

Nombas ScriptEase ISDK/C 5.01 1

ScriptEase ISDK for
C/C++

v 5.01b

Nombas, Inc.

ScriptEase™ ISDK/C 5.01 Manual, 6th edition

Copyright © 1993-2004 Anchor Acquisition, Inc., a subsidiary
of Openwave Systems Inc. All rights reserved.

http://www.nombas.com/

All Nombas products are trademarks or registered trademarks of
Anchor Acquisition, Inc., a subsidiary of Openwave Systems
Inc. Other brand names are trademarks or registered trademarks
or their respective holders. Windows, as used in this manual,
refers to Microsoft's implementation of a windowing system.

Nombas ScriptEase ISDK/C 5.01 3

Table of Contents
Table of Contents...3
Introduction..7
Integration Into Your C/C++ Application..9

Integration on Windows Systems ..9
Integration on Unix Systems..9
Advanced Integration - Debugging..12

ScriptEase Types..15
secontext ..15
sedatatype...15
sebool ...15
senumber ..15
seobject ..16
sestring ...16
secharptr...16
seconstcharptr ..16
sechar ...16
secharptrdatum...16
sememcount ...17
sesmemcount..17
SE_CALLBACK()...17
THE CHARACTER ACCESS ROUTINES..17

Initialization and Contexts ...19
Working with Variables ...25

IDENTIFYING A VARIABLE...25
EXAMINING VARIABLES ...34
MODIFYING VARIABLES ...34
USING SE_TEMP AND SE_WRAPPER_TEMP ..35
SE_RETURN EXPLAINED..35

Script Execution Topics...37
Using seEval ..37
FUNCTION GLOBALS..42
SCOPING ..43
CONTINUE FUNCTION..44

Wrapper functions..45
THE FUNCTION HEADER ...45
THE ARGUMENTS..46
THE RETURN...46
WRAPPER TABLES...46
WRAPPER MACROS...48

Lifetimes ..53
Objects and Classes..57

OBJECT CLASSES...57
DYNAMIC OBJECTS...58
FUNCTION REDIRECTION..64

API Function List...65
INITIALIZATION/CONTEXT CREATION..65
VARIABLE LOCATING..68

Nombas ScriptEase ISDK/C 5.01 4

VARIABLE READING ..72
OBJECT ACCESS ROUTINES ..79
VARIABLE WRITING ...82
EXECUTING SCRIPTS..91

The Debugger...95
SECONTINUEFUNC..95
THE SIMPLE DEBUGGER..95
INTEGRATING THE SCRIPTEASE DEBUGGER.......................................99
THE SCRIPTEASE DEBUGGER PROTOCOL VERSION 1.0103

Extlibs ..111
Core Customization Topics..113

CHARACTER SET CUSTOMIZATIONS ...113
CORE CUSTOMIZATION ...113
FEATURE CUSTOMIZATION..118
SCRIPTEASE FEATURE CUSTOMIZATION ...119
DEBUGGING CUSTOMIZATION ..122
FLOATING POINT CUSTOMIZATION ...123
MEMORY EXTENSIONS..124

Fibers and Threads...127
USING SE_START ...127
YIELDING AND SUSPENDING...130
OTHER CONSIDERATIONS...131

ScriptEase JavaScript...135
Basics of ScriptEase...136
Identifiers ...138
Data types...141
Automatic type conversion ..146
Properties and methods of basic data types ...147
Operators..147
Flow decisions statements..155
Exception handling ..159
Functions..161
Objects ...166

ScriptEase versus C language ..173
Data types in C and SE ..173
Automatic type declaration ..173
Array representation...174
Automatic array allocation...175
Automatic and JavaScript Arrays ..175
Literal strings ...176
Structures ...179
Passing variables by reference ...180
Pointer operator * and address operator & ...181
Case statements..181
Initialization code which is external to functions ..182
Unnecessary tokens..182
Macros ...183
Token replacement macros ..183
Back quote strings..183
Converting existing C code to ScriptEase..183

