutually exclusive. If
neither is supplied the interpreter decides whether
codeToInterpret is a file or string of code.

 162

These flags tell the computer how to interpret the parameter
codeToInterpret. If one is not supplied, the computer parses the
string and determines the most appropriate way to interpret it.

security – the filename of the security script to run this
interpreted script using. This is exactly like the security script
passed to SE:Desk using the ‘/secure=’ option, except it applies
only to the script you are about to interpret. Remember that
security is additive; any existing security is still in effect for the
interpreted script as well.

RETURN: value - the return of the interpreted code.

DESCRIPTION: Interprets a string as if it were script. More flexible than the
JavaScript eval() function since it interprets a file as well as a
string and allows more control over how interpreted code inherits
variables from the script that calls SElib.interpret(). By
default, all variables in a script are inherited as global variables.

There is no specific return for an error. To trap an error use the
try/catch error trapping statements.

The SElib.interpret() method may not be used with scripts
that have been compiled into executable files using the /bind
option of the Pro version of ScriptEase Desktop.

SEE: SElib.interpretInNewThread(), SElib.spawn()

EXAMPLE: // The following interpreted code displays "Hello
world"
SElib.interpret('Screen.writeln("Hello world")',
INTERP_TEXT);
 // The following interprets
 // the file jseedit.jse with
 // autoexec.bat as an argument to the script
SElib.interpret("jseedit.jse c:\\autoexec.bat",
 INTERP_FILE);

SElib.interpretInNewThread()
SYNTAX: SElib.interpretInNewThread(filename, codeToInterpret)

WHERE: filename - the name of a script file with ScriptEase code. Use
null if not interpreting a file.

 163

codeToInterpret - a string variable with one or more ScriptEase
statements to interpret, if not using a file. If a file is being
interpreted, the string is used as command line arguments for the
script file being interpreted.

RETURN: number - the ID of the thread containing the new instance of
ScriptEase. Depending on the operating system, returns 0 or -1
on an error.

DESCRIPTION: For Win32 and OS/2, that is, for operating systems that support
multithreading. Not supported for operating systems that do not
support multithreading, such as DOS and 16-bit Windows.

This method creates a new thread within the current ScriptEase
process and interprets a script within that new thread. The new
script runs independently of the currently executing thread. This
method differs from SElib.interpret() in that the calling thread
does not wait for the interpretation to finish and differs from
SElib.spawn() in that the new thread runs in the same memory
and process space as the currently running thread.

A script writer must ensure any synchronization among threads.
ScriptEase data and globals are on a per-thread basis.

If the parameter filename is not null, then it is the name of a file
to interpret, and the parameters, filename and codeToInterpret
are parsed as if being command-line parameters to a main()
function.

If the parameter filename is null, then codeToInterpret is treated
as JavaScript code, a string with ScriptEase statements, and is
interpreted directly.

SEE: SElib.interpret(), SElib.spawn()

EXAMPLE: // See usage in threads.jse and httpd.jse

SElib.makeWindow()
SYNTAX: SElib.makeWindow(parent, class, windowFunction, text, style,

col, row, width, height, createParam, utilityVar)

WHERE: parent - window handle of the parent window of this window,
which would mean that this window is a subwindow. Pass null if
this window is being created on the desktop, without a specific

 164

this window is being created on the desktop, without a specific
window being its parent. If null, the desktop is the parent.

class - a string or an object. If this parameter is a string, it must
be one of the pre-existing Windows classes:

button
combobox
edit
listbox
scrollbar
static

If this parameter is an object or structure it may have the
following properties:

.style Windows class style

.icon icon bitmap for minimized window

.cursor appearance when over this window

.background window background color

Properties that are not assigned values receive default values. In
general, the class defines the behavior of a window.

windowFunction - an identifier, the function that is called
whenever Windows sends a message to this window. Use null if
no function is to be called to intercept windows messages. In the
case of null, default functions for Windows are called. If
specified, the windowFunction should return a number or
nothing. Use the actual identifier of the function and not a string
with its name. For example, use MyWinFunction instead of
"MyWinFunction". The windowFunction is described in greater
detail in the description section.

text - the window title or caption that appears in the title bar. Use
null or "" if the window has no title.

style - the style of the window. Windows has many predefined
styles that may be joined into one style by using the bitwise or
operator, "|". Windows styles are defined with "WS_" at the
beginning. For example, WS_MAXIMIZEBOX |
WS_THICKFRAME would define a window that has a thick frame
and a maximize box. The "WS_" windows styles are standard
definitions used in Windows programming and may be found in

 165

winobj.jsh or window.jsh.

col - the left most column of the window, expressed in pixels.

row - the top most row of the window, expressed in pixels.
Together, col and row define the top left corner of the window.
Use CW_USEDEFAULT for col and row to let Windows set the
position.

width - the total width of the window, expressed in pixels.

height - the total height of the window, expressed in pixels. By
using col, row, width, and height, a window can be place
precisely on a screen.

createParam - normally set to null. If used, it may be a number or
object that is passed with the Windows WM_CREATE message
when creating a window.

utilityVar - any variable that a scripter chooses. This variable is
passed to the windowFunction when it receives a Windows
message. The windowFunction may alter the utilityVar. An
object or structure may be used, in which case many values may
be passed and altered as properties of the object. One practice is
to use an object to keep up with the properties of a window,
sometimes including its subwindows. This object is a good
vehicle for passing information.

RETURN: number - the handle of the window created on success, else null.

DESCRIPTION: For Win32 and Win16

This method is the basic function for creating windows that will
be opened and managed by ScriptEase. This function provides
the basis for normal windows operations when windows created
by it are opened. This function registers the created window with
ScriptEase, so that when the .doWindows() method is executed,
this window will be properly managed.

If the class of the Window is unknown, it is registered as a new
class.

The windowFunction, a parameter of SElib.makeWindow(), is a
function that is specified to intercept and handle all Windows
messages that are posted to this window, the window just created
by SElib.makeWindow(). The windowFunction will intercept all

 166

by SElib.makeWindow(). The windowFunction will intercept all
messages sent its associated window which slows execution of a
script. Use SElib.messageFilter() to limit the messages that are
actually intercepted by the windowFunction. If the
windowFunction has a return value, it must be a number, which
seems limiting. But remember, that you may use utilityVar as a
variable for receiving information and for passing information.

The definition of a windowFunction must follow the following
format:

function MyWinFunction(hWnd, Message, Param1,
 Param2 [, utilityVar])
{
// Body of the window function
}

hWnd - a number, Window handle for the window which
receives these Windows messages. It is the handle of the window
created by SElib.makeWindow() that specified this function to
receive messages.

Message - a number, a message ID. Windows defines message
IDs and posts them to windows.

Param1 - a parameter that may accompany a message.

Param2 - a second parameter that may accompany a message.

utilityVar - an optional variable that is specified in the
SElib.makeWindow() call that created this window. This
variable is often an object/structure with several pieces of
information which may be altered. If it is, the changes are
available to other functions that may use the variable while
SElib.doWindows() is active and is showing and managing the
windows under its control.

SEE: SElib.doWindows()

EXAMPLE: var InfoStruct;
InfoStruct.width = 400;
InfoStruct.height = 300;

var hWnd = SElib.makeWindow
 (
 0, null, MyWinFunction,

 167

 "My Window", WS_MAXIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT,
 InfoStruct.width, InfoStruct.height,
 null, InfoStruct
);

function MyWinFunction(hWnd, Msg, Param1,
 Param2, UtilVar)
{
 // Body of function to process messages.
 // Notice that UtilVar receives InfoStruct
}

SElib.messageFilter()
SYNTAX: SElib.messageFilter(hWnd[, message[, ...]])

WHERE: hWnd - a number, the handle of a window created by
SElib.makeWindow() or subclassed with
SElib.subclassWindow().

message - one or more messages to be processed by the window
to which hWnd points.

RETURN: object - an array of messages being filtered prior to this call to
SElib.messageFilter(). Returns null if no messages are in the
filter, that is, all messages are passed through to ScriptEase
functions or if hWnd is not a handle for a window processed by
SElib.makeWindow() or SElib.subclassWindow().

DESCRIPTION: For Win32 and Win16

Restricts the messages being processed by windows created with
SElib.makeWindow() or subclassed with
SElib.subclassWindow(). Scripts run much faster if windows
only process the messages that they act on, that is, just the
messages that they need. Initially, there are no message filters so
all messages are processed.

Calling this method with no parameters removes all message
filtering.

SEE: SElib.makeWindow(), SElib.subclassWindow()

 168

SElib.multiTask()
SYNTAX: SElib.multiTask(on)

WHERE: on - a boolean determining whether multitasking is on or off.
Default is true.

RETURN: void.

DESCRIPTION: For Win16

Turns multitasking of programs on or off. Normally,
multitasking is enabled and should be turned off only for very
brief and critical sections of code. No messages are received by
the current program or any other program while multitasking is
off.

SElib.multiTask() is additive, meaning that if you call
SElib.multiTask(false) twice, then you must call
SElib.multiTask(true) twice before multitasking is
resumed.

The example below empties the clipboard. Multitasking is turned
off during this brief interval to ensure that no other program tries
to open the clipboard while this program is accessing it.

SEE: SElib.suspend()

EXAMPLE: SElib.multiTask(false);
SElib.dynamicLink("USER", "OPENCLIPBOARD", SWORD16,
 PASCAL, Screen.handle());
SElib.dynamicLink("USER", "EMPTYCLIPBOARD", SWORD16,
PASCAL);
SElib.dynamicLink("USER", "CLOSECLIPBOARD", SWORD16,
PASCAL);
SElib.multiTask(true);

SElib.peek()
SYNTAX: SElib.peek(address[, dataType])

WHERE: address - the address in memory from which to get data, that is, a
pointer to data in memory.

dataType - the type of data to get, or thought of in another way,
the number of bytes of data to get. UWORD8 is the default.

 169

RETURN: value - returns the data specified by dataType

DESCRIPTION: Reads or gets data from the position in memory to which the
parameter address points. The parameter dataType may have the
following values:

UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

These values specify the number of bytes to be read and
returned.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SEE: SElib.poke(), Blob.get(), Clib.memchr(), Clib.fread() for more
information on the dataType values

EXAMPLE: var v = "Now";
 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"
Screen.writeln(v);

// See usage in clipbrd.jsh, com.jsh,
// dde.jsh, ddesrv.jsh, and winsock.jsh

SElib.pointer()
SYNTAX: SElib.pointer(varName)

WHERE: varName - the name or identifier of a variable

RETURN: number - the address of, a pointer to, the variable identified by
varName.

DESCRIPTION: Gets the address in memory of a variable. The pointer points to
the first byte of data in a variable. The variable may be a

 170

the first byte of data in a variable. The variable may be a
primitive data type: byte, integer, or float, or it may be a single
dimension array of bytes, integers, or floats, which includes a
string. If the variable is an array, then the address returned points
to the first byte of the first element of the array. The parameter
varName may also identify a Blob variable since Blobs are
actually byte arrays. Other types of data are not allowed.

For computer architectures that distinguish between near and far
memory addresses, the value returned by SElib.pointer() is a far
address or pointer.

ScriptEase data is guaranteed to remain fixed at its memory
location only as long as that memory is not modified by a script.
Thus, a pointer is valid only until a script modifies the variable
identified by varName or until the variable goes out of scope in a
script. Putting data in the memory occupied by varName after
such a change is dangerous. When data is put into the memory
occupied by varName, be careful not to put more data than will
fit in the memory that the variable actually occupies.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SEE: SElib.peek(), SElib.poke(), Clib.memchr(), Blob object

EXAMPLE: var v = "Now";
 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"
Screen.writeln(v);

// See usage in fileobj.jsh, batch.jsh,
// memsrch.jsh, touch.jsh, and pickfile.jsh

 171

SElib.poke()
SYNTAX: SElib.poke(address, data[, dataType])

WHERE: address - the address in memory from which to get data, that is, a
pointer to data in memory.

data - data to write directly to memory. The data should match
the dataType.

dataType - the type of data to get, or thought of in another way,
the number of bytes of data to get. UWORD8 is the default.

RETURN: number - the address of the byte after the data just written to
memory.

DESCRIPTION: Writes data to the position in memory to which the parameter
address points. The data to be written must match the dataType.
The parameter dataType may have the following values:

UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

These values specify the number of bytes to be written to
memory.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SEE: SElib.peek(), Blob.put(), Clib.memchr(), Clib.fread for more
information on the dataType values

EXAMPLE: var v = "Now";
 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"

 172

Screen.writeln(v);

// See usage in bmp.jsh, clipbrd.jsh,
// dde.jsh, ddecli.jsh, and dropsrc.jsh

SElib.ShellFilterCharacter()
SYNTAX: SElib.ShellFilterCharacter(functionFilterCharacter, allKeys)

WHERE: functionFilterCharacter - identifier, the name of a ScriptEase
function to use to filter characters.

allKeys - boolean, specifies whether the functionFilterCharacter
is called for every keystroke or just for keys that are not ordinary
printable characters, such as function keys. The return of the
method Clib.isprint() corresponds to the difference in keys that
allKeys affects.

RETURN: void.

DESCRIPTION: Adds a character filter function to a ScriptEase shell. When
ScriptEase is running as a command shell, that is, when a
ScriptEase interpreter is executed with no arguments, this
methods allows the installation of a function to be called when
keystrokes are pressed. For example, the autoload.jse script that
ships with ScriptEase uses this method to implement command
line history and filename completion.

The function, functionFilterCharacter, must conform to the
following:

function functionFilterCharacter(command,
 position, key, extended, alphaNumeric)

command - string, the current string on the shell command line.
This string is read/write and may be changed by this function.

position - number, the current cursor position within the
command string. This position may be altered by this function.

key - number, the key being pressed. This parameter may be
altered by the function. Set key to zero, 0, to ignore keyboard
input.

extended - boolean, true if the current keystroke is an extended

 173

keyboard character, that is, a function key, a keyboard
combination, and so forth.

alphaNumeric - true if the current keystroke is an alphabetic or
numeric key. The return of the method Clib.isalnum()
corresponds to alphaNumeric.

return - boolean, true if the command line must be redrawn or the
cursor position moved, based on the actions in this function.

SEE: SElib.ShellFilterCommand(), autoload.jse, Clib.isalnum()

SElib.ShellFilterCommand()
SYNTAX: SElib.ShellFilterCommand(functionFilterCommand)

WHERE: functionFilterCommand - identifier, the name of a function to
use to filter commands to a ScriptEase shell.

RETURN: void.

DESCRIPTION: Adds a command filter function to a ScriptEase shell. When
ScriptEase is running as a command shell, that is, when a
ScriptEase interpreter is executed with no arguments, this
method allows a function to be installed which is called when
commands are entered in a shell. For example, the autoload.jse
script that ships with ScriptEase uses this method to implement
commands, such as CD and TYPE.

The function, functionFilterCommand, must conform to the
following:

function functionFilterCommand(command)

command - a string, the current string on a shell command line.
This string is read/write and may be changed by the function. A
ScriptEase shell executes the command after returning from this
function. To prevent ScriptEase from executing any command
set command to a zero-length string, for example,
command[0]='\0', but not command="".

Before passing a command line to a filter function, ScriptEase
strips leading white space from the beginning and end of the
command string. Also, any redirection on a command line is not
seen by this function, since redirection is handled internally by

 174

seen by this function, since redirection is handled internally by
ScriptEase. For example, if a command line string is
"dir>dir.txt", then this function only sees the string "dir".

SEE: SElib.ShellFilterCommand(), autoload.jse

SElib.spawn()
SYNTAX: SElib.spawn(mode, execSpec[, arg[, ...]])

WHERE: mode - a number indicating how to spawn or execute the file
named by execSpec. The parameter mode may be one of the
following values though not all values are valid on all operating
systems:

• P_WAIT Wait for a child program to complete before
continuing. (All platforms)

• P_NOWAIT A script continues to run while a child program
runs. In windows, a successful call with mode P_NOWAIT
returns the window handle of the spawned process.
(Windows and OS/2)

• P_SWAP Like P_WAIT, but swap out ScriptEase to create
more room for the child process. P_SWAP will free up as
much memory as possible by swapping ScriptEase to
EMS/XMS/INT15 memory or to disk (in TMP or TEMP or else
current directory) before executing the child process (thanks
to Ralf Brown for his excellent spawn library). (DOS only)

• P_OVERLAY The script exits and the child program is
executed in its place. (DOS 16-bit)

execSpec - a string with the path and filename of an executable
file or a ScriptEase script.

arg - one or more values to passed as parameters to the file to be
executed.

RETURN: void - if the mode is P_OVERLAY.

number - if the mode is P_WAIT, the return is the exit code of the
child process, else it is -1.

number - if the mode is P_NOWAIT or P_SWAP, the return is the
identifier of the child process, else it is -1.

 175

identifier of the child process, else it is -1.

DESCRIPTION: Launches another application. The parameter mode determines
the behavior of the script after the spawn call, while execSpec is
the name of the process being spawned. Any arguments to the
spawned process follow execSpec.

The parameter execSpec may be the path and filename of an
executable file or the name of a ScriptEase script. If it is a script,
the spawned script runs from the same instance of ScriptEase as
the calling script. A spawned script does not cause another
instance of the interpreter to be launched. A script that has been
bound with the ScriptEase /bind function cannot be spawned
from the same instance as the calling script.

The parameter execSpec is automatically passed as argument 0.
ScriptEase implicitly converts all arguments to strings before
passing them to the child process.

SElib.spawn() searches for execSpec in the current directory
and then in the directories of the PATH environment variable. If
there is no extension in execSpec, SElib.spawn() searches for
file extensions in the following order: com, exe, bat, and cmd.

If a batch file is being spawned in 16-bit DOS and the
environment variable COMSPEC_ENV_SIZE exists, the command
processor is provided the amount of memory as indicated by
COMSPEC_ENV_SIZE. If COMSPEC_ENV_SIZE does not exist,
the command processor receives only enough memory for
existing environment variables.

A return value of -1 results when Clib.errno is set to identify
why the function failed.

SEE: SElib.interpret(), SElib.interpretInNewThread(), winexec.jsh

EXAMPLE: // The following fragment
 // calls a mortgage program,
 // mortgage.exe, which takes
 // three parameters, initial debt,
 // rate, and monthly payment, and
 // returns, in its exit code,
 // the number of months needed to pay the debt.
var months = SElib.spawn(P_WAIT,
 "MORTGAGE.EXE 300000 10.5 1000");

 176

if (months < 0)
 Screen.writeln("Error spawning MORTGAGE");
else
 Clib.printf(
 "It takes %d months to pay off the mortgage\n",
 months);

 // The arguments could also
 // be passed to mortgage.exe as
 // separate variables, as in the following.
var months = SElib.spawn(P_WAIT,
 "MORTGAGE.EXE",300000,10.5,1000);

 // The arguments could be passed
 // to mortgage.exe in a
 // variable array, provided that
 // they are all of the same
 // data type, in this case strings.
var MortgageData;
MortgageData[0] = "300000";
MortgageData[1] = "10.5";
MortgageData[2] = "1000";
var ths = spawn(P_WAIT,
 "MORTGAGE.EXE", MortgageData);

SElib.splitFilename()
SYNTAX: SElib.splitFilename(filespec)

WHERE: filespec - string specification for a file. May be a full or partial
path specification.

RETURN: object - structure containing the drive and directory, file, and
extension information contained in filespec. The structure
returned has the following properties:

.dir directory name including leading drive
 spec and trailing slash (d:\dir1\dir2\)
.name root name of file only (filename)
.ext file extension with leading period (.ext)

The three properties returned are guaranteed not to be null.

The actual characters used, such as the slash, depend on the
operating system.

DESCRIPTION: Break up a file specification, full or partial path specification,
into its component parts: drive and directory, filename, and

 177

into its component parts: drive and directory, filename, and
extension. The filespec does not have to actually exist. This
method merely divides up the filespec, as passed, according to
the conventions of the operating system without checking to see
if a drive, directory, or filename actually exists.

SEE: SElib.fullpath(), SElib.splitFilename(), File object in fileobj.jsh

EXAMPLE: // After splitting a filespec,
 // the following statement will
 // reconstruct it
var parts = SElib.splitFilename(MySpec);
var FileSpec = MySpec.dir + MySpec.name + MySpec.ext;

SElib.subclassWindow()
SYNTAX: SElib.subclassWindow(hWnd, windowFunction, utilityVar)

WHERE: hWnd - a number, the handle of an existing window to subclass.

windowFunction - an identifier, the function that is called
whenever Windows sends a message to this window. The
parameter windowFunction is the same as for
SElib.makeWindow().

utilityVar - any variable that a scripter chooses. This variable is
passed to the windowFunction when it receives a Windows
message. The parameter utilityVar is the same as for
SElib.makeWindow().

RETURN: boolean - true on success, else false if hWnd is invalid, was
created with SElib.makeWindow(), or is already subclassed.

DESCRIPTION: For Win32 and Win16

This method hooks the specified windowFunction into the
message loop for a window such that the function is called
before the window's default or previously-defined function.

The parameter hWnd is the window handle of an already existing
window to subclass.

The parameter windowFunction is the same as in the
SElib.makeWindow() method. Note that, as in the
SElib.makeWindow() method, if this method returns a value,
then the default or subclassed function is not called. If this

 178

then the default or subclassed function is not called. If this
method returns no value, the call is passed on to the previous
function. This method may be used to subclass any Window that
is not already being managed by a windowFunction for this
ScriptEase instance. If a window was created with
SElib.makeWindow() or is already subclassed then this method
fails.

Note that this method may be used, only once, with the window
handle returned by Screen.handle(). If you want to subclass the
main ScriptEase window, it is best to open another instance of
ScriptEase and subclass it rather than to subclass the instance
that is powering your script. Although it is possible to subclass
that window, if you try to do anything with it, you will likely get
caught in an infinite loop and hang. To undo the window
subclassing or remove a WindowFunction from the message
loop, use SElib.breakWindow().

A WindowFunction may modify UtilityVar.

In your function that handles messages for another process,
certain limits are set as to what you can do with system
resources. For example, an open file handle is invalid while
processing a message for another program, because Windows
maps file handles into a table for programs. To work around this
problem, you may send a message to one of your ScriptEase
windows to handle the processing. This action switches
Windows' tables to your program while handling that
SendMessage.

SEE: SElib.makeWindow(), Window object in winobj.jsh

SElib.suspend()
SYNTAX: SElib.suspend(milliSeconds)

WHERE: milliSeconds - a number, the time in thousandths of a second to
suspend program execution.

RETURN: void.

DESCRIPTION: Suspends script or program execution for the time interval
specified in milliSeconds. The next statement in a script will

 179

specified in milliSeconds. The next statement in a script will
execute at the end of the delay.

True accuracy to the exact millisecond is not guaranteed and is
only closely approximated according to the accuracy provided by
the underlying operating system. This method allows a computer
to devote more time to other processes and can be used to give
the processor time to complete other tasks before calling the next
line in a script.

The example below spawns a copy of Windows Notepad, puts
the date and time into the document by simulating the selection
of Time/Date from the Edit menu, and then displays the line
"You asked for the time?". The SElib.suspend() method gives the
processor time to finish completing the menu command before
entering the text into Notepad. If Keystroke() were called
immediately after the call to MenuCommand(), the text would be
sent to Notepad while the menu item was still being selected and
would be garbled.

SEE: SElib.spawn(), Clib.ctime(), Date object

EXAMPLE: #include <menuctrl.jsh>
#include <keypush.jsh>
var hWnd = SElib.spawn(P_NOWAIT, "notepad.exe");
MenuCommand(hWnd, "Edit|Time");
SElib.suspend(300);
KeyStroke("\nYou asked for the time?");

SElib.windowList()
SYNTAX: SElib.windowList(hWnd)

WHERE: hWnd - a number, the handle of the window for which to find its
child windows.

RETURN: object - an array of window handles for all the child windows of
hWnd.

DESCRIPTION: For Win32 and Win16

Get the handles of all child windows of the window designated
by hWnd. I hWnd is not passed, then get the handles of the
windows on the desktop which amount to all the parent
windows.

 180

windows.

SEE: SElib.makeWindow(), Window object in winobj.jsh

Dynamic links
For Win32, Win16, and OS/2

The dynamic link method, which varies in usage among the three platforms that
support it, allows flexibility when making calls to dynamic link libraries, DLLs,
and allows access to operating-system functions, API calls, not explicitly
provided by ScriptEase. If you know the proper conventions for a call, then you
can make an SElib.dynamicLink() call in a ScriptEase function to be used
for making a system call. Such a function is referred to as a wrapper, a function
in which a system call becomes available as a function call.

There are three versions of SElib.dynamicLink(): Win32, Win16, and OS/2.
These three versions differ slightly in the way they are called. So, if you wish to
use one function in a script that will be run on different platforms, you must
create an operating system filter using preprocessor directives: #if, #ifdef,
#elif, #else, and #endif.

Since these versions are different in the way that they call
SElib.dynamicLink(), they will be treated separately.

SElib.dynamicLink() - for Win32
SYNTAX: SElib.dynamicLink(library, procedure, convention)

WHERE: library - a string, the name of the dynamic link library, DLL,
being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

convention - the calling convention to use when invoking or
using the procedure being called.

CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

 181

void if the procedure does not return a value.

DESCRIPTION: For Win32

Calls a routine in a dynamic link library, DLL. The most
common use is to use various functions in the Windows API.

All values are passed as 32-bit values. If a parameter is
undefined when dynamicLink() is called, then it is assumed that
the parameter is a 32-bit value to be filled in, that is, the address
of a 32-bit data element is passed to the function, and that
function will set the value.

If a parameter is a structure, then it must be a structure that
defines the binary data types in memory to represent the
following variable. Before calling the DLL function, the
structure is copied to a binary buffer as described in Blob.put()
and Clib.fwrite(). When calling the DLL function, a descriptor
argument must precede the structured parameter, and this
descriptor argument is in addition to the parameter list for the
procedure being called. After calling the DLL function, the
binary data will be converted back into the data structure
according to the rules defined in Blob.get() and Clib.fread().
Data conversion is performed according to the current
_BigEndianMode setting.

SEE: Clib.fread(), Blob object

EXAMPLE: // The following calls
 // the Windows MessageBeep() function:
#define MESSAGE_BEEP_ORDINAL 104
SElib.dynamicLink("USER.EXE", MESSAGE_BEEP_ORDINAL,
 SWORD16, PASCAL,0);

 // The following displays a simple message box
 // and waits for user to press <Enter>.
#define MESSAGE_BOX_ORDINAL 1
#define MB_OK 0x0000
// Message box contains one push button: OK.
#define MB_TASKMODAL 0x2000
// Must respond to this message
SElib.dynamicLink("USER.EXE", MESSAGE_BOX_ORDINAL,
 SWORD16, PASCAL, null,
 "This is a simple message box",
 "Title of box", MB_OK | MB_TASKMODAL);

 182

 // The following accomplishes
 // the same thing as above.
#define MB_OK 0x0000
// Message box contains one push button: OK.
#define MB_TASKMODAL 0x2000
// Must respond to message
SElib.dynamicLink("USER", "MESSAGEBOX", SWORD16,
 PASCAL, null,
 "This is a simple message box",
 "Title of box", MB_OK | MB_TASKMODAL);

SElib.dynamicLink() - for Win16
SYNTAX: SElib.dynamicLink(library, procedure, returnType, convention)

WHERE: library - a string, the name of the dynamic link library, DLL,
being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

returnType - a number which tells ScriptEase what type of value
the procedure returns, so that it can be properly converted into an
integer. The be one of the following:

UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

convention - the calling convention to use when invoking or
using the procedure being called.

CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

DESCRIPTION: For Win16

Calls a routine in a dynamic link library, DLL. The most
common use is to use various functions in the Windows API.

If a parameter is a Blob, a byte-array, or an undefined value, it is
passed as a far pointer. All other numeric values are passed as

 183

passed as a far pointer. All other numeric values are passed as
16-bit values. If 32-bits are needed, the parameter must be
passed in parts, with the low word first and the high word second
for CDECL calls but the high word first and low word second for
PASCAL calls.

If a parameter is undefined when SElib.dynamicLink() is called,
then it is assumed that the parameter is a far pointer to be filled
in, that is, that the far address of a data element is passed to the
function and that function will set the value. If any parameter is a
structure, then it must be a structure that defines the binary data
types in memory to represent the following variable. Before
calling the DLL function, the structure will be copied to a binary
buffer as described in Blob.put() and Clib.fwrite(). After calling
the DLL function, the binary data is converted back into the data
structure according to the rules defined in Blob.get() and
Clib.fread(). Data conversion is performed according to the
current _BigEndianMode setting.

SEE: Blob object, Clib.fread()

SElib.dynamicLink() - for OS/2
SYNTAX: SElib.dynamicLink(library, procedure, bitSize, convention, ...)

WHERE: library - a string, the name of the dynamic link library, DLL,
being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

bitSize - indicates whether this call is 16-bit or 32-bit and may be
either of two defined values: BIT16 or BIT32.

convention - the calling convention to use when invoking or
using the procedure being called.

CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

 184

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

DESCRIPTION: For OS/2

Calls a routine in a dynamic link library, DLL.

Any parameters required by a dynamically linked function
should be passed at the end of the parameters listed above, as
indicated by the ellipsis at the end of the parameter list. These
variables are interpreted as follows, depending on the operating
system.

For 32-bit functions, all values are passed as 32-bit values. For
16-bit functions, if the parameter is a Blob, a byte-array, or an
undefined value, then it is passed as a 16:16 segment:offset
pointer, otherwise all numeric values are passed as 16-bit values,
so if 32-bits are needed they must be passed in parts, with the
low word first and the high word second.

If a parameter is undefined when SElib.dynamicLink() is called,
then it is assumed that parameter is a 32-bit value to be filled in,
that is, that the address of a 32-bit data element is passed to the
function and that function will set the value. If any parameter is a
structure then it must be a structure that defines the binary data
types in memory to represent the following variable. Before
calling the DLL function, the structure is copied to a binary
buffer as described in Blob.put() and Clib.fwrite(). After calling
the DLL function, the binary data is converted back into the data
structure according to the rules defined in Blob.get() and
Clib.fread(). Data conversion is performed according to the
current _BigEndianMode setting.

An alternative syntax:

The OS/2 processor also allows you to call a function via a call
gate with the following syntax:

SElib.dynamicLink(callGate, bitSize, convention,
 ...)

Where callGate is the gate selector for a routine referenced
through a call gate.

 185

SEE: Blob object

 187

Buffer Object
The Buffer object provides a way to manipulate data at a very basic level.
It is needed whenever the relative location of data in memory is important.
Any type of data may be stored in a buffer object. A new Buffer object
may be created from scratch or from a string, buffer, or Buffer object, in
which case the contents of the string or buffer will be copied into the
newly created Buffer object.

Buffer object instance properties
Buffer bigEndian
SYNTAX: buffer.bigEndian

DESCRIPTION: This property is a boolean flag specifying whether to use
bigEndian byte ordering when calling getValue() and putValue().
This value is set when a buffer is created, but may be changed at
any time. This property defaults to the state of the underlying OS
and processor.

SEE: Buffer.unicode

EXAMPLE: buffer.bigEndian = true;

Buffer cursor
SYNTAX: buffer.cursor

DESCRIPTION: The current position within a buffer. This value is always
between 0 and .size. It can be assigned to as well. If a user
attempts to move the cursor beyond the end of a buffer, than the
buffer is extended to accommodate the new position, and filled
with null bytes. If a user attempts to set the cursor to less than 0,
then it is set to the beginning of the buffer, to position 0.

SEE: Buffer.bigEndian

EXAMPLE: var p = buffer.cursor;

 188

Buffer data
SYNTAX: buffer.data

DESCRIPTION: This property is a reference to the internal data of a buffer. It is
only a temporary value to assist in passing parameters to OS and
system library type calls. In the future, all ScriptEase library
functions should be able to recognize Buffer objects and to get
this member on their own.

SEE: Buffer.size

Buffer size
SYNTAX: buffer.size

DESCRIPTION: The size of the Buffer object. This property may be
assigned to, such as foo.size = 5. If a user changes the
size of the buffer to something larger, then it is filled with
null bytes. If the user sets the size to a value smaller than
the current position of the cursor, then the cursor is moved
to the end of the new buffer.

SEE: Buffer.cursor

EXAMPLE: var n = buffer.size;

Buffer unicode
SYNTAX: buffer.unicode

DESCRIPTION: This property is a boolean flag specifying whether to use unicode
strings when calling getString() and putString(). This value is set
when the buffer is created, but may be changed at any time. This
property defaults to the unicode status of the underlying
ScriptEase engine.

SEE: Buffer.bigEndian

EXAMPLE: buffer.bigEndian = false;

Buffer[] Array

 189

SYNTAX: Buffer[offset]

DESCRIPTION: This is an array- like version of the
getValue()/putValue() methods which works only with
bytes. A user may either get or set these values, such as goo
= foo[5] or foo[5] = goo. Every get/put operation uses
byte types, that is, SWORD8. If offset is less than 0, then 0 is
used. If offset is beyond the end of a buffer, the size of the
buffer is extended with null bytes to accommodate it.

SEE: Buffer.getValue(), Buffer.putValue()

EXAMPLE: var c = 'a';
buffer[5] = c;
c = buffer[4];

Buffer object instance methods
Buffer()
SYNTAX: new Buffer([size[, unicode[, bigEndian]]])

new Buffer(string[, unicode[, bigEndian]]])
new Buffer(buffer[, unicode[, bigEndian]]])
new Buffer(bufferObject)

WHERE: size - size of buffer to be created.

string - string of characters from which to create a buffer.

buffer - buffer of characters from which to create another buffer.

bufferObject - buffer to be duplicated.

unicode - boolean flag for the initial state of the unicode property
of the buffer

bigEndian - numeric description of the initial state of the
bigEndian property of the buffer.

RETURN: object - the new buffer created.

DESCRIPTION: To create a Buffer object, follow of the syntax below.

new Buffer([size[, unicode[, bigEndian]]]);

 190

A line of code following this syntax creates a new buffer object.
If size is specified, then the new buffer is created with the
specified size, filled with null bytes. If no size is specified, then
the buffer is created with a size of 0, though it can be extended
dynamically later. The unicode parameter is an optional boolean
flag describing the initial state of the .unicode flag of the object.
Similarly, bigEndian describes the initial state of the bigEndian
parameter of the buffer. If unspecified, these parameters default
to the values described below.

new Buffer(string[, unicode[, bigEndian]]]);

A line of code following this syntax creates a new buffer object
from the string provided. If string is a unicode string (unicode is
enabled within the application), then the buffer is created as a
unicode string. This behavior can be overridden by specifying
true or false with the optional boolean unicode parameter. If this
parameter is set to false, then the buffer is created as an ASCII
string, regardless of whether or not the original string was in
unicode or not. Similarly, specifying true will ensure that the
buffer is created as a unicode string. The size of the buffer is the
length of the string (twice the length if it is unicode). This
constructor does not add a terminating null byte at the end of the
string. The bigEndian flag behaves the same way as in the first
constructor.

new Buffer(buffer[, unicode[, bigEndian]])

A line of code following this syntax creates a new buffer object
from the buffer provided. The contents of the buffer are copied
as is into the new buffer object. The unicode and bigEndian
parameters do not affect this conversion, though they do set the
relevant flags for future use.

new Buffer(bufferObject);

A line of code following this syntax creates a new buffer object
from another buffer object. Everything is duplicated exactly from
the other bufferObject, including the cursor location, size, and
data.

All of the above calls have an equivalent call form (such as
"Buffer(15)"), except that this simply returns the buffer part
(equivalent to the data member), rather than the entire Buffer

 191

(equivalent to the data member), rather than the entire Buffer
object.

SEE:

EXAMPLE:

Buffer getString()
SYNTAX: buffer.getString([length])

WHERE: length - number of characters to get from the buffer.

RETURN: string - starting from the current cursor location and continuing
for length bytes. If no length is specified, then the method reads
until a null byte is encountered or the end of the buffer is
reached.

DESCRIPTION: The string is read according to the value of the .unicode flag of
the buffer. A terminating null byte is not added, even if a length
parameter is not provided.

SEE: Buffer.putString()

EXAMPLE: foo = new Buffer("abcd");
foo.cursor = 1;
goo = foo.getString(2);
//goo is now "bc"

Buffer getValue()
SYNTAX: Buffer.getValue([ValueSize[, ValueType]])

WHERE: ValueSize - a positive number describing the number of bytes to
be used and defaults to 1. The following are acceptable values:
1,2,3,4,8, and 10 ValueType - One of the following types:
"signed", "unsigned", or "float". The default type is:
"signed."

ValueType - either signed, unsigned or float.

RETURN: value - from the specified position in a buffer object.

DESCRIPTION: This call is similar to the putValue() function, except that it
gets a value instead of puts a value.

 192

SEE: Buffer.putValue(), Buffer[]

EXAMPLE: /*
To explicitly put a value at a specific location
while preserving the cursor location, do something
similar to the following.
*/

 // Save the old cursor location
var oldCursor = foo.cursor;
 // Set to new location
foo.cursor = 20;
 // Get goo at offset 20
bar = foo.getValue(goo);
 // Restore cursor location
foo.cursor = oldCursor

//Please see Buffer.putValue
// for a more complete description.

Buffer putString()
SYNTAX: buffer.putString(String)

WHERE: string - Any string.

RETURN: void.

DESCRIPTION: This method puts a string into the buffer object at the current
cursor position. If the .unicode flag is set within the Buffer
object, then the string is put as a unicode string, otherwise it is
put as an ASCII string. The cursor is incremented by the length
of the string (or twice the length if it is put as a unicode string).
Note that terminating null byte is not added at end of the string.

EXAMPLE: // To put a null terminated string,
// the following can be done.

 // Put the string into the buffer
foo.putString("Hello");
 // Add terminating null byte
foo.putValue(0);

Buffer putValue()
SYNTAX: buffer.putValue(Value[, ValueSize[, ValueType]])

 193

WHERE: Value - value to be put into the buffer.

ValueSize - a positive number describing the number of bytes to
be used and defaults to 1. The following are acceptable values:
1,2,3,4,8, and 10 ValueType - One of the following types:
"signed", "unsigned", or "float". The default type is:
"signed."

ValueType - either signed, unsigned or float.

RETURN: The value is put into buffer at the current cursor position, and the
cursor value is automatically incremented by the size of the
value to reflect this addition.

DESCRIPTION: This method puts the specified value into a buffer. The value
must be a number. ValueSize or both valueSize and
valueType may be passed as additional parameters. ValueSize
is a positive number describing the number of bytes to be used
and defaults to 1. Acceptable values for valueSize are
1,2,3,4,8, and 10, providing that it does not conflict with the
optional valueType flag. (See listing below.)

The parameter valueType must be one of the following:
"signed", "unsigned", or "float". It defaults to "signed."
The valueType parameter describes the type of data to be read.
Combined with valueSize, any type of data can be put. The
following list describes the acceptable combinations of valueSize
and valueType:

valueSize valueType
1 signed, unsigned
2 signed, unsigned
3 signed, unsigned
4 signed, unsigned, float
8 float
10 float (Not supported on every system)

Any other combination will cause an error. The value is put into
buffer at the current cursor position, and the cursor value is
automatically incremented by the size of the value to reflect this
addition.

SEE: Buffer.getValue(), Buffer[]

EXAMPLE: /*

 194

To explicitly put a value at a specific location
while preserving the cursor location, do something
similar to the following.
*/

var oldCursor = foo.cursor;
 // Save the old cursor location
foo.cursor = 20;
 // Set to new location
foo.putValue(goo);
 // Put goo at offset 20
foo.cursor = oldCursor
// Restore cursor location

/*.
The value is put into the buffer with byte-ordering
according to the current setting of the .bigEndian
flag. Note that when putting float values as a
smaller size, such as 4, some significant figures are
lost. A value such as "1.4" will actually be
converted to something to the effect of "1.39999974".
This is sufficiently insignificant to ignore, but
note that the following does not hold true.
.*/

foo.putValue(1.4,4,"float");
foo.cursor -= 4;
if(foo.getValue(4,"float") != 1.4)
 // This is not necessarily true due
 // to significant figure loss.

/*.
This situation can be prevented by using 8 or 10 as a
valueSize instead of 4. A valueSize of 4 may still be
used for floating point values, but be aware that
some loss of significant figures may occur (though it
may not be enough to affect most calculations).
.*/

Buffer subBuffer()
SYNTAX: buffer.subBuffer(Beginning, End)

WHERE: Beginning - start of offset

End - end of offset (up to but not including this point)

RETURN: object - another Buffer object consisting of the data between the
positions specified by the parameters: beginning and end.

 195

positions specified by the parameters: beginning and end.

DESCRIPTION: If the parameter beginning is less than 0, then it is treated as 0,
the start of the buffer. If the parameter end is beyond the end of
the buffer, then the new sub-buffer is extended with null bytes,
but the original buffer is not altered.

SEE: String.subString()

EXAMPLE: foo = new Buffer("abcd");
bar = foo.subBuffer(1,3);
// bar is now the string "bc"
// "a" was at position 0, "b" at position 1, etc.
// The parameter "3"
// or "nEnd" is the postion to go up to,
// but NOT to be included in the string.

Buffer toString()
SYNTAX: buffer.toString()

RETURN: string - a string equivalent of the current state of the buffer, with
all characters, including "\0".

DESCRIPTION: Any conversion to or from unicode is done according to the
.unicode flag of the object.

SEE: Buffer.getString()

EXAMPLE: foo = new Buffer("hello");
bar = foo.toString(void);
//bar is now the string "hello"

 197

Screen Object
The methods in this section are preceded with the Object name Screen,
since individual instances of the Screen Object are not created. For
example, Screen.clear() is the syntax to use to clear a ScriptEase text
screen.

The methods documented in this section are the internal methods of the
Screen object. The script library file screen.jsh adds methods and
properties to the Screen object. See the documentation for screen.jsh for
more information about useful Screen object methods.

Screen object static methods
Screen.clear()
SYNTAX: Screen.clear()

RETURN: void.

DESCRIPTION: This method clears the portion of a computer screen that is
controlled by a script. On some platforms, such as DOS, the
entire screen may be cleared, but on others, such as Win32, only
a window will be cleared.

SEE: Screen.setBackground(), Screen.setForeground()

EXAMPLE: Screen.clear();

Screen.cursor()
SYNTAX: Screen.cursor([col[, row])

WHERE: col - the column or x coordinate of a character on a text screen or
window. The unit of measurement is a character position.

row - the row or y coordinate of a character on a text screen or
window. The unit of measurement is a character position.

RETURN: object - a structure with two numeric properties, col and row,
which represent the current cursor position on a text screen or

 198

window. The properties of the structure are:

.col

.row
DESCRIPTION: Gets and sets the cursor position in a text screen or window. If

no parameters are passed, the only action is to return the current
cursor position. If the parameters, col and row, are passed, the
cursor is set to the position specified. If the parameter row is
omitted, the cursor is moved to the column specified by col on
the current row.

When parameters are passed, the cursor position returned is the
position after the cursor has been placed at the new coordinates.

Text screen coordinates begin with 0, that is, the first column or
row is 0. The first position on a text screen/window is at col == 0
and row == 0.

SEE: Screen.size()

EXAMPLE: // Get the cursor position as:
 // CurPos.col and CurPos.row
var CurPos = Screen.cursor()
 // Place the cursor at column 3, the 4th column,
 // of the current row
var CurPos = Screen.cursor(3)
 // Place the cursor at column 3, the 4th column,
and
 // at row 4, the 5th row, of the current text
screen/window.
var CurPos = Screen.cursor(3, 4)
 // Place the cursor at the first position
Screen.cursor(0, 0);

Screen.handle()
SYNTAX: Screen.handle()

RETURN: number - the window handle of the current ScriptEase screen or
window.

DESCRIPTION: This method returns the window handle of a ScriptEase screen,
such as the text screen produced by normal text output from
Sewin32.exe. This handle may be used with other windows
routines that manipulate windows. A ScriptEase screen is a
window like other windows in the Windows API.

 199

window like other windows in the Windows API.

SEE: Window object in winobj.jsh, winutils.jsh

EXAMPLE: var ScreenHandle = Screen.handle()

Screen.setBackground()
SYNTAX: Screen.setBackground(color | r, g, b)

WHERE: color - a number that represents a color. A single number may be
used. The file colors.jsh has defines, such as color_cyan, for
many popular colors. If more than one parameter is passed, then
the method assumes that a three number system based on red,
green, and blue elements is being used.

r - a number that represents the red element of a color.

g - a number that represents the green element of a color.

b - a number that represents the blue element of a color.

RETURN: void.

DESCRIPTION: Sets the background color of a ScriptEase screen or window,
such as the window that is created when ScriptEase is running as
a shell. The method may receive either one or three arguments. If
there is only one parameter color, it must be one of the colors
defined in colors.jsh. If there are three parameters, they define a
color based on a combination of r(ed), g(reen), and b(lue).

The background color is the color of screen or window on which
characters are displayed. The foreground color is the color of the
characters. The colors set are for the entire screen/window, not
just the current text being written.

SEE: Screen.setForeground()

EXAMPLE: // Needed for color_cyan below
include "colors.jsh"
 // Set screen background to cyan
Screen.setBackground(color_cyan)
 // Set to white
Screen.setBackground(255, 255, 255)
 // Set to white
Screen.setBackground(0xFF, 0xFF, 0xFF)
 // Set to black

 200

Screen.setBackground(0, 0, 0);

Screen.setForeground()
SYNTAX: Screen.setForeground(color | r, g, b)

WHERE: color - a number that represents a color. A single number may be
used. The file colors.jsh has defines, such as color_cyan, for
many popular colors. If more than one parameter is passed, then
the method assumes that a three number system based on red,
green, and blue elements is being used.

r - a number that represents the red element of a color.

g - a number that represents the green element of a color.

b - a number that represents the blue element of a color.

RETURN: void.

DESCRIPTION: Sets the foreground color of a ScriptEase screen or window, such
as the window that is created when ScriptEase is running as a
shell. The method may receive either one or three arguments. If
there is only one parameter color, it must be one of the colors
defined in colors.jsh. If there are three parameters, they define a
color based on a combination of r(ed), g(reen), and b(lue).

The foreground color is the color of the characters. The
background color is the color of screen or window on which
characters are displayed. The colors set are for the entire
screen/window, not just the current text being written.

SEE: Screen.setBackground()

EXAMPLE: // Needed for color_cyan below
include "colors.jsh"
 // Set screen foreground to cyan
Screen.setForeground(color_cyan)
 // Set to white
Screen.setForeground(255, 255, 255)
 // Set to white
Screen.setForeground(0xFF, 0xFF, 0xFF)
 // Set to black
Screen.setForeground(0, 0, 0);

 201

Screen.size()
SYNTAX: Screen.size([col[, row])

WHERE: col - a number representing the number of columns, the x
coordinate, of the current text screen or window. The unit of
measurement is a character position.

row - a number representing the number of rows, the y
coordinate, of the current text screen or window. The unit of
measurement is a character position.

RETURN: object - a structure with two numeric properties, col and row,
which represent the current width and height of a text screen or
window. The properties of the structure are:

.col

.row
DESCRIPTION: Gets and sets the size, width and height, of the current text

screen or window. If no parameters are passed, the only action is
to return a structure with the width and height. If two arguments
are passed, the screen/window is set to the width and height
specified by the two parameters. If only one argument is passed,
an error occurs.

SEE: Screen.cursor()

EXAMPLE: // Get the current screen/window size
var CurSiz = Screen.size()
 // Set text screen/window size to 40 columns
 // and 12 rows
Screen.size(40, 12)

Screen.write()
SYNTAX: Screen.write(data)

WHERE: data - any data type in JavaScript.

RETURN: void.

DESCRIPTION: The method Screen.write is the most basic way of displaying
data in text form. It will display any JavaScript data type as a
string by using the automatic data conversion abilities of
JavaScript. For example, look at the following fragment:

 202

var s = "123";
var n = 123;
var a = new Array(1, "2", 3);
Screen.writeln(s);
Screen.writeln(n);
Screen.writeln(a);

The display is:

123
123
1,2,3

Automatic conversion allows the variables n and s to display the
same and converts the array a to a suitable string in which the
elements of the array are separated by commas.

Screen.write does not put end of line characters on a string, that
is, the cursor is positioned at the end of the string displayed. Use
Screen.writeln to display a string and position the cursor on the
next line. For example, the following two lines of code produce
the same display:

Screen.write("456");
Clib.printf("456");

The following two lines of code produce the same display and
illustrate the difference between Screen.write and Screen.writeln:

Screen.write("This is a line.\n");
Screen.writeln("This is a line.");

The Screen.write statement uses the escape character "\" to put
end of line (EOL) characters at the end of the string. The
Screen.writeln statement automatically puts EOL characters at
the end of a string.

As an example of displaying data, consider the following
fragment:

var FirstName = "John ";
var LastName = "Doe ";
var CityStateZip = new Array("Medford", "MA",
02155);

Screen.write(FirstName + LastName + "in ");
Screen.write(CityStateZip);

 203

produces the following display:

John Doe in Medford,MA,1133

This code fragment illustrates how easy it is to work with,
concatenate, combine, and display different data types.

SEE: Screen.writeln(), write.jsh which has many extensions to the
Screen.write method.

EXAMPLE: Screen.write("Using Screen.write is simple.");

Screen.writeln()
SYNTAX: Screen.writeln(data)

WHERE: data - any data type in JavaScript.

RETURN: void.

DESCRIPTION: Screen.writeln is the same as Screen.write except that
Screen.writeln automatically puts end of line (EOL) characters at
the end of data that it displays. See Screen.write for a full
description, including the differences between Screen.write and
Screen.writeln.

SEE: Screen.writeln(), write.jsh which has many extensions to the
Screen.write method.

EXAMPLE: Screen.writeln("Using Screen.write is simple.");

 205

String Object
The String object is a data type, a hybrid that shares characteristics of
primitive data types and of composite data types. The String is presented
in this section under two main headings in which the first describes its
characteristics as a primitive data type and the second describes its
characteristics as an object.

String as data type
A string is an ordered series of characters. The most common use for
strings is to represent text. To indicate that text is a string, it is enclosed in
quotation marks. For example, the first statement below puts the string
"hello" into the variable word. The second sets the variable word to have
the same value as a previous variable hello:

var word = "hello";
word = hello;

Escape sequences for characters
Some characters, such as a quotation mark, have special meaning to the
interpreter and must be indicated with special character combinations
when used in strings. This allows the interpreter to distinguish between a
quotation mark that is part of a string and a quotation mark that indicates
the end of the string. The table below lists the characters indicated by
escape sequences:

\a Audible bell
\b Backspace
\f Formfeed
\n Newline
\r Carriage return
\t Tab
\v Vertical tab
\' Single quote
\" Double quote
\\ Backslash character

 206

\0### Octal number (example: '\033' is the escape character)
\x## Hex number (example: '\x1B' is the escape character)
\0 Null character (example: '\0' is the null character)
\u#### Unicode number (example: '\u001B' is the escape
character)

Note that these escape sequences cannot be used within strings enclosed by back
quotes, which are explained below.

Single quote
You can declare a string with single quotes instead of double quotes.
There is no difference between the two in JavaScript, except that double
quote strings are used less commonly by many scripters. In functions
declared with the cfunction keyword, the difference is more important. For
more information, see the section on cfunctions.

Back quote
ScriptEase provides the back quote "`", also known as the back-tick or
grave accent, as an alternative quote character to indicate that escape
sequences are not to be translated. Any special characters represented with
a backslash followed by a letter, such as "\n", cannot be used in back tick
strings.

For example, the following lines show different ways to describe a single file
name:

"c:\\autoexec.bat" // traditional C method
'c:\\autoexec.bat' // traditional C method
`c:\autoexec.bat` // alternative ScriptEase method

Back quote strings are not supported in most versions of JavaScript. So if you are
planning to port your script to some other JavaScript interpreter, you should not
use them.

Long Strings
You can use the + operator to concatenate strings. The following line:
var proverb = "A rolling stone " + "gathers no moss."

 207

creates the variable proverb and assigns it the string "A rolling stone gathers no
moss." If you try to concatenate a string with a number, the number is converted
to a string.

var newstring = 4 + "get it";

This bit of code creates newstring as a string variable and assigns it the string
"4get it".

The use of the + operator is the standard way of creating long strings in
JavaScript. In ScriptEase, the + operator is optional. For example, the following:

var badJoke =
 "I was standing in front of an Italian "
 "restaurant waiting to get in when this guy "
 "came up and asked me, \"Why did the "
 "Italians lose the war?\" I told him I had "
 "no idea. \"Because they ordered ziti"
 "instead of shells,\" he replied."

creates a long string containing the entire bad joke.

String as object
Strictly speaking, the String object is not truly an object. It is a hybrid of a
primitive data type and of an object. As an example of its hybrid nature,
when strings are assigned using the assignment operator, the equal sign,
the assignment is by value, that is, a copy of a string is actually transferred
to a variable. Further, when strings are passed as arguments to the
parameters of functions, they are passed by value. Objects, on the other
hand, are assigned to variables and passed to parameters by reference, that
is, a variable or parameter points to or references the original object.

Strings have both properties and methods which are listed in this section. These
properties and methods are discussed as if strings were pure objects. Strings have
instance properties and methods and are shown with a period, ".", at their
beginnings. A specific instance of a variable should be put in front of a period to
use a property or call a method. The exception to this usage is a static method
which actually uses the identifier String, instead of a variable created as an
instance of String. The following code fragment shows how to access the .length
property, as an example for calling a String property or method:.

var TestStr = "123";
var TestLen = TestStr.length;

 208

String properties

String object instance properties
String length
SYNTAX: string.length

DESCRIPTION: The length of a string, that is, the number of characters in a
string. JavaScript strings may contain the "\0" character.

SEE: String.lastIndexOf()

EXAMPLE: var s = "a string";
var n = s.length;

String object instance methods
String()
SYNTAX: new String([value])

WHERE: value - value to be converted to a string as this string object.

RETURN: This method returns a new string object whose value is the
supplied value.

DESCRIPTION: If value is not supplied, then the empty string "" is used instead.
Otherwise, the value ToString(value) is used. Note that if this
function is called directly, without the new operator, then the
same construction is done, but the returned variable is converted
to a string, rather than being returned as an object.

EXAMPLE: var s = new String(123);

String charAt()
SYNTAX: string.charAt(Position)

WHERE: Position - offset within a string.

RETURN: string - character at position Position

 209

DESCRIPTION: This method acter at the specified position. If no character exists
at location nPosition, or if nPosition is less than 0, then
NaN is returned.

SEE: String.charCodeAt()

EXAMPLE: // To get the first character in a string,
// use as follows:

var string = "a string";
string.charAt(0);

// To get the last character in a string, use:
string.charAt(string.length - 1);

String charCodeAt(index)
SYNTAX: string.charCodeAt(index)

WHERE: index - index of the character whose encoding is to be returned.

RETURN: number - representing the unicode value of the character at
position index of a string. Returns NaN if there is no character at
the position.

DESCRIPTION: This method gets the nth character code from a string.

SEE: String.charAt(), String.fromCharCode()

String concat()
SYNTAX: string.concat([string1, ...])

WHERE: stringN - A list of strings to append to the end of the current
object.

RETURN: This method returns a string value (not a string object) consisting
of the current object and any subsequent arguments append to it.

DESCRIPTION: This method creates a new string whose contents are equal to the
current object. Each argument is then converted to a string using
ToString() and appended to the newly created string. This value
is then returned. Note that the original object remains unaltered.
The '+' operator performs the same function.

 210

SEE: Array.concat()

EXAMPLE: // The following line:

var proverb = "A rolling stone " + "gathers no moss."

// creates the variable proverb and
// assigns it the string
// "A rolling stone gathers no moss."
// If you try to concatenate a string with a number,
// the number is converted to a string.

 var newstring = 4 + "get it";

// This bit of code creates newstring as a string
// variable and assigns it the string
// "4get it".

// The use of the + operator is the standard way of
// creating long strings in JavaScript.
// In ScriptEase, the + operator is optional.
// For example, the following:

var badJoke = "I was in front of an Italian "
 "restaurant waiting to get in when this guy "
 "came up and asked me, \"Why did the "
 "Italians lose the war?\" I told him I had "
 "no idea. \"Because they ordered ziti"
 "instead of shells,\" he replied."

// creates a long string containing
// the entire bad joke.

String indexOf()
SYNTAX: string.indexOf(substring[, offset])

WHERE: substring - substring to search for within string.

offset - optional integer argument which specifies the position
within string at which the search is to start.

RETURN: number - index of the first appearance of a substring in a string.
If position is undefined or not supplied, 0 is returned.

DESCRIPTION: String.indexOf() searches the string for the string specified in
substring. The search begins at offset if offset is
specified, otherwise the search begins at the beginning of the

 211

specified, otherwise the search begins at the beginning of the
string. If substring is found, String.indexOf() returns the
position of its first occurance. Character positions within string
are numbered in increments of one beginning with zero.

SEE: String.charAt(), String.lastIndexOf(), String.substring()

EXAMPLE: var string = "what a string";
string.indexOf("a")

// returns the position, which is 2 in this example,
// of the first "a" appearing in the string.
// The method indexOf()may take an optional second
// parameter which is an integer indicating the index
// into a string where the method starts searching
// the string. For example:

var magicWord = "abracadabra";
var secondA = magicWord.indexOf("a", 1);

// returns 3, index of the first "a" to be found in
// the string when starting from the second letter of
// the string.
// Since the index of the first character is 0, the
// index of second character is 1.

String lastIndexOf()
SYNTAX: string.lastIndexOf(substring[, offset])

WHERE: substring - The substring that is to be searched for within string

offset - An optional integer argument which specifies the
position within string at which the search is to start.

RETURN: number - position of the last occurence of the substring
specified

DESCRIPTION: This method is similar to String.indexOf(), except that it
finds the last occurrence of a character in a string instead of the
first.

SEE: String.indexOf()

String localeCompare()

 212

SYNTAX: string.localeCompare()

WHERE:

RETURN:

DESCRIPTION:

SEE:

EXAMPLE:

String slice()
SYNTAX: string.slice(start[, end])

WHERE: start - index to start from.

end - index at which to end.

RETURN: string - a substring (not a String object) consisting of the
characters.

DESCRIPTION: This method is very similar to String.substring(), in that it returns
a substring from one index to another. The only difference is
that if either start or end is negative, then it is treated as
length+start or length+end. If either exceeds the bounds
of the string, then either 0 or the length of the string is used
instead.

SEE: String.substring()

String split()
SYNTAX: string.split([substring])

WHERE: substring - character, string or regular expression where the
string is split. If substring is not specified, an array will be
returned with the name of the string specified. Essentially this
will mean that the string is split character by character.

RETURN: object - if no delimiters are specified, returns an array with one
element which is the original string.

DESCRIPTION: This method splits a string into an array of strings based on the
delimiters in the parameter substring. The parameter substring is

 213

delimiters in the parameter substring. The parameter substring is
optional and if supplied, determines where the string is split.

SEE: Array.join()

EXAMPLE: // For example, to create an array of al
// use code similar to the following fra
var sentence = "I am not a crook";
var wordArray = sentence.split(' ');

String substring()
SYNTAX: string.substring(Start, End)

WHERE: Start - integer specifing the position within the string to begin the
desired substring.

End - integer specifing the position within the string to end the
desired substring. This integer must be one greater than the
desired end position to allow for the terminating null byte.

RETURN: string - substring of the result of converting this object to a
string, starting from character position start and running to the
end of the string. The result is a string value, not a string object.

DESCRIPTION: This method retrieves a section of a string. The Start parameter is
the index or position of the first character to include. The End
parameter marks the end of the string. The End position is the
index or position after the last character to be included. The
length of the substring retrieved is defined by End minus Start.
Another way to think about the Start and End positions is that
End equals Start plus the length of the substring desired.

SEE: String.charAt(), String.indexOf(), String.lastIndexOf(),
String.slice()

EXAMPLE: // For example, to get the first nine characters
// in string, use a Start position
// of 0 and add 9 to it, that is,
// "0 + 9", to get the End position
// which is 9. The following fragment illustrates.

var str = "1234567890 - 10 digits begin this string";
var substr = str.substring(0,9);

//The variable substr will equal "123456789".

 214

// The characters from 0 to 8, a total of 9,
// are included, but the tenth character,
// "0", at position 9 is not included.

String toLocaleLowerCase()
SYNTAX: string.toLocaleLowerCase()

RETURN: string - a copy of a string with each character converted to lower
case.

DESCRIPTION: This method behaves exactly the same as
String.prototype.toLowerCase(). It is designed to convert the
string to lower case in a locale sensitive manner, though this
functionality is currently unavailable. Once it is implemented,
this function may behave differently is some locales (such as
Turkish), though for the majority it will be identical to
toLowerCase()

SEE: String.toLowerCase()

String toLocaleUpperCase()
SYNTAX: string.toLocaleUpperCase()

RETURN: string - a copy of a string with each character converted to lower
case.

DESCRIPTION: This method behaves exactly the same as
String.prototype.toUpperCase(). It is designed to convert the
string to lower case in a locale sensitive manner, though this
functionality is currently unavailable. Once it is implemented,
this function may behave differently is some locales (such as
Turkish), though for the majority it will be identical to
toUpperCase()

SEE: String.toUpperCase()

String toLowerCase()
SYNTAX: string.toLowerCase()

 215

RETURN: string - copy of a string with all of the letters changed to lower
case.

DESCRIPTION: This method changes the case of a string.

SEE: String.toUpperCase

EXAMPLE: var string = new String("Hello, World!");
string.toLowerCase()

// This will return the string "hello, world!".

String toUpperCase())
SYNTAX: string.toLowerCase()

RETURN: string - a copy of a string with all of the letters changed to upper
case.

DESCRIPTION: This method changes the case of a string.

SEE: String.toLowerCase()

EXAMPLE: var string = new String("Hello, World!");
string.toUpperCase()

// This will return the string
// "HELLO, WORLD!".

String valueOf()
SYNTAX: string.valueOf()

RETURN: string - the value of a string.

DESCRIPTION: The value returned is equivalent to String.toString and is not
generally called in code but rather internally by JavaScript.

SEE: String.toString(), Object.valueOf()

EXAMPLE: foo = new String("This is a string");
Screen.writeln(foo.valueOf())

// The result, "This is a string",
// will be printed.

 216

String object static methods
String.fromCharCode()
SYNTAX: string.fromCharCode(CharCode[, ...])

WHERE: CharCode - character code, or list of codes, to be converted.

RETURN: string - string created from the character codes that are passed to
it as parameters.

DESCRIPTION: The identifier String is used with this static method, instead of a
variable name as with instance methods. The arguments passed
to this method are assumed to be unicode characters.

SEE: String()

EXAMPLE: // The following code:
var string = String.fromCharCode(0x0041,0x0042)
// will set the variable string to be "AB".

 217

RegExp Object
The RegExp object allows the use of regular expression parsing in searches. The
syntax follows the ECMAScript standard.

RegExp object instance methods
RegExp()
SYNTAX: new RegExp()

new RegExp(pattern)
new RegExp(pattern, flags)

WHERE: pattern - a string containing the regular expression search
pattern.

flags - A string containing the options for this regular expression
object .

RETURN: object - a new regular expression object, or null on error.

DESCRIPTION: Creates a new regular expression object using the search pattern
and options if they are specified. The flag string must contain
any of the following characters, or it must be the empty string:

i - sets the ignoreCase property to true
g - sets the global property to true

EXAMPLE: // no options
var regobj = new RegExp("r*t", "");
// ignore case
var regobj = new RegExp("r*t", "i");
// global search
var regobj = new RegExp("r*t", "g");
// set both to be true
var regobj = new RegExp("r*t", "ig");

RegExp exec()
SYNTAX: regexp.exec(string)

WHERE: string - the string on which to perform a regular expression
match.

 218

RETURN: object - an array object containing the results of the match, or
null if there was no match.

DESCRIPTION: This method performs a regular expression search on the
specified string using the regular expression pattern for this
object.

EXAMPLE: var regobj = new RegExp("r*t", "");
var result = regobj.exec("rat");

RegExp test()
SYNTAX: regexp.test(string)

WHERE: string - the string on which to perform a regular expression
match.

RETURN: boolean - true if there is a match, false otherwise.

DESCRIPTION: This function is equivalent to regexp.exec(string)!=null

RegExp compile()
SYNTAX: regexp.compile(pattern[, flags])

WHERE: pattern - A string containing the regular expression search
pattern.

flags - A string containing the options for this regular expression
object.

RETURN: void.

DESCRIPTION: This function sets the regular expression for this object to the
specified pattern.

If the flag string is supplied, it must contain any of the following
characters, or it must be the empty string:

i - sets the ignoreCase property to true
g - sets the global property to true

EXAMPLE: var regobj = new RegExp();
regobj.compile("r*t");

 219

Object Object
platform: All OS, All version of SE

Object object instance methods
Object hasOwnProperty()
SYNTAX: object.hasOwnProperty(propertyName)

WHERE: property - name of the property about which to query.

RETURN: boolean - indicating whether or not the current object has a
property of the specified name.

DESCRIPTION: This method simply determines if the object has a property with
the name propertyName. This is almost the same as testing
defined(object[propertyName]), except that undefined
values are different from non-existent values, and the internal
_hasProperty() method of the object may be called.

Object isPrototypeOf()
SYNTAX: object.isPrototypeOf(variable)

WHERE: variable - the object to test.

RETURN: boolean - true if variable is an object and the current object is
present in the prototype chain of the object, otherwise it returns
false.

DESCRIPTION: If variable is not an object, then this method immediately returns
false. Otherwise, the method recursively searches the internal
_prototype property of the object and if at any point the current
object is equal to one of these prototype properties, then the
method returns true.

Object propertyIsEnumerable()

 220

SYNTAX: object.propertyIsEnumerable(propertyName)

WHERE: property - name of the property about which to query.

RETURN: boolean - true if the current object has an enumerable property of
the specified name, otherwise false.

DESCRIPTION: If the current object has no property of the specified name, then
false is immediately returned. If the property has the DontEnum
attribute set, then false is returned. Otherwise, true is returned.

Object toLocaleString()
SYNTAX: object.toLocaleString()

RETURN: string - a string representation of this object.

DESCRIPTION: This method is intended to provide a default .toLocaleString
method for all objects. It behaves exactly if .toString() had been
called on the original object.

SEE: Object.toString()

Object toString()
SYNTAX: object.toString()

RETURN: string - a string representation of this object.

DESCRIPTION: When this method is called, the internal class property (_class) is
retrieved from the current object. A string is then constructed
whose contents are "[object classname]", where classname is
the value of the property from the current object. Note that this
function is rarely called directly, rather it is called implicitly
through such functions as ToString().

SEE: Object.toLocaleString

 221

Math Object
The Math object in ScriptEase has a full and powerful set of methods and
properties for mathematical operations. A programmer has a rich set of
mathematical tools for the task of doing mathematical calculations in a
script.

The methods in this section are preceded with the Object name Math,
since individual instances of the Math Object are not created. For
example, Math.abs() is the syntax to use to get the absolute value of a
number.

Math object static properties
Math.E
SYNTAX: Math.E

DESCRIPTION: The number value for e, the base of natural logarithms. This
value is represented internally as approximately
2.7182818284590452354.

EXAMPLE: var n = Math.E;

Math.LN10
SYNTAX: Math.LN10

DESCRIPTION: The number value for the natural logarithm of 10. This value is
represented internally as approximately 2.302585092994046.

EXAMPLE: var n = Math.LN10;

Math.LN2
SYNTAX: Math.LN2

DESCRIPTION: The number value for the natural logarithm of 2. This value is
represented internally as approximately 0.6931471805599453.

EXAMPLE: var n = Math.LN2;

 222

Math.LOG2E
SYNTAX: Math.LOG2E

DESCRIPTION: The number value for the base 2 logarithm of e, the base of the
natural logarithms. This value is represented internally as
approximately 1.4426950408889634. The value of Math.LOG2E
is approximately the reciprocal of the value of Math.LN2.

EXAMPLE: var n = Math.LOG2E;

Math.LOG10E
SYNTAX: Math.LOG10E

DESCRIPTION: The number value for the base 10 logarithm of e, the base of the
natural logarithms. This value is represented internally as
approximately 0.4342944819032518. The value of
Math.LOG10E is approximately the reciprocal of the value of
Math.LN10

EXAMPLE: var n = Math.LOG10E

Math.PI
SYNTAX: Math.PI

DESCRIPTION: The number value for pi, the ratio of the circumference of a
circle to its diameter. This value is represented internally as
approximately 3.14159265358979323846.

EXAMPLE: var n = Math.PI;

Math.SQRT1_2
SYNTAX: Math.SQRT1_2

DESCRIPTION: The number value for the square root of 2, which is represented
internally as approximately 0.7071067811865476. The value of
Math.SQRT1_2 is approximately the reciprocal of the value of
Math.SQRT2.

 223

EXAMPLE: var n = Math.SQRT1_2;

Math.SQRT2
SYNTAX: Math.SQRT2

DESCRIPTION: The number value for the square root of 2, which is represented
internally as approximately 1.4142135623730951.

EXAMPLE: var n = Math.SQRT2;

Math object static methods
Math.abs()
SYNTAX: Math.abs(X)

WHERE: X - a number.

RETURN: number - the absolute value of x. Returns NaN if x cannot be
converted to a number.

DESCRIPTION: Computes the absolute value of a number.

EXAMPLE: //The function returns the absolute value
// of the number -2 (i.e.
//the return value is 2):
var n = Math.abs(-2);

Math.acos()
SYNTAX: Math.acos(X)

WHERE: X - a number between 1 and -1.

RETURN: number - the arc cosine of x.

DESCRIPTION: The return value is expressed in radians and ranges from 0 to pi.
Returns NaN if x cannot be converted to a number, is greater than
1, or is less than -1.

EXAMPLE: function compute_acos(x)
{
 return Math.acos(x)
}

 224

// If you pass -1 to the function compute_acos(),
// the return is the
// value of pi (approximately 3.1415...),
// if you pass 3 the
// return is NaN since 3 is out
// of the range of Math.acos.

Math.asin()
SYNTAX: Math.asin(X)

WHERE: X - a number between 1.0 and -1.0

RETURN: number - implementation-dependent approximation of the arc
sine of the argument.

DESCRIPTION: The return value is expressed in radians and ranges from -pi/2
to +pi/2. Returns NaN if x cannot be converted to a number, is
greater than 1, or less than -1.

EXAMPLE: function compute_asin(x)
{
 return Math.asin(x)
}
//If you pass -1 to the function compute_acos(),
//the return is the
//value of -pi/2 , if you pass 3 the return is
//NaN since 3 is out of Math.acos's range.

Math.atan()
SYNTAX: Math.atan(X)

WHERE: X - any number.

RETURN: number - an implementation-dependent approximation of the
arctangent of the argument.

DESCRIPTION: The return value is expressed in radians and ranges from -pi/2
to +pi/2.

EXAMPLE: //The arctangent of x is returned
//in the following function:
function compute_arctangent(x)
{
 return Math.arctangent(x)

 225

}

Math.atan2()
SYNTAX: Math.atan2(X, Y)

WHERE: X - x coordinate of the point.

Y - y coordinate of the point.

RETURN: number - an implementation-dependent approximation to the arc
tangent of the quotient, y/x, of the arguments y and x, where the
signs of the arguments are used to determine the quadrant of the
result.

DESCRIPTION: It is intentional and traditional for the two-argument arc tangent
function that the argument named y be first and the argument
named x be second. The return value is expressed in radians and
ranges from -pi to +pi.

EXAMPLE: //The arctangent of the quotient y/x
//is returned in the
//following function:
function compute_arctangent_of_quotient(x, y)
{
 return Math.arctangent2(x, y)
}

Math.ceil()
SYNTAX: Math.ceil(X)

WHERE: X - any number or numeric expression.

RETURN: number - the smallest number that is not less than the argument
and is equal to a mathematical integer.

DESCRIPTION: If the argument is already an integer, the result is the argument
itself. Returns NaN if x cannot be converted to a number.

EXAMPLE: //The smallest number that is
//not less than the argument and is
//equal to a mathematical integer is returned
//in the following function:
function compute_small_arg_eq_to_int(x)
{

 226

 return Math.ceil(x)
}

Math.cos()
SYNTAX: Math.cos(X)

WHERE: X - an angle, measured in radians.

RETURN: number - an implementation-dependent approximation of the
cosine of the argument

DESCRIPTION: The argument is expressed in radians. Returns NaN if x cannot be
converted to a number. In order to convert degrees to radians you
must multiply by 2pi/360.

EXAMPLE: //The cosine of x is returned
//in the following function:
function compute_cos(x)
{
 return Math.cos(x)
}

Math.exp(X)
SYNTAX: Math.exp(X)

WHERE: X - either a number or a numeric expression to be used as an
exponent

RETURN: number - an implementation-dependent approximation of the
exponential function of the argument.

DESCRIPTION: For example returns e raised to the power of the x, where e is the
base of the natural logarithms. Returns NaN if x cannot be
converted to a number.

EXAMPLE: //The exponent of x is returned
//in the following function:
function compute_exp(x)
{
 return Math.exp(x)
}

Math.floor()

 227

SYNTAX: Math.floor(X)

WHERE: X - a number.

RETURN: number - the greatest number value that is not greater than the
argument and is equal to a mathematical integer.

DESCRIPTION: If the argument is already an integer, the return value is the
argument itself.

EXAMPLE: //The floor of x is returned
//in the following function:
function compute_floor(x)
{
 return Math.floor(x)
}
//If 6.78 is passed to compute_floor,
//7 will be returned. If 89.1
//is passed, 90 will be returned.

Math.log()
SYNTAX: Math.log(X)

WHERE: X - a number.greater than zero.

RETURN: number - an implementation-dependent approximation of the
natural logarithm of x.

DESCRIPTION: If a negative number is passed to Math.log, the return is NaN

EXAMPLE: //The natural log of x is returned
//in the following function:
function compute_log(x)
{
 return Math.log(x)
}
//If the argument is less than 0 or NaN,
//the result is NaN
//If the argument is +0 or -0,
//the result is -infinity
//If the argument is 1, the result is +0
//If the argument is +infinity,
//the result is +infinity

Math.max()

 228

SYNTAX: Math.max(X, Y)

WHERE: X - a number.

Y - a number.

RETURN: number - the larger of x and y.

DESCRIPTION: Returns NaN if either argument cannot be converted to a number.

EXAMPLE: //The larger of x and y is returned
//in the following function:
function compute_max(x, y)
{
 return Math.max(x, y)
}
//If x = a and y = 4 the return is NaN
//If x > y the return is x
//If y > x the return is y

Math.min()
SYNTAX: Math.min(X, Y)

WHERE: X - a number.

Y - a number.

RETURN: number - the smaller of x and y. Returns NaN if either argument
cannot be converted to a number.

DESCRIPTION: Returns NaN if either argument cannot be converted to a number.

EXAMPLE: //The smaller of x and y is returned
//in the following function:
function compute_min(x, y)
{
 return Math.min(x, y)
}
//If x = a and y = 4 the return is NaN
//If x > y the return is y
//If y > x the return is x

Math.pow()
SYNTAX: Math.pow(X, Y)

 229

WHERE: X - The number which will be raised to the power of Y

Y - The number which X will be raised to

RETURN: number - the value of x to the power of y.

DESCRIPTION: If the result of Math.pow is an imaginary or complex number,
NaN will be returned. Please note that if Math.pow unexpectedly
returns infinity, it may be because the floating-point value has
experienced overflow.

EXAMPLE: //x to the power of y is returned
//in the following function:
function compute_x_to_power_of_y(x, y)
{
 return Math.pow(x, y)
}
//If the result of Math.pow is
//an imaginary or complex number,
//the return is NaN
//If y is NaN, the result is NaN
//If y is +0 or -0, the result is 1,
//even if x is NaN
//If x = 2 and y = 3 the return value is 8

Math.random()
SYNTAX: Math.random()

RETURN: number - a number which is positive and pseudo-random and
which is greater than or equal to 0 but less than 1.

DESCRIPTION: Calling this method numerous times will result in an established
pattern (the sequence of numbers will be the same each time.
This method takes no arguments. Seeding is not yet possible.

SEE: Clib.rand()

EXAMPLE: //Return a random number:
function compute_rand_numb()
{
 return Math.rand()
}

Math.round()

 230

SYNTAX: Math.round(X)

WHERE: X - a number.

RETURN: number - value that is closest to the argument and is equal to a
mathematical integer. X is rounded up if its fractional part is
equal to or greater than 0.5 and is rounded down if less than 0.5.

DESCRIPTION: The value of Math.round(x) is the same as the value of
Math.floor(x+0.5), except when x is *0 or is less than 0 but
greater than or equal to -0.5; for these cases Math.round(x)
returns *0, but Math.floor(x+0.5) returns +0.

SEE: Math.floor()

EXAMPLE: //Return a mathematical integer:
function compute_int(x)
{
 return Math.round(x)
}
//If the argument is NaN, the result is NaN
//If the argument is already an integer
//such as any of the
//following values: -0, +0, 4, 9, 8;
//then the result is the
//argument itself.
//If the argument is .2, then the result is 0.
//If the argument is 3.5, then the result is 4
//Note: Math.round(3.5) returns 4,
//but Math.round(-3.5) returns -3.

Math.sin()
SYNTAX: Math.sin(X)

WHERE: X - an angle in radians.

RETURN: number - the sine of x, expressed in radians.

DESCRIPTION: Returns NaN if x cannot be converted to a number. In order to
convert degrees to radians you must multiply by 2pi/360.

EXAMPLE: //Return the sine of x:
function compute_sin(x)
{
 return Math.sin(x)
}
//If the argument is NaN, the result is NaN

 231

//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity or -infinity,
//the result is NaN

Math.sqrt()
SYNTAX: Math.sqrt(X)

WHERE: X - a number or numeric expression greater than or equal to zero.

RETURN: number - the square root of x.

DESCRIPTION: Returns NaN if x is a negative number or cannot be converted to
a number.

SEE: Math.exp()

EXAMPLE: //Return the square root of x:
function compute_square_root(x)
{
 return Math.sqrt(x)
}
//If the argument is NaN, the result is NaN
//If the argument is less than 0,
//the result is NaN
//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity,
//the result is +infinity

Math.tan()
SYNTAX: Math.tan(X)

WHERE: X - an angle measured in radians.

RETURN: number - the tangent of x, expressed in radians.

DESCRIPTION: Returns NaN if x cannot be converted to a number. In order to
convert degrees to radians you must multiply by 2pi/360.

EXAMPLE: //Return the tangent of x:
function compute_tan(x)
{
 return Math.tan(x)
}
//If the argument is NaN, the result is NaN

 232

//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity or -infinity,
//the result is NaN

 233

Global object

The properties and methods of the global object may be thought of as global
variables and functions. The object identifier global is not required when
invoking a global method or function. Indeed, the object name generally is not
used. For example, the following two if statements are identical, but the first
one illustrates how global functions are usually invoked.

if (defined(name))
 Screen.writeln("name is defined");

if (global.defined(name))
 Screen.writeln("name is defined");

The following two lines of code are also equivalent.

var aString = ToString(123)
var aString = global.ToString(123)

Remember, global variables are members of the global object. To access global
properties, you do not need to use an object name. The exception to this rule
occurs when you are in a function that has a local variable with the same name as
a global variable. In such a case, you must use the global keyword to reference
the global variable.

Most of the global methods, functions, described in this section are defined in
the ECMAScript standards. A few are unique additions to ScriptEase. In other
words, they are not part of the ECMAScript standard, but they are useful. Avoid
using the unique functions in a script if it will be used with a JavaScript
interpreter that does not support these few unique functions.

Conversion or casting
Though ScriptEase does well in automatic data conversion, there are times when
the types of variables or data must be specified and controlled. Each of the
following casting functions, the functions below that begin with "To", has one
parameter, which is a variable or piece of data, to be converted to or cast as the
data type specified in the name of the function. For example, the following
fragment creates two variables.

var aString = ToString(123);

 234

var aNumber = ToNumber("123");

The first variable aString is created as a string from the number 123 converted to
or cast as a string. The second variable aNumber is created as a number from the
string "123" converted to or cast as a number. Since aString had already been
created with the value "123", the second line could also have been:

var aNumber = ToNumber(aString);

The type of the variable or piece of data passed as a parameter affects the returns
of some of these functions.

global object properties
global._argc
SYNTAX: _argc
DESCRIPTION: This property refers to the number of parameters passed to the

main() function of a script. The name of the script is always the
first parameter, so if _argc == 1, then the script received no
arguments. See the main() function for more information on
argc and the main() function. General programming practice
uses argc, a parameter to the main()function rather than
_argc.

SEE: function main(), _argv

EXAMPLE: function main(argc, argv)
{
 // At this point, unless deliberately changed
 // by special programming, _argc == argc
}

global._argv
SYNTAX: _argv
DESCRIPTION: This property is an array of strings. Each string is a parameter

passed to the main() function. The value of argv[0] is always
the name of the script being called. The first parameter passed to
the script is in argv[1]. See the main() function for more
information on argc, argv, and the main() function. General

 235

programming practice uses argv, a parameter to the
main()function rather than _argv.

SEE: function main(), _argc

global object methods/functions
global.defined()
SYNTAX: defined(value)

WHERE: value - a value or variable to check to see if it is defined.

RETURN: boolean - true if the value has been defined, else false

DESCRIPTION: This function tests whether a variable, object property, or value
has been defined. The function returns true if a value has been
defined, or else returns false. The function defined() may be
used during script execution and during preprocessing. When
used in preprocessing with the directive #if, the function
defined() is similar to the directive #ifdef, but is more
powerful. The following fragment illustrates three uses of
defined().

SEE: global.undefine()

EXAMPLE: var t = 1;
#if defined(_WIN32_)
 Screen.writeln("in Win32");
 if (defined(t))
 Screen.writeln("t is defined");
 if (!defined(t.t))
 Screen.writeln("t.t is not defined");
#endif

// The first use of defined() checks whether a value
// is available to the preprocessor
// to determine which platform is running the script.
// The second use checks a variable "t".
// The third use checks an object "t.t"

global.escape()

 236

SYNTAX: escape(string)

WHERE: string - with special characters that need to be handled specially,
that is, escaped.

RETURN: string - with special characters escaped or fixed so that the string
may be used in special ways, such as being a URL.

DESCRIPTION: The escape() method receives a string and escapes the
special characters so that the string may be used with a
URL. This escaping conversion may be called encoding.
All uppercase and lowercase letters, numbers, and the
special symbols, @ * + - . /, remain in the string. All other
characters are replaced by their respective unicode
sequence, a hexadecimal escape sequence. This method is
the reverse of escape().

SEE: global.unescape()

EXAMPLE: escape("Hello there!");
// Returns "Hello%20there%21"

global.eval()
SYNTAX: eval(expression)

WHERE: expression - a valid expression to be parsed and treated as if it
were code or script.

RETURN: value - the result of the evaluation of expression as code.

DESCRIPTION: Evaluates whatever is represented by the parameter expression.
If expression is not a string, it will be returned. For example,
calling eval(5) returns the value 5.

If expression is a string, the interpreter tries to interpret the string
as if it were JavaScript code. If successful, the method returns
the last variable with which was working, for example, the return
variable. If the method is not successful, it returns the special
value, undefined.

SEE: SElib.interpret()

EXAMPLE: var a = "who";
 // Displays the string as is

 237

Screen.writeln('a == "who"');
 // Evaluates the contents of the string as code,
 // and displays "true",
 // the result of the evaluation
Screen.writeln(eval('a == "who"'));

global.isFinite()
SYNTAX: isFinite(number)

WHERE: number - to check if it is a finite number.

RETURN: boolean - if the parameter is or can be converted to a number,
else false.

DESCRIPTION: This method returns true if the parameter, number, is or can be
converted to a number. If the parameter evaluates as NaN,
Number.POSITIVE_INFINITY, or
Number.NEGATIVE_INFINITY, the method returns false.

SEE: global.isNaN()

EXAMPLE: if (isFinite(99)) Screen.writeln("A number");

global.isNaN()
SYNTAX: isNaN(number)

WHERE: number - a value to if it is not a number.

RETURN: boolean - true if number is not a number, else false.

DESCRIPTION: This method returns true if the parameter, number, evaluates to
NaN, "Not a Number". Otherwise it returns false.

SEE: global.isFinite()

EXAMPLE: if (isNan(99)) Screen.writeln("Not a number");

global.getArrayLength()
SYNTAX: getArrayLength(array[, minIndex])

WHERE: array - an automatic array.

minIndex - the minimum index to use.

 238

RETURN: number - the length of an array.

DESCRIPTION: This function should be used with dynamically created arrays,
that is, with arrays that were not created using the new
Array() operator and constructor. When working with arrays
created using the new Array() operator and constructor, use
the length property of the Array object. The length property
is not available for dynamically created arrays which must use
the functions, getArrayLength() and setArrayLength(),
when working with array lengths.

The getArrayLength() function returns the length of a
dynamic array, which is one more than the highest index of an
array, if the first element of the array is at index 0, which is most
common. If the parameter minIndex is passed, then it is used to
set to the minimum index, which will be zero or less. You can
use this function to get the length of an array that was not created
with the Array() constructor function.

This function and its counterpart, setArrayLength(), are
intended for use with dynamically created arrays, that is, arrays
not created with the Array() constructor function. Use the
length property to get the length of arrays created with the
constructor function and not getArrayLength().

SEE: setArrayLength(), Array.length

EXAMPLE: var arr = {4,5,6,7};
Screen.writeln(getArrayLength(arr));

global.getAttributes()
SYNTAX: getAttributes(variable)

WHERE: variable - a variable identifier, name.

RETURN: number - representing the attributes set for a variable. If no
attributes are set, the return is 0. See setAttributes() for a
list of predefined constants for the attributes that a variable may
have.

DESCRIPTION: Gets and returns the variable attributes for the parameter
variable. Variable attributes may be set using the function

 239

setAttributes(). See setAttributes() for more information
and descriptions of the attributes of variables that can be set.

SEE: setAttributes()

global.parseFloat()
SYNTAX: parseFloat(string)

WHERE: string - to be converted to a decimal float.

RETURN: number - the float to which the string converts, else NaN.

DESCRIPTION: This method is similar to parseInt() except that it reads
decimal numbers with fractional parts. In other words, the first
period, ".", in the parameter string is considered to be a decimal
point, and any following digits are the fractional part of the
number. The method parseFloat() does not take a second
parameter.

SEE: global.parseInt()

EXAMPLE: var i = parseInt("9.3");

global.parseInt()
SYNTAX: parseInt(string[, radix])

WHERE: string - to be converted to an integer.

radix - the number base to use, default is 10.

RETURN: number - the integer to which string converts, else NaN.

DESCRIPTION: This method converts an alphanumeric string to an integer
number. The first parameter, string, is the string to be converted,
and the second parameter, radix, is an optional number indicating
which base to use for the number. If the radix parameter is not
supplied, the method defaults to base 10 which is decimal. If the
first digit of string is a zero, radix defaults to base 8 which is
octal. If the first digit is zero followed by an "x", that is, "0x",
radix defaults to base 16 which is hexadecimal.

White space characters at the beginning of the string are ignored.
The first non-white space character must be either a digit or a

 240

The first non-white space character must be either a digit or a
minus sign (-). All numeric characters following the string will
be read, up to the first non-numeric character, and the result will
be converted into a number, expressed in the base specified by
the radix variable. All characters including and following the
first non-numeric character are ignored. If the string is unable to
be converted to a number, the special value NaN is returned.

SEE: global.parseFloat()

EXAMPLE: var i = parseInt("9");
var i = parseInt("9.3");
// In both cases, i == 9

global.setArrayLength()
SYNTAX: setArrayLength(array[, minIndex[, length]])

WHERE: array - an automatic array.

minIndex - the minimum index to use. Default is 0.

length - the length of the array to set.

RETURN: void.

DESCRIPTION: This function sets the first index and length of a array. Any
elements outside the bounds set by MinIndex and length are lost,
that is, become undefined. If only two arguments are passed to
setArrayLength(), the second argument is length and the
minimum index of the newly sized array is 0. If three arguments
are passed to setArrayLength(), the second argument, which
must be 0 or less, is the minimum index of the newly sized array,
and the third argument is the length.

SEE: getArrayLength(), Array.length

EXAMPLE: var arr = {4,5,6,7};
Screen.writeln(getArrayLength(arr));
setArrayLength(arr, 9);

global.setAttributes()
SYNTAX: setAttributes(variable, attributes)

 241

WHERE: variable - a variable identifier, name.

attributes - the attribute or attributes to be set for a variable. If
more than one attribute is being set, use the or operator, "|", to
combine them.

RETURN: void.

DESCRIPTION: This function sets the variable attributes for the parameter
variable using the parameter attributes. Variables in ScriptEase
may have various attributes set that affect the behavior of
variables. This function has no return.

The following list describes the attributes that may be set for
variables. Multiple attributes may be set for variables by
combining them with the or operator. For example, the flag
setting READ_ONLY | DONT_ENUM sets both of these attributes
for one variable.

• DONT_DELETE
This variable may not be deleted. If the delete operator is
used with a variable, nothing is done.

• DONT_ENUM
This variable is not enumerated when using a for/in loop.

• IMPLICIT_PARENTS
This attribute applies only to local functions and allows a
scope chain to be altered based on the __parent__ property
of the "this" variable. If this flag is set, if the __parent__
property is present, and if a variable is not found in the local
variable context, activation object, of a function, then the
parents of the "this" variable are searched backwards before
searching the global object. The example below illustrates
the effect of this flag.

• IMPLICIT_THIS
This attribute applies only to local functions. If this flag is
set, then the "this" variable is inserted into a scope chain
before the activation object. For example, if variable TestVar
is not found in a local variable context, activation object, the
interpreter searches the current "this" variable of a function.

• READ_ONLY
This variable is read-only. Any attempt to write to or change
this variable fails.

 242

this variable fails.

SEE: getAttributes()

EXAMPLE: // The following fragment illustrates the use
// of setAttributes() and the behavior affected
// by the IMPLICIT_PARENTS flag.
function foo()
{
 value = 5;
}
setAttributes(foo, IMPLICIT_PARENTS)

var a;
a.value = 4;
var b;
b.__parent__ = a;
b.foo = foo;
b.foo();

// After this code is run, a.value is set to 5.

global.undefine
SYNTAX: undefine(value)

WHERE: value - value, variable, or property to be undefined.

RETURN: void.

DESCRIPTION: This function undefines a variable, Object property, or value. If a
value was previously defined so that its use with the function
defined() returns true, then after using undefine() with the value,
defined() returns false. Undefining a value is different than
setting a value to null.

SEE: defined()

EXAMPLE: // In the following fragment, the variable n
// is defined with the number value of 2 and
// then undefined.
var n = 2;
undefine(n);

// In the following fragment an object o
// is created and a property o.one is defined.
// The property is then undefined but
// the object o remains defined.

 243

var o = new Object;
o.one = 1;
undefine(o.one);

global.ToBoolean()
SYNTAX: ToBoolean(value)

WHERE: value - to be cast as a boolean.

RETURN: boolean - conversion of value.

DESCRIPTION: The following list indicates how different data types are
converted by this function.

• Boolean
same as value

• Buffer
same as for String

• null
false

• Number
false, if value is 0, +0, -0 or NaN, else true

• Object
true

• String
false if empty string, "", else true

• undefined
false

global.ToBuffer()
SYNTAX: ToBuffer(value)

WHERE: value - to be cast as a buffer.

RETURN: buffer - conversion of value.

DESCRIPTION: This function converts value to a buffer in a manner similar to
ToString() except that the resulting array of characters is a
sequence of ASCII bytes and not a unicode string.

SEE: ToBytes()

 244

global.ToBytes()
SYNTAX: ToBytes(value)

WHERE: value - to be cast as a buffer.

RETURN: buffer - conversion of value.

DESCRIPTION: This function converts value to a buffer and differs from
ToBuffer() in that the conversion is actually a raw transfer of
data to a buffer. The raw transfer does not convert unicode
values to corresponding ASCII values. For example, the unicode
string "Hit" is stored in a buffer as "\0H\0\i\0t", that is, as
the hexadecimal sequence: 00 48 00 69 00 74.

SEE: ToBuffer()

global.ToInt32()
SYNTAX: ToInt32(value)

WHERE: value - to be cast as a signed 32 bit integer.

RETURN: number - conversion of value.

DESCRIPTION: This function is the same as ToInteger() except that if the return
is an integer, it is in the range of - 231 through 231 - 1.

SEE: ToInteger(), ToNumber()

global.ToInteger()
SYNTAX: ToInteger(value)

WHERE: value - to be cast as an integer.

RETURN: number - conversion of value.

DESCRIPTION: This function converts value to an integer type. First, call
ToNumber(). If result is NaN, return +0. If result is +0, -0,
+Infinity or -Infinity, return result. Else return floor(abs(result))
with the appropriate sign. For example, the value -4.8 is
converted to -4.

 245

converted to -4.

SEE: ToInt32(), ToNumber()

global.ToNumber()
SYNTAX: ToNumber(value)

WHERE: value - to be cast as a number.

RETURN: number - conversion of value.

DESCRIPTION: The following table lists how different data types are converted
by this function.

• Boolean
+0, if value is false, else 1

• Buffer
same as for String

• null
+0

• Number
same as value

• Object
first, call ToPrimitive(), then call ToNumber() and return
result

• String
number, if successful, else NaN

• undefined
NaN

SEE: ToInteger(), ToInt32()

global.ToObject()
SYNTAX: ToObject(value)

WHERE: value - to be cast as an object.

RETURN: object - conversion of value.

DESCRIPTION: The following table lists how different data types are converted
by this function.

 246

by this function.

• Boolean
new Boolean object with value

• null
generate runtime error

• Number
new Number object with value

• Object
same as parameter

• String
new String object with value

• undefined
generate runtime error

SEE: ToPrimitive()

global.ToPrimitive
SYNTAX: ToPrimitive(value)

WHERE: value - to be cast as a primitive.

RETURN: value - conversion of value to one of the primitive data types.

DESCRIPTION: This function does conversions only for parameters of type
Object. An internal default value of the Object is returned.

SEE: ToObject()

global.ToString()
SYNTAX: ToString(value)

WHERE: value - to be cast ass a string.

RETURN: string - conversion of value.

DESCRIPTION: The following table lists how different data types are converted
by is this function.

• Boolean

 247

"false", if value is false, else "true"
• null

"null"
• Number

if value is NaN, return "NaN". If +0 or -0, return "0". If
Infinity, return "Infinity". If a number, return a string
representing the number. If a number is negative, return "-"
concatenated with the string representation of the number.

• Object
first, call ToPrimitive(), then call ToString() and return result

• String
same as value

• undefined
"undefined"

SEE: ToPrimitive(), ToNumber()

global.unescape()
SYNTAX: unescape(string)

WHERE: string - holding escape characters.

RETURN: string - with escape characters replaced by appropriate
characters.

DESCRIPTION: This method is the reverse of the escape() method and
removes escape sequences from a string and replaces them with
the relevant characters. That is, an encoded string is decoded.

SEE: global.escape()

EXAMPLE: unescape("Hello%20there%21");
// Returns "Hello there!"

global.Uint16()
SYNTAX: ToUint16(value)

WHERE: value - to be cast as a 16 bit unsigned integer.

RETURN: number - conversion of value.

 248

DESCRIPTION: This function is the same as ToInteger() except that if the return
is an integer, it is in the range of 0 through 216 - 1.

SEE: ToUint32(), ToInteger()

global.Uint32()
SYNTAX: ToUint32(value)

WHERE: value - to be cast as a 32 bit unsigned integer.

RETURN: number - conversion of value.

DESCRIPTION: This function is the same as ToInteger() except that if the return
is an integer, it is in the range of 232 - 1.

SEE: ToInt32(), ToInteger()

 249

Function Object
The Function object is one of three ways to define and use objects in ScriptEase.
The three ways to work with objects are:

• Use the function keyword and define a function in a normal way:
function myFunc(x) {return x + 4;}

• Construct a new Function object:
var myFunc = new Function("x", "return x + 4;");

• Define and assign a function literal:
var myFunc = function(x) {return x + 4;}

All three of three of these ways of defining and using functions produce the same
result, x + 4. The differences are in definition and use of functions. Each way has
a strength that is very powerful in some circumstances, power that allows
elegance in programming. The methods and discussion in this segment on the
Function object deal with the second way shown above, the construction of a new
Function object.

Function object instance methods
Function()
SYNTAX: new Function(params[, ...], body)

WHERE: params - one or a list of parameters for the function.

body - the body of the function as a string.

RETURN: object - a new function object with the specified parameters and
body that can later be executed just like any other function.