Security ..185

Nombas ScriptEase ISDK/C 5.01 5

Writing a Security Manager...185
Specifying Security ..188
Wrapper Functions And Security...189
Sample Script ...189

Internal Objects..191
Global object..193
Array object ...207
Blob Object ..217
Boolean Object...225
Buffer Object ...227
Clib Object ...239
Date Object ..299
Dos Object ...313
Function Object..317
Math Object ...321
Number Object...329
Object Object ...331
RegExp Object ...337
SElib Object ...355
String Object ..385
Unix Object..397

Link Libraries...401
COM Object Link Library ...403
DSP Link Library...407
GD Link Library ..415
MD5 Checksum Link Library..433
SEDBC Link Library ...435
Socket Link Library ...467
UUCode Link Library..475

Productivity Tools..477
ScriptEase ISDK Toolbox..477
Selib Assistant..477

Appendices...483
Appendix 1: Standard Libraries ...485
Appendix 2: Using Wrapper.jse...487
Appendix A: Grouped Functions ...489
Appendix B: Instance and Static Notation ...501

Index ..505

Nombas ScriptEase ISDK/C 5.01 7

Introduction

Thank you for choosing ScriptEase!

ScriptEase is a high-performance implementation of JavaScript, highly
customizable and portable to a wide variety of operating systems. No matter your
scripting needs, ScriptEase has you covered.

In this manual we show you how to add scripting support via ScriptEase to your
application, use the extensive ScriptEase API to control your scripting, and
perform a large number of common scripting tasks. This manual does not replace
the ScriptEase Language Reference. Refer to that guide for information on
JavaScript and ScriptEase extensions to it.

Let's dive right in by looking at integrating ScriptEase into your application.

Nombas ScriptEase ISDK/C 5.01 9

Integration Into Your C/C++
Application

This chapter contains the instructions you'll need to integrate the ScriptEase
ISDK into your C/C++ application. This step involves setting up your project and
linking with the ScriptEase libraries. The rest of this manual builds on this
chapter, showing you how to use the ScriptEase API to script your application.

Integration on Windows Systems
Integrating ScriptEase ISDK into your application consists of the following basic
steps.

Note: If you are using Microsoft Visual Studio as your development
environment, we recommend you check out the Getting Started section of the
ScriptEase ISDK Toolbox. It gives you a step-by-step approach to integration
into a Visual Studio project.

Configuring A jseopt.h File
ScriptEase ISDK uses a header file called jseopt.h that specifies the compiler
options that should be turned off/on when ScriptEase libraries are built. All
ScriptEase ISDK applications need a jseopt.h file to specify the various options
that are desired for that particular application.

New with Version 5.0, you can use theSelib Assistant to configure the jseopt.h
file.

Build ScriptEase Libraries
In order to incorporate the changes you made to the jseopt.h file, you must
rebuild the ScriptEase object module libraries. These libraries contain the
ScriptEase code you will link with your application in a later step.

If you are using Visual Studio, use Selib Assistant's Build Libraries mode to
build the ScriptEase ISDK's libraries.

Link ScriptEase Library Files
Your next step is to link the newly created ScriptEase object module libraries
with your application.

For Visual Studio projects, Selib Assistant can automatically add these files to
your .dsp file and optionally add the ScriptEase .dsp files to your Workspace
(.dsw file).

Integration on Unix Systems

Unpacking ScriptEase:ISDK/C

Nombas ScriptEase ISDK/C 5.01 10

The distribution you received should first be installed on your system. For Unix,
the distribution is a compressed tar files that can be unpacked anywhere on your
system. This unpacking will produce a single directory tree containing the
ScriptEase ISDK installation. This tree contains all of the files you will need to
integrate the ScriptEase ISDK into your application. It also contains a number of
sample ISDK applications. In this manual, we will often refer to filenames and
directories. Those should be understood to be relative to the directory you
unpacked ScriptEase into. For instance, if you unpacked ScriptEase in the
directory /usr/src/se501 and we refer to the filename
src/include/foo.h, then you should understand that to be referring to the file
/usr/src/se501/src/include/foo.h on your system.