DESCRIPTION: The parameters passed to the function can be in one of two
formats. All parameters are strings representing parameter
names, although multiple parameter names can be grouped
together with commas. These two options can be combined as
well. For example, new Function("a", "b", "c",
"return") is the same as new Function("a, b", "c",
"return"). The body of the function is parsed just as any other
function would be. If there is an error parsing either the

 250

function would be. If there is an error parsing either the
parameter list or the function body, a runtime error is generated.
If this function is later called as a constructor, then a new object
is created whose internal _prototype property is equal to the
prototype property of the new function object. Note that this
function can also be called directly, without the new operator.

EXAMPLE: // The following will create a new Function object
// and provide some properties
// through the prototype property.

var myFunction = new Function("a", "b",
 "this.value = a + b");
var printFunction = new Function
 ("Screen.writeln(this.value)");
myFunction.prototype.print = printFunction;

var foo = new myFunction(4, 5);
foo.print();

// This code will print out the value "9",
// which was the value stored in foo when it was
// created with the myFunction constructor.

Function apply()
SYNTAX: function.apply([thisObj[, arguments])

WHERE: thisObj - object that will be used as the "this" variable while
calling this function. If this is not supplied, then the global
object is used instead.

arguments - array of arguments to pass to the function as an
Array object or a list in the form of [arg1, arg2[, ...]]. The
brackets "[]" around a list of arguments is required. Note that the
similar method Function.prototype.call() can receive the same
arguments as a list. Compare the following ways of passing
arguments:

 // Uses an Array object
function.apply(this, argArray)
 // Uses brackets
function.apply(this,[arg1,arg2])
 // Uses argument list
function.call(this,arg1,arg2)

 251

RETURN: variable - the result of calling the function object with the
specified "this" variable and arguments.

DESCRIPTION: This method is similar to calling the function directly, only the
user is able to pass a variable to use as the "this" variable, and
the arguments to the function are passed as an array. If
arguments is not supplied, then no arguments are passed to the
function. If the arguments parameter is not a valid Array
object or list of arguments inside of brackets "[]", then a runtime
error is generated.

SEE: Function(), Function.prototype.call()

EXAMPLE: var myFunction = new Function("a,b","return a + b");
var args = new Array(4,5);
myFunction.apply(global, args);
 //or
myFunction.apply(global, [4,5]);

// This code sample will return 9, which is
// the result of calling myFunction with
// the arguments 4 and 5, from the args array.

Function call()
SYNTAX: function.call([thisObj[, arguments[, ...]]])

WHERE: thisObj - An object that will be used as the "this" variable while
calling this function. If this is not supplied, then the global
object is used instead.

arguments - list of arguments to pass to the function. Note that
the similar method Function.prototype.apply() can receive the
same arguments as an array. Compare the following ways of
passing arguments:

 // Uses an Array object
function.apply(this, argArray)
 // Uses brackets
function.apply(this,[arg1,arg2])
 // Uses argument list
function.call(this,arg1,arg2)

RETURN: variable - the result of calling the function object with the
specified "this" variable and arguments.

 252

DESCRIPTION: This method is almost identical to calling the function directly,
only the user is able to supply the "this" variable that the function
will use. Otherwise, it is the same.

SEE: Function(), Function.apply()

EXAMPLE: // The following code:

var myFunction = new Function("arg",
 "return this.a + arg");
var obj = { a:4 };
myFunction(obj, 5);

// This code fragment returns the value 9,
// which is the result of fetching this.a//
// from the current object (which is obj) and
// adding the first parameter passed, which is 5.

Function toString()
SYNTAX: function.toString()

RETURN: string - a representation of the function.

DESCRIPTION: This method attempts to generate the same code that built the
function. Any spacing, semicolons, newlines, etc., are
implementation-dependent. This method tries to make the output
as human-readable as possible. Note that the function name is
always "anonymous", because the function itself is unnamed,
even though the function object has a name. Also, note that this
function is very rarely called directly, rather it is called implicitly
through conversions such as ToString().

EXAMPLE: var myFunction = new Function("a", "b",
 "this.value = a + b");
Screen.writeln(myFunction);

// This fragment will print the following
// to the screen:

 function anonymous(a, b)
 {
 this .value = a + b
 }

 253

Dos Object
platform: DOS, Win16

The methods in this section are specific to the DOS or WIN16 versions of
ScriptEase. Most of these routines allow a programmer to have more power than
is generally acknowledged as safe under the scripting guidelines of general
ScriptEase. Be cautious when you use these commands. They allow much
latitude in what may be done at a very low programming level with little or no
built-in protections.

The methods in this section are preceded with the Object name Dos, since
individual instances of the Dos Object are not created. In other words, the Dos
object has only static methods. For example, Dos.inport(portid) is the
syntax to use to read a byte from a hardware port. Remember to prepend "Dos."
to the method names as shown in this section.

Dos object static methods
Dos.address()
SYNTAX: Dos.address(segment, offset)

WHERE: segment - segment portion of memory address.

offset - offset portion of memory address.

RETURN: number - memory address, a segment:offset address suitable for
use in calls such as peek() and poke().

DESCRIPTION: Convert segment:offset pointer into memory address.

SEE: Dos.offset(), Dos.segment()

Dos.asm()
SYNTAX: Dos.asm(buf[, ax[, bx[, cx[, dx[, si[, di[, ds[, es]]]]]]]])

WHERE: buf - a byte buffer.

ax, bx, cx, dx, si, di, ds, es - registers.

 254

RETURN: number - long value for whatever is in DX:AX when buf returns.

DESCRIPTION: Make a far call to the routine that you have coded into buf. ax,
bx, cx, dx, si, di, ds, and es are optional; if some or all are
supplied, then the ax, bx, cx, etc... will be set to these values
when the code at buf is called. The code in buf will be executed
with a far call to that address, and is responsible for returning via
retf or other means. The ScriptEase calling code will restore
ALL registers except ss, sp, ax, bx, cx, and dx. If es or ds are
supplied, then they must be valid values or 0, if 0 then the
current value will be used.

EXAMPLE: // The following example uses 80x86 assembly code
// to rotate memory bits:

 // return value of byte b rotate count byte
function RotateByteRight(b, count)
{
 assert(0 <= b && b <= 0xFF);
 assert(0 <= count && count <= 8)
 return asm(`\xD2\xC8\xCB',b,0,count,0);

 // assembly code for would look as follows:
 // ror al, cl D2C8
 // retf CB
}

Dos.inport()
SYNTAX: Dos.inport(portid)

WHERE: portid - port from which to read.

RETURN: number - byte of data from a hardware port.

DESCRIPTION: Read byte from a hardware port: portid.

SEE: Dos.inportw()

Dos.inportw()
SYNTAX: Dos.inportw(portid)

WHERE: portid - port from which to read.

 255

RETURN: number - 16 bit word of data from a hardware port.

DESCRIPTION: Read a word (16 bit) from hardware port: portid. Value read is
unsigned (not negative).

SEE: Dos.inport()

Dos.interrupt()
SYNTAX: Dos.interrupt(interrupt, regIn[, regOut]

WHERE: interrupt - DOS interrupt number.

regIn -

regOut -

RETURN: boolean - since many interrupts set the carry flag for error, this
function returns false if the carry flag is set, else true.

DESCRIPTION: Executes an 8086 interrupt. Set registers, call 8086 interrupt
function, and then get the return values of the registers. The
parameters regIn and regOut are structures containing the
elements corresponding to the registers on an 8086. On input,
those structure members that are defined will be set, and those
that are not defined will be set to zero, with the exception of the
segment registers (es & ds) which retain their current values if
not explicitly specified. The possible defined input values are ax,
ah, al, bx, bh, bl, cx, ch, cl, dx, dh, dl, bp, si, di, ds, and es. All
Fields of the output reg structure are the same, with the addition
of the FLAGS member, and all are set before returning. If regOut
is not supplied, then the return registers and FLAGS register will
be set for regIn on return from the interrupt call.

The parameter regOut is set to the register values upon return
from Interrupt. If regOut is not supplied then regIn is set to
contain the register values upon return from Interrupt.

EXAMPLE: // The following example calls the DOS interrupt
// service 0x2C to read the clock:

 // display DOS time as accurately as it is read
PrintDOStime()
{
 reg.ah = 0x2C;

 256

 interrupt(0x21,reg);
 printf("%2d:%02d:%02d",reg.ch,reg.cl,reg.dh);
}

Dos.offset()
SYNTAX: Dos.offset(buf)

Dos.offset(address)

WHERE: buf - a byte buffer.

address - address in memory.

RETURN: number - offset of buffer such that 8086 would recognize the
address segment::buffer as pointing to the first byte of buf.

DESCRIPTION: Dos.segment() and Dos.offset() return the segment and
offset of the data at index 0 of buf, which must be a byte array.
The buffer must be big enough for whatever purpose it is used,
and no changes may be made to the size of buf after these values
are determined since changing the size of buf might change its
absolute address. If the address versions are used, then address is
assumed to be a far pointer to data, and segment will be the high
word while address will be the low word. See Dos.address()
for converting segment and offset into a single address.

SEE: Dos.offset(), Dos.address()

Dos.outport()
SYNTAX: Dos.outport(portid, value)

WHERE: portid - port to which to send value.

value - a byte of data to send to the port identified by portid.

RETURN: void.

DESCRIPTION: Write a byte value to hardware port: portid.

Dos.outportw()

 257

SYNTAX: Dos.outportw(portid, value)

WHERE: portid - port to which to send value.

value - a 16 bit word of data to send to the port identified by
portid.

RETURN: void.

DESCRIPTION: Write a 16 bit word value to hardware port: portid.

Dos.segment()
SYNTAX: Dos.segment(buf)

Dos.segment(address)

WHERE: buf - a byte buffer.

address - address in memory.

RETURN: number - segment of buffer such that 8086 would recognize the
address segment::buffer as pointing to the first byte of buf.

DESCRIPTION: Dos.segment() and Dos.offset() return the segment and
offset of the data at index 0 of buf, which must be a byte array.
The buffer must be big enough for whatever purpose it is used,
and no changes may be made to the size of buf after these values
are determined since changing the size of buf might change its
absolute address. If the address versions are used, then address is
assumed to be a far pointer to data, and segment will be the high
word while address will be the low word. See Dos.address()
for converting segment and offset into a single address.

SEE: Dos.offset(), Dos.address()

 259

Clib Object

platform: All operating systems; all versions of SE

The Clib object contains functions that are a part of the standard C library.
Methods to access files, strings, and characters are all part of the Clib object.

Some of the functions in the Clib Object overlap the methods in JavaScript. In
most cases, the newer JavaScript methods should be preferred over the older C
functions. However, there are times, such as when working with many cfunctions
or with string routines that expect null terminated strings, that the Clib methods
make more sense and are more consistent in a section of a script.

Clib functions with equivalent methods in JavaScript are noted as such. Since
ScriptEase, JavaScript and the ECMAScript standard are developing and
growing, generally, a programmer should favor the JavaScript methods over
equivalent methods in the Clib object.

The methods in this section are preceded with the Object name Clib, since
individual instances of the Clib Object are not created. For example, Clib.exit() is
the syntax to use to exit a script.

Console I/O functions
Console I/0 functions are not available for ScriptEase WebServer Edition

Clib.printf()
SYNTAX: Clib.printf(formatString[, variables ...])

WHERE: formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.

RETURN: number - characters written, or a negative number if there is an
error.

DESCRIPTION: This method writes output to the standard output device
according to the format string and returns a number equal to the
number of characters written, or a negative number if there is an
error. The format string can contain character combinations
indicating how following parameters are to be treated. Characters
are printed as read to standard output until a percent character,

 260

are printed as read to standard output until a percent character,
%, is reached. % indicates that a value is to be printed from the
parameters following the format string. Each subsequent
parameter specification takes from the next parameter in the list
following format. A parameter specification has the following
form in which square brackets indicate optional fields and angled
brackets indicate required fields:

%[flags][width][.precision]<type>

flags may be:

• -
Left justification in the field with blank padding; else right
justifies with zero or blank padding

• +
Force numbers to begin with a plus (+) or minus (-)

• blank
Negative values begin with a minus (-); positive values
begin with a blank

• #
Convert using the following alternate form, depending on
output data type:
• c, s, d, i, u

No effect
• o

0 (zero) is prepended to non- zero output
• x, X

0x, or 0X, are prepended to output
• f, e, E

Output includes decimal even if no digits follow decimal
• g, G

Same as e or E but trailing zeros are not removed

width may be:

• n
(n is a number e.g., 14) At least n characters are output,
padded with blanks

• 0n
At least n characters are output, padded on the left with zeros

 261

At least n characters are output, padded on the left with zeros
• *

The next value in the argument list is an integer specifying
the output width

• .precision
If precision is specified, then it must begin with a period (.),
and may be as follows:

• 0
For floating point type, no decimal point is output

• n
n characters or n decimal places (floating point) are
output

• *
The next value in the argument list is an integer
specifying the precision width

type may be:

• d, i
signed integer

• u
unsigned integer

• o
octal integer x

• x
hexadecimal integer with 0- 9 and a, b, c, d, e, f

• X
hexadecimal integer with 0- 9 and A, B, C, D, E, F

• f
floating point of the form [-]dddd.dddd

• e
floating point of the form [-]d.ddde+dd or [-]d.ddde- dd

• E
floating point of the form [-]d.dddE+dd or [-]d.dddE- dd

• g
floating point of f or e type, depending on precision

• G
floating point of For E type, depending on precision

 262

• c
character (e.g. 'a', 'b', '8')

• s
string

To include the % character as a character in the format string, you
must use two % characters together, %%, to prevent the computer
from trying to interpret it as on of the above forms.

SEE: Clib.sprintf()

EXAMPLE: //Each of the following lines shows
// a printf example followed by what would show
// on the output in boldface:

Clib.printf("Hello world!")
// Hello world!
Clib.printf("I count: %d %d %d.",1,2,3)
// I count: 1 2 3
var a = 1;
var b = 2;
Clib.printf("%d %d %d", a, b, a +b)
// 1 2 3

Clib.getch()
SYNTAX: Clib.getch()
RETURN: number - character value of the key pressed.

DESCRIPTION: This method works exactly like getche(), but does not echo the
returned key to the screen. For example, the following code has
you enter a password; each time you enter a letter an asterisk is
written to the screen:

SEE: Clib.getchar()

EXAMPLE: var password;
for (var gg = 0; ;gg++)
{
var letter = Clib.getch();
if (letter == '\n') continue;
Clib.putc('*').
password[gg] = letter;
}

 263

Clib.getchar()
SYNTAX: Clib.getchar()
RETURN: number - character value of the key pressed.

DESCRIPTION: This method returns the next character from stdin. Usually, this
is the keyboard, but you may redefine it to something else. This
method will wait for "enter" to be pressed after the key, and will
then return two values: the key pressed, and then the value of the
enter key.

SEE: Clib.getche()

Clib.getche()
SYNTAX: Clib.getche()
RETURN: number - character value of the key pressed.

DESCRIPTION: This method waits until a key is pressed and returns the character
value of that key. The character will be printed (echoed) to the
screen. Some key presses, such as extended keys and function
keys, may generate multiple getche() return values. If a key was
pressed before calling the function but never cleared from the
keyboard buffer, that value will be returned instead of the next
pressed key. This is not a common occurrence but can happen.
To see whether there are any key values pending in the keyboard
buffer, use .kbhit().

SEE: Clib.getch()

Clib.gets()
SYNTAX: Clib.gets()
RETURN: string - an entire string from the keyboard, or null if there was

an error.

DESCRIPTION: This method reads an entire string from the keyboard and returns
it (or null if there was an error). The function will read all
characters up to a newline character or EOF. If a newline
character is read, it will not be included in the string.

 264

character is read, it will not be included in the string.

SEE: Clib.getchar()

EXAMPLE: var s = Clib.gets()

Clib.kbhit()
SYNTAX: Clib.kbhit()
RETURN: boolean - true if there are any keystrokes waiting, false if not.

DESCRIPTION: This method checks to see whether there are any keystrokes
waiting to be processed, returning true if there are and false if
there are not.

SEE: Clib.getche()

Clib.putchar()
SYNTAX: Clib.putchar(chr)

WHERE: chr - character to write to the stream stdout.

RETURN: number - character written on success, else EOF.

DESCRIPTION: This method writes chr to the stream defined by stdout (usually
the screen). If successful, it will return the character it just wrote;
if not, it will return EOF.

This method is identical to Clib.fputc(chr, stdout).

SEE: Clib.puts()

Clib.puts()
SYNTAX: Clib.puts(str)

WHERE: str - string to write to the stream stdout.

RETURN: number - a positive number on success, else EOF.

DESCRIPTION: Writes a string to stdout, followed by a newline character. Will
not write the final null character of null terminated strings.

 265

Returns EOF if there is an error writing the string; otherwise it
returns a positive number.

This method is the same as Clib.fputs(str, stdout)
except that a newline character is written after the string.

SEE: Clib.putchar()

Clib.scanf()
SYNTAX: Clib.scanf(formatString, variables[, ...])
WHERE: formatString - specifies how to read and store data in variables.

variables - list of variables to hold data input according to
formatString.

RETURN: number - input items assigned.

DESCRIPTION: This flexible method reads input from the screen, extracts data
from it by matching the string to a format string (as described
below), and stores the data in the variables which follow the
format string. It returns the number of input items assigned; this
number may be fewer than the number of parameters requested if
there was a matching failure. The format string contains
character combinations that specify the type of data expected.
The format string specifies the admissible input sequences, and
how the input is to be converted to be assigned to the variable
number of arguments passed to this function.

Characters are matched against the input as read and as it
matches a portion of the format string until a % character is
reached. % indicates that a value is to be read and stored to
subsequent parameters following the format string. Each
subsequent parameter after the format string gets the next parsed
value takes from the next parameter in the list following format.
A parameter specification takes this form (square brackets
indicate optional fields, angled brackets indicate required fields):

%[*][width]<type>

*, width, and type may be:

• *
suppress assigning this value to any parameter

 266

suppress assigning this value to any parameter
• width

maximum number of characters to read; fewer will be read if
white space or nonconvertible character

• type
may be one of the following:

• d, D, i, I
signed integer

• u, U
unsigned integer

• o, O
octal integer

• x, X
hexadecimal integer

• f, e, E, g, G
floating point number

• c
character; if width was specified then this will be an
array of characters of the specified length

• s
string

• [abc]
string consisting of all characters within brackets; where
A- Z represents range "A" to "Z"

• [^abc]
string consisting of all character NOT within brackets.

Modifies any number of parameters following the format string,
setting the parameters to data according to the specifications of
the format string.

SEE: Clib.vscanf()

Clib.vprintf()
SYNTAX: Clib.vprintf(formatString, valist)

 267

WHERE: formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: number - number of characters written on success, else a
negative number.

DESCRIPTION: This method displays formatted output on the standard output
stream, screen, using a variable number of arguments. This
method is similar to .printf() except that it takes a variable
argument list using valist.

See printf() and va_start() for more information. The method
.vprintf() returns the number of characters written on success,
else a negative number on error.

The example function acts just like a printf() statement except
that it beeps, displays a message, beeps again, and waits a second
before returning. This method could be a wrapper for the printf()
method to display urgent messages.

SEE: Clib.printf(), Clib.va_start()

EXAMPLE: function UrgentPrintf(FormatString[arg1 ...])
{
 // create variable arg list
 Clib.va_start(valist, FormatString);
 Screen.write("\a"); // audible beep
 // printf original statement
 var ret = Clib.vprintf(FormatString, valist);
 Screen.write("\a"); // beep again
 SElib.suspend(1000); // wait before returning
 Clib.va_end(valist); // end using valist
 return(ret); // return as printf would }
}

Clib.vscanf()
SYNTAX: Clib.vscanf(formatString, valist)

WHERE: formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: number - input items assigned. This number may be fewer than
the number of parameters requested if there is a matching failure

 268

the number of parameters requested if there is a matching failure
during input.

DESCRIPTION: This method gets formatted input from the standard input stream,
the keyboard, using a variable number of arguments. This
method is similar to scanf() except that it takes a variable
argument list. See scanf() and va_start() for more information.

The method vscanf() modifies any number of parameters
following formatString, setting the parameters to data according
to the specifications of the format string.

This method returns the number of input items assigned. This
number may be fewer than the number of parameters requested if
there is a matching failure during input.

The example function behaves like scanf(), including taking a
variable number of input arguments, except that it beeps and tries
again if there are zero matches:

SEE: Clib.scanf()

EXAMPLE: function Must_scanf(FormatString[,arg1 ...)
{
 Clib.va_start(valist, FormatString);
 // creates variable arg list
 do
 { // mimic original scanf() call
 var count = Clib.vscanf(FormatString,
 valist);
 if (0 == count) // if no match, beep
 Screen.write("\a");
 } while(0 == count);
 // if not match, try again
 Clib.va_end(valist);
 // end using valist (optional)
 return(count);
 // return as scanf() would
}

Time functions
The Clib object (like the Date object) represents time in two distinct ways: as an
integral value (the number of seconds passed since January 1, 1970) and as a
Time object with properties for the day, month, year, etc. This Time object is

 269

distinct from the standard JavaScript Date object. You cannot use Date object
properties with a Time object or vice versa.

In the methods below, timeObj represents a variable in the Time object format,
while timeInt represents an integral time value.

Clib.asctime()
SYNTAX: Clib.asctime(timeObj)

WHERE: timeObj - time variable in the Time object format.

RETURN: string - the date and time extracted from a Time object, as
returned by Clib.localtime().

DESCRIPTION: Returns a string representing the date and time extracted from a
Time object, as returned by Clib.localtime(). The string
will have this format:

Mon Jul 19 09:14:22 1993

Clib.clock()
SYNTAX: Clib.clock()
RETURN: number - the current processor tick count.

DESCRIPTION: Returns the current processor tick count. Clock value starts at 0
when ScriptEase program begins and is incremented
CLOCKS_PER_SEC times per second.

Clib.ctime(timeInt)
SYNTAX: Clib.ctime(timeInt)

WHERE: timeInt - an integer time value.

RETURN: string - the date and time extracted from a Time object, as
returned by Clib.localtime().

DESCRIPTION: This method is equivalent to: Clib.asctime(
Clib.localtime(time)), where timeInt is a date_time
value as returned by the Clib.time() function.

 270

Clib.difftime()
SYNTAX: Clib.difftime(timeInt0, timeInt1)

WHERE: timeInt0 - an integer time value.

timeInt1 - an integer time value.

RETURN: number - difference between two times, in seconds.

DESCRIPTION: This method returns the difference in seconds between two
times. timeInt0 and timeInt1 are integral time values as returned
by the time() function.

Clib.gmtime()
SYNTAX: Clib.gmtime(timeInt)

WHERE: timeInt - an integer time value.

RETURN: number - the value timeInt (as returned by the time() function) as
a Time object.

DESCRIPTION: Takes the integer timeInt (as returned by the time() function) and
converts it to a Time object representing the current date and
time expressed as Greenwich mean time. See localtime() for a
description of the returned object.

Clib.localtime()
SYNTAX: Clib.localtime(timeInt)

WHERE: timeInt - an integer time value.

RETURN: number - the value timeInt (as returned by the time() function) as
a Time object.

DESCRIPTION: This method returns the value timeInt (as returned by the time()
function) as a Time object. Note that the Time object differs
from the Date object, although they contain the same data. The
Time object is for use with the other date and time functions in
the Clib object. It has the following integer properties:

• .tm_sec
second after the minute (from 0)

 271

second after the minute (from 0)
• .tm_min

minutes after the hour (from 0)
• .tm_hour

hour of the day (from 0)
• .tm_mday

day of the month (from 1)
• .tm_mon

month of the year (from 0)
• .tm_year

years since 1900 (from 0)
• .tm_wday

days since Sunday (from 0)
• .tm_yday

day of the year (from 0)
• .tm_isdst

daylight-savings-time flag

The following function prints the current date and time on the
screen and returns the day of the year, where Jan 1 is the 1st day
of the year.

EXAMPLE: // Show today's date
// Return day of the year in USA format
ShowToday()
{
 // get current time structure
 var tm = localtime(time());
 // display the date in USA format
 Clib.printf("Date: %02d/%02d/%02d ",
 tm.tm_mon+1,
 tm.tm_mday, tm.tm_year % 100);
 // hour to run from 12 to 11, not 0 to 23
 var hour = tm.tm_hour % 12;
 if (hour == 0)
 hour = 12;
 // print current time
 Clib.printf("Time: % 2d:%02d:%02d\n", hour,
 tm.tm_min,
 tm.tm_sec);
 // return day of year, Jan. 1 is day 1
 return(tm.tm_yday + 1);
}

 272

Clib.mktime()
SYNTAX: Clib.mktime(timeObj)

WHERE: timeObj - time variable in the Time object format.

RETURN: number - time integer, or -1 if time cannot be converted or
represented.

DESCRIPTION: This method converts timeObj (an object as returned by
.localtime()) to the time format returned by time() (an integer).
All undefined elements of timeObj will be set to 0 before the
conversion. It returns �1 if time cannot be converted or
represented.

In other words, while localtime() converts from a time integer to
a Time object, mktime() converts from a Time object to a time
integer.

Clib.strftime()
SYNTAX: Clib.strftime(string, formatString, timeObj)

WHERE: string - a variable to receive the formatted time string.

formatString - string that specifies the final format.

timeObj - time variable in the Time object format.

RETURN: string - a string that describes the date and/or time and stores it in
the variable string.

DESCRIPTION: This method creates a string that describes the date and or time
and stores it in the variable string. The parameter formatString
describes what the string will look like, and timeObj is a time
object as returned by localtime().

These following conversion characters are used with
Clib.strftime() to indicate time and date output:

• %a
abbreviated weekday name (Sun)

• %A
full weekday name (Sunday)

 273

full weekday name (Sunday)
• %b

abbreviated month name (Dec)
• %B

full month name (December)
• %c

date and time (Dec 2 06:55:15 1979)
• %d

two- digit day of the month (02)
• %H

two- digit hour of the 24- hour day (06)
• %I

two- digit hour of the 12- hour day (06)
• %j

three- digit day of the year from 001 (335)
• %m

two- digit month of the year from 01 (12)
• %M

two- digit minute of the hour (55)
• %p

AM or PM (AM)
• %S

two- digit seconds of the minute (15)
• %U

two- digit week of year, Sunday is first day of week (48)
• %w

day of the week where Sunday is 0 (0)
• %W

two- digit week of year, Monday is first day of week (47)
• %x

the date (Dec 2 1979)
• %X

the time (06:55:15)
• %y

two- digit year of the century (79)
• %Y

the year (1979)

 274

• %Z
name of the time zone, if known (EST)

• %%
the per cent character (%)

EXAMPLE: // displays the full day name and month name

// of the current day
Clib.strftime(TimeBuf,
 "Today is: %A, the month is: %B",
 Clib.localtime(time()));
Clib.puts(TimeBuf);

Clib.time()
SYNTAX: Clib.time([t])

WHERE: t - variable to receive the time returned.

RETURN: number - integer representation of the current time.

DESCRIPTION: Returns an integer representation of the current time. The format
of the time is not specifically defined except that it represents the
current time, to the system's best approximation, and can be used
in many other time related functions. If t is supplied then it will
be set to equal the returned value.

Script execution
Clib.abort()
SYNTAX: Clib.abort([AbortAll])

WHERE: AbortAll - boolean flag as to whether to abort all levels of
ScriptEase execution.

RETURN: number - EXIT_FAILURE to the operating system.

DESCRIPTION: This method terminates a program, usually when a specified
error occurs. This method causes abnormal program termination
and should only be called on a fatal error. This method exits,
without returning to the caller, and returns EXIT_FAILURE to
the operating system.

 275

If the boolean AbortAll is true, this method aborts through all
levels of ScriptEase interpretation. If you are in multiple levels
of SElib.interpret(), .abort() aborts through all SElib.interpret()
levels.

SEE: Clib.assert()

Clib.assert()
SYNTAX: Clib.assert(test)

WHERE: test - boolean flag to determine if the current file name and line
number will be displayed and if the script will abort.

RETURN: void.

DESCRIPTION: If boolean evaluates to false this function will print the file name
and line number to stderr and abort. If the assertion evaluates to
true then the program continues. .assert() is typically used as a
debugging technique to test assumptions before executing code
based on those assumptions. Unlike C, the ScriptEase
implementation of assert does not depend upon NDEBUG being
defined or undefined; it is always active.

SEE: Clib.abort()

EXAMPLE: // The Inverse() function below returns
// the inverse of the input number (1/x):
function Inverse(x)
{
 assert(0 != x);
 return 1 / x;
}

Clib.atexit()
SYNTAX: Clib.atexit(functionId)

WHERE: functionId - a function to be called when a script is exited.

RETURN: void.

DESCRIPTION: This method registers a function to be called when the script
ends. The variable string passed to this function is the name of a

 276

function to be called.

Clib.exit()
SYNTAX: Clib.exit(code)

WHERE: code - status number to return to the operating system.

RETURN: number - the status code of the exit is returned to the operating
system from which a script was called.

DESCRIPTION: This method causes normal program termination. It calls all
functions registered with .atexit(), flushes and closes all open file
streams, updates environment variables if applicable to this
version of ScriptEase, and returns control to the OS environment
with the return code of status.

SEE: Clib.atexit()

Clib.system()
SYNTAX: Clib.system([P_SWAP,] commandString)

WHERE: P_SWAP - in DOS version, determines whether the ScriptEase
interpreter is swapped out of normal memory.

commandString - the command string to be executed, a
command as would be entered at a command prompt.

RETURN: value - the value returned by a command processor.

DESCRIPTION: Passes commandString to the command processor and returns
whatever value was returned by the command processor.
commandString may be a formatted string followed by variables
according to the rules defined in .sprintf().

• DOS
In the DOS version of ScriptEase, if the special argument
P_SWAP is used then SeDos.exe is swapped to
EMS/XMS/INT15 memory or disk while the system
command is executed. This leaves almost all available
memory for executing the command. See SElib.spawn() for a
discussion of P_SWAP.

 277

• DOS32
The 32�bit protected mode version of DOS ignores the first
parameter if it is an not a string; in other words, P_SWAP is
ignored.

SEE: SElib.spawn()

Error
Clib.errno
SYNTAX: Clib.errno
DESCRIPTION: The property errno stores diagnostic message information when

a function fails to execute correctly. Many functions in the Clib
and SElib objects set errno to non-zero in case of error to provide
more specific information about the error. ScriptEase
implements errno as a macro to the internal function _errno().
This property can be accessed with perror() or strerror().

SEE: Clib.perror()

Clib.clearerr()
SYNTAX: Clib.clearerr(filePointer)

WHERE: filePointer - pointer to file for which error information is to be
cleared.

RETURN: void.

DESCRIPTION: This method clears the error status and resents the end-of-file
flags for the file associated with filePointer. There is no return
value.

SEE: Clib.ferror()

Clib.ferror()
SYNTAX: Clib.ferror(filePointer)

WHERE: filePointer - pointer to file for which error information is to be
retrieved.

 278

retrieved.

RETURN: number - 0 on no file error, else the current error value
associated with a file operation.

DESCRIPTION: The parameter filePointer is a file pointer as returned by fopen().
This method tests and returns the error indicator for stream file.
Returns 0 if no error, otherwise returns the error value.

SEE: Clib.clearerr()

Clib.perror()
SYNTAX: Clib.perror([errmsg])

WHERE: errmsg - a message to describe an error condition.

RETURN: string - error message that describes the error indicated by
Clib.errno.

DESCRIPTION: Prints and returns an error message that describes the error
defined by Clib.errno. This method is identical to calling
Clib.strerror (Clib.errno). If a string variable is
supplied it will be set to the string returned.

SEE: Clib.ferror()

Clib.strerror()
SYNTAX: Clib.strerror(errno)

WHERE: errno - an error number to convert to a descriptive string.

RETURN: string - an error number converted to a descriptive string.

DESCRIPTION: When some functions fail to execute properly, they store a
number in the .errno property. The number corresponds to the
type of error encountered. This method converts the error
number to a descriptive string and returns it.

SEE: Clib.perror()

EXAMPLE: // Opens a file for reading, and if it cannot
// open the file then it prints a descriptive
// message and exits the program.

 279

function MustOpen(filename)
{
 var fh = fopen(filename, "r");
 if (fh == null)
 {
 Clib.printf("Error:%s\n",
 Clib.strerror(errno));
 Clib.exit(EXIT_FAILURE);
 }
 return(fh);
}

File I/O
Clib.fopen()
SYNTAX: Clib.fopen(filename, mode)

WHERE: filename - a string with a filename to open.

mode - how or for what operations the file will opened.

RETURN: number - a file pointer to the file opened, null in case of failure.

DESCRIPTION: This method opens the file specified by filename for file
operations specified by mode, returning a file pointer to the file
opened. null is returned in case of failure.

The parameter filename is a string. It may be any valid file name,
excluding wildcard characters.

The parameter mode is a string composed of one or more of the
following characters. For example, "r" or "rt"

• r
open file for reading; file must already exist

• w
open file for writing; create if doesn't exist; if file exists then
truncate to zero length

• a
open file for append; create if doesn't exist; set for writing at
end- of- file

• b
binary mode; if b is not specified then open file in text mode

 280

binary mode; if b is not specified then open file in text mode
(end- of- line translation)

• t
text mode

• +
open for update (reading and writing)

When a file is successfully opened, its error status is cleared and
a buffer is initialized for automatic buffering of reads and writes
to the file.

SEE: Clib.fclose(), Clib.flock()

EXAMPLE: // Open the text file "ReadMe"
// for text mode reading, and
// display each line in the file.

var fp = Clib.fopen("ReadMe", "r");
if (fp == null)
 Clib.printf(
 "\aError opening file for reading.\n")
else
 while (null != (line=Clib.fgets(fp)))
 {
 Clib.fputs(line, stdout)
 }
Clib.fclose(fp);

Clib.fclose()
SYNTAX: Clib.fclose(filePointer)

WHERE: filePointer - pointer to file to close.

RETURN: number - 0 on success, else EOF.

DESCRIPTION: The parameter filePointer is a file pointer as returned by
Clib.fopen(). This method flushes the file buffers of a stream and
closes the file. The file pointer ceases to be valid after this call.
Returns zero if successful, otherwise returns EOF.

SEE: Clib.fopen(), Clib.flock()

 281

Clib.feof()
SYNTAX: Clib.feof(filePointer)

WHERE: filePointer - pointer to file to use.

RETURN: number - 0 if at end of file, else a non-zero number.

DESCRIPTION: The parameter filePointer is a file pointer as returned by .fopen().
This method returns an integer which is non-zero if the file
cursor is at the end of the file, and 0 if it is NOT at the end of the
file.

SEE: Clib.fopen()

Clib.fflush()
SYNTAX: Clib.fflush(filePointer)

WHERE: filePointer - pointer to file to use.

RETURN: number - 0 on success, else EOF.

DESCRIPTION: Causes any unwritten buffered data to be written to filePointer. If
filePointer is null then flushes buffers in all open files. Returns
zero if successful; otherwise EOF.

SEE: Clib.fclose()

Clib.fgetc()
SYNTAX: Clib.fgetc(filePointer)

WHERE: filePointer - pointer to file to use.

RETURN: number - EOF if there is a read error or the file cursor is at the
end of the file. If there is a read error then ferror() will
indicate the error condition.

DESCRIPTION: This method returns the next character in the file stream
indicated by filePointer as a byte converted to an integer.

SEE: Clib.gets()

 282

Clib.fgetpos()
SYNTAX: Clib.fgetpos(filePointer, pos)

WHERE: filePointer - pointer to file to use.

pos - variable to hold the current file position.

RETURN: number - 0 on success, else non-zero and stores an error value in
Clib.errno.

DESCRIPTION: This method stores the current position of the file stream
filePointer for future restoration using Clib.fsetpos(). The
file position will be stored in the variable pos; use it with
Clib.fsetpos() to restore the cursor to its position.

SEE: Clib.fsetpos()

Clib.fgets()
SYNTAX: Clib.fgets([number,] filePointer)

WHERE: number - maximum length of string.

filePointer - pointer to file to use.

RETURN: string - the characters in a file from the current file cursor to the
next newline character on success, else null.

DESCRIPTION: This method returns a string consisting of the characters in a file
from the current file cursor to the next newline character. The
newline will be returned as part of the string. If there is an error
or the end of the file is reached null will be returned.

A second syntax of this function takes a number as its first
parameter. This number is the maximum length of the string to
be returned if no newline character was encountered.

SEE: Clib.fgetc()

Clib.fprintf()
SYNTAX: Clib.fprintf(filePointer, formatString[, variables ...])

 283

WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.

RETURN: number - characters written on success, else a negative number.

DESCRIPTION: This flexible function writes a formatted string to the file
associated with filePointer. The second parameter, formatString,
is a string of the same pattern as Clib.sprintf() and
Clib.rsprintf().

SEE: Clib.printf()

Clib.fputc()
SYNTAX: Clib.fputc(chr, filePointer)

WHERE: chr - character to write to file.

filePointer - pointer to file to use.

RETURN: number - character written on success, else EOF.

DESCRIPTION: If chr is a string, the first character of the string will be written to
the file indicated by filePointer. If chr is a number, the character
corresponding to its unicode value will be added.

SEE: Clib.fputs()

Clib.fputs()
SYNTAX: Clib.fputs(str, filePointer)

WHERE: str - string to write to file.

filePointer - pointer to file to use.

RETURN: number - non-negative number on success, else EOF.

DESCRIPTION: This method writes the value of str to the file indicated by
filePointer. Returns EOF if write error, else returns a non-
negative value.

 284

SEE: Clib.fputc()

Clib.fread()
SYNTAX: Clib.fread(dstVar, varDescription, filePointer)

WHERE: dstVar - variable to hold data read from file.

varDescription - description of the data to read, that is, how and
how much.

filePointer - pointer to file to use.

RETURN: number - elements read on success, 0 on failure.

DESCRIPTION: This method reads data from an open file and stores it in dstVar.
If it does not yet exist dstVar will be created. varDescription is a
variable that describes the how and how much data is to be read:
if dstVar is a buffer, it will be the length of the buffer; if dstVar
is an object, varDescription must be an object descriptor; and if
dstVar is to hold a single datum then varDescription must be one
of the following.

• UWORD8
Stored as a byte in dstVar

• SWORD8
Stored as an integer in dstVar

• UWORD16
Stored as an integer in dstVar

• SWORD16
Stored as an integer in dstVar

• UWORD24
Stored as an integer in dstVar

• SWORD24
Stored as an integer in dstVar

• UWORD32
Stored as an integer in dstVar

• SWORD32
Stored as an integer in dstVar

• FLOAT32
Stored as a float in dstVar

 285

• FLOAT64
Stored as a float in dstVar

• FLOAT80
Stored as a float in dstVar (not available in Win32)

In all cases, this function returns the number of elements read.
For dstVar being a buffer, this would be the number of bytes
read, up to length specified in varDescription. For dstVar being
an object, this method returns 1 if the data is read or 0 if read
error or end- of- file is encountered.

For example, the definition of an object might be:

ClientDef.Sex = UWORD8;
ClientDef.MaritalStatus = UWORD8;
ClientDef._Unused1 = UWORD16;
ClientDef.FirstName = 30; ClientDef.LastName = 40;
ClientDef.Initial = UWORD8;

The ScriptEase version of Clib.fread() differs from the
standard C version in that the standard C library is set up for
reading arrays of numeric values or structures into consecutive
bytes in memory. In JavaScript this is not necessarily the case.

Data types will be read from the file in a byte-
order described by the current value of the
_BigEndianMode global variable.

SEE: Clib.fopen(), Clib.fwrite()

EXAMPLE: // To read the 16�bit integer "i",
// the 32�bit float "f", and
// then 10 byte buffer "buf"
// from the open file "fp"
// use code like the following.

if (!Clib.fread(i,SWORD16,fp) ||
 !Clib.fread(f,FLOAT32,fp) ||
 (10 != Clib.fread(buf,10,fp)))
{
 Clib.printf("Error reading from file.\n");
 Clib.abort();
}

Clib.freopen()

 286

SYNTAX: Clib.freopen(filename, mode, filePointer)

WHERE: filename - a string with a filename to open.

mode - how or for what operations the file will opened.

filePointer - pointer to file to use.

RETURN: number - file pointer on success, else null.

DESCRIPTION: This method closes the file associated with filePointer, ignoring
any close errors, opens filename according to mode, as with
Clib.fopen() , and reassociates filePointer with the new file
specification. This method is commonly used to redirect one of
the pre-defined file handles (stdout, stderr, or stdin) to or
from a file.

The method returns a copy of the modified filePointer, or null
if it fails.

The example code calls ScriptEase for DOS with no parameters,
which causes a help screen to be printed, and redirects stdout
to a file cenvi.out so that cenvi.out will contain the text of the
ScriptEase help screens.

SEE: Clib.fopen()

EXAMPLE: if (null == Clib.freopen("cenvi.out", "w", stdout))
 Clib.printf("Error redirecting stdout\a\n")
else
 Clib.system("SEDOS");

Clib.fscanf()
SYNTAX: Clib.fscanf(filePointer, formatString[, variables ...])

WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.

RETURN: number - input items assigned on success, else EOF.

DESCRIPTION: This flexible function reads input from the file indicated by
filePointer and stores in parameters following formatString
according the character combinations in the format string, which
indicate how the file data is to be read and stored. The file must

 287

indicate how the file data is to be read and stored. The file must
be open, with read access. It returns the number of input items
assigned. This number may be fewer than the number of
parameters requested if there was a matching failure. If there is
an input failure, before the conversion occurs, this function
returns EOF.

See Clib.scanf() for a description of this format string. The
parameters following the format string will be set to data
according to the specifications of the format string.

SEE: Clib.scanf()

EXAMPLE: // Given the following text file, weight.dat:
// Crow, Barney 180
// Claus, Santa 306
// Mouse, Mickey 2
// the following code:

var fp = Clib.fopen("weight.dat", "r");
var FormatString = "%[,] %*c %s %d\n";
while (3 == Clib.fscanf(fp, FormatString,
 LastName, Firstame, weight))
 Clib.printf("%s %s weighs %d pounds.\n",
 FirstName, LastName, weight);
Clib.fclose(fp);

// results in the following output:
// Barney Crow weighs 180 pounds.
// Santa Claus weighs 306 pounds.
// Mickey Mouse weighs 2 pounds.

Clib.fseek()
SYNTAX: Clib.fseek(filePointer, offset[, mode])

WHERE: filePointer - pointer to file to use.

offset - number of bytes past or offset from the point indicated
by mode.

mode - file position to use as a starting point. Default is
SEEK_SET and may be one of the following:

• SEEK_CUR
seek is relative to the current position of the file

 288

• SEEK_END
position is relative from the end of the file

• SEEK_SET
position is relative to the beginning of the file

RETURN: number - 0 on success, else non-zero.

DESCRIPTION: Set the position of the file pointer of the open file stream
filePointer. The parameter offset is a number indicating how
many bytes the new position will be past the starting point
indicated by mode.

If mode is not supplied then absolute offset from the beginning
of file, SEEK_SET, is assumed. For text files, not opened in
binary mode, the file position may not correspond exactly to the
byte offset in the file.

SEE: Clib.fsetpos(), Clib.ftell()

Clib.fsetpos()
SYNTAX: Clib.fsetpos(filePointer, pos)

WHERE: filePointer - pointer to file to use.

pos - position in file to set.

RETURN: number - zero on success, otherwise returns non-zero and stores
an error value in Clib.errno.

DESCRIPTION: This method sets the current file stream pointer to the value
defined by pos, which must be a value obtained from a previous
call to .fgetpos() on the same open file. Returns zero for success,
otherwise returns non- zero and stores an error value in
Clib.errno.

SEE: Clib.fseek()

Clib.ftell()
SYNTAX: Clib.ftell(filePointer)

WHERE: filePointer - pointer to file to use.

 289

RETURN: number - current value of the file position indicator, or -1 if there
is an error, in which case an error value will be stored in
Clib.errno.

DESCRIPTION: This method sets the position offset of the file pointer of an open
file stream from the beginning of the file. For text files, not
opened in binary mode, the file position may not correspond
exactly to the byte offset in the file. Returns the current value of
the file position indicator, or -1 if there is an error, in which case
an error value will be stored in Clib.errno.

SEE: Clib.fseek()

Clib.fwrite()
SYNTAX: Clib.fwrite(srcVar, varDescription, filePointer)

WHERE: srcVar - variable to hold data read from file.

varDescription - description of the data to read, that is, how and
how much.

filePointer - pointer to file to use.

RETURN: number - elements written on success, else 0 if a write error
occurs.

DESCRIPTION: This method writes the data in srcVar to the file indicated by
filePointer and returns the number of elements written. 0 will be
returned if a write error occurs. Use Clib.ferror() to get
more information about the error. varDescription is a variable
that describes the how and how much data is to be read. If srcVar
is a buffer, it will be the length of the buffer. If srcVar is an
object, varDescription must be an object descriptor. If srcVar is
to hold a single datum then varDescription must be one of the
values listed in the description for Clib.fread().

The ScriptEase version of fwrite() differs from the standard C
version in that the standard C library is set up for writing arrays
of numeric values or structures from consecutive bytes in
memory. This is not necessarily the case in JavaScript.

SEE: Clib.fread()

 290

EXAMPLE: // To write the 16_bit integer "i",
// the 32_bit float "f", and
// then 10_byte buffer "buf" into open file "fp",
// use the following code.

if (!Clib.fwrite(i, SWORD16, fp) ||
 !Clib.fwrite(f, FLOAT32, fp) ||
 (10 != fwrite(buf, 10, fp)))
{
 Clib.printf("Error writing to file.\n");
 Clib.abort();
}

Clib.getc()
SYNTAX: Clib.getc(filePointer)

WHERE: filePointer - pointer to file to use.

RETURN: number - on success, the next character, as an unsigned byte
converted to an integer, in a file. Else EOF if a read error or at the
end of file.

DESCRIPTION: This method is identical to Clib.fgetc(). It returns the next
character in a file as an unsigned byte converted to an integer.
Returns EOF if there is a read error or if at the end of the file. If
there is a read error then Clib.ferror() will indicate the error
condition.

SEE: Clib.gets()

Clib.putc()
SYNTAX: Clib.putc(chr, filePointer)

WHERE: chr - character to write to file.

filePointer - pointer to file to use.

RETURN: number - character written on success, else EOF on write error.

DESCRIPTION: This method writes the character chr, converted to a byte, to an
output file stream. This method is identical to Clib.fputc(). It
returns chr on success and EOF on a write error.

 291

SEE: Clib.fputc()

Clib.remove()
SYNTAX: Clib.remove(filename)

WHERE: filename - the name of the file to delete from a disk.

RETURN: number - 0 on success, else non-zero.

DESCRIPTION: Delete a file with the filename provided.

SEE: Clib.rename(), Clib.fopen()

Clib.rename()
SYNTAX: Clib.rename(oldFilename, newFilename)

WHERE: oldFilename - current name of file on disk to be renamed.

newFilename - new name for file on disk.

RETURN: number - 0 on success, else non-zero.

DESCRIPTION: This method renames oldFilename to newFilename. Both
oldFilename and newFilename are strings. Returns zero if
successful and non-zero for failure.

SEE: Clib.remove()

Clib.rewind()
SYNTAX: Clib.rewind(filePointer)

WHERE: filePointer - pointer to file to use.

RETURN: void.

DESCRIPTION: This method sets the file cursor to the beginning of file. This call
is the same as Clib.fseek(filePointer, 0, SEEK_SET)
except that it also clears the error indicator for this stream.

SEE: Clib.fseek()

 292

Clib.tmpfile()
SYNTAX: Clib.tmpfile()
RETURN: number - on success, a file pointer to a temporary binary file that

will automatically be removed when it is closed or when the
program exits, else null on failure.

DESCRIPTION: This method returns the file pointer of a temporary binary file
that will automatically be removed when it is closed or when the
program exits. Returns null if the function fails.

SEE: Clib.tmpnam()

Clib.tmpnam()
SYNTAX: Clib.tmpnam([str])

WHERE: str - a variable to hold the name of a temporary file.

RETURN: string - a valid and unique filename.

DESCRIPTION: This method creates a string that is a valid file name that is not
the same as the name of any existing file and not the same as any
filename returned by this function during execution of this
program. If str is supplied it will be set to the string returned by
this function.

SEE: Clib.tmpfile()

Clib.ungetc(chr, filePointer)
SYNTAX: Clib.ungetc(chr, stream)

WHERE: chr - character to write to file.

filePointer - pointer to file to use.

RETURN: number - on success, the character put back into a file stream,
else EOF.

DESCRIPTION: This method pushes character chr back into an input stream.
When chr is put back, it is converted to a byte and is again in an

 293

When chr is put back, it is converted to a byte and is again in an
input stream for subsequent retrieval. Only one character is
guaranteed to be pushed back. The method returns chr on
success, else EOF on failure.

SEE: Clib.getc()

Directory
Clib.chdir()
SYNTAX: Clib.chdir(dirpath)

WHERE: dirpath - directory specification to which to change.

RETURN: number - 0 on success, else -1.

DESCRIPTION: This method changes the directory for a script from its current
directory to the directory specified in the parameter dirpath. The
specified directory may be an absolute or relative path
specification.

SEE: Clib.getcwd()

Clib.getcwd()
SYNTAX: Clib.getcwd()
RETURN: string - complete path of the current working directory for a

script.

DESCRIPTION: This method returns the complete path of the current working
directory for a script.

SEE: Clib.chdir()

Clib.flock()
SYNTAX: Clib.flock(filePointer, lockFlag)

WHERE: filePointer - pointer to file to use.

 294

lockFlag - determines which locking operation to perform on a
file. The flags are:

• LOCK_EX
File lock exclusive (equivalent to LOCK_SH in Windows)

• LOCK_SH
File lock share (equivalent to LOCK_EX in Windows)

• LOCK_NB
File lock non-blocking (bitwise or with LOCK_EX or
LOCK_SH)

• LOCK_UN
File unlock

RETURN: number - 0 on success, else -1 on failure.

DESCRIPTION: This method allows a file to be locked or unlocked, which is a
capability that is often important in a multi-tasking operating
system.

The ability to lock and unlock access to a file varies among
operating systems. For normal usage on most systems, the
operating system handles all necessary locking and
administration of sharing privileges for files. However, if a
scripter needs extra control over files, ScriptEase provides the
ability. For example, a script might use files to hold data while it
is running but does not need to keep the files open during all
phases of script execution. By locking and unlocking such files,
a scripter ensures that these files are not altered while a script is
running.

SEE: Clib.fopen(), Clib.fclose()

EXAMPLE: // The following fragment opens a file and
// then locks it for exclusive use without blocking
// further execution of the script.

var fp = Clib.fopen("myfile", "r");
Clib.flock(fp, LOCK_EX | LOCK_NB);
 // Use the file
Clib.flock(fp, LOCK_UN);
Clib.fclose(fp);

 295

Clib.mkdir()
SYNTAX: Clib.mkdir(dirpath)

WHERE: dirpath - directory specification to make.

RETURN: number - 0 on success, else -1.

DESCRIPTION: This method creates the directory specified in the parameter
dirpath. The specified directory may be an absolute or relative
path specification.

SEE: Clib.rmdir(), Clib.chdir()

Clib.rmdir()
SYNTAX: Clib.rmdir(dirpath)

WHERE: dirpath - directory specification to delete.

RETURN: number - 0 on success, else -1.

DESCRIPTION: This method deletes the directory specified by the parameter
dirpath.

SEE: Clib.mkdir(), Clib.remove()

Sorting
Clib.bsearch()
SYNTAX: Clib.bsearch(key, array[, elementCount], compareFunction)

WHERE: key - value for which to search.

array - beginning of array to search.

elementCount - number of elements to search. Default is the
entire array.

compareFunction - function used to compare key with each
element searched in the array.

RETURN: value - the element in an array if found, else null if not found.

 296

DESCRIPTION: This method looks for an array variable that matches key,
returning it if found and null if not. It will only search through
positive array members (array members with negative indices
will be ignored). The compareFunction must receive the key
variable as its first argument and a variable from the array as its
second argument. If elementCount is not supplied then will
search the entire array. The elementCount is limited to 64K for
16 bit version of ScriptEase.

SEE: Clib.qsort()

EXAMPLE: // This example creates a two dimensional array
// that pairs a name with a favorite food.
// A name is searched for. The name and paired
// food is displayed.

var Found;
var Key;
var list;

 // create array of names and favorite food
var list =
{
 {"Marge", "salad"},
 {"Lisa", "tofu"},
 {"Homer", "sugar"},
 {"Bart", "anything"},
 {"Itchy", "cats"},
 {"Scratchy", "anything from the garbage"}
};
 // sort the list
Clib.qsort(list, ListCompareFunction);

Key[0] = "marge";
 // search for the name Marge in the list
Found = Clib.bsearch(Key, list, ListCompareFunction);
 // display name, or not found

if (Found != null)
 Clib.printf("%s's favorite food is %s\n",
 Found[0], Found[1])
else
 Clib.puts("Could not find name in list.");

 // This compare function is used to sort
 // the array and to find a name.
 // The sort and search are case insensitive.
function ListCompareFunction(Item1, Item2)

 297

{
 return Clib.strcmpi(Item1[0], Item2[0]);
}

Clib.qsort()
SYNTAX: Clib.qsort(array[, elementCount], CompareFunction)

WHERE: array - array to sort.

elementCount - number of elements to sort. Default is the entire
array.

compareFunction - function used to compare key with each
element searched in the array.

RETURN: void.

DESCRIPTION: This method sorts elements in an array, starting from index 0 to
elementCount- 1. If elementCount is not supplied then will sort
the entire array. This method differs from the Array.sort()
method in that it can sort automatically created arrays, whereas
Array.sort() only works with arrays explicitly created with a
new Array statement.

The value of elementCount is limited to 64K

SEE: Clib.bsearch(), Array()

EXAMPLE: // Create a list of color names,
// sort the list in reverse alphabetical order,
// case insensitive, and display the list.

 // initialize an array of colors
var colors = {"yellow", "Blue", "GREEN", "purple",
 "RED", "BLACK", "white", "orange"};

 // sort the list ReverseColorSorter function
Clib.qsort(colors, ReverseColorSorter);

 // display the sorted colors
for (var i = 0; i < getArrayLength(colors); i++)
 Clib.puts(colors[i]);

function ReverseColorSorter(color1,color2)
 // do a simple case insensitive string
 // comparison, and reverse the results too

 298

{
 var CompareResult = Clib.stricmp(color1,color2)
 return -CompareResult;
}

// The output is:
// yellow
// white
// RED
// purple
// orange
// GREEN
// Blue
// BLACK

Environment variables
Clib.getenv()
SYNTAX: Clib.getenv([variableName])

WHERE: variableName - the name of an environment variable.

RETURN: value - a string representation of the value of an environment
variable on success. If no variableName is passed, an array of all
environment variable names. On failure, returns null.

DESCRIPTION: If the parameter variableName is supplied, this method returns
the value of a similarly named environment variable as a string,
if the variable exists, and null if VariableName does not exist.
If no name is supplied then returns an array of all environment
variable names, ending with a null element.

SEE: Clib.putenv()

EXAMPLE: // Print the existing environment variables,
// in "EVAR=Value" format,
// sorted alphabetically.

 // get array of all environment variable names
var EnvList = Clib.getenv();
 // sort array alphabetically
Clib.qsort(EnvList, getArrayLength(EnvList),
 Clib.stricmp);
 // display each element in ENV=VALUE format
for (var lIdx = 0; EnvList[lIdx]; lIdx++)

 299

 Clib.printf("%s=%s\n", EnvList[lIdx],
 Clib.getenv(EnvList[lIdx]));

Clib.putenv()
SYNTAX: Clib.putenv(variableName, stringValue)

WHERE: variableName - the name of an environment variable.

stringValue - new value for environment variable variableName.

RETURN: number - 0 on success, else -1.

DESCRIPTION: This method sets the environment variable variableName to the
value of stringValue. If stringValue is null then variableName
is removed from the environment. For those operating systems in
which ScriptEase can alter the parent environment (DOS or OS/2
when invoked with SD.bat or SEset.cmd) the variable setting will
still be valid when ScriptEase exits; otherwise the variable
change applies only to the ScriptEase code and to child processes
of the ScriptEase program. Returns - 1 if there is an error, else 0.

SEE: Clib.getenv()

Character classification
JavaScript does not have a true character type. For the character classification
routines, a chr is actually a single character string. Thus, actual programming
usage is very much like C. For example, in the following fragment both
.isalnum() statements work properly.

var t = Clib.isalnum('a');
Screen.writeln(t);

var s = 'a';
var t = Clib.isalnum(s);
Screen.writeln(t);

This fragment displays the following.

true
true

 300

In the following fragment both .isalnum() statements cause errors since the
arguments to them are strings with more than one character.

var t = Clib.isalnum('ab');
Screen.writeln(t);

var s = 'ab';
var t = Clib.isalnum(s);
Screen.writeln(t);

All character classification methods return booleans: true or false.

Clib.isalnum()
SYNTAX: Clib.isalnum(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is in: A-Z, a-z, or 0-9. Else false.

DESCRIPTION: Returns true if chr is a character in one of the following sets: A-
Z, a-z, or 0-9.

Clib.isalpha()
SYNTAX: Clib.isalpha(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is in: A-Z or a-z. Else false.

DESCRIPTION: Returns true if chr is a alphabetic character in one of the
following sets of characters: A-Z or a-z.

Clib.isascii()
SYNTAX: Clib.isascii(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is in ASCII: 0-127.

DESCRIPTION: Returns true if chr is an ASCII character in the following set of
codes: 0-127.

 301

Clib.iscntrl()
SYNTAX: Clib.iscntrl(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is in ASCII: 0-31 or 127.

DESCRIPTION: Returns true if chr is a control character in the set of ASCII
characters. Control characters are in one of the following sets of
codes: 0-31 or 127.

Clib.isdigit()
SYNTAX: Clib.isdigit(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is in: 0-9.

DESCRIPTION: Returns true if chr is a decimal digit in the following set of
characters: 0-9.

Clib.isgraph()
SYNTAX: Clib.isgraph(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is a printable character.

DESCRIPTION: Returns true if chr is a printable character excluding the space
character " ", code 32.

Clib.islower()
SYNTAX: Clib.islower(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is in: a-z.

DESCRIPTION: Returns true if chr is a lowercase character in the following set of
characters: a- z

 302

characters: a- z

Clib.isprint()
SYNTAX: Clib.isprint(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr a printable ASCII code in: 32-126.

DESCRIPTION: Returns true if chr is a printable character in the following set of
codes: 32-126.

Clib.ispunct()
SYNTAX: Clib.ispunct(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - if chr is a punctuation character code in: 32-47, 58-63,
91-96, or 123-126.

DESCRIPTION: Returns true if chr is a punctuation character in one of the
following sets of codes: 32-47, 58-63, 91-96, or 123-126.

Clib.isspace()
SYNTAX: Clib.isspace(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is a white space in ASCII: 9, 10, 11, 12, 13,
or 32.

DESCRIPTION: Returns true if chr is a white space character, that is, one of the
following codes: 9, 10, 11, 12, 13, or 32 (horizontal tab, new
line, vertical tab, form feed, carriage return, or space).

Clib.isupper()
SYNTAX: Clib.isupper(chr)

 303

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is in: A-Z.

DESCRIPTION: Returns true if chr is an uppercase character in the following set
of characters: A- Z.

Clib.isxdigit()
SYNTAX: Clib.isxdigit(chr)

WHERE: chr - a character, a single character string.

RETURN: boolean - true if chr is in: 0-9, A-F, or a-f.

DESCRIPTION: Returns true if chr is a hexadecimal digit in one of the following
sets of characters: 0-9, A-F, or a-f.

String manipulation
Clib.rsprintf()
SYNTAX: Clib.rsprintf(formatString[, variables ...])

WHERE: formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.

RETURN: string - formatted according to formatString using any variables
passed.

DESCRIPTION: This method returns a formatted string. It is similar to
Clib.printf(), except that a string is returned instead of
printed.

SEE: Clib.printf()

EXAMPLE: // If in a script you had a line:

Clib.printf("%s has seen %s %d times.\n", name,
 movie, timesSeen);

// and you wanted to pass the resulting string
// as a parameter to a function, you could do it
// as follows.

 304

func(Clib.rsprintf("%s has seen %s %d times.\n",
 name, movie, timesSeen));

// The following lines of code achieve
// the same result, that is, create
// a string variable named word that contains
// the string "Who is #1?".

var word
word = Clib.rsprintf("Who is #%d?", 3-2);
Clib.sprintf(word, "Who is #%d?", 3-2);

Clib.rvsprintf()
SYNTAX: Clib.rvsprintf(formatString, valist)

WHERE: formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: string - specified by formatString on success, else EOF on error.

DESCRIPTION: This method returns formatted output using the variable
argument list represented by the parameter valist, a Blob. This
method is similar to Clib.sprintf() except that it takes a
variable argu ment list and returns a formatted string based on
the arguments, rather than storing it in a string buffer. See
Clib.sprintf() and Clib.va_start() for more
information. The method Clib.rvsprintf() returns a string
specified by formatString on success, else EOF on error.

SEE: Clib.sprintf(), Clib.vprintf()

Clib.sscanf()
SYNTAX: Clib.sscanf(str, formatString[, variables ...])

WHERE: str - string holding the data to read into variables according to
formatString.

formatString - specifies how to read and store data in variables.

variables - list of variables to hold data input according to
formatString.

 305

formatString.

RETURN: number - input items assigned. May be lower than the number of
items requested if there is a matching failure.

DESCRIPTION: This flexible method reads data from a string and stores it in
variables passed as parameters following formatString. The
parameter formatString specifies how data is read and stored in
variables. See Clib.scanf() for details about formatString.

Clib.scanf() reads data from the standard input stream,
whereas this method, Clib.sscanf() reads data from a string.

SEE: Clib.scanf(), Clib.fscanf(), Clib.vscanf()

Clib.sprintf()
SYNTAX: Clib.sprintf(str, formatString[, variables ...])

WHERE: str - to hold the formatted output.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.

RETURN: number - characters written to string on success, else EOF on
failure.

DESCRIPTION: This method writes output to the string variable specified by str
according to formatString, and returns the number of characters
written or EOF if there was an error. The parameter formatString
may contain character combinations indicating how following
parameters are to be written. The parameter str need not be
previously defined. It will be created large enough to hold the
result.

The format string may contain character combinations indicating
how following parameters are to be treated. Characters are
handled normally until a percent character, %, is reached. The
percent % indicates that a value is to be written from the variables
following the format string. See Clib.printf() for a complete
description of formatString.

SEE: Clib.printf()

 306

EXAMPLE: // Each of the following lines shows
// a sprintf example followed
// by the resulting string.

Clib.sprintf(testString, "I count: %d %d %d.",1,2,3)

// "I count: 1 2 3"

var a = 1;
var b = 2;
Clib.sprintf(testString, "%d %d %d", a, b, a+b)

// "1 2 3"

Clib.strcat()
SYNTAX: Clib.strcat(dstStr, srcStr)

WHERE: dstStr - destination string to which to add srcStr and to hold the
final result.

srcStr - source string to append to dstStr.

RETURN: string - the resulting string from concatenating dstStr and srcStr.

DESCRIPTION: This method appends srcStr string onto the end of dstStr string.
The dstStr string is made big enough to hold srcStr, and a
terminating null byte. In ScriptEase, a string copy is safe, so
that you can copy from one part of a string to another part of
itself.

The return is the value of dstStr, that is, a variable pointing to the
dstStr array starting at dstStr[0].

SEE: Clib.strcpy(), Clib.memcpy()

EXAMPLE: // The result of the following code is:
// Giant == "Fee Fie Foe Fum"

var Giant = "Fee";
 // add Fie
Clib.strcat(Giant, " Fie");
 // add Foe
Clib.strcat(Giant, " Foe");
 // add Fum
Clib.strcat(Giant, " Fum");

 307

Clib.strchr()
SYNTAX: Clib.strchr(str, chr)

WHERE: str - string to search for a character.

chr - character to search for.

RETURN: string - beginning at the point in string where chr is found, else
null if is not found..

DESCRIPTION: This method searches the parameter str for the character chr. It
returns a variable indicating the first occurrence of chr in str, else
it returns null if chr is not found in str.

SEE: Clib.strstr(), String indexOf()

EXAMPLE: // The following code fragment:

var str = "I can't stand soggy cereal."
var substr = Clib.strchr(str, 's');
Clib.printf("str = %s\n", str);
Screen.writeln("substr = " + substr);

// results in the following output.
// str = I can't stand soggy cereal.
// substr = stand soggy cereal.

Clib.strcmp()
SYNTAX: Clib.strcmp(str1, str2)

WHERE: str1 - first string to compare.

str2 - second string to compare

RETURN: number - negative, zero, or positive according to the following
rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- sensitive comparison of the characters
of str1 with str2 until there is a mismatch or a terminating null
byte is reached.

 308

SEE: Clib.strcmpi(), Clib.stricmp(), ==, ===

Clib.strcmpi()
SYNTAX: Clib.strcmpi(str1, str2)

WHERE: str1 - first string to compare.

str2 - second string to compare

RETURN: • < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- insensitive comparison of the
characters of str1 with str2 until there is a mismatch or a
terminating null byte is reached.

SEE: Clib.strcmp(), Clib.stricmp(), ==, ===

Clib.strcpy()
SYNTAX: Clib.strcpy(dstStr, srcStr)

WHERE: dstStr - destination string to which the source string will be
copied.

srcStr - source string to copy to destination string.

RETURN: string - the value of dstStr after the copy process.

DESCRIPTION: This method copies bytes from srcStr to dstStr, up to and
including the terminat ing null character. If dstStr is not already
defined, then it is defined as a string. It is safe to copy from one
part of a string to another part of the same string.

The return is the value of dstStr, that is, a variable pointing to the
dstStr array starting at dstStr[0].

SEE: Clib.strncpy(), =

Clib.strcspn()

 309

SYNTAX: Clib.strcspn(str, chrSet)

WHERE: str - string to be searched.

chrSet - set of characters to search for.

RETURN: number - offset into str to a found character on success, else the
length of str.

DESCRIPTION: This method searches the parameter string for any of the
characters in the string chrSet and returns the offset of that
character. If no matching characters are found, it returns the
length of the string. This method is similar to
Clib.strpbrk(), except that Clib.strcspn() returns the
offset number, or index, for the first character found, while
Clib.strpbrk.() returns the string beginning at that
character.

SEE: Clib.strpbrk()

EXAMPLE: // The following fragment demonstrates
// the difference between Clib.strcspn() and
// Clib.strpbrk().

var string =
 "There's more than one way to skin a cat.";
var rStrpbrk = Clib.strpbrk(string, "dxb8w9k!");
var rStrcspn = Clib.strcspn(string, "dxb8w9k!");
Clib.printf("The string is: %s\n", string);
Clib.printf("\nstrpbrk returns a string: %s\n",
 rStrpbrk);
Clib.printf("\nstrcspn returns an integer: %d\n",
 rStrcspn);
Clib.printf("string +strcspn = %s\n", string +
 rStrcspn); Clib.getch();

// And results in the following output:
// The string is:
// There's more than one way to skin a cat.
// strpbrk returns a string: way to skin a cat.
// strcspn returns an integer: 22
// string +strcspn = way to skin a cat

Clib.stricmp()
SYNTAX: Clib.stricmp(str1, str2)

 310

WHERE: str1 - first string to compare.

str2 - second string to compare

RETURN: • < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- insensitive comparison of the
characters of str1 with str2 until there is a mismatch or a
terminating null byte is reached.

SEE: Clib.strcmp(), Clib.strcmpi(), ==, ===

Clib.strlen()
SYNTAX: Clib.strlen(str)

WHERE: str - string to find length of.

RETURN: number - the number of characters in str, not including the
terminating null character.

DESCRIPTION: This method returns the length of parameter str. The length
property of JavaScript strings is similar. The difference between
Clib.strlen(str) and str.length is that str.length
counts null characters as part of a string, whereas
Clib.strlen() considers them to be markers indicating the
end of the string and does not include them or any characters
which follow them as part of a string.

The return is the number of characters, bytes, in str, starting from
the character at str[0] and ending before the terminating null-
byte.

SEE: String length

Clib.strlwr()
SYNTAX: Clib.strlwr(str)

WHERE: str - string in which to change case of characters to lowercase.

 311

RETURN: string - the value of str after conversion of case.

DESCRIPTION: This method converts all uppercase letters in str to lowercase,
starting at str[0] and ending before the terminating null byte. The
return is the value of str, that is, a variable pointing to the start of
str at str[0].

SEE: Clib.strupr(), String toLowerCase()

Clib.strncat()
SYNTAX: Clib.strncat(dstStr, srcStr, maxLen)

WHERE: dstStr - destination string to which to add srcStr and to hold the
final result.

srcStr - source string to append to dstStr.

maxLen - maximum number of characters to append from srcStr.

RETURN: string - the value of the destination string after the source string
characters have been appended.

DESCRIPTION: This method appends up to maxLen bytes of srcStr onto the end
of dstStr. Characters following a null- byte in srcStr are not
copied. The dstStr array is made big enough to hold:

Clib.min(Clib.strlen(srcStr),maxLen)

characters and a terminating null character. The final value of
dstStr is returned.

SEE: Clib.strcat()

Clib.strncmp()
SYNTAX: Clib.strncmp(str1, str2, maxLen)

WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.

RETURN: number - negative, zero, or positive according to the following
rules:

 312

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or reach the terminating null byte. The
comparison is case-sensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

SEE: Clib.strncmpi(), Clib.strnicmp(), ==, ===

Clib.strncmpi()
SYNTAX: Clib.strncmpi(str1, str2, maxLen)

WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.

RETURN: number - negative, zero, or positive according to the following
rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or reach the terminating null byte. The
comparison is case-insensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

SEE: Clib.strncmp(), Clib.strnicmp(), ==, ===

Clib.strncpy()
SYNTAX: Clib.strncpy(dstStr, srcStr, maxLen)

WHERE: dstStr - destination string to which the source string will be
copied.

 313

copied.

srcStr - source string to copy to destination string.

maxLen - maximum number of characters to copy.

RETURN: string - the value of dstStr after the copy process.

DESCRIPTION: This method copies:

Clib.min(Clib.strlen(srcStr)+1, MaxLen)

characters from srcStr to dstStr. If dstStr is not already defined
then this method defines it as a string. The destination string is
padded with null characters, if maxLen is greater than the
length of srcStr, and a null character is appended to dstStr if
maxLen characters are copied. It is safe to copy from one part of
a string to another part of the same string. Returns the value of
dstStr; that is, a variable into the destination array based at
dstStr[0].

SEE: Clib.strcpy()

Clib.strnicmp()
SYNTAX: Clib.strnicmp(str1, str2, maxLen)

WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.

RETURN: number - negative, zero, or positive according to the following
rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or reach the terminating null byte. The
comparison is case-insensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

 314

SEE: Clib.strncmp(), Clib.strncmpi(), ==, ===

Clib.strpbrk()
SYNTAX: Clib.strpbrk(str, chrSet)

WHERE: str - string to be searched.

chrSet - set of characters to search for.

RETURN: string - beginning with the character in chrSet that was found,
else null.

DESCRIPTION: This method searches str for any of the characters in chrSet, and
returns the string based at the found character. Returns null if
no character from chrSet is found.

Clib.strcspn() returns a number and Clib.strpbrk()
returns a string.

SEE: Clib.strcspn()

EXAMPLE: // See Clib.strcspn() for an example
// using this function.

Clib.strrchr()
SYNTAX: Clib.strrchr(str, chr)

WHERE: str - string to search.

chr - character to search for.

RETURN: string - beginning with the first character found from the right,
else null.

DESCRIPTION: This method searches a string for the last occurrence of chr. The
search is in the reverse direction, from the right, for chr in a
string. The method returns a variable indicating the last
occurrence of chr in a string, else it returns null if chr is not
found in str.

SEE: Clib.strchr()

EXAMPLE: // The following code:

 315

var str = "I can't stand soggy cereal."
var substr = Clib.strrchr(str, 's');
Clib.printf("str = %s\n", str);
Screen.writeln("substr = " + substr);

// Results in the following output.
// str = I can't stand soggy cereal.
// substr = soggy cereal.

Clib.strspn()
SYNTAX: Clib.strspn(str, chrSet)

WHERE: str - string to be searched.

chrSet - set of characters to search for.

RETURN: number - the offset or index into str of the first character that is
not in chrSet.

DESCRIPTION: This method searches a string for any characters that are not in
chrSet, and returns the offset of the first instance of such a
character. If all characters in str are also in chrSet, the return is
the length of string.

SEE: Clib.strcspn()

Clib.strstr()
SYNTAX: Clib.strstr(srcStr, findStr)

WHERE: srcStr - a string to search.

findStr - a string to find.

RETURN: string - beginning in srcStr with the first character in findStr that
was found, else null.

DESCRIPTION: This method searches srcStr, starting at srcStr[0], for the first
occurrence of findStr. The search is case-sensitive. The method
returns a variable indicating the beginning of the first occurrence
of findStr in srcStr, else it returns null if findStr is not found in
srcStr.

SEE: Clib.strchr(), Clib.strstri()

 316

EXAMPLE: // The following code fragment:

cfunction main()
{
 var Phrase = "To be or not to be? Beep beep!";
 do
 {
 Screen.writeln(Phrase);
 Phrase = Clib.strstr(Phrase + 1, "be");
 } while (Phrase != null);
}
// results in the following output.
// To be or not to be? Beep beep!
// be or not to be? Beep beep!
// be? Beep beep!
// beep!

Clib.strstri()
SYNTAX: Clib.strstri(srcStr, findStr)

WHERE: srcStr - a string to search.

findStr - a string to find.

RETURN: string - beginning in srcStr with the first character in findStr that
was found, else null.

DESCRIPTION: This method searches srcStr, starting at srcStr[0], for the first
occurrence of findStr. The search is case-insensitive. The method
returns a variable indicating the beginning of the first occurrence
of findStr in srcStr, else it returns null if findStr is not found in
srcStr.

SEE: Clib.strstr()

Clib.strtod()
SYNTAX: Clib.strtod(str[, endStr])

WHERE: str - string to be converted to a number.

endStr - the part of str after the characters that were actually
parsed.

RETURN: number - the first part of str converted to a double precision
number.

 317

number.

DESCRIPTION: This method converts the string str into a number and optionally
returns a partial string that begins beyond the characters parsed
by this method. White space characters are skipped at the start of
str, and the string characters are converted to a float as long as
they match the following format.

 [sign][digits][.][digits][format[sign]digits]

The parameter endStr is not compared against null, as it is in
standard C implementations, and is optional. If the parameter
endStr is supplied, then endStr is set to a string beginning at the
first character that was not used in converting.

The return is the first part of str, converted to a floating-point
num ber.

SEE: Clib.strtok()

EXAMPLE: // The following strings, are examples
// that can be converted.
// "1"
// "1.8"
// "-400.456e-20"
// ".67e50"
// "2.5E+50"

Clib.strtok()
SYNTAX: Clib.strtok(srcStr, delimiterStr)

WHERE: srcStr - source string consisting of delimited tokens.

delimiterStr - string of delimiter characters that separate tokens.

RETURN: string - a token, a substring, in srcStr, else null if there is not a
token or if there are no more tokens.

DESCRIPTION: This method is unusual. The parameter srcStr is a string that
consists of text tokens, substrings, separated by delimiter
characters found in delimiterStr. The parameter srcStr may be
altered during the first and subsequent calls to Clib.strtok().

On the first call to Clib.strtok(), srcStr points to the string
to tokenize and delimiterStr is a set of characters which are used
to separate tokens in the source string. The first call, such as:

 318

to separate tokens in the source string. The first call, such as:

token = Clib.strtok(srcStr, delimiterStr)

returns a variable pointing to the srcStr array and based at the
first character of the first token in srcStr. On subsequent calls,
such as

token = Clib.strtok(null, delimiterStr)

the first argument is null and Clib.strtok() will continue
through srcStr returning subsequent tokens.

The initial variable receiving tokens must remain valid
throughout following calls that use null. If the variable is
changed in any way, a subsequent use of Clib.strtok() must
first use the syntax form in which the new string, not null, is
passed as a first parameter.

This method returns null if there are no more tokens; otherwise
returns srcStr array variable based at the next token in srcStr.

SEE: Clib.strstr()

EXAMPLE: // The following code:

var source =
 " Little John,,,Eats ?? crackers;;;! ";
var token = Clib.strtok(source,", ");
while(null != token)
{
 Clib.puts(token);
 token = Clib.strtok(null,";?, ");
}

// produces the following list of tokens.
// Little
// John
// Eats
// crackers
// !

Clib.strtol()
SYNTAX: Clib.strtol(str[, endStr[, radix]])

 319

WHERE: str - string to be converted to a number.

endStr - the part of str after the characters that were actually
parsed.

radix - the number base for the conversion.

RETURN: number - the first part of str converted to a long integer number.

DESCRIPTION: This method converts the string str into a number and optionally
returns a string starting beyond the characters parsed in the
method. White space characters are skipped at the start of str,
and the string characters are converted to an integer as long as
they match the following format.

 [sign][0][x][digits]

The parameter endStr is not compared against null, as it is in
standard C implementations and is optional. The parameter radix
specifies the base for conversion. For example, base 10 would
use decimal digits zero through nine, 0 - 9, and base 16 would
use hexadecimal digits zero through nine, 0 - 9, uppercase letters
"A" through "F", A - F, or lowercase letters "a" through "f", a - f.
If radix is zero or is not supplied, then the radix is automatically
determined based on the first characters of str.

If the parameter endStr is supplied, then endStr is set to a string
beginning at the first character that was not used in converting.
The return is the first part of str, converted to a floating-point
number.

SEE: Clib.strtod()

EXAMPLE: // As examples, the following strings//
/ can be converted.
// "1"
// "12"
// "-400"
// "0xFACE"

Clib.strupr()
SYNTAX: Clib.strlwr(str)

WHERE: str - string in which to change case of characters to uppercase.

 320

RETURN: string - the value of str after conversion of case.

DESCRIPTION: This method converts all lowercase letters in str to uppercase,
starting at str[0] and ending before the terminating null byte. The
return is the value of str, that is, a variable pointing to the start of
str at str[0].

SEE: Clib.strlwr(), String toUpperCase()

Clib.toascii()
SYNTAX: Clib.toascii(chr)

WHERE: chr - character to be converted.

RETURN:

DESCRIPTION: This method translates chr to ASCII format, to seven bits. The
translation is done by clearing all but the lowest 7 bits. The
return is chr converted to ASCII. Remember that JavaScript has
no true character type, thus, this method considers a single
character string to be a chr.

SEE:

EXAMPLE:

Clib.tolower()
SYNTAX: Clib.tolower(chr)

WHERE: chr - character to be converted.

RETURN:

DESCRIPTION: If chr is an uppercase alphabetic character, then this method
returns chr converted to lowercase alphabetic, otherwise it
returns chr unaltered. Remember that JavaScript has no true
character type, thus, this method considers a single character
string to be a chr.

SEE:

EXAMPLE:

 321

Clib.toupper()
SYNTAX: Clib.toupper(chr)

WHERE: chr - character to be converted.

RETURN:

DESCRIPTION: If chr is a lowercase alphabetic character, then this method
returns chr converted to uppercase alphabetic, otherwise it
returns chr unaltered. Remember that JavaScript has no true
character type, thus, this method considers a single character
string to be a chr.

SEE:

EXAMPLE:

Clib.vsprintf()
SYNTAX: Clib.vsprintf(str, formatString, valist)

WHERE: str - to hold the formatted output.

formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: number - characters written to str, not including the terminating
null character, on success, else EOF on error.

DESCRIPTION: This method puts formatted output into str, a string, using a
variable number of arguments, specified by valist. The parameter
formatString specifies the format of the data put into the string.
This method is similar to Clib.sprintf() except that it takes
a variable argu ment list.

The method returns the number of characters written to buffer,
not including the terminating null byte, on success, else EOF on
error.

SEE: Clib.sprintf(), Clib.va_start()

 322

Memory manipulation
Clib.memchr()
SYNTAX: Clib.memchr(buf, chr[, maxLen])

WHERE: buf - buffer or byte array to search.

chr - character to search for.

maxLen - maximum number of bytes to search.

RETURN: buffer - beginning in array with the character found, else null if
not found.

DESCRIPTION: This method searches a buffer, a byte array, or a Blob, and
returns a variable indicating or beginning with the first
occurrence of chr. If the parameter maxLen is not specified, the
method searches the entire array from element zero.

SEE: Clib.strchr()

Clib.memcmp()
SYNTAX: Clib.memcmp(buf1, buf2[, maxLen])

WHERE: buf1 - first buffer or byte array to use in comparison.

buf2 - second buffer or byte array to use in comparison.

maxLen - maximum number of characters to compare.

RETURN: number - negative, zero, or positive according to the following
rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares the first maxLen bytes of buf1 and buf2.
If the parameter maxLen is not specified, then maxLen is the
smaller of the lengths of buf1 and buf2. If maxLen is specified
and one of the arrays is shorter than the specified length, then
ScriptEase treats length of the shorter array as being maxLen.

The example function checks to see if the shorter string is the
same as the beginning of the longer string. This method differs

 323

same as the beginning of the longer string. This method differs
from Clib.strcmp() in that this function returns true if passed
the strings "foo" and "foobar", since it only compares characters
up to the end of the shorter string.

SEE: Clib.strcmp()

EXAMPLE: function MyStrCmp(string1, string2)
{
 var len = Clib.min(string1.length,
 string2.length);
 return(Clib.memcmp(string1, string2, len) == 0);
}

Clib.memcpy()
SYNTAX: Clib.memcpy(dstBuf, srcBuf[, maxLen])

WHERE: dstBuf - destination buffer to which the source buffer will be
copied.

srcBuf - source buffer to copy to destination buffer.

maxLen - maximum number of characters to copy.

RETURN: buffer - the final destination buffer.

DESCRIPTION: This method copies the number of bytes specified by maxLen
from srcBuf to dstBuf. If dstBuf is not already defined, then it is
defined as a buffer. If the parameter maxLen is not supplied, then
all of the bytes in srcBuf are copied to dstBuf.

ScriptEase insures protection from data overwrite, so in
ScriptEase the Clib.memcpy() method is the same as
Clib.memmove().

SEE: Clib.strncpy(), Clib.memmove()

Clib.memmove()
SYNTAX: Clib.memmove(dstBuf, srcBuf[, maxLen])

WHERE: dstBuf - destination buffer to which the source buffer will be
copied.

 324

srcBuf - source buffer to copy to destination buffer.

maxLen - maximum number of characters to copy.

RETURN: buffer - the final destination buffer.

DESCRIPTION: This method copies the number of bytes specified by maxLen
from srcBuf to dstBuf. If dstBuf is not already defined, then it is
defined as a buffer. If the parameter maxLen is not supplied, then
all of the bytes in srcBuf are copied to dstBuf.

ScriptEase insures protection from data overwrite, so in
ScriptEase the Clib.memcpy() method is the same as
Clib.memmove().

SEE: Clib.strncpy(), Clib.memcpy()

Clib.memset()
SYNTAX: Clib.memset(buf, chr[, maxLen])

WHERE: buf - a byte array or buffer.

chr - character to set in buf.

maxLen - number of bytes in buf to set to chr.

RETURN: buffer - buf with the appropriate number of bytes set to chr.

DESCRIPTION: This method sets the first number, as specified by maxLen, of
bytes of buf to character chr. If buf is not already defined, then it
is defined as a buffer of size maxLen. If the length of buf is less
than the number of bytes specified by maxLen, then buf is grown
to be big enough for maxLen bytes. If the parameter maxLen is
not supplied, then maxLen is the size of buf, starting at index 0.

SEE: Clib.memchr()

Math
Clib.abs()
SYNTAX: Clib.abs(x)

 325

WHERE: x - number to work with.

RETURN: number - absolute value of x.

DESCRIPTION: This method returns the absolute, non-negative, value of x.

SEE: Clib.labs(), Clib.fabs()

Clib.acos()
SYNTAX: Clib.acos(x)

WHERE: x - number to work with.

RETURN: number - arc cosine of x.

DESCRIPTION: This method returns the arc cosine of x in the range of 0 to pi
radians.

SEE: Clib.cos()

Clib.asin()
SYNTAX: Clib.asin(x)

WHERE: x - number to work with.

RETURN: number - arc sine of x.

DESCRIPTION: This method returns the arc sine of x in the range of -pi/2 to pi/2
radians.

SEE: Clib.sin()

Clib.atan()
SYNTAX: Clib.atan(x)

WHERE: x - number to work with.

RETURN: number - arc tangent of x.

DESCRIPTION: This method returns the arc tangent of x in the range of -pi/2 to
pi/2 radians.

 326

SEE: Clib.tan()

Clib.atan2()
SYNTAX: Clib.atan2(x, y)

WHERE: x - number to work with, numerator.

y - number to work with, denominator.

RETURN: number - arc tangent of x/y.

DESCRIPTION: This method returns the arc tangent of x/y, in the range of -pi to
+pi radians.

SEE: Clib.atan()

Clib.atof()
SYNTAX: Clib.atof(str)

WHERE: str - string to convert to a number.

RETURN: number - str converted.

DESCRIPTION: This method converts the ASCII string str to a floating-point
value, if str can be converted.

SEE: Clbib.atol()

Clib.atoi()
SYNTAX: Clib.atoi(str)

WHERE: str - string to convert to a number.

RETURN: number - str converted.

DESCRIPTION: This method converts the ASCII string str to an integer, if str can
be converted.

SEE: Clib.atol()

 327

Clib.atol()
SYNTAX: Clib.atol(str)

WHERE: str - string to convert to a number.

RETURN: number - str converted.

DESCRIPTION: This method converts the ASCII string str to a long integer, if str
can be converted. This method is the same as the Clib.atoi()
method, since longs and integers are the same in ScriptEase.

SEE: Clib.atoi()

Clib.ceil()
SYNTAX: Clib.ceil(x)

WHERE: x - number to work with.

RETURN: number - smallest integer greater than x.

DESCRIPTION: This method returns the smallest integer value not less than x.

SEE: Clib.floor()

Clib.cos()
SYNTAX: Clib.cos(x)

WHERE: x - number to work with.

RETURN: number - cosine of x.

DESCRIPTION: This method returns the cosine of x in radians.

SEE: Clib.acos(), Clib.cosh()

Clib.cosh()
SYNTAX: Clib.cosh(x)

WHERE: x - number to work with.

 328

RETURN: number - hyperbolic cosine of x.

DESCRIPTION: This method returns the hyperbolic cosine of x.

SEE: Clib.cos()

Clib.div()
SYNTAX: Clib.div(x, y)

WHERE: x - number to work with, numerator.

y - number to work with, denominator.

RETURN: object - a structure with the results of division in the following
two properties:

.quot quotient

.rem remainder

DESCRIPTION: This method performs integer division and returns a quotient and
remainder in an object, a structure. Since integers and long
integers are the same in ScriptEase, Clib.div() is the same as
Clib.ldiv(). The value returned is a structure with two
elements or properties.

SEE: Clib.ldiv()

Clib.exp()
SYNTAX: Clib.exp(x)

WHERE: x - number to work with.

RETURN: x - exponential value of x.

DESCRIPTION: This method returns the exponential value of x.

SEE: Clib.frexp(), Clib.ldexp(), Clib.pow()

Clib.fabs()
SYNTAX: Clib.fabs(x)

 329

WHERE: x - number to work with.

RETURN: number - absolute value of x, a float.

DESCRIPTION: This method returns the absolute, non-negative, value of a float
x.

SEE: Clib.abs()

Clib.floor()
SYNTAX: Clib.floor(x)

WHERE: x - number to work with.

RETURN: number - largest integer not greater than x.

DESCRIPTION: This method returns the largest integer value not greater than x.

SEE: Clib.ceil()

Clib.fmod()
SYNTAX: Clib.fmod(x, y)

WHERE: x - number to work with, numerator.

y - number to work with, denominator.

RETURN: This method returns the remainder of x/y.

DESCRIPTION: This method returns the remainder of x/y, that is, the modulus of
two floats..

SEE: Clib.modf(), Clib.div()

EXAMPLE:

Clib.frexp()
SYNTAX: Clib.frexp(x, exp)

WHERE: x - number to work with.

exp - exponent used with a mantissa.

 330

RETURN: number - mantissa with and absolute value between 0.5 and 1.0.
If x is 0, return 0.

DESCRIPTION: This method breaks x into a normalized mantissa between 0.5
and 1.0 and calculates an integer exponent of 2 such that x ==
mantissa * 2 ^ exponent. The return is normalized
mantissa between 0.5 and 1.0, or 0. The exponent used is in x.

SEE: Clib.exp(), Clib.ldexp(), Clib.pow()

Clib.labs()
SYNTAX: Clib.labs(x)

WHERE: x - number to work with.

RETURN: number - absolute value of a long integer.

DESCRIPTION: This method returns the absolute, non-negative, value of an
integer.

Since integers and long integers are the same in ScriptEase,
Clib.labs() is the same as Clib.abs().

SEE: Clib.abs(), Clib.fabs()

Clib.ldexp()
SYNTAX: Clib.ldexp(man, exp)

WHERE: man - mantissa to work with

exp - exponent used with a mantissa.

RETURN: number - mantissa * 2 ^ exp.

DESCRIPTION: This method is the inverse of Clib.frexp() and calculates a
floating point number using the following equation:

mantissa * 2 raised to the power of exp.

SEE: Clib.frexp(), Clib.exp()

 331

Clib.ldiv()
SYNTAX: Clib.ldiv(x, y)

WHERE: x - number to work with, numerator.

y - number to work with, denominator.

RETURN: object - a structure with the results of division in the following
two properties:

.quot quotient

.rem remainder
DESCRIPTION: This method performs integer division and returns a quotient and

remainder in an object, a structure. Since integers and long
integers are the same in ScriptEase, Clib.div() is the same as
Clib.ldiv(). The value returned is a structure with two
elements or properties.

SEE: Clib.div()

Clib.log()
SYNTAX: Clib.log(x)

WHERE: x - number to work with.

RETURN: number - natural logarithm of x.

DESCRIPTION: This method returns the natural logarithm of x.

SEE: Clib.exp(), Clib.log10(), Clib.pow()

Clib.log10()
SYNTAX: Clib.log10(x)

WHERE: x - number to work with.

RETURN: number - base ten logarithm of x.

DESCRIPTION: This method returns the base ten logarithm of x.

SEE: Clib.log()

 332

Clib.max()
SYNTAX: Clib.max(x[, ...])

WHERE: x - number or list of numbers to work with.

RETURN: number - maximum number passed.

DESCRIPTION: This method is similar to the standard C macro, max(), with the
differences that only one variable must be supplied and any
number of other variables may be supplied for the comparison.

SEE: Clib.min()

Clib.min()
SYNTAX: Clib.min(x[, ...])

WHERE: x - number or list of numbers to work with.

RETURN: number - minimum number passed.

DESCRIPTION: This method is similar to the standard C macro, min(), with the
differences that only one variable must be supplied and any
number of other vari ables may be supplied for comparison.

SEE: Clib.max()

Clib.modf()
SYNTAX: Clib.modf(x, i)

WHERE: x - float to work with.

i - variable to receive the integral part of x.

RETURN: number - signed fractional part of x.

DESCRIPTION: This method splits a floating point number x into integer and
fractional parts, where the integer and frac tion both have the
same sign as x. The method sets the parameter i to the integer
part of x and returns the fractional part of x.

SEE: Clib.fmod(), Clib.ldiv()

 333

Clib.pow()
SYNTAX: Clib.pow(x, exp)

WHERE: x - number to raise to a power.

exp - exponent of x, power to which to raise x.

RETURN: number - x ^ exp.

DESCRIPTION: This method returns x to the power of y.

SEE: Clib.exp()

Clib.rand()
SYNTAX: Clib.rand()
RETURN: number - random number between 0 and RAND_MAX, inclusive.

DESCRIPTION: This method returns pseudo-random number between 0 and
RAND_MAX, inclusive. The sequence of pseudo-random numbers
is affected by the initial generator seed and by earlier calls to
Clib.rand(). See Clib.srand() for information about the
initial generator seed.

SEE: Clib.srand(), RAND_MAX

Clib.sin()
SYNTAX: Clib.sin(x)

WHERE: x - number to work with.

RETURN: number - sine of x.

DESCRIPTION: This method returns the sine of x in radians.

SEE: Clib.asin(), Clib.sinh()

Clib.sinh()

 334

SYNTAX: Clib.sinh(x)

WHERE: x - number to work with.

RETURN: number - hyperbolic sine of x.

DESCRIPTION: This method returns the hyperbolic sine of the float x.

SEE: Clib.sin()

Clib.sqrt()
SYNTAX: Clib.sqrt(x)

WHERE: x - number to work with.

RETURN: number - square root of x.

DESCRIPTION: This method returns the square root of x.

SEE: Clib.exp(), Clib.pow()

Clib.srand()
SYNTAX: Clib.srand(seed)

WHERE: seed - number with which to seed a random number generator.

RETURN: void.

DESCRIPTION: This method initializes a random number generator using the
parameter seed. If seed is not supplied, then a random seed is
generated in an a manner that is specific to different operating
systems. Use this method first when generating a sequence of
random numbers.

SEE: Clib.rand()

Clib.tan()
SYNTAX: Clib.tan(x)

WHERE: x - number to work with.

RETURN: number - tangent of x.

 335

DESCRIPTION: This method returns the tangent of x in radians.

SEE: Clib.atan(), Clib.tanh()

Clib.tanh()
SYNTAX: Clib.tanh(x)

WHERE: x - number to work with.

RETURN: number - hyperbolic tangent of x.

DESCRIPTION: This method calculates and returns the hyperbolic tangent of the
parameter x, a float.

SEE: Clib.tan()

Variable argument lists
Clib.va_arg()
SYNTAX: Clib.va_arg([valist[, offset])

Clib.va_arg(offset)

Clib.va_arg()

WHERE: valist - a variable list of arguments passed to a function.

offset - index of a particular argument.

RETURN: value - parameter being retrieved. If no parameters, the number
of parameters.

DESCRIPTION: The method Clib.va_arg() provides an alternate way to
retrieve a function's parameters. It's most often used when the
number of parameters passed to the function is not constant.
This method covers the same territory as the
Function.arguments[] property and is provided for those
who prefer C functions for handling variable arguments.

When called with no parameters, it returns the number of
parameters passed to the current function. If an offset is supplied,
it returns the input variable at index: offset. Clib.va_arg(0) is

 336

the first parameter passed, Clib.va_arg(1) the second, etc. It
is a fatal error to retrieve an argument offset beyond the number
of parameters in the function or the valist.

The valist form, with an optional offset, uses a valist variable
that has been previously initialized with Clib.va_start().
Each call to Clib.va_arg(valist) returns the next parameter
passed to a function. If an offset is passed in the variable at that
offset from the original starting place of the valist will be
returned.

SEE: Clib.va_start(), Clib.va_end(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

EXAMPLE: // The following script:

function main()
{
 lips(0, 1, 2, 3, 4)
}

lips()
{
 Clib.va_start(valist)
 Clib.printf("va_arg(0) = %d\n", va_arg(0));
 Clib.printf("va_arg(1) = %d\n", va_arg(1));
 Clib.printf("va_arg(valist) = %d\n",
 va_arg(valist));
 Clib.printf("va_arg(valist, 2) = %d\n",
 va_arg(valist, 2));
 Clib.printf("va_arg(valist, 2) = %d\n",
 va_arg(valist, 2));
 Clib.printf("va_arg(valist) = %d\n",
 va_arg(valist));
 Clib.getch()
}

// produces the following output:
// va_arg(0) = 0
// va_arg(1) = 1
// va_arg(valist) = 0
// va_arg(valist, 2) = 3
// va_arg(valist, 2) = 3
// va_arg(valist) = 1

Clib.va_end()

 337

SYNTAX: Clib.va_end(valist)

WHERE: valist - a variable list of arguments passed to a function.

RETURN: void.

DESCRIPTION: Terminates a variable arguments list. This method makes valist
invalid. Many implementations of C require the calling of this
function. ScriptEase does not. But, since people may expect it,
ScriptEase provides it.

SEE: Clib.va_arg(), Clib.va_start(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

Clib.va_start()
SYNTAX: Clib.va_start(valist[, inputVar])

WHERE: valist - a variable list of arguments passed to a function.

RETURN: number - calls to Clib.va_arg(), that is, the number of variables
in valist.

inputVar -

DESCRIPTION: This method initializes valist for a function with a variable
number of arguments. After the first call to this function,
subsequent calls to Clib.va_arg() may be used to get the rest of
the parameters in sequence.

The parameter inputVar must be one of the parameters defined
on the function line of a function. The first argument returned by
the first call to Clib.va_arg() will be the variable passed after
inputVar. If inputVar is not provided, then the first parameter
passed to a function will be the first one returned by
Clib.va_arg(valist).