The ScriptEase distribution contains a number of subdirectories. The lib
directory contains the makefiles and targets to build the ScriptEase ISDK library
files themselves. If you have received an evaluation version, prebuilt versions to
link with are in this directory. The src directory contains the ScriptEase source
code. The manual directory contains a copy of the manual. The tests directory
contains script tests for the engine. The tools directory contains some scripts
for ScriptEase self-testing. Finally, the samples directory contains some simple
applications that use the ScriptEase ISDK.

Sample Applications
Before integrating the ScriptEase ISDK into your own application, it is
suggested you compile and run some of the sample applications provided with
the distribution. They are found in the samples directory. The samples sample0
and sample1 are basic samples that are most appropriate to learn from.

For Unix distributions, the samples can be built from the root of the distribution
using the supplied makefile. To do so, type the command make <sample
name>. For instance, to build the sample1 sample you would type the
command:
make sample1

Once built, the sample executable can be found in a subdirectory corresponding
to the system name. For example, the sample1 executable built with the above
command built on Linux can be found as
samples/sample1/linux/sample1.

While each unix ScriptEase distribution will use the appropriate defines, there are
some systems that have multiple define packages corresponding to different
compilers on that system. All systems will by default build using gcc. You can
specify an alternative define package in any invocation of make on a ScriptEase
makefile by specifying the SYSTEM_NAME in the invocation. For example, to use
the Sun Forte C compiler on a Solaris system to build the sample1 sample, you
would use:
make SYSTEM_NAME=solarisc sample1

The following table lists all valid system names:
System Make text to use

------------ -----------------

Nombas ScriptEase ISDK/C 5.01 11

Aix aix

Digital Unix dec

FreeBSD freebsd

HP-UX hpux

Linux linux

Irix irix

Solaris solaris, solarisc

*The solaris build is for using gcc on Solaris. The solarisc version is for
using Sun's Forte C compiler.

Integration Basics
Integrating the ScriptEase ISDK with your application requires a few basic tasks
as outlined below. Make sure to complete each task.

Edit your jseopt.h
The first step is to edit the lib/jseopt.h file found in the distribution. This file
is self-documenting by its comments. Each compiler switch or option has a
description of what altering it will do. Change all switch or option to your
preference.

Rebuild the ScriptEase libraries
In order to incorporate the changes you made to the lib/jseopt.h file, you
must rebuild the ScriptEase object module libraries. These libraries contain the
ScriptEase code you will link with your application in a later step.

For Unix, you build these libraries from the root of the ScriptEase distribution
just like you built the samples above. Instead of using the name of the a sample,
use the name core.

Add ScriptEase compiler options
The next step is to alter your application’s compiler settings to correctly work
with ScriptEase. The only option required is to set your compiler’s include paths
so it can find the ScriptEase header files as well as the lib/jseopt.h file. If
you move your lib/jseopt.h file to an alternate location, you must include its
directory in your include path, before any other ScriptEase directories. Then
include the following directories. Recall, all directories are relative to the
directory you installed ScriptEase in:
lib
.
src/misc
src/lib
src/app
src/include

Each compiler has some way to specify additional include directories to search
for include files. When using a graphical IDE, you will find a field to put
additional directories in. When using a command line version, a particular

Nombas ScriptEase ISDK/C 5.01 12

command-line switch will add them, usually -I. Please consult your compiler's
documentation if you are unsure how to add include directories to your project.

Program your application to invoke ScriptEase
This topic is subject of the rest of the manual. Here we will only mention that all
of your source files that are to invoke ScriptEase must have the following line:
#include “jseopt.h”

Link with the ScriptEase libraries
The final step for integrating your application with ScriptEase is to link the
ScriptEase object module libraries with your application. There are two object
module libraries to link. These libraries are found within the lib/core and
lib/library directory trees. The particular directory is identical to the text
string associated with your operating system, as described above. Within those
directories are user subdirectories, where your version of the ScriptEase
libraries was placed when built in an earlier step. The libraries are named
libsec501ar.a and libsel501ar.a respectively. For instance, if your
system is Aix, then you would link with the object module libraries named
lib/core/aix/user/libsec501ar.a and
lib/library/aix/user/libsel501ar.a.

In addition to the release versions of the libraries, debugging versions are
produced with the full version of ScriptEase. The library names end with an r for
a release version and a d for a debug version. The Aix debug libraries are named
lib/core/aix/user/libsec501ad.a and
lib/library/aix/user/libsel501ad.a.

Using an alternate jseopt.h
Some users may require multiple jseopt.h files for multiple ScriptEase
configurations. To accomplish this, first copy your lib/jseopt.h file to a new
directory. Second, decide on an alternate directory name within the lib directory
to have the ScriptEase object modules produced instead of the default user. For
instance, you may want to use the name myconfig1. In this case, instead of
finding the the Aix files in lib/core/aix/user, you would find them in
lib/core/aix/myconfig1.

To rebuild a particular version of the ScriptEase libraries, you need to supply this
information in the make command that builds them. Provide the variable
JSEOPT_DIR with the full path of the directory you put the jseopt.h file in.
Provide the variable BUILD_SUBDIR with the name of the subdirectory for your
build. For instance, you might use:
make JSEOPT_DIR=/usr/src/myconfig1 BUILD_SUBDIR=myconfig1 aix-
core

You will need to link your application with the particular version of the
ScriptEase library you have just built.

Advanced Integration - Debugging
A debug mode build is differentiated by the presence or absence of the NDEBUG
flag. When this flag is on, asserts are removed and the fastest code is generated

Nombas ScriptEase ISDK/C 5.01 13

while when it is off, asserts are fleshed out to catch errors. ScriptEase follows
this convention. When NDEBUG is undefined, ScriptEase adds a lot of debugging
code. SciptEase builds debug and non-debug versions of its core and places them
in specific directories as described above.

Using the debug build, many of the common ScriptEase problems, both in
integration and scripting, are detected and reported to you. We encourage you to
develop your application using the debug-mode of the ScriptEase library before
contacting Nombas for technical support. Carefully following this manual
chapter and building a debug-mode version will eliminate 90% of the problems
commonly encountered and will save you valuable time rather than waiting for
technical support to get to your question. If you encounter a true bug in our core,
the added information produced in the debug-mode build will allow us to find it
and create an errata more quickly.

Before you proceed to the next chapter on scripting your application, please look
over the following common problems you will encounter. It is best to keep these
in mind first, as many good habits are introduced. If you think of catching bugs
as something to be done after your code is written, you will unfortunately spend a
lot more time catching them. Prevention is the best cure.

Jsedebug.Log
This is the name of the debug output file. Under DOS, Windows, or OS/2, this
file is created in the root of c:\. For UNIX and Mac versions, it is put in the
current directory. The debug output will be put in this file, appended to whatever
the file already contains. When trying to debug your program, delete this file
first, run your program, then read the file to see what information it provides.
Even if this information is not enough for you to fix the problem, it will be
helpful to us, so include it when you contact Nombas for technical support.

Memory Tracking
The second main benefit of the ScriptEase ISDK debug code is that it internally
tracks all memory allocated. When memory is allocated or freed, it is filled with
garbage values so memory that is freed but later accessed will contain garbage
and thus be likely to cause an immediate problem. If your program crashes, look
at the data structure involved. If it is working with a dynamically-allocated
memory and has the hex value 0xEE (for instance, the pointer 0xEEEEEEEE), it is
likely an uninitialized value, since all allocated memory is filled with this value.
If you instead find 0xBD (or 0xBDBDBDBD as a pointer), you are using memory
that has since been freed. Of course, you'll then need to track down why you are
using bad memory, but at least you know that you are.

Second, on exit, all memory is examined, and if some memory was not freed, it
will be reported (in the jsedebug.log file, described above.) Special markers
are written before and after each memory block, so if you have gone outside the
bounds of the allocated memory, this too will be caught. These reports tell you
the file name and line number that the memory was allocated on.