SEE: Clib.va_end(), Clib.va_start(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

EXAMPLE: // The following example uses and accepts
// a variable number of strings and
// concatenates them all together.

function MultiStrcat(Result, InitialString);

 338

 // Append any number of strings to InitialString.
 // e.g., MultiStrcat(Result,
 // "C:\\","FOO",".","CMD")
{
 Clib.strcpy(Result,""); // initialize result;
 var Count = Clib.va_start(ArgList, InitialString);
 for (var i = 0; i < Count; i++)
 Result, va_arg(ArgList));
}

Clib.vfprintf()
SYNTAX: Clib.vfprintf(filePointer, formatString[, valist])

WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

valist - a variable list of arguments to be formatted according to
formatString..

RETURN: number - characters written, else a negative number on error.

DESCRIPTION: This method formats a string with a variable number of
arguments and prints it to the file specified by filePointer. It
returns the number of characters written, or a negative number if
there was an output error.

SEE: Clib.fprintf(), Clib.sprintf()

Clib.vfscanf()
SYNTAX: Clib.vfscanf(filePointer, formatString[, valist])

WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

valist - a variable list of variables to hold data input according to
formatString.

RETURN: number - input fields successfully scanned, converted, and
stored, else EOF.

DESCRIPTION: This method is similar to Clib.fscanf() except that it takes a

 339

variable argument list. See Clib.fscanf() for more details.

SEE: Clib.va_arg(), Clib.fscanf()

EXAMPLE:

Clib.vsscanf()
SYNTAX: Clib.vsscanf(str, formatString, valist)

WHERE: str - string holding the data to read into variables according to
formatString.

formatString - specifies how to read and store data in variables.

valist - a variable list of variables to hold data according to
formatString.

RETURN: number - input fields successfully scanned, converted, and
stored, else EOF.

DESCRIPTION: This method is similar to Clib.sscanf() except that it takes a
variable argument list. The parameters following the format
string will be assigned values according to the specifications of
the format string.

The function returns the number of input items assigned. This
number may be fewer than the number of parameters requested if
there was a matching failure.

SEE: Clib.va_arg(), Clib.sscanf()

 341

Unix Object
platform: Unix OS, all versions of SE

Unix object static methods
Unix.fork()
SYNTAX: Unix.fork()

RETURN: number - 0 or a child process id. 0 is returned to the child
process, the id of the child process is returned to the parent.

DESCRIPTION: A call to this function creates two duplicate processes. The
processes are exact copies of the currently running process, so
both pick up execution from the next statement. Because these
processes are duplicates, they share identical all resources the
original one had at the time of fork()ing, but not any allocated
later. For instance, any open file handles or sockets are shared. If
both processes write to them, the output will be intermixed since
each write from either process advances the file pointer for both.
Unix.wait() allows you to wait for completion of a Child.
Using Unix.wait() or Unix.waitpid() is important to
prevent annoying zombie processes from building up.

SEE: Unix.kill(), Unix.wait(), Unix.waitpid()

EXAMPLE: // Here is a simple example:

function main()
{
 var id = Unix.fork();

 if(id==0)
 {
 Clib.printf("Child here!\n");
 Clib.exit(0);
 }
 else
 {
 Clib.printf("started child process %d\n", id);
 }
}

 342

Unix.kill()
SYNTAX: Unix.kill(pid, signal)

WHERE: pid - process to kill.

signal - the signal to send the process.

RETURN: number - 0 for success, -1 for error.

DESCRIPTION: This is simply a direct wrapper for the Unix kill command. To
get documentation on it for your particular Unix system, just
type 'man 2 kill'

SEE: Unix.fork()

EXAMPLE: // Typically you would use this to kill a child,
// for instance:

if(var id = Unix.fork())
{
 while(1)
 Clib.printf("I am an annoying child.\n");
}
else
{
 /* child would be too annoying, so kill it */
 Unix.kill(id,9); //9 is SIGKILL
 Unix.wait(var status); //wait until child is dead
 Clib.printf(
 "I hope DSS doesn't here about this...\n");
}

Unix.setgid()
SYNTAX: Unix.setgid(id)

WHERE: id - group id to set.

RETURN: number - 0 for success, -1 for error.

DESCRIPTION: Changes the group ID to the given ID, if allowed. I used it in the
mini web-server to make sure not running as root (it changes to
nobody.)

SEE: Unix.setuid()

 343

Unix.setsid()
SYNTAX: Unix.setsid()

RETURN: number - 0 for success, -1 for error.

DESCRIPTION: Creates a new session with no terminal, must useful for having
commands that when run immediately have the terminal prompt
reappear, but continue to run in the background.

SEE: Unix.fork()

EXAMPLE: // A typical daemon program has a line like this:

#if defined(_UNIX_)
 Unix.setsid(); if(Unix.fork()) Clib.exit(0);
#endif

// which detaches the program from the terminal and
// continues. Notice, this for line means that
// only the child is running. Because the parent
// has exited and the child does not have the
// original file handles, the shell thinks
// the program is done and goes back to the prompt.

Unix.setuid()
SYNTAX: Unix.setuid(id)

WHERE: id - user id to set.

RETURN: number - 0 for success, -1 for error.

DESCRIPTION: Changes the user ID to the given ID, if allowed. I used it in the
mini web-server to make sure not running as root (it changes to
nobody.)

SEE: Unix.setgid()

Unix.wait()
SYNTAX: Unix.wait(status)

WHERE: status - status of the process.

 344

RETURN: number - process id of the exiting child, else -1 for error.

DESCRIPTION: A call to wait() will suspend execution until a child process
terminates, then return the id of the particular child that exited.
The status parameter is a filled in with the status code for the
process (this is the raw data exactly as returned by the underlying
C wait() call provided for Unix gurus who find this information
useful.) Any resources used by the Child are cleaned up.

SEE: Unix.kill(), Unix.waitpid()

EXAMPLE: // Here is a simple example:

function main()
{
 var id = Unix.fork();

 if(id==0)
 {
 Clib.printf("Child here!\n");
 Clib.exit(0);
 }
 else
 {
 Clib.printf("started child process %d\n", id);
 Clib.assert(Unix.wait(var dontcare)==id);
 Clib.printf("child process is dead meat.\n");
 }
}

Unix.waitpid()
SYNTAX: Unix.waitpid(pid, status, flags)

WHERE: pid - child process interested in or -1 for any.

status - status of the process.

flags - WNOHANG or 0.

RETURN: number - process id of the exiting child, else -1 for error.

DESCRIPTION: Very similar to Unix.wait(), except you can specify which
child process you care about as well as some flags. The only flag
currently given a name is WNOHANG, which means that if no
child is ready to exit, the call returns immediately. Unix gurus
who need the full functionality can put the other possible flag
values here.

 345

values here.

SEE: Unix.kill(), Unix.waitpid()

EXAMPLE: // This function is most useful in the main loop
// of a server daemon
// (see inn.jse, unix/daemon.jse samples.)
// By calling it each time through the loop such as:

Unix.waitpid(-1,var status, WNOHANG);

// Child processes will get cleaned up and
// zombie processes will not stick around
// wasting resources.

 347

Boolean Object

Boolean object instance methods
Boolean()
SYNTAX: new Boolean(value)

WHERE: value - a value to be converted to a boolean.

RETURN: object - a Boolean object with the parameter value converted to a
boolean value.

DESCRIPTION: This function creates a boolean object that has the parameter
value converted to a boolean value. If the function is called
without the new constructor, then the return is simply the
parameter value converted to a boolean.

SEE: Boolean.toString()

EXAMPLE: var name = "Joe";
var b = new Boolean(name == "Joe");
// The Boolean object "b" is now true.

Boolean.toString()
SYNTAX: boolean.toString()

RETURN: string - "true" or "false" according to the value of the Boolean
object.

DESCRIPTION: This toString() returns a string corresponding to the value of
a Boolean object or primitive data type.

SEE: Boolean.toString(), boolean data type

EXAMPLE: var name = "Joe";
var b = new Boolean(name === "Joe");
var bb = false;
Screen.writeln(b.toString()); // "true"
Screen.writeln(bb.toString()); // "false"

 349

Date Object
ScriptEase shines in its ability to work with dates and provides two
different systems for working with them. One is the standard Date object
of JavaScript and the other is part of the Clib object which implements
powerful routines from C. Two methods, Date.fromSystem() and
Date.toSystem(), convert dates in the format of one system to the format
of the other. The standard JavaScript Date object is described in this
section.

To create a Date object which is set to the current date and time, use the
new operator, as you would with any object.

var currentDate = new Date();

There are several ways to create a Date object which is set to a date and time.
The following lines all demonstrate ways to get and set dates and times.

var aDate = new Date(milliseconds);
var bDate = new Date(datestring);
var cDate = new Date(year, month, day);
var dDate = new Date(year, month, day, hours, minutes, seconds);

The first syntax returns a date and time represented by the number of
milliseconds since midnight, January 1, 1970. This representation in milliseconds
is a standard way of representing dates and times that makes it easy to calculate
the amount of time between one date and another. Generally, you do not create
dates in this way. Instead, you convert them to milliseconds format before doing
calculations.

The second syntax accepts a string representing a date and optional time. The
format of such a datestring is:

month day, year hours:minutes:seconds

For example, the following string:

"Friday 13, 1995 13:13:15"

specifies the date, Friday 13, 1995, and the time, one thirteen and 15 seconds
p.m., which, expressed in 24 hour time, is 13:13 hours and 15 seconds. The time
specification is optional and if included, the seconds specification is optional.

 350

The third and fourth syntaxes are self- explanatory. All parameters passed to
them are integers.

• year
If a year is in the twentieth century, the 1900s, you need only supply the final
two digits. Otherwise four digits must be supplied.

• month
A month is specified as a number from 0 to 11. January is 0, and December
is 11.

• day
A day of the month is specified as a number from 1 to 31. The first day of a
month is 1 and the last is 28, 29, 30, or 31.

• hours
An hour is specified as a number from 0 to 23. Midnight is 0, and 11 p.m. is
23.

• minutes
A minute is specified as a number from 0 to 59. The first minute of an hour is
0, and the last is 59.

• seconds
A second is specified as a number from 0 to 59. The first second of a minute
is 0, and the last is 59.

For example, the following line of code:

var aDate = new Date(1492, 9, 12)

creates a Date object containing the date, October 12, 1492.

ScriptEase has a rich and full set of methods to work with dates and times. A
programmer has a very complete set of tools to use when including date and time
routines in a script. The Clib object also has methods for working with date and
times that extend the power of ScriptEase beyond standard JavaScript.

The following list of methods has brief descriptions of the methods of the Date
object. Instance methods are shown with a period, ".", in the SYNTAX line. A
specific instance of a variable should be put in front of the period to call a
method. For example, the Date object aDate was created above, and, to call the
getDate() method, the call would be: aDate.getDate(). Static methods
have "Date." at their beginnings since these methods are called with literal calls,
such as Date.parse(). These methods are part of the Date object itself instead
of instances of the Date object.

 351

Date object instance methods
Date getDate()
SYNTAX: date.getDate()

RETURN: number - a day of a month.

DESCRIPTION: This method returns the day of the month, as a number from 1 to
31, of a Date object. The first day of a month is 1, and the last is
28, 29, 30, or 31.

Date getDay()
SYNTAX: date.getDay()

RETURN: number - a day in a week.

DESCRIPTION: This method returns the day of the week, as a number from 0 to
6, of a Date object. Sunday is 0, and Saturday is 6.

Date getFullYear()
SYNTAX: date.getFullYear()

RETURN: number - four digit year.

DESCRIPTION: This method returns the year, as a number with four digits, of a
Date object.

Date getHours()
SYNTAX: date.getHours()

RETURN: number - an hour in a day.

DESCRIPTION: This method returns the hour, as a number from 0 to 23, of a
Date object. Midnight is 0, and 11 p.m. is 23.

Date getMilliseconds()

 352

SYNTAX: date.getMilliseconds()

RETURN: number - a millisecond in a second.

DESCRIPTION: This method returns the millisecond, as a number from 0 to 999,
of a Date object. The first millisecond in a second is 0, and the
last is 999.

Date getMinutes()
SYNTAX: date.getMinutes()

RETURN: number - a minute in an hour.

DESCRIPTION: This method returns the minute, as a number from 0 to 59, of a
Date object. The first minute of an hour is 0, and the last is 59.

Date getMonth()
SYNTAX: date.getMonth()

RETURN: number - of a month in a year.

DESCRIPTION: This method returns the month, as a number from 0 to 11, of a
Date object. January is 0, and December is 11.

Date getSeconds()
SYNTAX: date.getSeconds()

RETURN: number - a second in a minute.

DESCRIPTION: This method returns the second, as number from 0 to 59, of a
Date object. The first second of a minute is 0, and the last is 59.

Date getTime()
SYNTAX: date.getTime()

RETURN: number - the milliseconds representation of a Date object.

DESCRIPTION: Gets time information in the form of an integer representing the
number of seconds from midnight on January 1, 1970, GMT, to

 353

number of seconds from midnight on January 1, 1970, GMT, to
the date and time specified by a Date object.

Date getTimezoneOffset()
SYNTAX: date.getTimezoneOffset()

RETURN: number - minutes.

DESCRIPTION: This method returns the difference, in minutes, between
Greenwich Mean Time (GMT) and local time.

Date getUTCDate()
SYNTAX: date.getUTCDate()

RETURN: number - a day of a month.

DESCRIPTION: This method returns the UTC day of the month, as a number
from 1 to 31, of a Date object. The first day of a month is 1, and
the last is 28, 29, 30, or 31.

Date getUTCDay()
SYNTAX: date.getUTCDay()

RETURN: number - a day in a week.

DESCRIPTION: This method returns the day of the week, as a number from 0 to
6, of a Date object. Sunday is 0, and Saturday is 6.

Date getUTCFullYear()
SYNTAX: date.getUTCFullYear()

RETURN: number - four digit year.

DESCRIPTION: This method returns the UTC year, as a number with four digits,
of a Date object.

 354

Date getUTCHours()
SYNTAX: date.getUTCHours()

RETURN: number - an hour in a day.

DESCRIPTION: This method returns the UTC hour, as a number from 0 to 23, of
a Date object. Midnight is 0, and 11 p.m. is 23.

Date getUTCMilliseconds()
SYNTAX: date.getUTCMilliseconds()

RETURN: number - a millisecond in a second.

DESCRIPTION: This method returns the UTC millisecond, as a number from 0 to
999, of a Date object. The first millisecond in a second is 0, and
the last is 999.

Date getUTCMinutes()
SYNTAX: date.getUTCMinutes()

RETURN: number - a minute in an hour.

DESCRIPTION: This method returns the UTC minute, as a number from 0 to 59,
of a Date object. The first minute of an hour is 0, and the last is
59.

Date getUTCMonth()
SYNTAX: date.getUTCMonth()

RETURN: number - of a month in a year.

DESCRIPTION: number - of a month in a year.

Date getUTCSeconds()
SYNTAX: date.getUTCSeconds()

 355

RETURN: number - a second in a minute.

DESCRIPTION: This method returns the UTC second, as number from 0 to 59, of
a Date object. The first second of a minute is 0, and the last is 59.

Date getYear()
SYNTAX: date.getYear()

RETURN: number - two digit year.

DESCRIPTION: This method returns the year, as a number with two digits, of a
Date object.

Date setDate()
SYNTAX: date.setDate(day)

WHERE: day - a day in a month.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the day, as a number from 1 to 31, of a Date
object to the parameter day. The first day of a month is 1, and the
last is 28, 29, 30, or 31.

Date setFullYear()
SYNTAX: date.setFullYear(year[, month[, date]])

WHERE: year - a four digit year.

month - a month in a year.

day - a day in a month.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the year of a Date object to the parameter year.
The parameter year is expressed with four digits.

The parameter month is the same as for setMonth().

 356

The parameter day is the same as for setDate().

Date setHours()
SYNTAX: Date.setHours(hour[, minute[, second[, millisecond]]])

WHERE: hour - an hour in a day.

minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the hour, as a number from 0 to 23, of a Date
object to the parameter hours. Midnight is 0, and 11 p.m. is 23.

The parameter minute is the same as for setMinutes().

The parameter second is the same as for setSeconds().

The parameter milliseconds is the same as for
setMilliseconds().

Date setMilliseconds()
SYNTAX: date.setMilliseconds(millisecond)

WHERE: millisecond - a millisecond in a minute.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the millisecond, as a number from 0 to 59, of a
Date object to the parameter millisecond. The first millisecond in
a second is 0, and the last is 999.

Date setMinutes()
SYNTAX: date.setMinutes(minute[, second[, millisecond]])

WHERE: minute - a minute in an hour.

 357

second - a second in a minute.

millisecond - a millisecond in a second.

RETURN: number - time in milliseconds.

DESCRIPTION: This method sets the minute, as a number from 0 to 59, of a Date
object to the parameter minute. The first minute of an hour is 0,
and the last is 59.

The parameter second is the same as for setSeconds().

The parameter milliseconds is the same as for
setMilliseconds().

Date setMonth()
SYNTAX: Date.setMonth(month[, day])

WHERE: month - a month in a year.

day - a day in a month.

RETURN: number - time in milliseconds.

DESCRIPTION: This method sets the month, as a number from 0 to 11, of a Date
object to the parameter month. January is 0, and December is 11.

The parameter day is the same as for setDate().

Date setSeconds()
SYNTAX: date.setSeconds(second[, millisecond])

WHERE: second - a second in a minute.

millisecond - a millisecond in a second.

RETURN: number - time in milliseconds.

DESCRIPTION: This method sets the second, as a number from 0 to 59, of a Date
object to the parameter second. The first second of a minute is 0,
and the last is 59.

The parameter milliseconds is the same as for

 358

setMilliseconds().

Date setTime()
SYNTAX: date.setTime(millisecond)

WHERE: millisecond - the time in milliseconds.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets a Date object to the date and time specified by
the parameter milliseconds which is the number of milliseconds
from midnight on January 1, 1970, GMT.

Date setUTCDate()
SYNTAX: date.setUTCDate(day)

WHERE: day - a day in a month.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the UTC day, as a number from 1 to 31, of a
Date object to the parameter day. The first day of a month is 1,
and the last is 28, 29, 30, or 31.

Date setUTCFullYear()
SYNTAX: date.setUTCFullYear(year[, month[, date]])

WHERE: year - a four digit year.

month - a month in a year.

day - a day in a month.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the UTC year of a Date object to the parameter
year. The parameter year is expressed with four digits.

The parameter month is the same as for setUTCMonth().

 359

The parameter day is the same as for setUTCDate().

Date setUTCHours()
SYNTAX: Date.setUTCHours(hour[, minute[, second[, millisecond]]])

WHERE: hour - an hour in a day.

minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the UTC hour, as a number from 0 to 23, of a
Date object to the parameter hours. Midnight is 0, and 11 p.m. is
23.

The parameter minute is the same as for setUTCMinutes().

The parameter second is the same as for setUTCSeconds().

The parameter milliseconds is the same as for
setUTCMilliseconds().

Date setUTCMilliseconds()
SYNTAX: date.setUTCMilliseconds(millisecond)

WHERE: millisecond - a millisecond in a minute.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the UTC millisecond, as a number from 0 to
59, of a Date object to the parameter millisecond. The first
millisecond in a second is 0, and the last is 999.

Date setUTCMinutes()
SYNTAX: date.setUTCMinutes(minute[, second[, millisecond]])

 360

WHERE: minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.

RETURN: number - time in milliseconds.

DESCRIPTION: This method sets the UTC minute, as a number from 0 to 59, of a
Date object to the parameter minute. The first minute of an hour
is 0, and the last is 59.

The parameter second is the same as for setUTCSeconds().

The parameter milliseconds is the same as for
setUTCMilliseconds().

Date setUTCMonth()
SYNTAX: Date.setUTCMonth(month[, day])

WHERE: month - a month in a year.

day - a day in a month.

RETURN: number - time in milliseconds.

DESCRIPTION: This method sets the UTC month, as a number from 0 to 11, of a
Date object to the parameter month. January is 0, and December
is 11.

The parameter day is the same as for setUTCDate().

Date setUTCSeconds()
SYNTAX: date.setUTCSeconds(second[, millisecond])

WHERE: second - a second in a minute.

millisecond - a millisecond in a second.

RETURN: number - time in milliseconds.

DESCRIPTION: This method sets the UTC second, as a number from 0 to 59, of a
Date object to the parameter second. The first second of a minute

 361

is 0, and the last is 59.

The parameter milliseconds is the same as for
setUTCMilliseconds().

Date setYear()
SYNTAX: date.setYear(year)

WHERE: year - four digit year, unless in the 1900s in which case it may be
a two digit year.

RETURN: number - time in milliseconds as set.

DESCRIPTION: This method sets the year of a Date object to the parameter year.
The parameter year may be expressed with two digits for a year
in the twentieth century, the 1900s. Four digits are necessary for
any other century.

Date toGMTString()
SYNTAX: date.toGMTString()

RETURN: string - string representation of the GMT date and time.

DESCRIPTION: This method converts a Date object to a string, based on
Greenwich Mean Time.

EXAMPLE: var d = new Date();
Screen.writeln(d.toGMTString());

// The fragment above would produce something like:
// Mon May 1 15:48:38 2000 GMT

Date toDateString()
SYNTAX: date.toDateString()

RETURN: string - representation of the date portion of the current object.

DESCRIPTION: Returns the Date portion of the current date as a string. This
string is formatted to read "Month Day, Year", for example,
"May 1, 2000". This method uses the local time, not UTC time.

 362

SEE: Date.toString(), Date.toTimeString(), Date.toLocaleDateString()

EXAMPLE: var d = new Date();
var s = d.toDateString();

Date toLocaleDateString()
SYNTAX: date.toLocaleDateString()

RETURN: string - locale-sensitive string representation of the date portion
of the current date.

DESCRIPTION: This function behaves in exactly the same manner as
Date.toDateString(). This function is designed to take in the
current locale when formatting the string. Locale reflects the
time zone of a user.

SEE: Date.toString(), Date.toLocaleTimeString(),
Date.toLocaleString()

EXAMPLE: var d = new Date();
var s = d.toLocaleDateString();

Date toLocaleString()
SYNTAX: date.toLocaleString()

RETURN: string - locale-sensitive string representation of the current date.

DESCRIPTION: This function behaves in exactly the same manner as
Date.toString(). This function is designed to take in the current
locale when formatting the string, though this functionality is
currently unimplemented. Locale reflects the time zone of a user.

SEE: Date.toString(), Date.toLocaleTimeString(),
Date.toLocaleDateString()

EXAMPLE: var d = new Date();
var s = d.toLocaleString();

Date toLocaleTimeString()
SYNTAX: date.toLocaleTimeString()

RETURN: string - locale-sensitive string representation of the time portion
of the current date.

 363

of the current date.

DESCRIPTION: This function behaves in exactly the same manner as
Date.toTimeString(). This function is designed to take in the
current locale when formatting the string. Locale reflects the
time zone of a user.

Date toString()
SYNTAX: date.toString()

RETURN: string - representation of the date and time data in a Date object.

DESCRIPTION: Converts the date and time information in a Date object to a
string in a form such as: "Mon May 1 09:24:38 2000"

SEE: Date.toDateString(), Date.toLocaleString(), Date.toTimeString()

EXAMPLE: var d = new Date();
var s = d.toString();

Date toSystem()
SYNTAX: date.toSystem()

RETURN: number - the Date object date and time value converted to the
system date and time.

DESCRIPTION: This method converts a Date object to a system time format
which is the same as that returned by the Clib.time() method. To
create a Date object from a variable in system time format, see
the Date.fromSystem() method.

Date toTimeString()
SYNTAX: date.toTimeString()

RETURN: string - representation of the Time portion of the current object.

DESCRIPTION: This function returns the time portion of the current date as a
string. This string is formatted to read "Hours:Minutes:Seconds",
as in "16:43:23". This function uses the local time, rather than

 364

the UTC time.

SEE: Date.toString(), Date.toDateString(), Date.toLocaleDateString()

EXAMPLE: var d = new Date();
var s = d.toTimeString();

Date toUTCString()
SYNTAX: date.toUTCString()

RETURN: string - representation of the UTC date and time data in a Date
object.

DESCRIPTION: Converts the UTC date and time information in a Date object to
a string in a form such as: "Mon May 1 09:24:38 2000"

SEE: Date.toDateString(), Date.toLocaleString(), Date.toTimeString()

EXAMPLE: var d = new Date();
var s = d.toString();

Date valueOf()
SYNTAX: date.valueOf()

RETURN: number - the value of the date and time information in a Date
object.

DESCRIPTION: The numeric representation of a Date object.

SEE: Date.toString()

Date object static methods
The Date object has three special methods that are called from the object
itself, rather than from an instance of it: Date.fromSystem(), Date.parse(),
and Date.UTC().

Date.fromSystem()
SYNTAX: Date.fromSystem(time)

WHERE: time - time in system data format, the same format as returned by

 365

Clib.time()

RETURN: object - Date object with the time passed.

DESCRIPTION: This method converts the parameter time, which is in the same
format as returned by the <code>Clib.time()</code>, to a
standard JavaScript Date object.

EXAMPLE: // To create a Date object
// from date information obtained using
// Clib, use code similar to:

var SysDate = Clib.time();
var ObjDate = Date.fromSystem(SysDate);

// To convert a Date object to system format
// that can be used by
// the methods of the Clib object,
// use code similar to:

var SysDate = ObjDate.toSystem();

Date.parse()
SYNTAX: Date.parse(datestring)

WHERE: datestring - A string representing the date and time to be passed

RETURN: number - milliseconds between the Datestring and midnight ,
January 1, 1970 GMT.

DESCRIPTION: This method converts the string datestring to a Date object. The
string must be in the following format: Friday, October 31,
1998 15:30:00 -0500 This format is used by the
.toGMTString() method and by email and Internet applications.
The day of the week, time zone, time specification or seconds
field may be omitted.

SEE: Date(), Date.setTime(), Date.toGMTString(), Date.UTC

EXAMPLE: //The following code sets the date to March 2, 1992
var theDate = Date.parse("March 2, 1992")
//Note:
var theDate = Date.parse(datestring);
//is equivalent to:
var theDate = new Date(datestring);

 366

Date.UTC()
SYNTAX: Date.UTC(Year, Month, Day[, Hours[, Minutes[, Seconds[,

Milliseconds]]]])

WHERE: Year - A year, represented in four or two-digit format after 1900.
NOTE: For year 2000 compliance, this year MUST be
represented in four-digit format

Month - A number between 0 (January) and 11 (December)
representing the month

Day - A number between 1 and 31 representing the day of the
month. Note that Month uses 1 as its lowest value whereas many
other arguments use 0

Hours - A number between 0 (midnight) and 23 (11 PM)
representing the hours

Minutes - A number between 0 (one minute) and 59 (59 minutes)
representing the minutes. This is an optional argument which
may be omitted if Seconds and Minutes are omitted as well.

Seconds - A number between 0 and 59 representing the seconds.
This parameter is optional.

Milliseconds - A number between 0 and 999 which represents
the milliseconds. This is an optional parameter.

RETURN: number - milliseconds from midnight, January 1, 1970, to the
date and time specified.

DESCRIPTION: The method interprets its parameters as a date. The parameters
are interpreted as referring to Greenwich Mean Time (GMT).

SEE: Date, Date.parse(), Date.setTime().

EXAMPLE: // The following code creates a Date object
// using UTC time:
foo = new Date(Date.UTC(1998, 3, 9, 1, 0, 0, 8))

 367

Link Libraries
Link libraries are dynamic link library files (.dll files) developed specifically to
work with ScriptEase. ScriptEase can use any DLL, but the calling conventions
needed to call routines in a DLL are necessarily more cumbersome than calling
internal routines. ScriptEase extends the power and ease of using its link libraries
by tying them to the internal data structures of ScriptEase. In this way, the data
and routines in a link library are available with the same calling conventions of
internal routines. Consider the two following code fragment:

 // Using dynamicLink
var v1 = SElib.dynamicLink("YourDll.dll", "FunctionOne", STDCALL,
args ...);
var v2 = SElib.dynamicLink("YourDll.dll", "FunctionTwo", STDCALL,
args ...);

 // Using a link library
#link <SElink.dll>
var v1 = FunctionOne(args ...);
var v2 = FunctionTwo(args ...);

As you can see in the first three lines, every time you want to call a routine from
a general DLL, you must use the more cumbersome SElib.dynamicLink()
method and its cumbersome calling conventions. Cumbersome calling
conventions exist in any language that allows general DLL files to be called. But,
notice the difference after a ScriptEase link DLL is linked into a script, as
illustrated by the line, #link <SElink.dll>. The routines and data in the DLL
are accessible in the same way as internal routines such as Screen.writeln().

Script libraries, scripts that end with jsh, can be used to define objects, methods,
properties, functions, and data. The advantage of script libraries is that you may
develop them quickly and alter them at any time. An advantage of link libraries is
that they execute faster since they compiled executables.

The following sections explain various link libraries. To use these link libraries,
they must be included in a script with the #link <> preprocessor directive.
Most link libraries have a corresponding script library, jsh file, that simplifies
their use even more.

 369

UUCode Link Library
The Unix-To-Unix encoding library provides two functions for encoding and
decoding data in a text format.

platform: Mac, OS2, Windows; All versions of SE
 source: #link <uucode.dll>

UU object static methods
UU.encode()
SYNTAX: UU.encode(infile[, outfile])

WHERE: infile - Name of input file

outfile - Name of output file

RETURN: boolean - Whether or not the operation was successful

DESCRIPTION: This method uses the Unix-to-Unix encoding mechanism, still
popular in newsgroups, as a way of translating binary data into
printable text data. If <code>outfile</code> is not supplied, then
an appropriate filename is generated by either adding or
replacing the extension with ".uue". The file "foo.c" would
become "foo.uue". This file later can be decoded with any
popular UUdecoding program, or a call to UU.decode();

SEE: UU.decode()

UU.decode()
SYNTAX: UU.decode(infile[, outfile])

WHERE: infile - Name of input file

outfile - Name of output file

RETURN: boolean - Whether or not the operation was successful

DESCRIPTION: This method decodes a file stored using the Unix-to-Unix
encoding mechanism. If <code>outfile</code> is not supplied,

 370

then the filename that is stored in the infile (the original name of
the file) is used instead.

SEE: UU.encode()

 371

DSP Link Library
Distributed Scripting Protocol is implemented by the ScriptEase DSP link library
as the DSP object.

DSP Object
platform: All platforms except Dos; All versions of SE
 source: #link <sedsp.dll>

The DSP object provides a framework for implementing distributed scripting
across a variety of computers and networks.

Creating a DSP object
The Distributed Scripting Protocol provides no internal method for managing a
connection or transporting packets. It is simply a framework, with the physical
transport method being supplied by the user. As such, it is impossible to simply
create a DSP object, because it is incapable of doing anything by itself. The user
must supply a set of functions to manage the connection with the server. To
create a DSP object, you call new DSP(myOpenFunction, myParameters).
The function that you supply must open the connection and return a reference to
it. It is possible in some instances that you do not need to open anything special,
and so you can ignore this parameter. Here is an example of an open function for
a DSP connection, using internet sockets:

function idspOpen(host, port)
{
 return new Socket(host, port);
}

We will see this function passed to the DSP constructor in a moment. First, to
accomplish sending/receiving packets, the user needs to define two functions,
dspSend and dspReceive. These functions must be inherited through the
prototype chain, because otherwise when DSP objects are copied implicitly
through reference construction (see below), the functions will not get passed.
Because we want to keep the DSP functions (such as dspService), we need to
preserve the original DSP prototype, and a constructor looks like the following:

function iDSP(host, port)
{
 var ret = new DSP(idspOpen, host, port);

 372

 // Now we override the ._prototype to insert our functions
 if(ret != null)
 ret._prototype = iDSP.prototype;
 return ret;
}
// Here we set up the iDSP.prototype to keep the DSP functions
// in the chain
iDSP.prototype._prototype = DSP.prototype;

Once this constructor is called, we have a valid DSP object, assuming we add the
transport functions. To do this, we must add dspSend and dspReceive to the
prototype. The actual syntax of these functions is similar to Clib.fread and
Clib.fwrite, and a description can be found in the function reference. For our
iDSP example, they would look something like this:

function iDSP.prototype.dspSend(conn, buffer, timeout)
{ // Ignore timeout
 return conn.write(buffer);
}
function iDSP.prototype.dspReceive(conn, &buffer, length,
timeout)
{
 return conn.read(buffer, length);
}

Note that both these functions ignore the timeout parameter and do not correctly
handle errors. A full-featured version of these functions can be found in the file
idsp.jsh. The final function that we must provide is the dspCloseConnection
function, which is responsible for closing the connection. This function looks like
the following:

function iDSP.prototype.dspCloseConnection(conn)
{
 conn.close();
}

Once all of these transport functions have been defined, new iDSP objects can be
instantiated with a call to new iDSP and used as any other DSP object. Because
the transport level of DSP is separate from the core library, DSP can be adapted
to communicate between any servers in any way. In addition, communication
can be done during the call to the open function. This allows for password
authentication or any other information to be shared.

Using a DSP object

 373

Once a DSP object is created using the method described above, every DSP
object behaves in exactly the same way. Once the functions are set up, the
transport layer of the protocol is hidden.

The basic idea is that all DSP objects are in fact references to objects on the
remote side, and they will remain so except under certain circumstances
(described below). When a connection is first established, it is a reference to the
global object. Members of the remote global object can be accessed as members
of the connection. But they remain references, so var print =
connection.Clib.printf will not actually make a remote call to the server.
At the appropriate time, print will be resolved into Clib.printf and sent to the
server in the appropriate manner. The circumstances which can trigger a de-
referencing and remote call are:

Calling functions - When a DSP reference is called as a function, it gets
resolved into the appropriate path and the function is called on the remote server.
All parameters are converted to source with ToSource() and passed to the server,
and set back afterwards (in case any were passed by reference). The client waits
for the return value from the server and returns that as the result of the function
call. This makes calling functions transparent to the client, so
connection.Screen.writeln("hi") will actually call Screen.writeln
on the server and print out "hi".

Setting a value - When a value is put to a DSP reference, such as
connection.globalCount = 5, a remote call to the server is generated, and
the remote value is updated. The above case acts just as if globalCount = 5
was executed on the server.

Implicitly - When a DSP reference is converted to a primitive, then it gets de-
referenced. This implicit conversion happens mostly in operator expressions, in
which both values are converted to primitives first. So var myCount =
connection.globalCount + 1 will get the value of globalCount from the
server and add one to it. This can also be accomplished explicitly with
ToPrimitive(), but the method below is more straightforward and
understandable. The explicit use of ToPrimitive() on DSP references is
discouraged.

Explicitly - Any DSP reference can be explicitly de-referenced with a call
to.dspGetValue. Once an object has been de-referenced this way, any
subsequent accesses will not cause a remote call, and changes will only affect the

 374

local copy. Note that calling a function in this way will result in the function
being called on the local client, not the server.

DSP object instance methods
DSP()
SYNTAX: new DSP([openFunction[, param1[, ...]]])

WHERE: openFunction - The function to call to initialize the connection.

paramN - Additional parameters to pass to the open function

RETURN: object - A new DSP object, or null on error

DESCRIPTION: This function creates a new DSP object, or returns null on error.
Note that calling this function itself accomplishes very little
unless you build up an appropriate DSP object by adding open,
close, and transport functions. A new DSP object can be created
with just new DSP(), but it will be unusable without transport
functions. See the introduction for more information about
setting up a proper DSP object. The first optional parameter is
the open function to use. Once the object has been created, this
function is called with any additional parameters passed to
DSP(). The result of this call is set the dspConnection
member of the newly created object, and is only used to pass as
the first parameters to the dspSend, dspReceive, and
dspCloseConnection methods. If openFunction is
supplied and returns null, then it is considered an error and the
DSP construction fails.

EXAMPLE: function fileOpen(filename)
{
 return Clib.fopen(filename, "wb");
}
var connection = new DSP(fileOpen, "c:\tempfile.dat"

);
// This will call fileOpen and assign the result to
// connection.dspConnection. If it was null,
// then the DSP connection will fail

DSP dspCloseConnection()

 375

SYNTAX: dsp.closeConnection(connection)

WHERE: connection - The original connection that was created with the
openFunction passed to new DSP()

RETURN: void.

DESCRIPTION: This function is responsible for terminating the connection that
was opened at the time the DSP object was created. This is an
optional function, and if not supplied then nothing will be done
with the connection. See the introduction for an example of how
to implement this function.

SEE: DSP()

DSP dspReceive()
SYNTAX: dsp.dspReceive(connection, buffer, bufferLength, timeout)

WHERE: connection - The original connection that was returned from the
openFunction passed to new DSP()

buffer - A buffer which is to be filled with data. This variable
must be passed by reference (with the & operator).

bufferLength - The maximum amount of data to read

timeout - The maximum amount of time to wait (in milliseconds)
for data to be ready for reading on the connection

RETURN: number - The number of bytes read, or -1 on error

DESCRIPTION: This function is responsible for getting data from the connection.
This function should wait up to timeout milliseconds for data
to be available on the connection. If there is no data available,
then this function should return 0. Otherwise, the function should
read up to bufferLength bytes from the connection and put the
data into buffer. Note that this means that buffer must be
passed by reference. If there is some sort of error, then this
function should either throw an error, or return -1. See
introduction for an example of how to implement this function.
Note that the function need not wait for the entire buffer to be
filled, it should read only as much data as is available to be read.

 376

SEE: dspSend()

DSP dspSend()
SYNTAX: dsp.dspSend(connection, buffer, timeout)

WHERE: connection - The original connection that was returned from the
openFunction passed to new DSP()

buffer - The buffer to send

timeout - The maximum amount of time to wait (in milliseconds)
for data to be ready for writing on the connection

RETURN: number - The number of bytes written, or -1 on error

DESCRIPTION: This function is responsible for sending data across the
connection (the one returned by the openFunction passed to the
DSP constructor). It's behavior is similar to that of dspReceive().
It should wait up until timeout for data to be ready, and then
send as much as possible along the connection (up to the length
of buffer). If the timeout expires, the function should return 0.
If there was some sort of error, then an error should be thrown,
or -1 returned. Otherwise, the number of bytes written should be
returned. Throwing an error is often more descriptive than the
generic failure message. See introduction for an example of how
to implement this function.

SEE: dspReceive()

DSP dspLoad()
SYNTAX: dsp.dspLoad(code)

WHERE: code - String of code to load on the remote server

RETURN: void.

DESCRIPTION: This function loads the specified code into the global context on
the remote server. Any code that you execute will remain on the
remote server. This function is designed to load functions on the
remote server so that they may be called by the client. This
function does not wait for a return value from the host. As a

 377

function does not wait for a return value from the host. As a
consequence, remote errors will not be immediately reported.
They will be reported next time a client routine (calling a
function, getting/putting a value) queries the server. Note that if
you wish to execute remote code and get a return value, the
global eval() method for the server should be used, although the
changes will not be permanent.

EXAMPLE: function foo() { Screen.writeln("Hello!"); }
// This code will make "foo = new Function(...)"
// to set up the function on the remote server.
connection.dspLoad("foo = " + ToSource(foo));
connection.foo();
// foo is now a global function on the server

DSP dspService()
SYNTAX: dsp.dspService()

RETURN: boolean - A value indicating whether the connection is still open.

DESCRIPTION: This is the main server-side function. Although it can be used by
any DSP object, it is intended to be the server side of the client-
server model. When called, it will wait until an incoming packet
is received and then service that packet appropriately. The
method will return false if the packet received was a close
command, in which case the connection has been closed, and an
explicit call to dspClose is not necessary. It is designed to be
called repeatedly until the connection is closed.

EXAMPLE: // Assume 'connection' is a valid connection
while(connection.dspService())
 ;
// At this point, the connection has been
// successfully closed

DSP dspClose()
SYNTAX: dsp.dspClose()

RETURN: void.

DESCRIPTION: This function closes the DSP connection. First, it sends a close
command to the remote host, signaling that the connection is

 378

closing. It then calls the dspCloseConnection method if it
exists, passing the original connection variable returned by the
open function when this connection was created.

EXAMPLE: connection.dspClose();

DSP dspGetValue()
SYNTAX: dsp.dspGetValue()

RETURN: variable - remote value of the current DSP reference.

DESCRIPTION: This function provides an explicit way to convert a DSP
reference into a value. Such conversion is done automatically
when the reference is converted to a primitive, or a value is
assigned to a reference. See the introductory section for more
information on DSP references and getting remote values.

EXAMPLE: var reference = connection.globalValue;
var value = connection.globalValue.dspGetValue();
reference = 5; // This will change the remote value
value = 6;
// This will change the local copy, not the remote

DSP dspSecurityInit()
SYNTAX: dsp.dspSecurityInit(secureVar)

WHERE: secureVar - private storage for the DSP security. The member
'dsp' is preset to the DSP object. Remember, the DSP object can
be seen by the running script, but not the secure variable itself.

RETURN: void.

DESCRIPTION: The dspSecurityInit function turns on security for a DSP object.
This means when the remote client tries to run a script on your
machine using DSP, it will be run with your security manager in
effect. See the security document for a complete description of
how it works. In the case of DSP, each security function
(jseSecurityInit, jseSecurityTerm, and jseSecurityGuard) has an
exactly corresponding function, i.e. dspSecurityInit,
dspSecurityTerm, and dspSecurityGuard. In the security
initialization function, you'll typically select some functions to
be allowed, and let all others be vetoed.

 379

be allowed, and let all others be vetoed.

SEE: DSP.dspSecurityTerm, DSP.dspSecurityGuard

EXAMPLE: function iDSP.dspSecurityGuard(conn)
{
 myfunc.setSecurity(jseSecureAllow);
 myotherfunc.setSecurity(jseSecureGuard);
}

DSP dspSecurityTerm()
SYNTAX: dsp.dspSecurityTerm(secureVar)

WHERE: secureVar - private storage for the DSP security.

RETURN: void.

DESCRIPTION: This function is typically not needed, but you can use it to
cleanup anything you initialized in the DSP security initialization
function.

SEE: DSP.dspSecurityInit, DSP.dspSecurityGuard

DSP dspSecurityGuard()
SYNTAX: dsp.dspSecurityGuard(secureVar, function, params)

WHERE: function - the function being called

secureVar - private storage for the DSP security.

params - whatever parameters are passed to the function

RETURN: void.

DESCRIPTION: If a DSP object is given a dspSecurityGuard function (exactly
like any of the other DSP callback functions), when it tries to call
any function not part of the script (i.e. one of your functions or a
wrapper function), the security guard is called for approval. See
the security document for a description on how this all works.
You must provide a dspSecurityInit for security to be activated.
Only those functions the security initialization function marks as
guarded will use this function.

 380

SEE: dsp.dspSecurityInit, dsp.dspSecurityTerm

DSP object static properties
DSP.remote
SYNTAX: DSP.remote

DESCRIPTION: This global property of the DSP object is used to make calls back
to the remote client from within a function. When the first DSP
object in a script is created, this gets assigned to that value.
From then on, whenever a packet needs to be serviced, this value
is set (and later restored) to the object representing the incoming
connection. This allows for multiple connections, and lets the
function easily call back the appropriate client. Note that within
a dspLoad call, the client does not wait for a response, and so
trying to call on the client will yield no result until the server is
queried again.

EXAMPLE: // Assume the client calls this:
serverConn.printRemote("hi");
// And the server side looks like this:
function printRemote(string)
{
 DSP.remote.Screen.write(string);
}
// This will print out "hi" on the client machine

 381

GD Link Library
GD Object
 title: GD Object
platform: All OS except Dos; All versions of SE
 source: #link <gd.dll>

The GD object provides a set of routines for manipulating GIF images.

Point specifications
A number of GD routines expect a Point Specification as one of the parameters.
This is a pseudo-type that can take one of several forms. It is either an object
with two members, 'x' and 'y', representing the two coordinates of the point, or an
array with two members, element 0 being the x coordinate and element 1 being
the y coordinate. All of the following are equivalent:

var point1 = {x:1, y:2};
var point2 = [1, 2];

Note also that every routine can also have the x and y coordinates passed as
separate parameters, so these are equivalent:

gd.getPixel(1, 2);
gd.getPixel([1,2]);

As such, the Point object is really just a matter of convenience to help distinguish
points as a unit.

Font specifications
The character drawing routines expect a font parameter which describes the font
to use. The font selection, though limited, should be enough for the basic
purposes for which this library is used. Valid font types are the strings "tiny",
"small", "mediumBold", "large", or "giant". Each one is a different size. fontTiny
is 5x8, fontSmall is 6x12, fontMediumBold is 7x13, fontLarge is 8x16, and
fontGiant is 9x15.

Color styles

 382

In addition to simple color indexes, all drawing routines can also take a color
stype, which is a special string value that allows for more complex fills and
shapes. The valid types are:

"styled" - Use the style specified with GD.setStyle(). A style is a sequence of
colors to be used when drawing lines. It is only valid for line-drawing routines,
and is used to make dashed lines.

"brushed" - Use the brush specified with GD.setBrush(). A brush is another
GD image which is drawn instead of a regular pixel. Using transparent colors, it
is possible to create a brush of any size.

"styledBrushed" - A combination of both "styled" and "brushed". The brush is
used, but is only drawn when non-transparent pixels are encountered in the style.

"tiled" - Use the tile specified with GD.setTile(). This style can only be used
with fill routines. It uses the current tile, which can be any GD image, and fills
the region with that tile, laying the images side-by-side sequentially.

GD object instance methods
GD()
SYNTAX: new GD(x, y)

WHERE: x - Horizontal size, in pixels.

y - Vertical size, in pixels.

RETURN: object - a new GD object of the specified size.

DESCRIPTION: The x and y parameters determine the horizontal and vertical
size of the image, respectively. The object returned is a GD
object.

GD arc()
SYNTAX: gd.arc(centerX, centerY, width, height, startDegree, endDegree,

color)

gd.arc(centerPoint, width, height, startDegree, endDegree, color)

WHERE: centerX - horizontal position of center.

centerY - vertical position of center.

 383

centerPoint - center point specification.

height - height of arc.

startDegree - degree value of starting position in standard
coordinate plane. Values greater than 360 are interpreted as
modulo 360.

endDegree - degree value of ending position in standard
coordinate plane. Values greater than 360 are interpreted as
modulo 360.

color - color index to use for arc, or one of the strings "styled",
"brushed", "styledBrushed".

RETURN: void.

DESCRIPTION: This method draws an arc in the specified format. The center
position is specified, along with the width and the height. The
arc is then draw between the two given degree values. A full
ellipse can be drawn from degree 0 to degree 360, and a circle
can be drawn in the same manner while setting width and
height to be the same. If there is a out-of-bounds error or some
other error, then the arc is not drawn at all.

EXAMPLE: // Draw a circle with a diameter of 16 pixels
// in the middle of the image
var gd = new GD(65, 65);
gd.arc([32,32], 16, 16, 0, 360, 0);

GD blue()
SYNTAX: gd.blue(index)

WHERE: index - color index to look up.

RETURN: number - blue component of the specified color index.

DESCRIPTION: This method looks up the color indicated by index and returns
the blue component of that color.

SEE: GD.red(), GD.green()

EXAMPLE: var index = gd.colorAllocate(0,100,200);
gd.blue(index); // This will return 200

 384

GD boundsSafe(
SYNTAX: gd.boundsSafe(x, y)

gd.boundsSafe(point)

WHERE: x - horizontal pixel location.

y - vertical pixel location.

point - Point specification. See GD.getPixel() for a description.

RETURN: boolean - whether the specified coordinates are within bounds.

DESCRIPTION: This method sees if the specified pixel location is within the
bounds of the image. If so, then true is returned, false otherwise.

EXAMPLE: var gd = new GD(5,5);
gd.boundsSafe(4, 3); // True
gd.boundsSafe([4,5]); // False
gd.boundsSafe({x:6,y:2}) // False

GD drawChar()
SYNTAX: gd.drawChar(font, x, y, char, color)

gd.drawChar(font, point, char, color)

WHERE: font - Font specification

x - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - Point specification.

char - The specified character to draw

color - color index or style to use

RETURN: void.

DESCRIPTION: This method draws a character in the image at the specified
location in the appropriate font. If the coordinates are out of
bounds, then no drawing is done. The reason that it is named
'drawChar' and not simply 'char' is that 'char' is a reserved
keyword and an invalid variable name.

SEE: GD.charUp(), GD.string()

EXAMPLE: // Write "hi" at the starting position

 385

var gd = new GD(50,50);
gd.drawChar(GD.fontSmall, 5, 5, "h", 0);
gd.drawChar(GD.fontSmall, [11,5], "i", 0);
// This is the equivalent of GD.string()
// with the string "hi"

GD charUp()
SYNTAX: gd.charUp(font, x, y, char, color)

gd.charUp(font, point, char, color)

WHERE: font - Font specification

x - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - point specification. See GD.getPixel() for a description.

char - specified character to draw

color - color index or style to use

RETURN: void.

DESCRIPTION: This method is exactly the same as GD.drawChar(), except that
the character is drawn vertically, pointing upwards.

SEE: GD.drawChar(), GD.stringUp()

GD colorAllocate()
SYNTAX: gd.colorAllocate(red, green, blue)

WHERE: red - Red value, from 0 to 255

green - Green value, from 0 to 255

blue - Blue value, from 0 to 255

RETURN: number - Color index of allocated color, or -1 if none available.

DESCRIPTION: This method searches through the color table for the next
available color index, and sets it to be the supplied RGB color.
If no color indexes are available, then -1 is returned. If the
supplied RGB colors are invalid, a runtime error is generated.
When creating a new image, the first time you call this function,
you set the background color for the image.

 386

you set the background color for the image.

SEE: GD.colorExact(), GD.colorClosest(), GD.colorDeallocate()

EXAMPLE: var gd = new GD(10,10);
var index = gd.colorAllocate(255,255,255);
// index now points to white, and the background
// of the image is also white

GD colorClosest()
SYNTAX: gd.colorClosest(red, green, blue)

WHERE: red - Red value, from 0 to 255

green - Green value, from 0 to 255

blue - Blue value, from 0 to 255

RETURN: number - index of the closest color to the one supplied.

DESCRIPTION: This method searches through the color table and finds the
closest color to the one supplied. The algorithm uses Euclidian
distance to calculate closeness. This function is most useful
when unable to allocate a new color, and the closest must be
used instead.

SEE: GD.colorAllocate()

EXAMPLE: /* Attempt to allocate a specific color,
 * but if unable to (the image
 * has the maximum number of colors),
 * then attempt to find the closest
 * color as a suitable replacement
 */
var gd = GD.fromGif("test.gif");
var index;
if(-1 == (index = gd.colorAllocate(234,12,107)))
 index = gd.colorClosest(234,12,107);

GD colorDeallocate()
SYNTAX: gd.colorDeallocate(color)

WHERE: color - color index to deallocate.

RETURN: void.

DESCRIPTION: This method frees up the color at index color for later use. The
color index will remain the same, but it may be re-allocated at

 387

color index will remain the same, but it may be re-allocated at
any point and changed. Note that this function simply marks the
color for reuse, so that the total colors allocated in the image still
remains the same. If a call to colorAllocate() immediately
follows this call, then the old index will be re-used for the new
color, and all pixels within the image with that index will be
altered as well.

SEE: GD.colorAllocate()

GD colorExact()
SYNTAX: gd.colorExact(, green, blue)

WHERE: red - Red value, from 0 to 255

green - Green value, from 0 to 255

blue - Blue value, from 0 to 255

RETURN: number - The first index matching the supplied color, or -1 if it
doesn't exist.

DESCRIPTION: This method searches through the color table and tries to find the
first index whose red, green, and blue values are exactly equal to
the supplied values. If no index is found, then -1 is returned.

SEE: GD.colorClosest(), GD.colorAllocate()

EXAMPLE: // Attempt to get the color,
// and create it if it does not exist
var gd = GD.fromGif("test.gif");
var index;
if(-1 == (index = gd.colorExact(1,1,1)))
 index = gd.colorAllocate(1,1,1);

GD colorsTotal()
SYNTAX: gd.colorsTotal()

RETURN: void.

DESCRIPTION: This method returns the total number of colors allocated in the
current GD image. Note that colors deallocated with
colorDeallocate() are still considered 'allocated', because they
have simply been marked for reuse.

 388

have simply been marked for reuse.

GD colorTransparent()
SYNTAX: gd.colorTransparent(color)

WHERE: color - color index to make transparent.

RETURN: void.

DESCRIPTION: This method sets the specified color index to be the transparent
index. To indicate that there is to be no transparent color, the
value -1 should be passed as the color index.

EXAMPLE: var gd = new GD(64,64);
var index = gd.colorAllocate(0,0,0);
gd.colorTransparent(index);
// The background (and all black pixels)
// is transparent

GD copy()
SYNTAX: gd.copy(source, dstX, dstY, srcX, srcY, width, height)

gd.copy(source, dstPoint, srcPoint, width, height)

WHERE: source - A gd object to copy from

dstX - Horizontal destination pixel in current object

dstY - Vertical destination pixel in current object

dstPoint - Destination pixel in current object.

srcX - Horizontal source pixel in source object

srcY - Vertical source pixel in source object

srcPoint - Source pixel in source object.

width - Width of section to copy

height - Height of section to copy

RETURN: void.

DESCRIPTION: This method copies a section from one GD image to another.
The portion of source, starting at the specified point (which is
the upper-left corner of the region) and extending width and

 389

height in either direction. This region is then copied to the
current GD object at the specified location (which is again the
upper-left corner of the region). In copying the region, this
method attempts to preserve the colors of the original source as
best as possible. The method first tries calling colorExact() on
the current image, and if that doesn't work then colorAllocate(),
and finally if that fails, then colorClosest(). If you specify the
same source image as the current image, then the method will
work appropriately as long as the regions to not overlap. If they
do, then the result is undefined.

SEE: GD.copyResized()

EXAMPLE: // Copy top-left 16x16 from "test.gif"
// while attempting to preserve
// necessary colors.
var source = GD.fromGif("test.gif");
var dest = new GD(16, 16);
dest.copy(source, [0,0], [0,0], 16, 16);

GD copyResized()
SYNTAX: gd.copyResized(source, dstX, dstY, srcX, srcY, dstW, dstH,

srcW, srcH)

gd.copyResized(source, dstPoint, srcPoint, dstW, dstH, srcW,
srcH)

WHERE: source - A gd object to copy from

dstX - Horizontal destination pixel in current object

dstY - Vertical destination pixel in current object

dstPoint - Destination pixel in current object.

srcX - Horizontal source pixel in source object

srcY - Vertical source pixel in source object

srcPoint - Source pixel in source object.

dstW - Width of region in current object

dstH - Height of region in current object

srcW - Width of region in source object

 390

srcH - Height of region in source object

RETURN: void.

DESCRIPTION: This method is very similar to GD.copy(), except that it has the
additional option of resizing the image in the process of copying.
This method will stretch or shrink the region as appropriate in
order to fit in the destination area. Specifying the same
destination and source sizes is the equivalent of calling
GD.copy(). See GD.copy() for more description.

SEE: GD.copy()

EXAMPLE: // Copy top-left 4x4 square from "test.gif"
// and magnify it four times
// to a size of 16x16 in the destination image
var source = GD.fromGif("test.gif");
var dest = new GD(16, 16);
dest.copyResized(source, [0,0], [0,0], 16, 16, 4, 4);

GD dashedLine()
SYNTAX: gd.dashedLine(x1, y1, x2, y2, color)

gd.dashedLine(point1, point2, color)

WHERE: x1 - horizontal pixel location of starting point

y1 - vertical pixel location of starting point

x2 - horizontal pixel location of ending point

y2 - vertical pixel location of ending point

point1 - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line

RETURN: void.

DESCRIPTION: This method is exactly the same as GD.line(), except that a
dashed line is drawn. This function is only for backwards
compatibility, as much greater control is achieved by using the
combination of GD.setStyle() and GD.line().

SEE: GD.line(), GD.setStyle()

 391

EXAMPLE: var gd = new GD(10,10);
gd.dashedLine([2,3], [9,7], 0);

// The above code has been replaced by the following
var gd = new GD(10,10);
// Four pixel wide dash
gd.setStyle([0, 0, 0, 0, -1, -1, -1, -1);
gd.line([2,3], [9,6], "styled");

GD destroy()
SYNTAX: gd.destroy()

RETURN: void.

DESCRIPTION: This method cleans up all the memory associated with this GD
object. Once it has been called, the object is no longer valid.

GD fill()
SYNTAX: gd.fill(x, y, color)

gd.fill(point, color)

WHERE: x - Horizontal position of starting pixel

y - Vertical position of starting pixel

point - Point of starting pixel. See GD.getPixel() for a
description

color - Fill color index or style

RETURN: void.

DESCRIPTION: This method is very similar to GD.fillToBorder(), except that
instead of filling until another color is hit, this method fills all
pixels that are the same color as the original, until it hits any
other color pixel. The pixels are changed to the color indicated
by color.

SEE: GD.fillToBorder()

EXAMPLE: /* Draw a circle with color index 1 and
 * a smaller one with color
 * index 3. The call to GD.fill() will fill
 * the inner circle with color
 * index 2. The fill will stop at the first circle,

 392

 * since it is not the
 * same color as the starting pixel.
 */
var gd = new GD(65, 65);
gd.arc([32,32], 16, 16, 0, 360, 1);
gd.arc([32,32], 14, 14, 0, 360, 3); // will be
erased
gd.fill([33,34], 2);

GD filledPolygon()
SYNTAX: gd.filledPolygon(point1[, x2, y2[, ...], color)

WHERE: pointN - Point specification for Nth point

xN - x coordinate of Nth point

yN - y coordinate of Nth point

color - color index or style to use for fill

RETURN: void.

DESCRIPTION: This method is exactly the same as GD.polygon(), except that it
fills in the polygon, managing intersections in the process.

SEE: GD.polygon()

GD filledRectangle()
SYNTAX: gd.filledRectangle(x1, y1, x2, y2, color)

gd.filledRectangle(point1, point2, color)

WHERE: x1 - horizontal pixel location of first corner

y1 - vertical pixel location of first corner

x2 - horizontal pixel location of second corner

y2 - horizontal pixel location of second corner

point1 - First point specification.

point2 - Second point specification.

color - color index or style to use for fill

RETURN: void.

 393

DESCRIPTION: This method is exactly the same as GD.rectangle(), except that it
fills the rectangle, instead of drawing an outline. As with
GD.rectangle(), if either point is out of bounds, then no drawing
is done.

SEE: GD.rectangle(), GD.filledPolygon()

GD fillToBorder()
SYNTAX: gd.fillToBorder(x, y, border, color)

gd.fillToBorder(point, border, color)

WHERE: x - Horizontal position of starting pixel

y - Vertical position of starting pixel

point - Point specification of starting pixel.

border - Index border color to stop at

color - Fill color or style index

RETURN: void.

DESCRIPTION: This method fills the image with the selected color, until it hits a
border with the color specified by border. border must be a
color index, not one of the styled colors. color can be anything.

SEE: GD.fill()

EXAMPLE: /* Will draw a circle with color index 1,
 * and then fill it with color
 * index 2. The fill will stop
 * at the specified border, which means that
 * the second circle drawn, using color index 3,
 * will be erased as the
 * outer circle is filled.
 */
var gd = new GD(65, 65);
gd.arc([32,32], 16, 16, 0, 360, 1);
gd.arc([32,32], 14, 14, 0, 360, 3);
 // will be erased
gd.fillToBorder([33,34], 1, 2);

GD getInterlaced()

 394

SYNTAX: gd.getInterlaced()

RETURN: boolean - Whether this image is interlaced.

DESCRIPTION: If the current image has the interlace flag set, then this method
returns true. Otherwise, it returns false.

SEE: GD.interlace()

GD getPixel()
SYNTAX: gd.getPixel(x, y)

gd.getPixel(point)

WHERE: x - horizontal position of pixel, measured from left

y - vertical position of pixel, measured from top

point - A point specification.

RETURN: number - a color index indicating the color at the selected pixel.

DESCRIPTION: This method accesses the pixel at position (x, y), and returns the
color of that pixel. If the pixel coordinates are out of bounds,
then zero is returned.

SEE: GD.SetPixel()

EXAMPLE: var gd = GD.fromGif("test.gif");
gd.getPixel(0,0);
gd.getPixel([0,0]);
gd.getPixel({x:0,y:0});

GD getTransparent()
SYNTAX: gd.getTransparent()

RETURN: number - The color index of the current transparent color for this
image.

DESCRIPTION: This method looks up the transparent color that was set by
GD.transparent() or read from the file originally.

SEE: GD.transparent()

GD green()

 395

SYNTAX: gd.green(index)

WHERE: index - The color index to look up

RETURN: number - The green component of the specified color index

DESCRIPTION: This method looks up the color indicated by index and returns
the green component of that color.

SEE: GD.blue(), GD.red()

GD height()
SYNTAX: gd.height()

RETURN: number - The height of the image

DESCRIPTION: This method returns the height of the current GD image

GD interlace()
SYNTAX: gd.interlace(flag)

WHERE: flag - A boolean value indicating whether this image is interlaced
or not

RETURN: void.

DESCRIPTION: This method sets the interlace flag for the current image. If the
flag parameter is true, then the image is interlaced, otherwise it
is not. Interlaced GIF images allow views to gradually fade in
the image, rather than having to read in the whole file and then
display it. This flag only affects the image once it is saved as a
GIF file. It has no affect on any other methods. Viewers which
don't support interlacing will still be able to display the image, it
will just appear all at once like any other image.

SEE: GD.getInterlaced()

GD line()
SYNTAX: gd.line(x1, y1, x2, y2, color)

gd.line(point1, point2, color)

 396

WHERE: x1 - horizontal pixel location of starting point

y1 - vertical pixel location of starting point

x2 - horizontal pixel location of ending point

y2 - vertical pixel location of ending point

point1 - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line

RETURN: void.

DESCRIPTION: This method draws a line using color index color, starting from
position (x1, y1) and going to position (x2, y2). Alternatively,
the line is drawn from point1 to point2, if the coordinates are
given in this manner. If either coordinate is out of bounds, then
no drawing is done.

SEE: GD.dashedLine()

GD polygon()
SYNTAX: gd.polygon(point1[, x2, y2, ...], color)

WHERE: pointN - Point specification for Nth point

xN - x coordinate of Nth point

yN - y coordinate of Nth point

color - color index or style to use for line

RETURN: void.

DESCRIPTION: This method draws a polygon by connecting sequential points
with lines. The parameters are either a pair of parameters
indicating the two coordinates of the point, or a point
specification type. A point type can either be an array with two
elements, element 0 being the x coordinate and element 1 being
the y coordinate, or an object with members 'x' and 'y',
representing the x and y coordinates.

SEE: GD.filledPolygon()

 397

EXAMPLE: // Draw a rectangle
function myRectangle(gd,x1,y1,x2,y2,color)
{
 gd.polygon([x1,y1], x1, y2, {x:x2,y:y2}, [x2,y1],
 [x1,y1], color);
}

GD rectangle()
SYNTAX: gd.rectangle(x1, y1, x2, y2, color)

gd.rectangle(point1, point2, color)

WHERE: x1 - horizontal pixel location of first corner

y1 - vertical pixel location of first corner

x2 - horizontal pixel location of second corner

y2 - horizontal pixel location of second corner

point1 - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line

RETURN: void.

DESCRIPTION: This method draws a rectangle with one corner located at
position (x1, y1) and the other at position (x2, y2). The color
used is specified by the color parameter. Alternatively, the
coordinates can be specified with the point format. If either
corner is out of bounds, then no drawing is done. Note that this
is a shorthand function, as this can be accomplished in several
other ways.

SEE: GD.filledRectangle(), GD.polygon()

EXAMPLE: var gd = new GD(10,10);
gd.rectangle(4, 5, 8, 9, 0);

// is equivalent to:
var gd = new GD(10,10);
gd.line([4,5], [8,5], 0);
gd.line([4,9], [8,9], 0);
gd.line([4,5], [4,9], 0);
gd.line([8,5], [8,9], 0);

 398

// which is also equivalent to:
var gd = new GD(10,10);
gd.polygon([[4,5], [8,5], [4,9], [8,9]], 0);

GD red()
SYNTAX: gd.red(index)

WHERE: index - The color index to look up

RETURN: number - The red component of the specified color index

DESCRIPTION: This method looks up the color indicated by index and returns
the red component of that color.

SEE: GD.blue(), GD.green()

GD setBrush()
SYNTAX: gd.setBrush(brush)

WHERE: brush - A GD image to use as the current brush in this image

RETURN: void.

DESCRIPTION: This method sets the current brush for this image to be the image
specified by brush. This image is then used for drawing when
the "brushed" string is used as a color parameter to a drawing
function. This method attempts to preserve the colors of the
brush in the current image, including the transparent color.
Transparent pixels are not draw when using the brush, allowing
for brushes of any shape. The original brush must remain a valid
image. Once destroy() has been called on the supplied brush, the
style "brushed" can no longer be used until another brush is set.
Note that because this can allocate colors in the image, do not set
the brush if you won't be using it, because the color table could
fill up quickly.

SEE: GD.setTile()

EXAMPLE: var brush = GD.fromGif("brush.gif");
var gd = new GD(64,64);
gd.setBrush(brush);
gd.line([16,3], [52,45], "brushed");
brush.destroy();

 399

GD setPixel()
SYNTAX: gd.setPixel(x, y, color)

gd.setPixel(point, color)

WHERE: x - horizontal position of pixel, measured from left

y - vertical position of pixel, measured from top

point - A point specification.

color - index into color table

RETURN: void.

DESCRIPTION: This method sets the designated pixel to the appropriate color. If
either x or y is out of bounds, or if color is not a valid color
index, then nothing is done.

SEE: GD.getPixel(), GD.colorAllocate()

EXAMPLE: var gd = new GD(4,4);
var black = gd.colorAllocate(0,0,0);
gd.setPixel(0,0,black);

GD setStyle()
SYNTAX: gd.setStyle(style)

WHERE: style - style to set for current image.

RETURN: void.

DESCRIPTION: This method sets the current style for this image, which is used
whenever the string "styled" is passed as a color index parameter
to a drawing function. The parameters to the method is a list of
pixels, which are color indexes or the special value -1, which
indicates a transparent pixel. When drawing lines or a series of
pixels, the drawing methods cycle through the sequence defined
in the current style and applies the color to each successive pixel.
If the value of -1 is used, then no color is applied and the
background remains.

SEE: GD.setBrush(), GD.setTile()

EXAMPLE: /* Create a Red, Green, Blue,
 * dashed line from the upper left
 * corner of the image to the lower right corner.

 400

 * Each dash will be 3
 * pixels wide, and there will be 3 pixels
 * of space in between.
 */

var gd = new GD(64,64);
var red = gd.colorAllocate(255, 0, 0);
var green = gd.colorAllocate(0, 255, 0);
var blue = gd.colorAllocate(0, 0, 255);
gd.setStyle(red, red, red,
 -1, -1, -1,
 green, green, green,
 -1, -1, -1,
 blue, blue, blue,
 -1, -1, -1);
gd.line([0,0], [63,63], "styled");

GD setTile()
SYNTAX: gd.setTile(tile)

WHERE: tile - A GD image to use as the repeating tile for this image

RETURN: void.

DESCRIPTION: This method sets the current tile for this image in a manner
similar to GD.setBrush(). This tile image is then used whenever
the style "tiled" is used as a color parameter in a function. The
"tiled" style only works when calling a filling function, such as
GD.fill() or GD.filledPolygon(). This method attempts to
preserve the colors of the original tile, by either finding exact
colors, allocating new colors, or finding the closest color if
necessary. Transparent pixels in the image allow the underlying
image to shown through. Once the tile is set with setTile(), the
original tile must be retained as long as the image is being used.
Otherwise, the result is undefined.

SEE: GD.setBrush()

EXAMPLE: var tile = GD.fromGif("tile.gif");
var gd = new GD(64,64);
gd.setTile(tile);
gd.filledRectangle([0,0], [63,63], "tiled");
tile.destroy();

GD string()

 401

SYNTAX: gd.string(font, x, y, char, color)

gd.string(font, point, char, color)

WHERE: font - Font specification to use

x - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - Point specification. See GD.getPixel() for a description.

string - The string to draw.

color - color index or style to use for string

RETURN: void.

DESCRIPTION: This method draws a string on the current image, at the specified
location and in the appropriate color. If the coordinates are out
of bounds, then no drawing is done.

SEE: GD.drawChar(), GD.stringUp()

GD stringUp()
SYNTAX: gd.stringUp(font, x, y, char, color)

gd.stringUp(font, point, char, color)

WHERE: font - Font specification to use

x - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - Point specification. See GD.getPixel() for a description.

string - The string to draw.

color - color index or style to use for string

RETURN: void.

DESCRIPTION: This method is exactly the same as GD.string(), except that this
method draws the string vertically, facing upwards.

SEE: GD.charUp(), GD.string()

 402

GD toGd()
SYNTAX: gd.toGd(filename)

WHERE: filename - Name of file to output to

RETURN: boolean - Whether the operation was successful

DESCRIPTION: This method outputs the gd object to the file in the native format
of the library, which is unreadable by any other program, but can
be read and written quickly. It is mostly used to store a
commonly used base-image in native format, which can then be
worked with from there.

SEE: GD.toGd(), GD.fromGif()

GD toGif()
SYNTAX: gd.toGif(filename)

WHERE: filename - Name of file to output to

RETURN: boolean - Whether the operation was successful.

DESCRIPTION: This method compresses the GIF data in the appropriate manner,
and outputs the contents of the image to the specified file in GIF
form.

SEE: GD.toGd(), GD.fromGif()

GD width()
SYNTAX: gd.width()

RETURN: number - The width of the image

DESCRIPTION: This method returns the width of the current GD image

SEE: GD.height()

GD object static methods
GD.fromGd()
SYNTAX: GD.fromGd(filename)

 403

WHERE: filename - name of GD file to open.

RETURN: object - new GD object with the contents of the specified file, or
null if there was an error.

DESCRIPTION: This method attempt to open the specified GD file, and then
reads in the data. A GD file is one created with the toGd()
method, and is written in the library's native format. If there is
an error opening the file or reading the data, then null is returned.

SEE: GD.fromGd(), GD.toGd()

GD.fromGif()
SYNTAX: GD.fromGif(filename)

WHERE: filename - name of GIF file to open.

RETURN: object - new GD object with the contents of the file, or null if
there was an error.

DESCRIPTION: This method attempts to open the specified file, and then
attempts to read in the GIF data. If there is an error opening the
file or reading the data, then null is returned. Otherwise, the
method constructs a new GIF object whose contents is the GIF
read from the file.

SEE: GD.fromGd(), GD.toGif()

GD.fromXbm()
SYNTAX: GD.fromXbm(filename)

WHERE: filename - name of XBm file to open.

RETURN: object - new GD object with the contents of the specified file, or
null if there was an error.

DESCRIPTION: This method attempts to open the specified XBM file, and then
reads in the data. If there is an error opening the file or reading
the data, then null is returned.

SEE: GD.fromGif()

 405

MD5 Checksum Link Library

The md5 object provides a simple means of calculating checksums based on the
md5 algorithm, a well-known and accepted method.

md5 Object
platform: Mac, OS2, Windows, all versions of SE
 source: #link <md5.dll>

md5 object instance methods
md5()
SYNTAX: new md5()

RETURN: object - a new md5 checksum object.

DESCRIPTION: This method creates a new object, and initializes it to be used for
md5 sum computation. MD5 is an old, well-established
checksum calculation formula that is still used for File download
verification. The checksum verifies the integrity of the data,
because if any bit is changes in the source, then the checksum
will be drastically different.

term()
SYNTAX: md5.term()

RETURN: buffer - The computed checksum for this md5 object

DESCRIPTION: This method MUST be called in order to correctly dispose of the
md5 object. It returns a buffer, 16 bytes long, representing the
md5 checksum for this object. It also frees up any memory
being used by the object.

EXAMPLE: var md5sum = new md5();
md5.update("hi");
var digest = md5.term();
// digest is now equal to the checksum of "hi"

 406

update()
SYNTAX: md5.update(buffer[, length])

WHERE: buffer - A string or buffer of data to add into this checksum

length - Length of data to be added. If not supplied, then the
length of buffer is used.

RETURN: void.

DESCRIPTION: This method adds the supplied buffer into the running md5
checksum. If length is greater than the length of buffer, then
the buffer is expanded as if filled with null bytes.

EXAMPLE: var md5sum = new md5();
md5sum.update("hello");
md5sum.update(", world!",4);
md5sum.term(); // Return the checksum of "hello, wo"

 407

SEDBC Link Library
The link library, sedbc.dll, has methods and properties for working with a
database in ScriptEase. These methods and properties provide a high-level
interface for working with ODBC databases. The Database object allows the
user to create a connection to a database which can then be queried, manipulated,
and so forth through direct SQL statements or by the Cursor object. SQL
statements stored inside the database are known as stored procedures and can be
called using the Stproc object, allowing for the use of complex database-specific
procedures from a script. Finally, true ease of use is provided by the
SimpleDataset object, which is a combination of a Database object and a Cursor
object. As a package, sedbc.dll allows a script to have detailed, low-level control
of an ODBC database through SQL statements and easy to use, high-level
routines at the same time.

Cursor Object
platform: Win32; all versions of SE
 source: #link <sedbc.dll>

A Cursor object represents a database cursor for a specified SQL SELECT
statement or specified database table.

Description of the Cursor object
A Cursor is a structure, created from a database table, which represents a subset
of that table. When performing a query on a database, the results of the query are
returned as a Cursor.

A Cursor object can be used to perform the following operations:

• Modify data in a database table.
• Navigate in a database table.
• Customize the display of the virtual table returned by a database query.

A Cursor object can be constructed in the following manners:

• The cursor method of a database object.
• The table method of a database object.
• The cursor method of a Stproc object.

 408

There is no need to call a Cursor constructor.

A Cursor object has the notion of a "current" row. When operations are
performed on a Cursor, they usually affect this row. The current row can be
moved forward and backward through a Cursor using the next and previous
methods, respectively. Similarly, the first and last methods set the current
row to the first or last row in the cursor. Each of these methods will return
false if the desired row does not exist within the Cursor. Thus, if the Cursor
does not have any rows in it (perhaps because the SELECT statement used to
create the cursor did not return any results), each of these methods will return
false. Don't forget to check for this condition!

Important - A Cursor does not guarantee the order or positioning of its rows.
For example, if a row is added to a Cursor, there is no way of knowing where
that row will actually appear within in the cursor. Thus, do not make any
assumptions about the ordering of rows within the Cursor. When finished with a
Cursor object, use the close method to close it and release the memory it uses.
If a database connection that has an open Cursor is released, the runtime engine
waits until that Cursor is closed before actually releasing the connection to the
database, so it is important to remember to close Cursors. If a Cursor has not
been not explicitly closed using the close method by the time the associated
Database or DbPool object goes out of scope, the runtime engine will try to close
it. This may tie up system resources unnecessarily and/or lead to unpredictable
results. Use the prototype property of the Cursor class to add a property to all
Cursor instances. The addition applies to all Cursor instances running in all
applications on the server, not just the application that made the change. This
allows the capabilities of the object to be expanded for the entire server.

Cursor Instance Properties
The properties of Cursor objects vary from instance to instance. Each Cursor
object has a property for each named column in the Cursor. Thus, when a Cursor
is created, it acquires a property for each column in the virtual table, as
determined by the SELECT statement.

Note - Unlike other properties in JavaScript, cursor properties corresponding to
column names are not case sensitive, because SQL is not case sensitive and some
databases are not case sensitive.

Properties of a Cursor object can be referred to as elements of an array. The 0-
index array element corresponds to the first column, the 1-index array element
corresponds to the second column, and so on.

 409

SELECT statements can retrieve values that are not columns in the database,
such as aggregate values and SQL expressions. Display these values by using the
Cursor's property array index for the value.

Cursor filter
SYNTAX: cursor.filter

DESCRIPTION: A property containing a conditional expression that determines
which subset of rows are retrieved by a cursor. This expression
is a string containing the WHERE clause of an SQL statement
describing the rows to be included. The string does not include
the reserved word WHERE, however. Initially, the filter
property value is set to the empty string, indicating that all of the
Cursor rows are to be retrieved. Call reload after changing the
filter to update the contents of the Cursor.

SEE: Cursor.reload()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer")

// Set cursor filter so that the Cursor only
retrieves objects
// whose 'City' field is set to 'Berlin'
curs.filter = "City = 'Berlin'";

// Reload the cursor
err = curs.reload();

Cursor sort
SYNTAX: cursor.sort

DESCRIPTION: A property containing the sort order of a cursor. The Cursor sort
order will determine the order that the rows are returned in when
iterating the Cursor. The sort property is a string that contains
the ORDER BY clause of an SQL statement. It does not include
the reserved word ORDER BY, however. Initially, the sort
property is set to the empty string, and, therefore, no item sort
order is guaranteed. Call reload after changing the sort order
to update the contents of the Cursor.

SEE: Cursor.reload()

EXAMPLE: // assume 'database' is a valid Database object

 410

var curs = database.table("customer")

// Set sort order so that the Cursor is sorted first
by the
// 'city' field, and, for records with the same
'city' value,
// descending by the field 'name'.
curs.sort = "city, name DESC";

// Reload the cursor
err = curs.reload();

Cursor Instance Methods
Cursor close()
SYNTAX: cursor.close()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: The close method closes a cursor or result set and releases the
memory it uses. If a cursor is not explicitly closed using the
close method, it will automatically be closed by the runtime
engine when the corresponding client object goes out of scope.

SEE: Database.majorErrorCode(), Database.minorErrorCode()

EXAMPLE: err = curs.close()

Cursor columnName()
SYNTAX: cursor.columnName(n)

WHERE: n - zero-based integer corresponding to the column in the query.
The first column in the result set is 0, the second is 1, and so on.

RETURN: string - the name of column number n in the cursor.

DESCRIPTION: Given a column number, columnName() returns the name of
the column.

When using SELECT statements with wildcards (*) to select all
the columns in a table, the columnName method does not

 411

the columns in a table, the columnName method does not
guarantee the order in which it assigns numbers to the columns.
Thus, use columnName to find which name corresponds to
which column number.

SEE: Cursor.columns()

EXAMPLE: // assume 'database' is a valid, open Database object
var curs = database.cursor(SELECT * FROM customer);

// get the name of the first column in the cursor
header = customerSet.columnName(0);

Cursor columns()
SYNTAX: cursor.columns()

RETURN: number - columns in a Cursor object.

DESCRIPTION: This function returns the number of named and unnamed
columns that are present in the given Cursor.

SEE: Cursor.columnName()

EXAMPLE: numCols = curs.columns();

Cursor deleteRow()
SYNTAX: cursor.deleteRow()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This function, only available on up datable cursors, deletes the
current row from the Database object.

SEE: Database.commitTransaction(), Database.rollbackTransaction()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer");

// delete all rows from the Database where City is
"Medford"
while (curs.next())
{

 412

 if(curs.City == "Medford")
 err = curs.deleteRow();
}
database.commitTransaction();

Cursor first()
SYNTAX: cursor.first()

RETURN: boolean - false if the cursor is empty or if cursor is forward-only
cursor and the current row is not the first row, otherwise true.

DESCRIPTION: This method moves the current row to the first row in the Cursor
and returns true so long as there is a first row. Note that if the
cursor is empty, this method always returns false. Also note that,
if the cursor does not allow backwards movement of the current
row, false will be returned.

SEE: Cursor.next(), Cursor.previous(), Cursor.last()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer");

// set the current row to the first row in the Cursor
curs.first();

Cursor insertRow()
SYNTAX: cursor.insertRow()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This function, only available on undatable cursors, inserts a row
into the associated database table. The location of the inserted
row may vary depending on the database vendor's
implementation, and thus row ordering is not guaranteed. There
are several ways to specify values for the row being inserted:

Explicitly assigning values to each column in the cursor and then
calling insertRow.

Choosing to a row using the next or previous methods,
changing the values of some of the columns and then calling

 413

changing the values of some of the columns and then calling
insertRow. Columns that were not explicitly assigned values
will receive values from that initially chosen row.

Do not choose a row with next or previous and call
insertRow. Since there is no current row in this case, all of the
columns for the new row will be null.

Any columns in the cursor that contain unassigned values when
insertRow is called will be null in the new row.

SEE: Cursor.next(), Cursor.previous(), Database.commitTransaction(),
Database.rollbackTransaction()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer");

// choose the first row to act as a "template" for
the new row
curs.next();

// plug in some values for the new row
curs.Name = "Fred Flintstone";
curs.City = "Bedrock";

// add the row to the database
err = curs.insertRow();
database.commitTransaction();

Cursor last()
SYNTAX: cursor.last()

RETURN: boolean - false if the cursor is empty; otherwise true.

DESCRIPTION: This method moves the current row to the last row in the Cursor
and returns true so long as there is a last row. Note that if the
cursor is empty, this method always returns false.

SEE: Cursor.next(), Cursor.previous, Cursor.first()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer");

// set the current row to the last row in the Cursor
curs.last();

 414

Cursor next()
SYNTAX: cursor.next()

RETURN: boolean - false if the current row is the last row; otherwise true.

DESCRIPTION: The current row of a Cursor is initially positioned "before" the
first row. Using the next method, the current row can be moved
forwards through the records in the Cursor. The next method
moves the pointer and returns true as long as there is another row
available. When the current row has reached the last row of the
Cursor, next returns false. Note that, in the event of an empty
Cursor, this method will always return false.

SEE: Cursor.previous(), Cursor.first(), Cursor.last()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.cursor("select * from customer",
true);

// visit each object in the cursor
while (curs.next())
 ;

Cursor previous()
SYNTAX: cursor.previous()

RETURN: boolean - false if the current row is the first row; otherwise true.

DESCRIPTION: Using the previous method, the current row can be moved
backwards through the records in the Cursor. The previous
method moves the pointer and returns true as long as there is
another row available. When the current row has reached the
first row of the Cursor, next returns false. Note that, in the
event of an empty Cursor, this method will always return false.

SEE: Cursor.next(), Cursor.first(), Cursor.last()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.cursor("select * from customer",
true);

// set the current row to the last row in the cursor
curs.last();

// visit each object in the cursor, backwards
while (curs.previous())

 415

 ;

Cursor reload()
SYNTAX: cursor.reload()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: Requeries the database and recreates the rows of the cursor,
taking into account the filter and sort properties of the Cursor.

SEE: Database.majorErrorCode(), Database.minorErrorCode(),
Cursor.sort, Cursor.filter

EXAMPLE: // assume 'curs' is a valid Cursor object
// Change sort order of the cursor rows
curs.sort = "Year";

// reload the cursor's contents
err = cursor.reload();

Cursor updateRow()
SYNTAX: cursor.updateRow()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This method uses the values in the current row of an undatable
cursor to modify a row in a table. Before an updateRow can be
performed, make sure the next method has been called at least
once, so that the current row of the Cursor is assigned.

To update a row in a database table, assign values to columns in
the current row of the cursor, and call updateRow. Column
values that are not explicitly assigned are not changed by the
updateRow method.

 416

SEE: Cursor.next(), Cursor.previous(), Database.commitTransaction(),
Database.rollbackTransaction()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer");

// choose the first row to be updated
curs.next();

// update the values for the new row
curs.Paid = False;

// update the row in the Cursor
curs.updateRow();
database.commitTransaction();

Database Object
 platform: Win32; all versions of SE
 source: #link <sedbc>
 location: link

The Database object allows an application to access and interact with a
relational database.

Description of the Database object

Use the database object to connect to a remotely stored relational database stored
on a server.

The database object can be used to perform the following tasks on a relational
database:

• Execute SQL statements and queries on the database server
• Iterate the results of a query in order to process or display them
• Manage database transactions
• Run stored procedures

When closing down a database, be sure to close any associated open cursors,
result sets, and stored-procedure objects, or else unpredictable results may occur.

Transactions
A transaction is a group of database actions that are performed together. Either
all the actions succeed together or they all fail together. When a group of

 417

database actions is made permanent, it is called committing a transaction. Rolling
back a transaction cancels all of the actions of a non-committed transaction.

Explicit transaction control is available for any set of actions using the
beginTransaction, commitTransaction, and rollbackTransaction
methods. If transactions are not controlled explicitly, the runtime engine uses the
underlying database's autocommit feature to treat each database modification as a
separate transaction. Each statement is either committed or rolled back
immediately, based on the success or failure of the individual statement.
Explicitly managing transactions overrides this default behavior.

NOTE: When making changes to a database, it is recommended that explicit
transaction control be used. If not, the database may report errors. However,
even if errors are not specifically reported, data integrity cannot be guaranteed
unless explicit transactions are used. In addition, any time a Cursors object is
used to update a database, it is also recommended that explicit transactions be
used to ensure the consistency of the data.

For the database object, the scope of a transaction is limited to lifetime of the
connection. If the database object is disconnected before calling
commitTransaction or rollbackTransaction method, then the transaction
is automatically rolled back.

Database beginTransaction()
SYNTAX: database.beginTransaction()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: After calling beginTransaction, all subsequent actions that
modify the database are grouped within this transaction, known
as the current transaction. Nested transactions are not supported.
If beginTransaction is called when a transaction is already
open, an error message will be returned.

SEE: Database.commitTransaction(), Database.rollbackTransaction()

EXAMPLE: var err = db.beginTransaction();

 418

Database commitTransaction()
SYNTAX: database.commitTransaction()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: This method commits all of the actions performed since the last
call to beginTransaction. If there is no current transaction
(for instance, the application has not called
beginTransaction), calls to commitTransaction are
ignored.

SEE: Database.beginTransaction(), Database.rollbackTransaction()

EXAMPLE: var err = db.commitTransaction();

Database connect()
SYNTAX: database.connect(dbtype, server, username, password)

WHERE: dbtype - A string representing the database type. Currently only
"ODBC" is supported.

server - Data source name. On Windows systems using ODBC,
this is specified in the ODBC Administrator Control Panel; on
UNIX, in the .odbc.ini file. See your database or system
administrator for more information.

username - Name of the user to connect to the database. Some
relational database management systems (RDBMS) require that
this be the same as your operating system login name; others
maintain their own collections of valid user names. If in doubt,
see your system administrator.

password - User's password. If the database does not require a
password, use an empty string.

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to

 419

interpret the meaning of the error.

DESCRIPTION: Creates and caches a database connection to the specified
database of the given type, using the username and password
passed-in. When the connection goes out of scope, any pending
transactions are rolled back. If any database connections are
open when connect is called, they are closed and released
before the new connection is opened.

SEE: Database.disconnect(), Database.connected()

EXAMPLE: // This example creates a new database and then
connects it to
// the database named "CLIENTS" using the username
"ADMIN" and
// the password "admin-password"
var db = new database();
var err = db.connect("ODBC", "CLIENTS", "ADMIN",
"admin-passwd");

Database connected()
SYNTAX: database.connected()

RETURN: boolean - true if the Database object is currently connected to a
data source, false otherwise.

DESCRIPTION: This method returns true if the Database object is currently
connected to a database. If connected returns false, reconnect
the database before performing any further database actions,
otherwise the actions will result in errors.

SEE: Database.connect(), Database.disconnect()

EXAMPLE: // This example first checks to see if the database
is
// connected to a data source. If not, it connects
it to the
// database named "CLIENTS" using the username
"ADMIN" and the
// password "admin-password"
if (!db.connected())
 err = db.connect("ODBC", "CLIENTS",
 "ADMIN", "admin-passwd");

Database cursor()

 420

SYNTAX: database.cursor(sqlstatement[, updateable])

WHERE: sqlstatement - String containing a SQL SELECT statement
supported by the database server. updateable - Boolean
parameter indicating whether the cursor can be modified.

RETURN: object - a new Cursor object, representing the results of the
specified SQL statement.

DESCRIPTION: This method creates a Cursor object that contains the rows
returned by the specified SQL SELECT statement in the
sqlstatement parameter. If the SELECT statement does not
return any rows, the resulting Cursor object also has no rows.

The optional updateable parameter specifies whether the
Cursor object created can be modified. If no value is specified in
the updateable parameter, the cursor is created non-
updateable.

If an updateable Cursor object is desired, the virtual table
returned by the sqlstatement parameter must be updateable.
For example, the SELECT statement passed as the
sqlstatement parameter cannot contain a GROUP BY clause.
In addition, the query usually must retrieve key values from a
table. For more information on constructing updateable queries,
consult your database vendor's documentation.

SEE: Cursor object

EXAMPLE: // This example creates the updateable cursor 'custs'
and
// returns the columns 'ID', 'CUST_NAME', and 'CITY'
from the
// customer table:
custs = db.cursor("select id, cust_name, city from
customer",
 true);

Database disconnect()
SYNTAX: database.disconnect()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the

 421

majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: Disconnects Database object from its data source.

SEE: Database.connect(), Database.connected()

EXAMPLE: // The example checks to see if the Database object
is
// connected to a data source, and, if so,
disconnects it.
if (db.connected())
 err = db.disconnect();

Database execute()
SYNTAX: database.execute(sqlstatement)

WHERE: sqlstatement - string representing the SQL statement to execute.

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: This method allows execution of any data definition language
(DDL) or data manipulation language (DML) SQL statement
supported by the database server that does not return a cursor
(such as CREATE, ALTER, or DROP). Each database supports a
standard core of DDL and DML statements. In addition, a
database may support DDL and DML statements specific to that
database vendor. Use execute to call any of those statements.
However, a database vendor may provide functions that are not
DDL or DML statements. Do not use execute to call those
functions. For example, do not call the Oracle describe
function or the Informix load function from the execute
method.

Although the execute method can be used to perform data
modification (INSERT, UPDATE, or DELETE statements), it is
recommended that Cursor objects be used instead to achieve the
same functionality. Using the Cursor object for these sorts of
actions allows better database-type independence and also allows
the use of binary large object (BLOb) data.

 422

the use of binary large object (BLOb) data.

When using the execute method, the SQL statement must
strictly conform to the syntax requirements of the database
server. For example, some servers require each SQL statement
be terminated with a semicolon. See the server documentation
for more information. If a transaction has not been started with
beginTransaction, the single statement is automatically
immediately committed when execute is called.

SEE: Database.cursor(), Database.beginTransaction(),
Database.commitTransaction(), Database.rollbackTransaction()

EXAMPLE: // This example deletes all records from the database
// whose ID is 'requestedID'. It is recommended,
// however, that the Cursor object be used to perform
this action.
err = db.execute("delete from customer where
customer.ID = " + requestedID);

Database majorErrorCode()
SYNTAX: database.majorErrorCode()

RETURN: variable - the result returned by this method varies depending on
the database server being used, but contains an error code
indicating why the most recent database activity failed.

DESCRIPTION: SQL statements can fail for a variety of reasons, including
referential integrity constraints, lack of user privileges, record or
table locking in a multiuser database, and so on. When an action
fails, the database server returns an error code indicating the
reason for failure. Use this method to fetch that error code.

SEE: Database.majorErrorMessage(), Database.minorErrorCode(),
Database.minorErrorMessage()

EXAMPLE: errCode = db.majorErrorCode();

Database majorErrorMessage()
SYNTAX: database.majorErrorMessage()

RETURN: variable - the result returned by this method varies depending on
the database server being used, but contains an error message
explaining why the most recent database activity failed.

 423

explaining why the most recent database activity failed.

DESCRIPTION: SQL statements can fail for a variety of reasons, including
referential integrity constraints, lack of user privileges, record or
table locking in a multiuser database, and so on. When an action
fails, the database server returns an error message indicating the
reason for failure. Use this method to fetch that error message.

SEE: Database.majorErrorCode(), Database.minorErrorCode(),
Database.minorErrorMessage()

EXAMPLE: errMessage = db.majorErrorMessage();

Database minorErrorCode()
SYNTAX: database.minorErrorCode()

RETURN: variable - the result returned by this method varies depending on
the database server being used. In general, the method returns a
secondary error code indicating a condition where the last
database activity may not have completed as expected.

DESCRIPTION: The result returned by this method varies depending on the
database server being used. In general, the method returns a
secondary error code indicating a condition where the last
database activity may not have completed as expected.

SEE: Database.majorErrorCode, Database.majorErrorMessage,
Database.minorErrorMessage()

EXAMPLE: errCode = db.minorErrorCode();

Database minorErrorMessage()
SYNTAX: database.minorErrorMessage()

RETURN: variable - the result returned by this method varies depending on
the database server being used. In general, the method returns a
secondary error message indicating a condition where the last
database activity may not have completed as expected.

DESCRIPTION: This method returns the secondary error message returned by
database vendor library.

SEE: Database.majorErrorCode, Database.majorErrorMessage,
Database.minorErrorCode()

 424

Database.minorErrorCode()

EXAMPLE: errCode = db.minorErrorMessage();

Database procedureName()
SYNTAX: database.procedureName(n)

WHERE: n - Zero-based integer corresponding to the stored procedure in
the database.

RETURN: The name of the stored procedure with index n.

DESCRIPTION: This method returns the name of the stored procedure
corresponding to the specified index, n.

SEE: Stproc object, Database.storedProc(), Database.prodecureName()

EXAMPLE: // fetch the name of stored procedure 0
procName = db.procedureName(0);

Database procedures()
SYNTAX: database.procedures()

RETURN: number - number of stored procedures in the database.

DESCRIPTION: This method returns the number of procedures stored in the
database.

SEE: Stproc object, Database.storedProc(), Database.procedureName()

EXAMPLE: // get the number of stored procedures in 'db'
procCount = db.procedures();

Database rollbackTransaction()
SYNTAX: database.rollbackTransaction()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: This method undoes all actions performed since the last call to
beginTransaction. If there is no current transaction (for

 425

instance, the application has not called beginTransaction),
calls to rollbackTransaction are ignored.

SEE: Database.beginTransaction, Database.commitTransaction()

EXAMPLE: err = db.rollbackTransaction()

Database storedProc()
SYNTAX: database.storedProc(procName)

WHERE: procName - String specifying the name of a stored procedure or
SQL statements with parameters.

RETURN: object - new Stproc object.

DESCRIPTION: This method creates a stored procedure object (Stproc) from
either the named stored procedure contained within the Database
object, or from the passed-in SQL statement.

SEE: Stproc object, Database.procedures(),
Database.procedureName()

EXAMPLE: // this example create a new database,
//and then executes
// a stored procedure contained within
var db = new Database;
db.connect(DBEngine, DataSource, User, Password);
var sp = db.storedProc("SomeProc");
sp.ItemID = 123;
sp.execute();

// now, execute an SQL Stproc
sp = db.storedProc("delete from Items where Weight =
?");
sp[0] = 1000;
sp.execute();

// clean up
sp.close();
db.close();

Database table()
SYNTAX: database.table(tableName[, updateable])

WHERE: tableName - The name of an existing table in the database.

 426

updateable - Boolean flag indicating if the created cursor should
be able to be modified (is updateable).

RETURN: object - Cursor object representing the specified database table.

DESCRIPTION: This method creates a new Cursor object from the specified
table stored in the database. The resulting Cursor has one row
for each row in the database table and will be empty if the
database table has no rows. The optional updateable parameter
specifies whether the created Cursor object can be modified. If
no value is specified for the updateable parameter, it is false
by default.

To create an updateable Cursor object, the table specified in
parameter must also be updateable.

SEE: Cursor object, Database.tables(), Database.tableName()

EXAMPLE: // create a new Cursor object from the "clients"
database table
clientsCurs = db.table("clients", false);

Database tableName()
SYNTAX: database.tableName(n)

WHERE: n - Zero-based integer corresponding to the table in the database.

RETURN: string - name of the table in the database with index n.

DESCRIPTION: This method returns the name of the database table
corresponding to the specified index, n.

SEE: Database.table(), Database.tables()

EXAMPLE: // fetch the name of database table 0
tableName = db.tableName(0);

Database tables()
SYNTAX: database.tables()

RETURN: number - number of tables in the database.

DESCRIPTION: This method returns the number of tables stored in the database.

SEE: Database.table(), Database.tableName()

 427

EXAMPLE: // get the number of tables in 'db'
tableCount = db.tables();

SimpleDataset Object
 title: SimpleDataset object
platform: Win32; all versions of SE
 source: #include <smdtset.jsh>

A SimpleDataset object is a easy-to-use database-access object that combines
database and cursor functionality into a single object.

Description of the SimpleDataset object
SimpleDataset is a JavaScript class that combines the concept of a table and a
cursor into a single, easy-to-use object. No more than one table may be
represented by a SimpleDataset, so inserting items into the dataset doesn't require
a target table to be specified. SQL is not needed to use a SimpleDataset and all
operations can be performed through simple method calls.

When a SimpleDataset is created, it initially contains all of the rows ("records")
in the specified table. The find() method allows this set to be reduced to only
those records that match specified templates.

A SimpleDataset has the notion of the "current record". This is the record that
SimpleDataset operations will affect. When the SimpleDataset is first created,
the current record is the record "before" the first record, and is thus undefined.