Occassionally, there will be a crash in these routines themselves. If the function
crashing is in src/misc/jsemem.c, this is such a case. This happens when the
internal lists have become corrupted. The most common cause is writing past the
bounds of an allocation. While we buffer allocations with a few bytes on either

Nombas ScriptEase ISDK/C 5.01 14

end, sometimes a runaway program will write well beyond these safety margins
and lead to this problem.

You can have memory allocated by your program included in this memory
tracking code by using the ScriptEase memory allocation routines. Here are the
prototypes for these functions. They function similarly to their C standard library
counterparts except each takes an secontext as a parameter and will perform
garbage collection if not enough memory is available. Each returns NULL if the
requested memory could not be allocated even after collecting. In this case, a
memory allocation failure error object is also set as the SE_RETURN,SE_VALUE
member pair and the error flag is turned on. If you are in a wrapper function
when this happens, you can immediately return from it and have the memory
failure error be the return of your wrapper function.
void *seGCMalloc(secontext se,size_t size);
void *seGCRealloc(secontext se,void *orig,size_t newsize);
secharptr seGCStrdup(secontext se,seconstcharptr orig);
secharptr seGCStrndup(secontext se,seconstcharptr orig,size_t
len);
void seGCFree(secontext se,void *item);

Jsememreport
Although pointer-bounds problems will be caught on exit, many times this
mistake will cause the program to crash long before exit. If you suspect the
problem may be due to memory corruption, put this line in your code before the
crash:
jseMemReport(False);

Try to make it as close to the crash as possible. This causes all of the bounds
checks described above to be made so it is a very slow call, too slow to call
frequently even in a debug build. However, if memory has been corrupted, this
call will usually find it. It is another good tool to help find memory corruption
problems.

Nombas ScriptEase ISDK/C 5.01 15

ScriptEase Types
ScriptEase is designed to be portable to a wide variety of systems such as
Windows, Mac, various Unix flavors, and others. Similarly, it is designed to
handle ASCII, UNICODE, and MBCS builds. In order to do so, ScriptEase uses
a number of types and macros to ensure portability. This chapter goes through all
the special ScriptEase datatypes and their use.

The following types are defined via typedefs for use in ScriptEase programs:

secontext
A handle to a ScriptEase scripting context. Every ScriptEase function except for
the initialization functions takes an secontext as its first parameter.

sedatatype
Represents the possible datatypes a ScriptEase variable can have. The following
are the possible values for a variable of type sedatatype:

• SE_UNDEFINED
The value is the undefined value which is a particular value in JavaScript. The
JavaScript expression void 0 generates an undefined value. Variables created
with the var statement but not yet assigned any value likewise are of the
undefined value.

• SE_NULL
The value is the JavaScript null value.

• SE_BOOL
The value is a boolean, either true or false, and maps to the ScriptEase C
sebool typedef described below.

• SE_NUMBER
ScriptEase can be built with floating point enabled or disabled. If it is disabled,
ScriptEase numbers are integers only, otherwise they are floating point number.
The ScriptEase typedef senumber is used to hold the value as described below.

• SE_STRING
The value is a string and maps to the secharptr typedef described below.

• SE_BUFFER
The value is a buffer, a special ScriptEase array of bytes. It maps to ubyte *.

• SE_OBJECT
The value is an object. ScriptEase objects are identified by the seobject
typedef handle.

sebool
A boolean value, it can be either TRUE or FALSE.

senumber

Nombas ScriptEase ISDK/C 5.01 16

This typedef represents a number. The build mode based on the
JSE_FLOATING_POINT macro definition, either floating-point on or off,
determines if this typedef is an integer or a floating-point value. See the
documentation on FLOATING POINT CUSTOMIZATION for more
information on redefining senumber.

seobject
A handle to a ScriptEase object.