Use the firstRecord(), lastRecord(), nextRecord(), and prevRecord() methods, to
step through the records in the SimpleDataset. The current record is returned by
currentRecord(). The objects returned by these routines have one property for
each of the current record's fields.

The current record can be deleted using deleteRecord(). All items in the dataset
can be deleted by deleteAll().

Records can be inserted to the SimpleDataset's table by insertRecord(). The
"current" record can be replaced by a specified record using replaceRecord().

A Cursor object representing the SimpleDataset can be obtained by using the
cursor() method. It may be necessary to use this to perform more powerful
operations on the dataset.

 428

Although the SimpleDataset can be closed through its close() method, it is
automatically closed when the object goes out of scope.

Using the SimpleDataset object, the following five-line script can be used to print
out the contents of a database:

function print_all(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user, passwd);

 while(var rec = ds.nextRecord())
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

 ds.close();
}

SimpleDataset instance methods
SimpleDataset()
SYNTAX: new SimpleDataset(database, table, username, password)

WHERE: database - The name of the ODBC database to open. On
Windows systems using ODBC, this is specified in the ODBC
Administrator Control Panel; on UNIX, in the .odbc.ini file. See
your database or system administrator for more information.

table - the name of the database table to use.

username - name of the user to connect to the database. Some
relational database management systems (RDBMS) require that
this be the same as your operating system login name; others
maintain their own collections of valid user names. If in doubt,
see your system administrator.

password - user's password. If the database does not require a
password, use an empty string.

RETURN: object - a new SimpleDataset, or null on error.

DESCRIPTION: Constructor for the SimpleDataset object. When the
SimpleDataset is created, it contains all of the elements in the
table. The current element is set to the one "before" the first
element in the dataset (and thus is "out of range").

EXAMPLE: // create a SimpleDataset connected to the database

 429

// named "corporate", table named "clients" using
// the username "ADMIN" and the password
// "admin-password"
var ds = new SimpleDataset("corporate", "clients",
 "ADMIN", "admin-password");

SimpleDataset close()
SYNTAX: simpledataset.close()

RETURN: boolean - value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method closes the SimpleDataset object, freeing up the
system resources being used by it. It also closes the associated,
hidden, database and Cursor objects.

EXAMPLE: var success = ds.close();

SimpleDataset currentRecord()
SYNTAX: simpledataset.currentRecord()

RETURN: object - the SimpleDataset's current record, or null if the current
record is out of range.

DESCRIPTION: This method returns the record for the current record in the
SimpleDataset. If the current element is undefined, null is
returned. The returned object has one property for each field of
the SimpleDataset's current record.

SEE: SimpleDataset.nextRecord(), SimpleDataset.prevRecord(),
SimpleDataset.firstRecord(), SimpleDataset.lastRecord()

EXAMPLE: // get the current record
var cr = ds.currentRecord();

// print out all of the fields of the object
for(var prop in cr)
 Clib.printf(prop + " = " + cr[prop] + "\n");

SimpleDataset nextRecord()
SYNTAX: simpledataset.nextRecord()

RETURN: object - the next record in the SimpleDataset. If there is no

 430

next record, null is returned.

DESCRIPTION: This method moves the current record forward in the
SimpleDataset and returns the new current record. If the
previous current record was the last record or the
SimpleDataset is empty, null is returned.

SEE: SimpleDataset.currentRecord(), SimpleDataset.prevRecord(),
SimpleDataset.firstRecord(), SimpleDataset.lastRecord()

EXAMPLE: // get the next record
var rec = ds.nextRecord();

// so long as the record isn't null, print out all
// of the fields of the object
if(null != rec)
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

SimpleDataset prevRecord()
SYNTAX: simpledataset.prevRecord()

RETURN: object - the previous record in the SimpleDataset. If there is
no previous record, null is returned.

DESCRIPTION: object - the previous record in the SimpleDataset. If there is
no previous record, null is returned.

SEE: see: SimpleDataset.currentRecord(),
SimpleDataset.nextRecord(), SimpleDataset.firstRecord(),
SimpleDataset.lastRecord()

EXAMPLE: // get the previous record
var rec = ds.prevRecord();

// so long as the record isn't null, print out all
// of the fields of the object
if(null != rec)
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

SimpleDataset firstRecord()
SYNTAX: simpledataset.firstRecord()

RETURN: object - the first record in the SimpleDataset. If the

 431

SimpleDataset is empty, null is returned.

DESCRIPTION: This method moves the current record to the first record in the
SimpleDataset and returns the new current record. If the
SimpleDataset is empty, null is returned.

SEE: SimpleDataset.currentRecord(), SimpleDataset.nextRecord(),
SimpleDataset.prevRecord(), SimpleDataset.lastRecord()

EXAMPLE: // get the first record
var rec = ds.firstRecord();

// so long as the record isn't null, print out all
// of the fields of the object
if(null != rec)
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

SimpleDataset lastRecord()
SYNTAX: simpledataset.lastRecord()

RETURN: object - the last record in the SimpleDataset. If the
SimpleDataset is empty, null is returned.

DESCRIPTION: This method moves the current record to the last record in the
SimpleDataset and returns the new current record. If the
SimpleDataset is empty, null is returned.

SEE: SimpleDataset.currentRecord(), SimpleDataset.nextRecord(),
SimpleDataset.prevRecord(), SimpleDataset.firstRecord()

EXAMPLE: // get the last record
var rec = ds.lastRecord();

// so long as the record isn't null, print out all of
the
// of the fields of the object
if(null != rec)
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

SimpleDataset find() with template
SYNTAX: simpledataset.find(template1[, template2[, ...])

WHERE: templateN - Item template to search for. When more than one
template is present, the templates are OR'd together.

 432

template is present, the templates are OR'd together.

Templates contain properties to match. Only those records which
have properties that match those values will be included in the
result set.

RETURN: boolean - value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method searches the SimpleDataset's database table for
all items that match the given templates. The contents of the
SimpleDataset are changed to reflect the results of the search.
The previous contents of the SimpleDataset are cleared and
the complete database table is searched to create the new
contents.

After the find has completed, the current record is set to the
record "before" the first record. Fill out the properties in the
template to indicate which items to find. For instance, to find all
records whose 'city' field equals "Metropolis", set the value of
the 'city' property to "Metropolis". If a template has more than
one property, the properties will be combined with an AND to
form the search term.

More than one template can be used. If multiple templates are
used, the template values will be combined using an OR to form
the search term.

SEE: SimpleDataset.findAll(), SimpleDataset.findDistinct(),
SimpleDataset.caseSensitive

EXAMPLE: // the following function will print out the fields
// of each of the records that have either Boston,
// USA or Paris, France as
// their city, country values
function print_BostonParis(db, table, user, passwd)
{
 // create the SimpleDataset
 var ds = new SimpleDataset(db, table, user,
 passwd);

 var template1, template2;

 template1.city = "Boston";

 433

 template1.country = "USA";

 template2.city = "Paris";
 template2.country = "France";

 ds.find(template1, template2);

 while(var rec = ds.nextRecord())
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] +
 "\n");

 ds.close();
}

SimpleDataset find() with clause
SYNTAX: simpledataset.find(whereClause)

WHERE: whereClause - A string containing the WHERE clause of an SQL
statement (without the word WHERE) indicating which items to
find.

RETURN: Boolean value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method searches the SimpleDataset's database table for
all items that match the given SQL WHERE clause. The contents
of the SimpleDataset are changed to reflect the results of the
search. The previous contents of the SimpleDataset are
cleared and the complete database table is searched to create the
new contents.

After the find has completed, the current record is set to the
record "before" the first record.

The string passed into find contains a SQL WHERE clause. This
allows more elaborate searches to be performed.

SEE: SimpleDataset.findAll(), SimpleDataset.findDistinct()

EXAMPLE: // the following function will print out the fields
// of each of the records that have either Boston
// or Paris as their city values
function print_BostonParis(db, table, user, passwd)
{

 434

 // create the SimpleDataset
 var ds = new SimpleDataset(db, table, user,
 passwd);

 var whereClause;

 whereClause = "(City = \'Boston\') OR
 (City = \'Paris\')";

 ds.find(template1, template2);

 while(var rec = ds.nextRecord())
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] +
 "\n");

 ds.close();
}

SimpleDataset findAll()
SYNTAX: simpledataset.findAll()

RETURN: boolean - value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method clears the contents of the SimpleDataset and
replaces them with the entire contents of the database table.
Effectively, this resets the SimpleDataset to its initial state.

After setting the new contents, the current record is set to the
record "before" the first record.

SEE: SimpleDataset.find(), SimpleDataset.findDistinct()

EXAMPLE: // reset the contents of the SimpleDataset
err = ds.findAll();

SimpleDataset findDistinct()
SYNTAX: simpledataset.findDistinct(field)

WHERE: field - string indicating for which field duplicate values should
be filtered out.

RETURN: boolean - value indicating success. In the case that the operation

 435

failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method removes all records from the SimpleDataset that
have duplicate values for the indicated fields. In other words, for
the given field, only one record with each value is left in the
SimpleDataset.

Note that no guarantees are made as to which records are left in
the SimpleDataset for each value of the field.

SEE: SimpleDataset.find(), SimpleDataset.findAll()

EXAMPLE: // print the unique country values
// in a SimpleDataset
function unique_countries(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // find the distinct country values
 ds.findDistinct("country");

 while(var rec = ds.nextRecord())
 Clib.printf(var.country + "\n");
}

SimpleDataset addRecord()
SYNTAX: simpledataset.addRecord(record)

WHERE: record - Object whose properties contain the values of the fields
of the record to be added to the database table.

RETURN: boolean - value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method inserts the specified record into the
SimpleDataset and its associated database table. The record
to be inserted will have the field values indicated by the
properties of the object passed into addRecord. After inserting a
new record, the current record is left unchanged.

Note that no guarantees are made about the position of the
inserted record within the SimpleDataset.

 436

SEE: SimpleDataset.deleteRecord(), SimpleDataset.deleteAll()

EXAMPLE: // The following function opens a SimpleDataset,
// adds the city
// Boston, Massachusetts to it,
// and then closes it down
function add_city(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // set up the field values
 // of the item to be added
 var record;
 record.city = "Boston";
 record.country = "USA";
 record.state = "Massachusetts";
 record.population = 500000;

 // add the item and clean up
 ds.addRecord(record);
 ds.close();
}

SimpleDataset deleteRecord()
SYNTAX: simpledataset.deleteRecord()

RETURN: boolean - value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method removes the current record from the
SimpleDataset and its associated database table. After
deleting the record, the current record is set to the record
"before" the first record.

SEE: SimpleDataset.deleteAll()

EXAMPLE: // This function will delete all records
// with USA as their country
function delete_USA(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // find the entries whose country is USA
 var template;

 437

 template.country = "USA";
 ds.find(template);

 // delete the records from the SimpleDataset
 // and clean up
 while(ds.next())
 ds.deleteRecord();
 ds.close();
}

SimpleDataset deleteAll()
SYNTAX: simpledataset.deleteAll()

RETURN: boolean - value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method removes all records from the SimpleDataset. The
corresponding rows will also be deleted from the associated
database table.

SEE: SimpleDataset.deleteRecord()

EXAMPLE: // This function will delete all records
// with USA as their country
function delete_USA(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // find the entries whose country is USA
 var template;
 template.country = "USA";
 ds.find(template);

 // delete the records from the SimpleDataset
 // and clean up
 ds.deleteAll();
 ds.close();
}

SimpleDataset replaceRecord()
SYNTAX: simpledataset.replaceRecord(record)

WHERE: record - object whose properties contain the values of the fields
of the record to replace the current record with.

 438

of the record to replace the current record with.

RETURN: boolean - value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method replaces the current record in the SimpleDataset
with the specified record. The record that the current record will
be replaced with will have the field values indicated by the
properties of the object passed into addRecord. After inserting
a new record, the current record remains unchanged; that is, the
current record is the record that replaced the previous current
record.

SEE: SimpleDataset.addRecord(), SimpleDataset.deleteRecord()

EXAMPLE: // This function will set the population
// of the first record
// with USA as its country to 100,000
function replace_population(db, table, user,
 passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // find the entries whose country is USA
 var template;
 template.country = "USA";
 ds.find(template);

 // advance to first record in the result set
 var rec = ds.nextRecord();

 if(null != rec)
 {
 // set the new population value
 rec.population = 100000;

 // replace the record and clean up
 ds.replaceRecord(rec);
 }
 ds.close();
}

SimpleDataset cursor()

 439

SYNTAX: simpledataset.cursor()

RETURN: object - the Cursor object that represents the current contents of
the SimpleDataset

DESCRIPTION: This method returns the Cursor object that represents the
SimpleDataset. This may be useful if functionality beyond that
of the SimpleDataset is required.

SEE: Cursor object

EXAMPLE: // get the SimpleDataset as a Cursor
var curs = ds.cursor();

SimpleDataset getLastErrorCode()
SYNTAX: simpledataset.getLastErrorCode()

RETURN: number - integer specifying error code

DESCRIPTION: This method returns an integer containing the code of any error
encountered by the last SimpleDataset method call. The error
codes/strings are reset whenever a SimpleDataset method is
called (excluding getLastErrorCode() and getLastError()).

SEE: SimpleDataset.getLastError()

EXAMPLE: // get the error code
errCode = ds.getLastErrorCode();

SimpleDataset getLastError()
SYNTAX: simpledataset.getLastError()

RETURN: string - message describing the last error encountered.

DESCRIPTION: This method returns a string explaining the error encountered by
the last SimpleDataset method call. The error codes/strings are
reset whenever a SimpleDataset method is called (excluding
getLastErrorCode() and getLastError()).

 SimpleDataset.getLastErrorCode()

EXAMPLE: // get a string describing the error
error = ds.getLastError()

SimpleDataset static properties

 440

SimpleDataset.caseSensitive
SYNTAX: SimpleDataset.caseSensitive

DESCRIPTION: Boolean value indicating whether or not SimpleDataset's
find calls are case sensitive. By default, searches are not case
sensitive.

SEE: SimpleDataset.find()

EXAMPLE: // turn on case sensitivity
// for SimpleDataset searches
ds.caseSensitive = true;

Stproc Object
 title: Stproc Object
platform: Win32; all versions of SE
 source: #link <sedbc>

A Stproc object represents a call to a database stored procedure or SQL statement
with parameters.

Description of the Stproc object
The Stproc object represents a stored procedure. A stored procedure is an SQL
statement or other procedure that can be saved in a database object. The
procedure object can be recalled and executed, if necessary returning its results
as a Cursor object.

Stproc instance properties
The properties of Stproc objects vary from instance to instance. Each Stproc
object has a property for each parameter in the stored procedure or SQL
statement. Thus, when a Stproc object is created, it acquires a property for each
of its parameters.

Parameters of a Stproc object may also be referred to as elements of an array.
The 0-index array element corresponds to the first parameter, the 1-index array
element corresponds to the second parameter, and so forth.

The following example demonstrates how to call a stored procedure using named
parameter properties. A GetCityArea procedure might be defined in a MS
Access database as follows:

PARAMETERS AreaParam Text, CityParam Text;

 441

SELECT Table3.* FROM Table3
WHERE ((Table3.Area=[AreaParam]) AND
 (Table3.City=[CityParam]));

// Recall the Stproc object 'GetCityArea' from the database
sp = db.storedProc("GetCityArea");

// Set the parameter values
sp.AreaParam = ÔEuropeÕ;
sp.CityParam = ÔParisÕ;

// Execute the stored procedure
citySet = sp.cursor();

// Clean up
citySet.close();
sp.close();

This example uses the same procedure, but accesses the
parameters through array indexes.

// Recall the Stproc object 'GetCityArea' from the database
sp = database.storedProc("GetCityArea");

// Set the parameter values
sp[0] = ÔEuropeÕ;
sp[1] = ÔParisÕ;

// Execute the stored procedure
citySet = sp.cursor();

// Clean up
citySet.close();
sp.close();

Stproc instance methods
Stproc close()
SYNTAX: stproc.close()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This method closes a Stproc object and releases the memory it

 442

uses. If a Stproc object is not explicitly closed with the close
method, the runtime engine automatically it when the
corresponding database object goes out of scope.

SEE: Database.majorErrorCode(), Database.minorErrorCode()

EXAMPLE: // Close down the Stproc
err = sp.close();

Stproc parameterName()
SYNTAX: stproc.parameterName(n)

WHERE: n - zero-based integer corresponding to the parameter in the
Stproc object. The first parameter is 0, the second is 1, etc.
return:

RETURN: string - the name of parameter n.

DESCRIPTION: This method returns the name of the parameter corresponding to
the given index.

SEE: Stproc.parameters()

EXAMPLE: // fetch the second parameter name
// of the Stproc 'sp'
paramName = sp.parameterName(1);

Stproc parameters()
SYNTAX: stproc.parameters()

RETURN: number - parameters in the Stproc.

DESCRIPTION: This method returns the number of named and unnamed
parameters for the stored procedure or SQL statement.

SEE: Stproc.parameterName()

EXAMPLE: // create an array of parameter names
// for Stproc 'sp'
for(i=0; i<sp.parameters(); i++)
 pNames[i] = sp.parameterName(i);

Stproc cursor()
SYNTAX: stproc.cursor([updateable])

 443

WHERE: updateable - Boolean parameter indicating whether the cursor
can be modified.

RETURN: A new Cursor object, representing the results of the stored
procedure.

DESCRIPTION: This method creates a Cursor object that contains the rows
returned by the SQL SELECT statement of the stored procedure
object. If the SELECT statement does not return any rows, the
resulting Cursor object also has no rows.

The optional updateable parameter specifies whether the
Cursor object created can be modified. If no value is specified in
the updateable parameter, the cursor is created non-
updateable.

If an updateable Cursor object is desired, the virtual table
generated by the stored procedure must be updateable. For
example, the SELECT statement cannot contain a GROUP BY
clause. In addition, the query usually must retrieve key values
from a table. For more information on constructing updateable
queries, consult your database vendor's documentation.

SEE: Cursor object, Stproc.execute()

EXAMPLE: // create a SQL stored procedure
SQL = "select id, cust_name, city from customer"
 "where (id >=?) and (id <=?)";
sp = database.storedProc(SQL);

// set the parameters
sp[0] = 1000;
sp[1] = 2000;

// create the cursor
custs = sp.cursor(true)

Stproc execute()
SYNTAX: stproc.execute()

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

 444

methods to interpret the meaning of the error.

DESCRIPTION: This method executes the stored procedure of SQL statement. It
allows execution of any stored procedure or SQL statement that
uses data definition language (DDL) or data manipulation
language (DML) statements supported by the database server
and that do not return a cursor (such as CREATE, ALTER, or
DROP).

Each database supports a standard core of DDL and DML
statements. In addition, a database may support DDL and DML
statements specific to that database vendor. Use execute to call
any of those statements. However, a database vendor may
provide functions that are not DDL or DML statements. Do not
use execute to call a stored procedure using those functions.
For example, do not call the Oracle describe function or the
Informix load function from a stored procedure's execute
method. Although the execute method can be used to perform
data modification (INSERT, UPDATE, or DELETE statements), it
is recommended that Cursor objects be used instead to achieve
the same functionality. Using the Cursor object for these sorts
of actions allows better database-type independence and also
allows the use of binary large object (BLOb) data.

When using the execute method, the stored procedure's SQL
statement must strictly conform to the syntax requirements of the
database server. For example, some servers require each SQL
statement be terminated with a semicolon. See the server
documentation for more information. If a transaction has not
been started with beginTransaction, the single statement is
automatically immediately committed when the stored
procedure's execute method is called.

SEE: Stproc.cursor(), Database.majorErrorCode(),
Database.majorErrorMessage()

EXAMPLE: // Create a new database object, and
// connect it to a data source
var a = new Database;
a.connect(DBEngine, DataSource, User, Password);

// execute the stored procedure 'SomeProc'
var sp = a.storedProc("SomeProc");

 445

sp.ItemID = 123;
sp.execute();

// execute an SQL stored procedure
sp = a.storedProc("delete from Items where Weight =
?");
sp[0] = 1000;
sp.execute();

// clean up
sp.close();
a.close();

 447

Socket Link Library
The Socket object is used to communicate between computers over the internet
through sockets.

Socket Object
platform: All OS except DOS and OS2; All Versions of SE
 source: #link <sesock.dll>

Socket object instance methods
Socket() with hostname
SYNTAX: new Socket(hostname, port)

WHERE: hostname - Name of remote host to connect to

port - Port of remote host to connect to

RETURN: object - A new Socket object, or null on error

DESCRIPTION: This method attempts to connect to the specified remote host. If
the library is unable to connect to the remote host, then null is
returned and error is set. Once the connection is established, the
socket can be read from / written to until it is closed or the
connection is lost.

SEE: Socket.error()

EXAMPLE: function connect(hostnamePort)
{
 var index;
 var port = 1000; // Default port

 if((index = hostnamePort.indexOf(":")) != -1)
 {
 port = ToNumber(hostnamePort.substring(index,
 hostnamePort.length));
 hostnamePort = hostnamePort.substring(0,index);
 }

 var socket = new Socket(hostnamePort, port);

 448

 return socket;
}

Socket() with port
SYNTAX: new Socket(port)

WHERE: port - Port to listen on

RETURN: object - A Socket object, or null on error.

DESCRIPTION: There are two types of sockets, in general. One type is a socket
which is an established connection between a client and a server.
This socket can be read to and written from just like a file. The
other type of socket is a listening socket, which is a server-side
socket which is not connected to a specific client, but rather to a
certain port. It is listening for any new requests on that port.
Requests can be checked for using the select() method. Once it
is established that there is a request waiting, the peer-to-peer
connection can be established using the accept() method. This
creates a new connection socket on another port, leaving the
original socket still listening for incoming connections.

SEE: Socket.select(), Socket.accept()

EXAMPLE: var listenSocket = new Socket(1000);

if(listenSocket != null)
{
 if(listenSocket.ready())
 {
 var connectSocket = listenSocket.accept();
 if(connectSocket != null)
 {
 // Finally! we have the socket
 // ... do stuff with socket ...
 connectSocket.close();
 }
 }
}

/* This will create a socket to listen on port 1000
 * and wait for any incoming
 * connections. The no-parameter form
 * of ready() uses an infinite
 * timeout, so the program waits indefinitely

 449

 * for a connection. This is
 * also equiavalent to
 * "Socket.select(-1,listenSocket)", which is a
 * generic form which allows for
 * listening on multiple sockets.
 */

Socket accept()
SYNTAX: socket.accept()

RETURN: object - A new socket object connected to the client of the
incoming request, or null if there is an error.

DESCRIPTION: If there is no incoming request waiting on the socket, or this
socket is not listening on a certain port, then it is an error and
null is returned. Otherwise, the method establishes a socket
connection on another port and returns a socket object
representing this connection. The returned socket can later be
used for reading/writing and other communication between the
client and server.

SEE: Socket.select(), Socket.ready()

Socket blocking()
SYNTAX: socket.blocking(flag)

WHERE: flag - A boolean value indicating whether this socket is to be
blocking or non-blocking.

RETURN: boolean - Whether the operation was successful.

DESCRIPTION: This method sets the state of the socket to be blocking if flag is
true, and non-blocking otherwise. A blocking socket will wait
indefinitely for data on reads, while a non-blocking socket will
immediately exit with an error indicating that there is no data to
be read. By default, all sockets are blocking when they are
created.

SEE: Socket.select(), Socket.read()

 450

Socket close()
SYNTAX: socket.close()

RETURN: boolean - Whether the operation was successful or not

DESCRIPTION: This method closes the specified socket and frees up any
memory associated with the object. It must be called to
appropriately dispose of the socket. If not explicitly called, then
the socket will be automatically closed when the library is
unloaded. If the socket is successfully closed, then true is
returned, otherwise false. The nature of the error can be
retrieved with Socket.error().

SEE: Socket.error()

Socket linger()
SYNTAX: socket.linger(flag[, timeout])

WHERE: flag - A boolean value indicating whether this socket will linger
or not

timeout - A timeout, in seconds, to wait for when closing the
socket, only used when linger is on. This defaults to 10 if not
supplied.

RETURN: boolean - Whether the operation was successful

DESCRIPTION: If flag is true, then this socket is set to linger, otherwise it is
not. A lingering socket will remain active after closing it if there
remains data to be read or written. If linger is not set, then the
socket will immediately close, but any remaining data will be
sent, if possible, before closing the socket. If linger is active,
and timeout 0, then the socket is immediately closed and any
unsent data is lost, simulating a hard close. Otherwise, the
socket remains open until the data is transferred or timeout is
reached. By default, all sockets are non-lingering.

SEE: Socket.close()

Socket read()

 451

SYNTAX: socket.read(destination, description)

WHERE: destination - A destination variable which will be converted to
the appropriate type based on description.

descript - A variable description, either one of the special Blob
variables UWORD8, SWORD8, UWORD16, SWORD16,
UWORD24, SWORD24, UWORD32, SWORD32, FLOAT32,
FLOAT64, FLOAT80, a blobDescriptor object describing a
structure, or a positive value indicating the length of a buffer to
read.

RETURN: number - elements read.

DESCRIPTION: This method is almost identical to Clib.fread(), except that it
reads from the current socket rather than a supplied file. The
description variable acts in the same way as Clib.fread(). If it
is a positive value, then destination is treated as a buffer and
filled with raw data. Otherwise, one of the blob types or blob
descriptors can be used to read data values. For buffers, the
length of the buffer read is returned. For all other values, 1 is
returned if the item is read successfully, -1 or 0 otherwise. Use
Socket.error() to determine the nature of the error. Typically, -1
means the socket is non-blocking and no data is available to
read. 0 usually indicates that the program at the other end of the
socket closed it.

SEE: Clib.fread(), Socket.write(), Socket.error()

EXAMPLE: function readInfo(socket)
{
 var description = new blobDescriptor();
 description.name = 12;
 description.age = UWORD8;
 description.extension = UWORD16;
 var info;

 if(!socket.read(info, description))
 return null;
 else
 return info;
}

/* The above function will read the special
 * info data structure from
 * the socket, returning null

 452

 * if there is some sort of error.
 */

Socket ready()
SYNTAX: socket.ready([timeout])

WHERE: timeout - Maximum time to poll, in milliseconds, or -1 for no
timeout

RETURN: boolean - Whether the socket is ready for reading in the specified
time.

DESCRIPTION: This method is very similar to "Socket.select()", except that it
only polls the current socket for input. If no timeout is specified
or it is -1, then the socket is polled indefinitely, unless there is an
error. This method is useful for simple applications, when there
are just a few sockets open, or in special instances where the
select() method is impractical or impossible.

SEE: Socket.select()

EXAMPLE: var listenSocket = new Socket(1000);

// Assume 'done' is a global flag
if(listenSocket != null)
{
 while(!done)
 {
 if(listenSocket.ready(10))
 {
 // Open connection with accept() ...
 }

 // Do other idle stuff...
 }

 listenSocket.close();
}

/* This code creates a socket listening
 * on port 1000, and continuously
 * polls it to see if there is
 * an incoming connection, alternatively doing
 * idle code when there is no connection ready.
 */

 453

Socket remoteHost()
SYNTAX: socket.remoteHost()

RETURN: string - The host this socket is connected to, or null if it is not
connected.

DESCRIPTION: For listening sockets that are only connected to a port, then this
method returns null. Otherwise, it returns the name of the
remote host, either the server that the socket connected to, or the
client from an incoming request. This method can be used to tell
whether or not a socket is listening or is connected.

EXAMPLE: var listenSocket = new Socket(1000);

if(listenSocket != null)
{
 if(listenSocket.ready())
 {
 var connection = listenSocket.accept();
 if(connection != null)
 {
 // Print out name of incoming request
 Screen.writeln(connection.remoteHost());
 // .. do other stuff ...
 connection.close();
 }
 }
 listenSocket.close();
}

Socket write()
SYNTAX: socket.write(source, description)

WHERE: source - Source variable to write to the socket

description - Variable description describing how to write the
source variable to the socket.

RETURN: number - The number of elements read.

DESCRIPTION: This method is almost identical to Clib.fwrite(), except that it
writes to the current socket, rather than to a supplied file. The
description variable acts in the same way as in Clib.fwrite().
If it is a positive value, then source is treated as a buffer of the

 454

specified length. Otherwise, description must be a Blob
value (SWORD8, UWORD32, etc) or a blobDescriptor object
describing how the data should be written to the socket. If
source is a buffer, then the number of bytes written is returned,
otherwise 1 is returned if the datum is successfully written, -1
otherwise. Use Socket.error() to determine the nature of the
error.

SEE: Clib.fwrite(), Socket.read(), Socket.error()

EXAMPLE: function writeInfo(socket, info)
{
 if(!socket.write(info.name, 12) ||
 !socket.write(info.age, UWORD8) ||
 !socket.write(info.extension, UWORD16))
 return false;
 else
 return true;
}

/* This function will write the contents
 * of the info object to the
 * specified socket in a native data format.
 */

Socket object static methods
Socket.addressByName()
SYNTAX: Socket.addressByName(address)

WHERE: address - Address of host to look up

RETURN: string - The address of the specified host.

DESCRIPTION: This method attempts to find the address of the specified host
through a reverse DNS lookup. If this lookup is successful, then
the address is returned as a string. Otherwise, null is returned.

SEE: Socket.hostByName()

Socket.error()

 455

SYNTAX: Socket.error()

RETURN: number - The last error from the socket library

DESCRIPTION: When there is some sort of error within the socket library, the
special errno value gets set indicating the error number. If a
method returns a value indicating an error, this method can be
used to determine the exact nature of the error. The actual
meaning of the value depends what system is being run.

Socket.hostByName()
SYNTAX: Socket.hostByName(name)

WHERE: name - Name of host to look up

RETURN: string - The name of the specified host

DESCRIPTION: This method looks up the specified host through a DNS lookup
and returns it. This method can be used to convert between
numerical addresses and domain names, as well as resolving
local names appropriately. If unable to find the host name, then
null is returned.

SEE: Socket.addressByName()

EXAMPLE: var hostname = Socket.hostByName("44.55.66.77");

Socket.hostName()
SYNTAX: Socket.hostName()

RETURN: string - The name of the host

DESCRIPTION: This method attempts to find the name of the local host. If the
call is successful, then a string is returned with the name of the
host. Otherwise, the empty string is returned.

Socket.select()
SYNTAX: Socket.select([timeout ,] socket1[, socket2 ...])

WHERE: timeout - Maximum time to poll, in milliseconds, -1 for no
timeout

 456

timeout

socketN - A list of sockets to poll for data, or an array of sockets

RETURN: object - The first supplied socket object which is ready for
reading, or null if none is ready before the timeout is reached.

DESCRIPTION: This method is an alternate form of "socket.ready()". The other
ready method is a property of Socket instances, and only polls
the current socket for data. This global method allows for
polling of multiple sources, which is needed when multiple
sockets are open. When any of the specified sockets are ready to
be read from, then this method returns the first socket which is so
ready. Note that these sockets can be either connected sockets or
listening sockets. A listening socket that is ready to be read from
means that a request is waiting. If no timeout is specified, then -
1 (infinite) timeout is used.

SEE: Socket.ready()

EXAMPLE: var listenSocket1 = new Socket(1000);
var listenSocket2 = new Socket(1001);

// Assume 'done' is a global flag somewhere
if(listenSocket1 != null && listenSocket2 != null)
{
 while(!done)
 {
 var acceptSocket;
 if((acceptSocket = Socket.select(100,
 [listenSocket1, listenSocket2])) != null)
 {
 // Connect with socket ...
 }

 // Do other stuff ...
 }
}

/* This code opens two sockets for listening,
 * and then continuously polls
 * these two sockets for incoming connections.
 * Note that in a real
 * program, it would be better to create
 * a dynamic array which holds all
 * of the open sockets.
 */

 457

 459

Com Object Link Library
The Com Object consists of only one function to create a Com object link.

Com Object
 title: COM object link library
platform: WINDOWS; All versions except WMLScriptEase
 source: #link <comobj.dll>

The COM object library provides utilities for using COM objects from within
scripts.

COMCreateObject()
SYNTAX: COMCreateObject(COMObject)

WHERE: COMObject - the name of a COM object.

RETURN: object - An instance of the specified COM object.

DESCRIPTION: Create an instance of a COM object to be used in a script.

EXAMPLE: var excel1 = COMCreateObject("Excel.Application");

 461

Script Libraries
Script librariesscript libraries and library fileslibrary files are normal text script
files with the extension jsh. The core language, both JavaScript and C, of
ScriptEase is found in ScriptEase interpreters, such as sewin32.exe and
secon32.exe. ScriptEase uses dll files, known as link libraries, to add objects,
functions and power to the core language. The advantage of link libraries is that
they are precompiled machine language libraries that execute as fast as internal
routines. The disadvantages are that they are static and take much programming
effort to develop. Script libraries are dynamic and can be developed quickly.

Script libraries are written using the same program statements and structure as
normal scripts. They are included in scripts using the #include#include
preprocessor directive. The following fragment is an example of including a
script library:

#include <dlgobj.jsh>

function main()
{
 /*
 Put your normal code here.
 Use the Dialog object, defined in dlgobj.jsh, and
 call its methods as if they were a part of ScriptEase.
 */
}

Nombas ScriptEase products are based on the concept that the core language may
be extended or expanded by writing scripts. For example, Nombas provides the
ScriptEase Integration Software Developer's Kit (ISDKISDK) which allows
programmers to add script and macro ability to their own applications, a scripting
ability based on JavaScript. Nombas also provides the ScriptEase Web Server
Edition (SEWSESEWSE) which allows the use of server-side JavaScript for
CGICGI. As with ScriptEase Desktop, programming tasks may be faster,
simplified, improved, and empowered by writing simple text scripts that enhance
the use and power of ScriptEase. To learn more about other Nombas ScriptEase
products, visit us at:

 http://www.nombas.com/us/

Many useful and powerful objects, methods, and functions are implemented
using scripts. These scripts have two obvious advantages. First, enhancements

 462

can be added to ScriptEase JavaScript quickly and easily. Two, programmers
have access to the source code and can alter it to fit their unique needs.

The following descriptions provide summary information about some common
and useful script library filesscript library files. The details about objects,
properties, methods, and functions are documented in the files themselves. The
documentation is in the form of special comments that are consistent with the
reference tables used in this manual.

Common script libraries
Some script libraries are common to two or more platforms and operating
systems. These libraries are found in C:\SEdesk\include (assuming the use of the
default ScriptEase Desktop directory C:\SEdesk).

ansi.jsh Allows the use of color and other enhancement to text output
when using ansi.sys.

array.jsh Enhances the use of array, both JavaScript arrays and
ScriptEase automatic arrays. Provides methods that allow
both types of arrays to be used more interchangeably.

cmdline.jsh Provides command line handling and is used by ScriptEase
shells.

copyfile.jsh Routines for copying files on disks.

datetime.jsh Routines to simplify working with date and time strings in
special formats.

dspfile.jsh Provides distributed scripting using file transfer protocol.

exec.jsh Enhancements to calling and executing programs from a
script.

file.jsh Various file handling routines for different platforms and
operating systems.

filename.jsh Various routines to work with filenames on different
platforms and operating systems.

fileobj.jsh Defines a File object and its methods to enhance working
with files.

filepack.jsh Routines for packing files onto the end of some binary file
and retrieving them from the binary file.

 463

and retrieving them from the binary file.

getopt.jsh Routines for working with command line arguments using
Unix-like getopt.

idsp.jsh Provides distributed scripting using internet protocol.

inout.jsh Routines for user input and output in a text window.

item.jsh Defines an Item object which works with items of data as a
delimited string or as an array. Both formats of the data are
simultaneously updated. A programmer can use String or
Array methods to work with data.

key.jsh Defines a Key object with methods to work with keyboards.

lock.jsh Use file locking for exclusive temporary access to resources.

mail.jsh Perform TCP/IP Mailing tasks from scripts.

nntp.jsh Routines for working with the Network News Transfer
Protocol, that is, with newsgroups.

optparms.jsh Routines for working with command line arguments using
techniques different form Unix-like getopt.

setest.jsh Routines to assist in testing scripts.

seutil.jshseutil.jsh The base include file that defines common variables for use
in all scripts. If a script includes any files, it should include
this file first.

smdtset.jsh Defines a SimpleDataset object and methods for working
with data using this object.

sqlconst.jsh Defines SQL constants useful for working with ODBC.

string.jsh Many methods added to the String object and the Clib object
for enhanced string handling.

struct.jsh Routine for initializing and working with a structure array.

url.jsh Routines getting and manipulating text pages from URLs.

winini.jsh Routines for working with Windows like
initialization/profile files from a non-Windows operating
system, such as DOS.

write.jsh Routines to provide enhanced write type operations, some,

 464

such as wlb(), are useful for debugging.

Common utility and sample scripts
There are many utility and sample scripts in C:\SEdesk\utility and
C:\SEdesk\sample (assuming the use of the default ScriptEase Desktop directory
C:\SEdesk). The utility scriptsutility scripts are useful and ready to run script to
perform tasks on your computer. The sample scriptssample scripts primarily
illustrate how to use script libraries and to perform tasks that are useful to
different scripters.

Win32 script libraries
Script libraries with objects and methods for working in a Win32 Windows
environment are in C:\SEdesk\win32\include (assuming the use of the default
ScriptEase Desktop directory C:\SEdesk).

bmp.jsh Routines for working with bitmap (.bmp) files.

clipbrd.jsh Functions for reading from and writing to the Windows
clipboard.

colors.jsh Routines to control colors in a ScriptEase text screen.

dlgobj.jsh Defines the Dialog object and provides many methods and
routines for programming dialog or GUI style windows for
interacting with users.

dropsrc.jsh Functions to facilitate drag-and-drop operations.

gdi.jsh Wrappers for some of Windows' GDI graphics routines. For
use in the WS_PAINT message handler function of a
window

getit.jsh The getItem routines are automated routines that allow the
selection of an item in a listbox and the getLine routines are
similar to input boxes. These routines are common dialogs.

hotkey.jsh Library to simplify the creation of hot keys to perform
arbitrary tasks when a key-code combination is pressed.

 465

icon.jsh Routines useful for working with icons.

inputbox.jsh Provides useful InputBox and InfoBox functions that do not
use the Dialog object.

keypush.jsh Routines to control or mimic the pushing of keys on the
keyboard for another application.

keypushg.jsh Routines to control or mimic the pushing of keys on the
keyboard for another application. In German.

menuctrl.jsh Functions for creating and controlling window menus in
another application.

message.jsh ScriptEase code wrapper for the SendMessage() and
PostMessage() Windows functions. With these routines,
any message can be sent or posted to any window.

mouseclk.jsh Routines to control or mimic mouse operations for another
application.

msgbox.jsh Various message box functions, not based on the Dialog
object, to simplify user interaction.

pickfile.jsh Routines for working with the open file dialog of the
Common Dialog DLL.

profile.jsh Routines for working with Windows initialization/profile
files.

profobj.jsh Defines the Profile object and methods for working with
Windows initialization/profile files.

regobj.jsh Defines the Registry object and methods for working with
the Windows registry.

screen.jsh Methods added to the Screen object that enhancement work
with a ScriptEase text screen.

shortcut.jsh Routines to create Windows shortcut or lnk files.

useful.jsh A few general utility functions.

win32api.jsh Defines for working with the Windows 32 API.

window.jsh Common defines for creating and defining windows using
the ScriptEase MakeWindow(), BreakWindow(), and

 466

DoWindows() functions.

winexec.jsh Multiple functions for executing scripts and programs using
various techniques in the Windows API.

winobj.jsh Defines the Window object and methods for manipulating
windows on the screen.

wintools.jsh Functions for setting the state of windows.

winvers.jsh Routines for working with version information.

Win32 utility and sample scripts
There are many utility and sample scripts in C:\SEdesk\win32 and
C:\SEdesk\win32\sample (assuming the use of the default ScriptEase Desktop
directory C:\SEdesk). These scripts are geared toward a Win32 environment. The
utility scriptsutility scripts are useful and ready to run script to perform tasks on
your computer. The sample scriptssample scripts primarily illustrate how to use
script libraries and to perform tasks that are useful to different scripters.

 467

Appendix B
 Instance and Static Notation

ScriptEase uses object properties which are integral to JavaScript. For clarity we
refer to object properties and object methods, not just properties, though both
properties and methods may be referred to by the general term property. When
using the terms property and method, object properties refer to the variables and
data of an object and object methods refer to the functions of an object. We have
clarified one dimension of object properties and methods. But, to be precise, we
must deal with another dimension.

Object properties and methods are either instance, belonging to an instance of an
object, or static, belonging to an object itself. Thus, all properties and methods of
an object may be classified according to two dimensions. Is a property of an
object a property or a method, and is it an instance or a static property? The
following examples illustrate

• Instance property string.length

• Instance method string.indexOf()

• Static property String.illus

• Static method String.fromCharCode()

Objects may have all four categories of methods and properties, but usually they
do not. In this illustration, the String object has three of the categories, but not a
static property, which is the reason why String.illus had to be made up for
this example.

ScriptEase documentation uses a couple of style conventions to distinguish
between properties and methods and between being instance or static. The four
sections, following the bullet list of explanations, illustrate how these distinctions
are made in reference sections of documentation.

• First, headings, such as "String instance properties" below, specifically
identify whether the following reference information applies to instance
properties, instance methods, static properties, or static methods.

• Second, properties do not have parentheses "()" but methods do.

 468

• Third the top lines of reference tables vary in how they refer to instance
and static properties and methods. Instance properties and methods have
object names followed by a space, such as "String ", whereas static
properties and methods have object names followed by a period, such as
"String.".

• Fourth, the syntax line for instance properties and methods uses the
object name in all lowercase, whereas, the syntax line for static
properties and methods uses the object name precisely. The significance
is that instance properties and methods actually use the variable name of
an instance of an object, whereas, static properties and methods use the
actual object name itself.

• Fifth, the use of lowercase for instance properties and methods is used
consistently in text and descriptions, not just the reference tables
themselves.

String instance properties
String length
SYNTAX: string.length

DESCRIPTION:

SEE:

EXAMPLE:

String instance methods
String indexOf
SYNTAX: string.indexOf(substring[, offset])

WHERE:

RETURN:

DESCRIPTION:

SEE:

EXAMPLE:

String static properties

 469

String.illus
SYNTAX: String.illus

DESCRIPTION:

SEE:

EXAMPLE:

String static methods
String.fromCharCode()
SYNTAX: String.fromCharCode(char1[, char2 ...])

WHERE:

RETURN:

DESCRIPTION:

SEE:

EXAMPLE:

Prototype property
For the technically inclined, objects have a prototype property. Instance
properties and methods are attached to the prototype property of an object. As
an illustration, assume that two new methods and two new properties are added
to the String object. The instance property and method are added to the
prototype property of the String object, whereas, the static property and
method are added to the String object itself.

The following two declaration lines illustrate an instance property and an
instance method:

String.prototype.newInstanceProperty
String.prototype.newInstanceMethod()

The following two declaration lines illustrate a static property and a static
method:

String.newStaticProperty
String.newStaticMethod()

 470

The following code fragment illustrates the differences in using these properties
and methods.

 // Begin an instance of a String object
var newStr = "an example string";
var instVal = newStr.newInstanceProperty;
newStr.newInstanceMethod();
 // Use the static property and method directly
var statVal = String.newStaticProperty;
String.newStaticMethod();

 471

Appendix A
 Grouped Functions

In the current section, the functions and methods of ScriptEase are organized
according to purpose and operation and not according to object. Some functions
and methods are specific to certain operating systems and do not exist in all
versions of ScriptEase. For example, SElib.subclassWindow() does not apply to
the DOS operating system.

Routines for arrays
For dynamic arrays
getArrayLength Determines size of an array.
setArrayLength Sets the size of an array.

For Array objects
Array.join Creates a string from array elements.
Array.sort Sorts array elements.
Array.reverse Reverses the order of elements of an array.

Array properties
Array.length Returns the length of array.

Routines for Buffers
Buffer methods
Buffer.getString Returns a string starting from the current cursor position.
Buffer.getValue Returns a value from a specified position.
Buffer.putString Puts a string into a Buffer.
Buffer.putValue Puts a specified value into a buffer.
Buffer.subBuffer Returns a section of a buffer.

 472

Buffer.toString Returns string equivalent of the current state of buffer.

Buffer properties
Buffer.bigEndian Boolean flag for bigEndian byte ordering.
Buffer.cursor Current position within a buffer.
Buffer.data Reference to the internal data of a buffer.
Buffer.size Size of a Buffer object.
Buffer.unicode Boolean flag for the use of unicode strings.

Routines for character classification
Clib.isalnum Tests for alphanumeric character.
Clib.isalpha Tests for alphabetic character.
Clib.isascii Tests for ASCII coded character.
Clib.iscntrl Tests for any control character.
Clib.isdigit Tests for any decimal-digit character.
Clib.isgraph Tests for any printing character except space.
Clib.islower Tests for lower-case alphabetic letter.
Clib.isprint Tests for any printing character.
Clib.ispunct Tests for punctuation character.
Clib.isspace Tests for white-space character.
Clib.isupper Tests for upper-case alphabetic character.
Clib.isxdigit Tests for hexadecimal-digit character.

Routines for console I/O
Clib.kbhit Checks if a keyboard keystroke is available.
Clib.getch Gets a character from the keyboard, no echo.
Clib.getchar Gets character from standard input, keyboard.
Clib.getche Gets character from the keyboard, with echo.
Clib.gets Reads string from standard input, keyboard.
Clib.perror Displays a message describing error in errno.
Clib.printf Formatted output to standard output, screen.
Clib.putchar Writes a character to standard output, screen.
Clib.puts Writes a string to standard output, console.
Clib.scanf Formatted input from standard input, keyboard.
Clib.vprintf Formatted output to stdout, screen, variable args.

 473

Clib.vscanf Formatted input from stdin, keyboard, variable args.

Routines for conversion/casting
parseInt Converts a string to an Integer.
parseFloat Converts a string to a Float.
escape Escapes special characters in a string.
unescape Removes escape sequences in a string.

ToBoolean Converts a value to a Boolean.
ToBuffer Converts a value to a Buffer.
ToBytes Converts a value to a Buffer, raw transfer.
ToInt32 Converts a value to a large Integer.
ToInteger Converts a value to an Integer.
ToNumber Converts a value to a Number.
ToObject Converts a value to an Object.
ToPrimitive Converts a value to a Primitive.
ToString Converts a value to a String.
ToUint16 Converts a value to an unsigned Integer.
ToUint32 Converts a value to an unsigned large Integer.

Routines for data/variables
Methods for data
Blob.get Reads data from specified location of a BLOb.
Blob.put Writes data into specified location of a BLOb.
Blob.size Determine size of a BLOb.

defined Tests if variable has been defined.
getAttributes Gets attributes of a variable.
isNaN Determines if a value is Not a Number.
isFinite Determines if a value is finite.
setAttributes Sets attributes of a variable.
undefine Makes a variable undefined.

SElib.getObjectProperties Get name list of members of object/structure.

 474

toString Converts any variable to a string representation.
valueOf Returns the value of any variable.

Properties for data
_BigEndianMode Global variable, ScriptEase-data/memory-data.

Routines for date/time
Clib.asctime Converts data and time to an ASCII string.
Clib.clock Gets processor time.
Clib.ctime Converts date-time to an ASCII string.
Clib.difftime Computes difference between two times.
Clib.gmtime Converts data and time to GMT.
Clib.localtime Converts date/time to a structure.
Clib.mktime Converts time structure to calendar time.
Clib.time Gets current time.
Clib.strftime Formatted write of date/time to a string.

Date.getDate Returns the day of the month.
Date.getDay Returns the day of the week.
Date.getFullYear Returns the year with four digits.
Date.getHours Returns the hour.
Date.getMilliseconds Returns the millisecond.
Date.getMinutes Returns the minute.
Date.getMonth Returns the month.
Date.getSeconds Returns the second.
Date.getTime Returns date/time, milliseconds, in Date object.
Date.getTimezoneOffset Returns difference, in minutes, from GMT.
Date.getUTCDate Returns the UTC day of the month.
Date.getUTCDay Returns the UTC day of the week.
Date.getUTCFullYear Returns the UTC year with four digits.
Date.getUTCHours Returns the UTC hour.
Date.getUTCMilliseconds Returns the UTC millisecond.
Date.getUTCMinutes Returns the UTC minute.
Date.getUTCMonth Returns the UTC month.
Date.getUTCSeconds Returns the UTC second.
Date.getYear Returns the year with two digits.
Date.setDate Set day of the month.

 475

Date.setFullYear Sets the year with four digits.
Date.setHours Sets the hour.
Date.setMilliseconds Sets the millisecond.
Date.setMinutes Sets the minute.
Date.setMonth Sets the month.
Date.setSeconds Sets the second.
Date.setTime Sets date/time, in milliseconds, in Date object.
Date.setUTCDate Sets the UTC day of the month.
Date.setUTCFullYear Sets the UTC year with four digits.
Date.setUTCHours Sets the UTC hour.
Date.setUTCMilliseconds Sets the UTC millisecond.
Date.setUTCMinutes Sets the UTC minute.
Date.setUTCMonth Sets the UTC month.
Date.setUTCSeconds Sets the UTC second.
Date.setYear Sets the year with two digits.
Date.toGMTString Converts a Date object to a string.
Date.toLocaleString Returns a string for local date and time.
Date.toSystem Converts a Date object to a system time.
Date.toUTCString() Returns a string that represents the UTC date.

Date.fromSystem Converts system time to Date object time.
Date.parse Converts a Date string to a Date object.
Date.UTC Returns date/time, milliseconds, use parameters.

Routines for diagnostic/error
Clib.clearerr Clears end-of-file and error status for a file.
Clib.errno Returns value of error condition.
Clib.ferror Tests for error on a file stream.
Clib.perror Prints an message describing error in errno.
Clib.strerror Gets a string describing an error number.
Clib.clearerr Clears end-of-file and error status for a file.

Routines for directory, file, and OS
Clib.chdir Changes directory.
Clib.flock File locking.
Clib.getcwd Gets current working directory.

 476

Clib.mkdir Makes a directory.
Clib.rmdir Removes a directory.

Clib.getenv Gets an environment string.
Clib.putenv Sets an environment string.

SElib.directory Searches directory listing for file spec.
SElib.fullPath Converts partial path spec to full path name.
SElib.splitFileName Gets directory, name, and extension parts of a file

spec.

Routines for display control
Screen.clear Clears screen.
Screen.cursor Gets/sets cursor position in the visible screen.
Screen.handle Gets handle of current ScriptEase window.
Screen.setBackground Sets background color of current ScriptEase screen.
Screen.setForeground Sets foreground color of current ScriptEase screen.
Screen.size Gets the height and width of the screen.
Screen.write Displays a value.
Screen.writeln Displays a value with automatic end-of-line

characters.

Routines for execution control
Clib.abort Terminates program, normally due to error.
Clib.assert Test a condition and abort if it is false.
Clib.atexit Sets function to be called at program exit.
Clib.exit Normal program termination.
Clib.system Passes a command to the command processor.

global.eval Evaluate string as script code, like SElib.interpret.

SElib.compileScript Compiles script into executable code.
SElib.inSecurity Calls security manager initialization routine.
SElib.interpret Interprets ScriptEase code or source file.
SElib.interpretInNewThread Creates a new thread within a current process.
SElib.spawn Runs an external executable.

 477

SElib.suspend Suspends program execution for a while.

Routines for file/stream I/O
Clib.fclose Closes an open file.
Clib.feof Tests if at end of file stream.
Clib.fflush Flushes stream for open file(s).
Clib.fgetc Gets a character from file stream.
Clib.fgetpos Gets current position of a file stream.
Clib.fgets Gets a string from an input stream.
Clib.fopen Opens a file.
Clib.fprintf Formatted output to a file stream.
Clib.fputc Writes a character to a file stream.
Clib.fputs Writes a string to a file stream.
Clib.fscanf Formatted input from a file stream.
Clib.fread Reads data from a file.
Clib.freopen Assigns new file spec to a file handle.
Clib.fseek Sets file position for an open file stream.
Clib.fsetpos Sets position of a file stream.
Clib.ftell Gets the current value of the file position.
Clib.fwrite Writes data to a file.
Clib.getc Gets a character from file stream.
Clib.putc Writes a character to a file stream.
Clib.remove Deletes a file.
Clib.rename Renames a file.
Clib.rewind Resets file position to beginning of file.
Clib.tmpfile Creates a temporary binary file.
Clib.tmpnam Gets a temporary file name.
Clib.ungetc Pushes character back to input stream.
Clib.vfprintf Formatted output to a file stream using variable args.
Clib.vfscanf Formatted input from a file stream using variable args.

Routines for math
Math methods
Clib.abs Returns the absolute value of an integer.
Clib.asin Calculates the arc sine.

 478

Clib.acos Calculates the arc cosine.
Clib.atan Calculates the arc tangent.
Clib.atan2 Calculates the arc tangent of a fraction.
Clib.atof Converts ASCII string to a floating-point number.
Clib.atoi Converts ASCII string to an integer.
Clib.atol Converts ASCII string to an integer.
Clib.ceil Rounds up.
Clib.cos Calculates the cosine.
Clib.cosh Calculates the hyperbolic cosine.
Clib.div Integer division, returns quotient & remainder.
Clib.exp Computes the exponential function.
Clib.fabs Absolute value.
Clib.fmod Modulus, calculate remainder.
Clib.floor Rounds down.
Clib.frexp Breaks into a mantissa and an exponential power of 2.
Clib.labs Returns the absolute value of an integer.
Clib.ldexp Calculates mantissa * 2 ^ exp.
Clib.ldiv Integer division, returns quotient & remainder.
Clib.log Calculates the natural logarithm.
Clib.log10 Calculates the base-ten logarithm.
Clib.max Returns the largest of one or more values.
Clib.min Returns the minimum of one or more values.
Clib.modf Splits a value into integer and fractional parts.
Clib.pow Calculates x to the power of y.
Clib.rand Generates a random number.
Clib.sin Calculates the sine.
Clib.sinh Calculates the hyperbolic sine.
Clib.sqrt Calculates the square root.
Clib.srand Seeds random number generator.
Clib.tan Calculates the tangent.
Clib.tanh Calculates the hyperbolic tangent.

Math.abs Returns the absolute value of an integer.
Math.acos Calculates the arc cosine.
Math.asin Calculates the arc sine.
Math.atan Calculates the arc tangent.
Math.atan2 Calculates the arc tangent of a fraction.
Math.ceil Rounds up.
Math.cos Calculates the cosine.

 479

Math.exp Computes the exponential function.
Math.floor Rounds down.
Math.log Calculates the natural logarithm.
Math.max Returns the largest of one or more values.
Math.min Returns the minimum of one or more values.
Math.pow Calculates x to the power of y.
Math.random Returns a random number.
Math.round Rounds value up or down.
Math.sin Calculates the sine.
Math.sqrt Calculates the square root.
Math.tan Calculates the tangent.

Math properties
Math.E Value of e, base for natural logarithms.
Math.LN10 Value for the natural logarithm of 10.
Math.LN2 Value for the natural logarithm of 2.
Math.LOG2E Value for the base 2 logarithm of e.
Math.LOG10E Value for the base 10 logarithm of e.
Math.PI Value for pi.
Math.SQRT1_2 Value for the square root of 2.
Math.SQRT2 Value for the square root of 2.

Number.MAX_VALUE Largest number (positive)
Number.MIN_VALUE Smallest number (negative)
Number.NaN Not a Number
Number.POSITIVE_INFINITY Number above MAX_VALUE
Number.NEGATIVE_INFINITY Number below MIN_VALUE

Routines for memory manipulation
SElib.peek Reads data from memory location.
SElib.pointer Gets address of variable.
SElib.poke Writes data to memory location.

Routines for miscellaneous
Clib.bsearch Binary search for member of a sorted array.

 480

Clib.qsort Sorts an array, may use comparison function.

Routines for strings/byte arrays
Clib.memchr Searches a byte array.
Clib.memcmp Compares two byte arrays.
Clib.memcpy Copies from one byte array to another.
Clib.memmove Moves from one byte array to another.
Clib.memset Copies from one byte array to another.

Clib.rsprintf Returns formatted string.
Clib.sprintf Formatted output to a string.
Clib.sscanf Formatted input from a string.
Clib.strcat Concatenates strings.
Clib.strchr Searches a string for a character.
Clib.strcmp Compares two strings.
Clib.strcmpi Case-insensitive compare of two strings.
Clib.strcpy Copies one string to another.
Clib.strcspn Searches string for first character in a set of characters.
Clib.stricmp Case-insensitive compare of two strings.
Clib.strlen Gets the length of a string.
Clib.strlwr Converts a string to lowercase.
Clib.strncat Concatenates bytes of one string to another.
Clib.strncmp Compares part of two strings.
Clib.strncmpi Case-insensitive compare of parts of two strings.
Clib.strncpy Copies bytes from one string to another.
Clib.strnicmp Case-insensitive compare of parts of two strings.
Clib.strpbrk Searches string for character from a set of characters.
Clib.strrchr Searches string for the last occurrence of a character.
Clib.strspn Searches string for character not in a set of characters.
Clib.strstr Searches a string for a substring.
Clib.strtod Converts a string to a floating-point value.
Clib.strstri Case insensitive version of Clib.strstr.
Clib.strtok Searches a string for delimited tokens.
Clib.strtol Converts a string to an integer value.
Clib.strupr Converts a string to uppercase.

Clib.toascii Converts to ASCII.
Clib.tolower Converts to lowercase.

 481

Clib.toupper Converts to uppercase.

Clib.vsprintf Formatted output to string using variable args.
Clib.vsscanf Formatted input from a string.

String.charAt Returns a character in a string.
String.charCodeAt Returns a unicode character in a string.
String.indexOf Returns index of first substring in a string.
String.lastIndexOf Returns index of last substring in a string.
String.split Splits a string into an array of strings.
String.substring Retrieves a section of a string.
String.toLowerCase Converts a string to lowercase.
String.toUpperCase Converts a string to uppercase.
String.fromCharCode Creates a string from character codes.

Routines for variable argument lists
Clib.va_arg Retrieves variable from variable list of args.
Clib.va_end Terminates variable list of args.
Clib.va_start Starts a variable list of args.

Clib.rvsprintf Returns formatted string using variable args.
Clib.vfprintf Formatted output to a file stream using variable args.
Clib.vfscanf Formatted input from file stream using variable args.
Clib.vprintf Formatted output to stdout, screen, using variable args.
Clib.vscanf Formatted input from stdin, using var args.
Clib.vsprintf Formatted output to string using variable args.
Clib.vsscanf Formatted input from a string.

 482

Index
!, 33
!=, 33
#include, 94
#optionoption, 77
%, 29
%=, 30
&, 31, 122
&&, 33
&=, 31
(Open windows list), 112
(Recent files list), 107
*, 29, 122
*=, 30
/, 29
/=, 30
[]Array initialzer, 50, 129;

[]initialzer:[], 50, 129
^, 32
^=, 32
95CON, 76
95WIN, 76
_argc, 234
_argv, 234
_call(...), 57
_canPut(property), 56
_construct(...), 56
_defaultValue(hint), 56
_delete(property), 56
DOS, 76
DOS32, 76
_get(), 55
_get(property), 55
_hasProperty(property), 56
MAC, 76
NTCON, 77
NTWIN, 77
NWNLM, 76
OS2, 76
_put(property, value), 56

SEDESKTOP, 80
SHELL, 77
UNIX, 76
WIN32, 76
WINDOWS, 76
`, 125
|, 31
||, 33
|=, 32
~, 32
+, 29
++, 31
+=, 30
<, 33
<<, 31
<<=, 31
=, 29, 30
==, 33
>, 33
>=, 33
>>, 31
>>=, 31
>>>, 31
>>>=, 31
0, 77
1, 78
abort(), 274
About ScriptEase Debugger...In toolbar,

112
abs(), 223, 324
accept(), 449
acos(), 223, 325
Add, 103
Add breakpoint, 105
Add/Remove..., 111
Add/Remove...Toolbar, 111
addition, 29
addRecord(), 435
address arithmetic, 122

 483

address operator, 122
address(), 253
addressByName(), 454
and, 33
andbitwise and, 31
Appendix A Grouped Functions, 471
Appendix B Instance and Static

Notation, 467
apply(), 250
arc(), 382
argc, 47
arguments[], 45
argv, 47
arithmetic operators, 29
Arrange Icons, 111
Array arithmetic, 48
Array concat(), 132
Array constructor function, 128
Array join(), 132
Array length, 130
Array object, 127
Array object instance methods, 131
Array object instance properties, 130
Array pop(), 133
Array properties, 471
Array push(), 134
Array representation, 115
Array reverse(), 134
Array shift(), 135
Array slice(), 135
Array sort(), 136
Array splice(), 138
Array toString(), 138
Array type, 25
Array unshift(), 139
Array() with length, 131
Array() with list, 131
arrays, 115
asctime(), 269
asin(), 224, 325
asm(), 253
assert(), 275
assign addition, 30

assign division, 30
assign multiplication, 30
assign remainder, 30
assign subtraction, 30
assignment, 29, 30
Assignment arithmetic, 30
assignment bitwise and, 31
assignment bitwise or, 32
assignment bitwise xor, exclusive or, 32
assignment operator, 30
assignment shift left, 31
assignment shift left with zeros, 31
assignment shift right, 31
atan(), 224, 325
atan2(), 225, 326
atexit(), 275
atof(), 326
atoi(), 326
atol(), 327
Auto files, 67
autodecrement, 31
Autoincrement (++) and autodecrement

(), 31
Automatic array allocation, 115
automatic arrays, 115
Automatic type conversion, 27
Automatic type declaration, 114
Back quote, 206
Back quote strings, 125
baseWindowFunction(), 149
Basic arithmetic, 29
Basics of ScriptEase, 14
beginTransaction(), 417
BIG_ENDIAN, 77
bigEndian, 187
Bind, 73
Bit operators, 31
bitwise xor, exclusive or, 32
Blob Object, 141
Blob object static methods, 141
Blob.get(), 141
Blob.put(), 142
Blob.size(), 144

 484

blobDescriptor object, 145
blobDescriptor(), 145
blocking(), 449
blue(), 383
Boolean Object, 347
Boolean object instance methods, 347
Boolean type, 23
Boolean(), 347
Boolean.toString(), 347
boundsSafe(), 384
break, 37
Break when Expression, 104
Breakpoint, 110
Breakpoint dialog, 104
Breakpoints listing, 106
breakWindow(), 150
bsearch(), 295
Buffer bigEndian, 187
Buffer cursor, 187
Buffer data, 188
Buffer getString(), 191
Buffer getValue(), 191
Buffer methods, 471
Buffer Object, 187
Buffer object instance methods, 189
Buffer object instance properties, 187
Buffer properties, 472
Buffer putString(), 192
Buffer putValue(), 192
Buffer size, 188
Buffer subBuffer(), 194
Buffer toString(), 195
Buffer unicode, 188
Buffer(), 189
Buffer[] Array, 188
by reference, 121
by referencepassed by reference, 44,

122
by valuepassed by value, 44
call(), 251
Cascade, 111
case, 38
case expression, 119

Case sensitivity, 15
Case statements, 122
caseSensitive, 440
catch, 40
ceil(), 225, 327
cfunction, 45, 113
cfunction keyword, 47
cfunctions, 122
Change Variables, 111
Character classification, 299
charAt(), 208
charCodeAt(), 209
charUp(), 385
chdir(), 293
clear(), 197
clearerr(), 277
Clib, 113
Clib Object, 259
Clib.abort(), 274
Clib.abs(), 324
Clib.acos(), 325
Clib.asctime(), 269
Clib.asin(), 325
Clib.assert(), 275
Clib.atan(), 325
Clib.atan2(), 326
Clib.atexit(), 275
Clib.atof(), 326
Clib.atoi(), 326
Clib.atol(), 327
Clib.bsearch(), 295
Clib.ceil(), 327
Clib.chdir(), 293
Clib.clearerr(), 277
Clib.clock(), 269
Clib.cos(), 327
Clib.cosh(), 327
Clib.ctime(timeInt), 269
Clib.difftime(), 270
Clib.div(), 328
Clib.errno, 277
Clib.exit(), 276
Clib.exp(), 328

 485

Clib.fabs(), 328
Clib.fclose(), 280
Clib.feof(), 281
Clib.ferror(), 277
Clib.fflush(), 281
Clib.fgetc(), 281
Clib.fgetpos(), 282
Clib.fgets(), 282
Clib.flock(), 293
Clib.floor(), 329
Clib.fmod(), 329
Clib.fopen(), 279
Clib.fprintf(), 282
Clib.fputc(), 283
Clib.fputs(), 283
Clib.fread(), 284
Clib.freopen(), 285
Clib.frexp(), 329
Clib.fscanf(), 286
Clib.fseek(), 287
Clib.fsetpos(), 288
Clib.ftell(), 288
Clib.fwrite(), 289
Clib.getc(), 290
Clib.getch(), 262
Clib.getchar(), 263
Clib.getche(), 263
Clib.getcwd(), 293
Clib.getenv(), 298
Clib.gets(), 263
Clib.gmtime(), 270
Clib.isalnum(), 300
Clib.isalpha(), 300
Clib.isascii(), 300
Clib.iscntrl(), 301
Clib.isdigit(), 301
Clib.isgraph(), 301
Clib.islower(), 301
Clib.isprint(), 302
Clib.ispunct(), 302
Clib.isspace(), 302
Clib.isupper(), 302
Clib.isxdigit(), 303

Clib.kbhit(), 264
Clib.labs(), 330
Clib.ldexp(), 330
Clib.ldiv(), 331
Clib.localtime(), 270
Clib.log(), 331
Clib.log10(), 331
Clib.max(), 332
Clib.memchr(), 322
Clib.memcmp(), 322
Clib.memcpy(), 323
Clib.memmove(), 323
Clib.memset(), 324
Clib.min(), 332
Clib.mkdir(), 295
Clib.mktime(), 272
Clib.modf(), 332
Clib.perror(), 278
Clib.pow(), 333
Clib.printf(), 259
Clib.putc(), 290
Clib.putchar(), 264
Clib.putenv(), 299
Clib.puts(), 264
Clib.qsort(), 297
Clib.rand(), 333
Clib.remove(), 291
Clib.rename(), 291
Clib.rewind(), 291
Clib.rmdir(), 295
Clib.rsprintf(), 303
Clib.rvsprintf(), 304
Clib.scanf(), 265
Clib.sin(), 333
Clib.sinh(), 333
Clib.sprintf(), 305
Clib.sqrt(), 334
Clib.sscanf(), 304
Clib.strcat(), 306
Clib.strchr(), 307
Clib.strcmp(), 307
Clib.strcmpi(), 308
Clib.strcpy(), 308

 486

Clib.strcspn(), 308
Clib.strerror(), 278
Clib.strftime(), 272
Clib.stricmp(), 309
Clib.strlen(), 310
Clib.strlwr(), 310
Clib.strncat(), 311
Clib.strncmp(), 311
Clib.strncmpi(), 312
Clib.strncpy(), 312
Clib.strnicmp(), 313
Clib.strpbrk(), 314
Clib.strrchr(), 314
Clib.strspn(), 315
Clib.strstr(), 315
Clib.strstri(), 316
Clib.strtod(), 316
Clib.strtok(), 317
Clib.strtol(), 318
Clib.strupr(), 319
Clib.system(), 276
Clib.tan(), 334
Clib.tanh(), 335
Clib.time(), 274
Clib.tmpfile(), 292
Clib.tmpnam(), 292
Clib.toascii(), 320
Clib.tolower(), 320
Clib.toupper(), 321
Clib.ungetc(chr, filePointer), 292
Clib.va_arg(), 335
Clib.va_end(), 336
Clib.va_start(), 337
Clib.vfprintf(), 338
Clib.vfscanf(), 338
Clib.vprintf(), 266
Clib.vscanf(), 267
Clib.vsprintf(), 321
Clib.vsscanf(), 339
clock(), 269
CLOCKS_PER_SEC, 78
close(), 410, 429, 441, 450
closeConnection(), 375

CloseCtrl+W, 106
Color styles, 381
colorAllocate(), 385
colorClosest(), 386
colorDeallocate(), 386
colorExact(colorExact()red, 387
colorsTotal(), 387
colorTransparent(), 388
columnName(), 410
columns(), 411
Com Object, 459
Com Object Link Library, 459
COMCreateObject(), 459
Command-line switches, 72
Comments, 16
commitTransaction(), 418
Common script libraries, 462
Common utility and sample scripts, 464
compile(), 218
compileScript(), 150
complementBitwise not, complement,

32
Components of main MDI window, 100
Composite data types, 24
concat(), 132, 209
conditional expression, 32
Conditional operator, 40
connect(), 418
connected(), 419
Console I/O functions, 259
constructor function, 49
continue, 38
Conversion or casting, 233
Converting existing C code to

ScriptEase, 125
copy(), 388
CopyIn toolbar and Ctrl+C, 108
copyResized(), 389
cos(), 226, 327
cosh(), 327
Creating a DSP object, 371
Creating arrays, 128
ctime(), 269

 487

currentRecord(), 429
cursor, 187
Cursor close(), 410
Cursor columnName(), 410
Cursor columns(), 411
Cursor deleteRow(), 411
Cursor filter, 409
Cursor first(), 412
Cursor insertRow(), 412
Cursor Instance Methods, 410
Cursor Instance Properties, 408
Cursor last(), 413
Cursor next(), 414
Cursor Object, 407
Cursor previous(), 414
Cursor reload(), 415
Cursor sort, 409
Cursor updateRow(), 415
cursor(), 197, 420, 439, 442
CutIn toolbar and Ctrl+X, 107
dashedLine(), 390
data, 188
Data types, 21, 114
Data types in C and SE, 114
Database beginTransaction(), 417
Database commitTransaction(), 418
Database connect(), 418
Database connected(), 419
Database cursor(), 419
Database disconnect(), 420
Database execute(), 421
Database majorErrorCode(), 422
Database majorErrorMessage(), 422
Database minorErrorCode(), 423
Database minorErrorMessage(), 423
Database Object, 416
Database procedureName(), 424
Database procedures(), 424
Database rollbackTransaction(), 424
Database storedProc(), 425
Database table(), 425
Database tableName(), 426
Database tables(), 426

Date and time display, 82
Date getDate(), 351
Date getDay(), 351
Date getFullYear(), 351
Date getHours(), 351
Date getMilliseconds(), 351
Date getMinutes(), 352
Date getMonth(), 352
Date getSeconds(), 352
Date getTime(), 352
Date getTimezoneOffset(), 353
Date getUTCDate(), 353
Date getUTCDay(), 353
Date getUTCFullYear(), 353
Date getUTCHours(), 354
Date getUTCMilliseconds(), 354
Date getUTCMinutes(), 354
Date getUTCMonth(), 354
Date getUTCSeconds(), 354
Date getYear(), 355
Date object, 83, 349
Date object instance methods, 351
Date object static methods, 364
Date setDate(), 355
Date setFullYear(), 355
Date setHours(), 356
Date setMilliseconds(), 356
Date setMinutes(), 356
Date setMonth(), 357
Date setSeconds(), 357
Date setTime(), 358
Date setUTCDate(), 358
Date setUTCFullYear(), 358
Date setUTCHours(), 359
Date setUTCMilliseconds(), 359
Date setUTCMinutes(), 359
Date setUTCMonth(), 360
Date setUTCSeconds(), 360
Date setYear(), 361
Date toDateString(), 361
Date toGMTString(), 361
Date toLocaleDateString(), 362
Date toLocaleString(), 362

 488

Date toLocaleTimeString(), 362
Date toString(), 363
Date toSystem(), 363
Date toTimeString(), 363
Date toUTCString(), 364
Date valueOf(), 364
Date.fromSystem(), 364
Date.parse(), 365
Date.UTC(), 366
Debug menu, 109
debugger, 10, 99
decisions, 34
decode(), 369
default, 38
Default Interpreter..., 109
DefaultLocalVars, 77
define, 61
defined(), 235
deleteAll(), 437
deleteRecord(), 436
deleteRow(), 411
Description of the Cursor object, 407
Description of the SimpleDataset

object, 427
Description of the Stproc object, 440
destroy(), 391
difftime(), 270
Directory, 293
directory(), 154
disconnect(), 420
div(), 328
division, 29
do ... while, 36
Document window, 100
Documentation, 11
DOS batch files, 70
Dos Object, 253
Dos object static methods, 253
Dos.address(), 253
Dos.asm(), 253
Dos.inport(), 254
Dos.inportw(), 254
Dos.interrupt(), 255

Dos.offset(), 256
Dos.outport(), 256
Dos.outportw(), 256
Dos.segment(), 257
doWindows(), 156
drawChar(), 384
DSP dspClose(), 377
DSP dspCloseConnection(), 374
DSP dspGetValue(), 378
DSP dspLoad(), 376
DSP dspReceive(), 375
DSP dspSecurityGuard(), 379
DSP dspSecurityInit(), 378
DSP dspSecurityTerm(), 379
DSP dspSend(), 376
DSP dspService(), 377
DSP Link Library, 371
DSP Object, 371
DSP object instance methods, 374
DSP object static properties, 380
DSP(), 374
dsp.dspClose(), 377
dsp.dspService(), 377
DSP.remote, 380
dspGetValue(), 378
dspLoad(), 376
dspReceive(), 375
dspSecurityGuard(), 379
dspSecurityInit(), 378
dspSecurityTerm(), 379
dspSend(), 376
Dynamic links, 180
Dynamic objects, 55
dynamicLink() - OS/2, 183
dynamicLink() - Win16, 182
dynamicLink() - Win32, 180
E, 221
Edit menu, 107
elements, 127
else, 35
encode(), 369
Environment variables, 298
EOF, 78

 489

equality, 33
errno, 277
Error, 277
Error checking for functions, 46
error(), 455
escape sequences, 125
Escape sequences for characters, 205
escape(), 236
eval(), 236
Exception handling, 40
exec(), 217
execute(), 421, 443
Executing a script, 66
Exit, 107
exit(), 276
EXIT_FAILURE, 78
EXIT_SUCCESS, 78
exp(), 226, 328
expression, 16, 103
Expressions, statements, and blocks, 16
fabs(), 328
false, 77
FATTR_ARCHIVE, 78
FATTR_HIDDEN, 78
FATTR_NORMAL, 78
FATTR_RDONLY, 78
FATTR_SUBDIR, 78
FATTR_SYSTEM, 78
fclose(), 280
feof(), 281
ferror(), 277
fflush(), 281
fgetc(), 281
fgetpos(), 282
fgets(), 282
File I/O, 279
File menu, 106
File Name for breakpoint, 105
File redirection, 66
fill(), 391
filledPolygon(), 392
filledRectangle(), 392
fillToBorder(), 393

filter, 409
finally, 40
find(), 431, 433
Find...Ctrl+F, 109
findAll(), 434
findDistinct(), 434
first(), 412
firstRecord(), 430
Floating point, 23
flock(), 293
floor(), 227, 329
Flow decisions statements, 34
fmod(), 329
Font specifications, 381
Font..., 108
fopen(), 279
for, 36, 54
For Array objects, 471
For dynamic arrays, 471
for/in, 54
for/in statement, 54
fork(), 341
Format String, 104
fprintf(), 282
fputc(), 283
fputs(), 283
fread(), 284
freopen(), 286
frexp(), 329
fromCharCode(), 216
fromGd(), 402
fromGif(), 403
fromSystem(time), 364
fromXbm(), 403
fscanf(), 286
fseek(), 287
fsetpos(), 288
ftell(), 288
fullpath(), 158
Function apply(), 250
Function call(), 251
Function identifier, 20
Function Object, 249

 490

Function object instance methods, 249
Function property arguments[], 45
Function recursion, 46
Function return statement, 43
Function scope, 20
Function toString(), 252
Function with a return, 87
Function with parameters, 84
Function(), 249
Functions, 20, 42
fwrite(), 289
GD arc(), 382
GD blue(), 383
GD boundsSafe(, 384
GD charUp(), 385
GD colorAllocate(), 385
GD colorClosest(), 386
GD colorDeallocate(), 386
GD colorExact(), 387
GD colorsTotal(), 387
GD colorTransparent(), 388
GD copy(), 388
GD copyResized(), 389
GD dashedLine(), 390
GD destroy(), 391
GD drawChar(), 384
GD fill(), 391
GD filledPolygon(), 392
GD filledRectangle(), 392
GD fillToBorder(), 393
GD getInterlaced(), 393
GD getPixel(), 394
GD getTransparent(), 394
GD green(), 394
GD height(), 395
GD interlace(), 395
GD line(), 395
GD Link Library, 381
GD Object, 381
GD object instance methods, 382
GD object static methods, 402
GD polygon(), 396
GD rectangle(), 397

GD red(), 398
GD setBrush(), 398
GD setPixel(), 399
GD setStyle(), 399
GD setTile(), 400
GD string(), 400
GD stringUp(), 401
GD toGd(), 402
GD toGif(), 402
GD width(), 402
GD(), 382
GD.fromGd(), 402
GD.fromGif(), 403
GD.fromXbm(), 403
get(), 141
getArrayLength(), 237
getAttributes(), 238
getc(), 290
getch(), 262
getchar(), 263
getche(), 263
getcwd(), 293
getDate(), 351
getDay(), 351
getenv(), 298
getFullYear(), 351
getHours(), 351
getInterlaced(), 394
getLastError(), 439
getLastErrorCode(), 439
getMilliseconds(), 352
getMinutes(), 352
getMonth(), 352
getObjectProperties(), 159
getPixel(), 394
gets(), 263
getSeconds(), 352
getString(), 191
getTime(), 352
getTimezoneOffset(), 353
getTransparent(), 394
getUTCDate(), 353
getUTCDay(), 353

 491

getUTCFullYear(), 353
getUTCHours(), 354
getUTCMilliseconds(), 354
getUTCMinutes(), 354
getUTCMonth(), 354
getUTCSeconds(), 354
getValue(), 191
getYear(), 355
global, 19
Global object, 233
global object methods/functions, 235
global object properties, 234
Global variables, 19
Global...Ctrl+Shft+G, 111
global._argc, 234
global._argv, 234
global.defined(), 235
global.escape(), 235
global.eval(), 236
global.getArrayLength(), 237
global.getAttributes(), 238
global.isFinite(), 237
global.isNaN(), 237
global.parseFloat(), 239
global.parseInt(), 239
global.setArrayLength(), 240
global.setAttributes(), 240
global.ToBoolean(), 243
global.ToBuffer(), 243
global.ToBytes(), 244
global.ToInt32(), 244
global.ToInteger(), 244
global.ToNumber(), 245
global.ToObject(), 245
global.ToPrimitive, 246
global.ToString(), 246
global.Uint16(), 247
global.Uint32(), 248
global.undefine, 242
global.unescape(), 247
Globals, 101
Globals window, 102
gmtime(), 270

GoCtrl+F5, 110
goto, 39
goto and labels, 39
greater than, 33
greater than or equal to, 33
green(), 395
GUI environment, 69
handle(), 198
hasOwnProperty(), 219
height(), 395
Help menu, 112
Help Topics...F1, 112
hostByName(), 455
hostName(), 455
Identifiers, 17
if, 34
if, ifdef, elif, else, endif, 63
in, 54
include, 62
indexOf(), 210
inequality, 33
Initialization code which is external to

functions, 123
Initializers for arrays and objects, 129
Initializers for objects and arrays, 50
inport(), 254
inportw(), 254
inSecurity(), 160
insertRow(), 412
inside of functions, 123
Installation, 11
instance(), 160
instanceof operator, 34
instanceof(), 34
Integer, 22
Integrated Debugger, 99
interlace(), 395
INTERP_COMPILED_SCRIPT, 78
INTERP_FILE, 79
INTERP_LOAD, 78
INTERP_NOINHERIT_GLOBAL, 78
INTERP_NOINHERIT_LOCAL, 79
INTERP_TEXT, 79

 492

interpret(), 161
interpreter, 10
interpretInNewThread(), 162
interrupt(), 255
Introduction, 9
isalpha(), 300
isascii(), 300
iscntrl(), 301
isdigit(), 301
isFinite(), 237
isgraph(), 301
islower(), 301
isNaN(), 237
isprint(), 302
isPrototypeOf(), 219
ispunct(), 302
isspace(), 302
isupper(), 302
isxdigit(), 303
join(), 132
kbhit(), 264
kill(), 342
label, 39
labs(), 330
last(), 413
lastIndexOf(), 211
lastRecord(), 431
ldexp(), 330
ldiv(), 331
length, 130, 208
less than, 33
less than or equal to, 33
Library and sample files, 94
Library file, 91
Library files, 10, 82
Line Number for breakpoint, 106
line(), 395
linger(), 450
link, 64
Link Libraries, 367
Literal strings, 116
Literal strings and assignments, 117
Literal strings and comparisons, 117

Literal strings and parameters, 118
Literal strings and returns, 118
Literal Strings and switch statements,

118
LN10, 221
LN2, 221
local, 19
Local...Ctrl+Shft+L, 112
Locals, 102
Locals window, 102
localtime(), 270
LOCK_EX, 79
LOCK_NB, 79
LOCK_SH, 79
LOCK_UN, 79
log(), 227, 331
log10(), 331
LOG10E, 222
LOG2E, 222
Logical operators, 32
Logical operators and conditional

expressions, 32
Long Strings, 206
Macros, 124
Main menu bar, 106
main(), 47, 83
main() function, 47
majorErrorCode(), 422
majorErrorMessage(), 422
makeWindow(), 163
Math, 324
Math methods, 477
Math Object, 221
Math object static methods, 223
Math object static properties, 221
Math properties, 479
Math.abs(), 223
Math.acos(), 223
Math.asin(), 224
Math.atan(), 224
Math.atan2(), 225
Math.ceil(), 225
Math.cos(), 226

 493

Math.E, 221
Math.exp(X), 226
Math.floor(), 226
Math.LN10, 221
Math.LN2, 221
Math.log(), 227
Math.LOG10E, 222
Math.LOG2E, 222
Math.max(), 227
Math.min(), 228
Math.PI, 222
Math.pow(), 228
Math.random(), 229
Math.round(), 229
Math.sin(), 230
Math.sqrt(), 231
Math.SQRT1_2, 222
Math.SQRT2, 223
Math.tan(), 231
Mathematical operators, 29
MathErrorWarnings, 77
max(), 228, 332
MAX_VALUE, 26
MAX_VALUENumber.MAX_VALUE

, 79
MD5 Checksum Link Library, 405
md5 Object, 405
md5 object instance methods, 405
md5(), 405
MDI windows, 101
memchr(), 322
memcmp(), 322
memcpy(), 323
memmove(), 323
Memory manipulation, 322
memset(), 324
Menu bar, 100
messageFilter(), 167
Methods - assigning functions to

objects, 51
Methods for data, 473
min(), 228, 332
MIN_VALUE, 26

MIN_VALUENumber.MIN_VALUE,
79

minorErrorCode(), 423
minorErrorMessage(), 423
mkdir(), 295
mktime(), 272
modf(), 332
modulo, 29
multiplication, 29
multiTask(), 168
NaN, 26, 79
NaNNumber.NaN, 79
NEGATIVE_INFINITY, 27
NEGATIVE_INFINITYNumber.NEGA

TIVE_INFINITY, 79
new constructorconstructor, 50, 129
NewIn toolbar and Ctrl+N, 106
next(), 414
nextRecord(), 429
not, 32, 33
null, 25, 77
Number constants, 26
Number Object, 147
Number object instance methods, 147
Number toLocaleString(), 147
Number toString(), 147
Number type, 22
numbers to strings, 27
Object hasOwnProperty(), 219
Object initializer, 50, 129; initializer:,

50, 129
Object isPrototypeOf(), 219
Object Object, 219
Object object instance methods, 219
Object operator, 28
Object propertyIsEnumerable(), 219
Object prototypes, 52
Object toLocaleString(), 220
Object toString(), 220
Object type, 24
Objects, 49
offset(), 256
Open...In toolbar and Ctrl+O, 106

 494

Operating system command prompt, 68
Operators, 28
option, 65
Options, 108
or, 33
orbitwise or, 31
OS/2 and seos2pm.exe, 73
OS/2 batch file, 71
OS/2 REXX file, 72
outport(), 256
outportw(), 257
outside of functions, 123
P_NOWAIT, 79
P_OVERLAY, 79
P_SWAP, 79, 276
P_WAIT, 80
parameterName(), 442
parameters of cfunctions, 45
parameters(), 442
Parameters..., 110
parse(), 365
parseFloat(), 239
parseInt(), 239
pass by referenceby reference, 24
pass by valueby value, 21
pass variables to functions, 44
Passing information to cfunctions, 45
Passing information to functions, 44
Passing variables by reference, 120
PasteIn toolbar and Ctrl+V, 108
PATH, 60, 96
peek(), 168
perror(), 278
PI, 222
Platform, 76
Point specifications, 381
pointer, 122
Pointer operator *, 122
pointer(), 169
poke(), 171
polygon(), 396
pop(), 133
POSITIVE_INFINITY, 26

POSITIVE_INFINITYNumber.POSITI
VE_INFINITY, 79

pow(), 228, 333
Predefined constants and values, 77
Predefined Values, 75
Predefining objects with constructor

functions, 49
Preprocessor, 59
Preprocessor Directives, 61
Preprocessor values, 75
previous(), 414
prevRecord(), 430
Prewritten routines, 11
Primitive data types, 21, 122
Print Preview, 107
Print Setup..., 107
Print...In toolbar and Ctrl+P, 107
printf(), 259
procedureName(), 424
procedures(), 424
Prohibited identifiers, 18
Properties and methods of basic data

types, 27
Properties for data, 474
propertyIsEnumerable(), 220
prototype, 52
Prototype property, 469
push(), 134
put(), 142
putc(), 290
putchar(), 264
putenv(), 299
puts(), 264
putString(), 192
putValue(), 192
qsort(), 297
Quick Start Tutorial, 81
rand(), 333
RAND_MAX, 80
random(), 229
read(), 451
ready(), 452
rectangle(), 397

 495

recursion, 46
recursive function, 46
red(), 398
RegExp compile(), 218
RegExp exec(), 217
RegExp Object, 217
RegExp object instance methods, 217
RegExp test(), 218
RegExp(), 217
reload(), 415
remote, 380
remoteHost(), 453
Remove, 103
Remove All, 103
Remove allIn toolbar, 111
Remove allToolbar, 111
Remove breakpoint, 105
remove(), 291
rename(), 291
Replace...Ctrl+R, 109
replaceRecord(), 437
RequireFunctionKeyword, 77
RequireVarKeyword, 77
Restart, 109
return, 43, 88
return values, 88
reverse(), 134
rewind(), 291
rmdir(), 295
rollbackTransaction(), 424
round(), 230
Routines for arrays, 471
Routines for Buffers, 471
Routines for character classification,

472
Routines for console I/O, 472
Routines for conversion/casting, 473
Routines for data/variables, 473
Routines for date/time, 474
Routines for diagnostic/error, 475
Routines for directory, file, and OS, 475
Routines for display control, 476
Routines for execution control, 476

Routines for file/stream I/O, 477
Routines for math, 477
Routines for memory manipulation, 479
Routines for miscellaneous, 479
Routines for strings/byte arrays, 480
Routines for variable argument lists,

481
rsprintf(), 303
Run in DebuggerIn toolbar and F5, 110
Running a script, 68
rvsprintf(), 304
Sample files, 11
Save As..., 107
SaveIn toolbar and Ctrl+S, 107
scanf(), 265
scope, 20
Screen object, 82, 197
Screen object static methods, 197
Screen.clear(), 197
Screen.cursor(), 197
Screen.handle(), 198
Screen.setBackground(), 199
Screen.setForeground(), 200
Screen.size(), 201
Screen.write improved, 88
Screen.write(), 82, 201
Screen.writeln(), 82, 203
script, 82
Script execution, 274
Script Libraries, 461
ScriptEase 4.20, 1
ScriptEase Desktop, 9
ScriptEase JavaScript, 13
ScriptEase package, 10
ScriptEase Shell, 81
ScriptEase shell command prompt, 69
ScriptEase shell command-line, 66
ScriptEase versus C language, 113
SE_ESET, 61
Search menu, 109
SEDBC Link Library, 407
SEDESKPATH, 60, 96
SEDESKPREFS, 60, 95

 496

SEEK_CUR, 80
SEEK_END, 80
SEEK_SET, 80
segment(), 257
select(), 455
SElib, 113
SElib Object, 149
SElib object static methods, 149
SElib.baseWindowFunction(), 149
SElib.breakWindow(), 150
SElib.compileScript(), 150
SElib.directory(), 154
SElib.doWindows(), 156
SElib.dynamicLink() - for OS/2, 183
SElib.dynamicLink() - for Win16, 182
SElib.dynamicLink() - for Win32, 180
SElib.fullpath(), 158
SElib.getObjectProperties(), 159
SElib.inSecurity(), 160
SElib.instance(), 160
SElib.interpret(), 161
SElib.interpretInNewThread(), 162
SElib.makeWindow(), 163
SElib.messageFilter(), 167
SElib.multiTask(), 168
SElib.peek(), 168
SElib.pointer(), 169
SElib.poke(), 171
SElib.ShellFilterCharacter(), 172
SElib.ShellFilterCommand(), 173
SElib.spawn(), 174
SElib.splitFilename(), 176
SElib.subclassWindow(), 177
SElib.suspend(), 178
SElib.windowList(), 179
semicolons, 123
setArrayLength(), 240
setAttributes(), 240
setBackground(), 199
setBrush(), 398
setDate(day), 355
setForeground(), 200
setFullYear(), 355

setgid(), 342
setHours(), 356
setMilliseconds(), 356
setMinutes(), 356
setMonth(), 357
setPixel(), 399
setSeconds(), 357
setsid(), 343
setStyle(), 399
setTile(), 400
setTime(), 358
Setting breakpoints, 104
Setting watches, 102
setuid(), 343
setUTCDate(), 358
setUTCFullYear(), 358
setUTCHours(), 359
setUTCMilliseconds(), 359
setUTCMinutes(), 359
setUTCMonth(), 360
setUTCSeconds(), 360
setYear(), 361
Shell, 77
ShellFilterCharacter(), 172
ShellFilterCommand(), 173
shift, 31
shift left with zeros, 31
shift right, 31
shift(), 135
Simple script, 82
SimpleDataset addRecord(), 435
SimpleDataset close(), 429
SimpleDataset currentRecord(), 429
SimpleDataset cursor(), 438
SimpleDataset deleteAll(), 437
SimpleDataset deleteRecord(), 436
SimpleDataset find() with clause, 433
SimpleDataset find() with template, 431
SimpleDataset findAll(), 434
SimpleDataset findDistinct(), 434
SimpleDataset firstRecord(), 430
SimpleDataset getLastError(), 439
SimpleDataset getLastErrorCode(), 439

 497

SimpleDataset instance methods, 428
SimpleDataset lastRecord(), 431
SimpleDataset nextRecord(), 429
SimpleDataset Object, 427
SimpleDataset prevRecord(), 430
SimpleDataset replaceRecord(), 437
SimpleDataset static properties, 439
SimpleDataset(), 428
SimpleDataset.caseSensitive, 440
sin(), 230, 333
Single quote, 206
sinh(), 334
size(), 144, 201
slice(), 135, 212
Socket accept(), 449
Socket blocking(), 449
Socket close(), 450
Socket linger(), 450
Socket Link Library, 447
Socket Object, 447
Socket object instance methods, 447
Socket object static methods, 454
Socket read(), 450
Socket ready(), 452
Socket remoteHost(), 453
Socket write(), 453
Socket() with hostname, 447
Socket() with port, 448
Socket.addressByName(), 454
Socket.error(), 454
Socket.hostByName(), 455
Socket.hostName(), 455
Socket.select(), 455
sort, 409
sort(), 136
Sorting, 295
Source, 101
Source Mark, 108
spawn(), 174
Special values, 25
splice(), 138
split(), 212
splitFilename(), 176

sprintf(), 305
sqrt(), 231, 334
SQRT1_2, 222
SQRT2, 223
srand(), 334
sscanf(), 304
Start Debug Session, 109
statement, 16
statement blockblock, 16
Status bar, 100
Status Bar view, 109
stderr, 80
stdin, 80
stdout, 80
Step IntoIn toolbar and F9, 110
Step OutIn toolbar and F12, 110
Step OverIn toolbar and F10, 110
Step to CursorIn toolbar and F11, 110
StopIn toolbar, 110
storedProc(), 425
Stproc close(), 441
Stproc cursor(), 442
Stproc execute(), 443
Stproc instance methods, 441
Stproc instance properties, 440
Stproc Object, 440
Stproc parameterName(), 442
Stproc parameters(), 442
strcat(), 306
strchr(), 307
strcmp(), 307
strcmpi(), 308
strcpy(, 308
strcspn(), 309
strerror(), 278
strftime(), 272
stricmp(), 309
Strictness of interpretation, 77
String as data type, 205
String as object, 207
String charAt(), 208
String charCodeAt(index), 209
String concat(), 209

 498

String indexOf(), 210
String instance methods, 468
String instance properties, 468
String lastIndexOf(), 211
String length, 208
String localeCompare(), 211
String manipulation, 303
String Object, 205
String object instance methods, 208
String object instance properties, 208
String object static methods, 216
String slice(), 212
String split(), 212
String static methods, 469
String static properties, 468
String substring(), 213
String toLocaleLowerCase(), 214
String toLocaleUpperCase(), 214
String toLowerCase(), 214
String toUpperCase()), 215
String type, 23
String valueOf(), 215
String(), 208, 401
String.fromCharCode(), 216
strings to numbers, 27
stringUp(), 401
strlen(), 310
strlwr(), 310
strncat(), 311
strncmp(), 311
strncmpi(), 312
strncpy(), 312
strnicmp(), 313
strpbrk(), 314
strrchr(), 314
strspn(), 315
strstr(), 315
strstri(), 316
strtod(), 316
strtok(), 317
strtol(), 318
Structures, 119
strupr(), 319

subBuffer(), 194
subclassWindow(), 177
substring(), 213
subtraction, 29
suspend(), 178
switch, 38
switch expression, 119
switch, case, and default, 38
system(), 276
table(), 425
tableName(), 426
tables(), 426
Tabs..., 108
tan(), 231, 334
tanh(), 335
term(), 405
Terminology, 86
test(), 218
The debugger, 10
The interpreter, 10
this, 50
throw, 40
Tile, 111
Time functions, 268
time(), 274
tmpfile(), 292
tmpnam(), 292
toascii(), 320
ToBoolean(), 243
ToBuffer(), 243
ToBytes(), 244
toGd(), 402
Toggle currentIn toolbar and F8, 110
toGif(), 402
toGMTString(), 361
ToInt32(), 244
ToInteger(, 244
Token replacement macros, 124
toLocaleDateString(), 362
toLocaleLowerCase(), 214
toLocaleString(), 83, 147, 220, 362
toLocaleTimeString(), 362
toLocaleUpperCase(), 214

 499

tolower(), 320
toLowerCase(), 214, 215
ToNumber(), 245
ToObject(), 245
Tool bar, 100
Toolbar view, 109
ToPrimitive(), 246
toString(), 28, 246
toSystem(), 363
toTimeString(), 363
ToUint16(), 247
ToUint32(), 248
toupper(), 321
toUTCString(), 364
Trace On, 108
Trace over, 108
Trace Speed, 108
Transactions, 416
true, 77, 78
try, 40
tutorial, 81
Type declarations, 125
typeof operator, 34
typeof(), 34
undefine(), 242
undefined, 25
UndoCtrl+Z, 107
unescape(), 247
ungetc(), 292
unicode, 188
Unix, 72
Unix Object, 341
Unix object static methods, 341
Unix.fork(), 341
Unix.kill(), 342
Unix.setgid(), 342
Unix.setsid(), 343
Unix.setuid(), 343
Unix.wait(), 343
Unix.waitpid(), 344
Unnecessary tokens, 123
unshift(), 139
update(), 406

updateRow(), 415
Using a DSP object, 372
Using library files, 95
Using the ScriptEase Debugger, 100
UTC(), 366
UU object static methods, 369
UU.decode(), 369
UU.encode(), 369
UUCode Link Library, 369
va_arg(), 335
va_end(), 337
va_start(), 337
valueOf(), 28, 215
Variable argument lists, 335
Variable scope, 19
Variables, 18
Variables in the environment, 59
VERSION_MAJOR, 80
VERSION_MINOR, 80
VERSION_STRING, 80
vfprintf(), 338
View menu, 109
vprintf(), 266
vscanf(), 267
vsprintf(), 321
vsscanf(), 339
wait(), 343
waitpid(), 344
Watch, 111
Watch dialog, 103
Watch...Ctrl+Shft+W, 112
Watches, 102
Watches window, 102
while, 35, 36
White space characters, 15
width(), 402
Win32 script libraries, 464
Win32 utility and sample scripts, 466
Window menu, 111
windowList(), 179
with, 54
with statement, 54
write(), 82, 88, 201, 453

 500

writeln(), 82, 203