Note that seobject handles cannot be directly compared using the C ==
operator. To determine if two seobject handles refer to the same object, use the
seCompare API function. Pass the two handles each with SE_VALUE as the
member and SE_COMP_EQUAL as the test condition.

sestring
An internalized ScriptEase string. Member name strings are enterred into the
ScriptEase string table and the result is an sestring. sestrings can be
directly compared for equality using the C == operator.

secharptr
You should not use char * in your programs, use secharptr instead. This
typedef gives you a pointer to a string of the correct type for the build mode.
String constants should be encased in the UNISTR() macro. While "foo" is a
literal of type char *, UNISTR("foo") is a literal of type secharptr. If you
insist on writing your literals without the UNISTR() macro, your program will
not build correctly on Unicode or MBCS systems.

All standard library functions that take a char * parameter have a version that
takes an secharptr. Append to the name of the function _sechar. For
instance, sprintf only works on ASCII ScriptEase builds while
sprintf_sechar works on all builds.

seconstcharptr
An secharptr in which the string contents are constant. Note that writing
const secharptr instead generates an unchangable pointer.

sechar
secharptrdatum
A single character. sechar is the maximum size of a character, such that an
array of sechars of size X can always hold a string of size X.

secharptrdatum is what an secharptr points to. Such an array does not
point to sechar necessarily. For instance, on MBCS, strings and thus
secharptr point to an array of characters (bytes). However, each MBCS logical
character may take up several of those bytes. Therefore, sizeof(sechar) >
sizeof(secharptrdatum) for MBCS builds.

Nombas ScriptEase ISDK/C 5.01 17

sememcount
A count of things that is based on the address range on the system. This
represents things like the number of bytes an secharptr takes up. This is an
unsigned value.

sesmemcount
The signed version of sememcount.

SE_CALLBACK()
Any function that you write which may be called by ScriptEase must use the
SE_CALLBACK() macro. Put the entire return type of the function inside the
macro, for instance:
SE_CALLBACK(const void *) myfunc();

THE CHARACTER ACCESS
ROUTINES
In order to access invidivual characters in secharptrs, the following macros
must be used. If you access the characters using the standard C notation, such as
+ for indexing and [] for accessing, your code will fail on MBCS builds. The
following macros are provided instead:

SECHARPTR_INC(string)
Increment an secharptr string pointer.

SECHARPTR_GETC(string)
Get the character pointed to by the secharptr string pointer.

SECHARPTR_PUTC(string,char)
Put the character to the secharptr string pointer.

SECHARPTR_OFFSET(string,offset)
Get an offset into an existing string. The offset is in characters. The string must
be initialized such that the offset is not past the end of the string.

SECHARPTR_NEXT(string)
A faster way to do an SECHARPTR_OFFSET() of 1 character.

SECHARPTR_DIFF(string1,string2)
Get the difference in characters between the two string pointers. They must point
into the same initialized string, and the first string pointer must be later in that
string than the second string pointer.

Nombas ScriptEase ISDK/C 5.01 19

Initialization and Contexts
Initialization is necessary before you can actually perform the tasks related to
executing scripts. The first task is to initialize the engine itself. Your application
only does this once when it starts and terminates the engine once when it exits.
Even if you are running multiple threads in your application and running many
different scripts, you only initialize the engine once. Here is a code snippet
demonstrating initializing and terminating the engine:
 void
main(int argc,char **argv)
{
 seInitialize();

 /* your application, including scripting. */

 seTerminate();
}

The other initialization task is to create an secontext. This is a handle that ties
all of your scripting together. Each script you wish to run needs a context. It
holds the variables, functions, preprocessor defines, and all the other information
a script needs. You, as the API user, pass an secontext whenever you make a
ScriptEase API call.

A single context may run more than one script one after the other but not
simultaneously. If you want to run multiple scripts at once, such as in a
multithreaded application, each thread will need its own context. You can create
as many contexts as you like. Most applications will create a single context that
is used for the life of the application then destroyed.

A newly created context will have all of the standard function libraries available
for scripts in it to call. You determine which are available by your jseopt.h file
as is discussed in the "Integration Into Your C/C++ Application" chapter. When
the context is created, these functions are added to the global object. In
JavaScript, global variables are just the members of an object, the global object.
Any scripts running can see the stock libraries as global variables. This is how a
script access stock objects like eval, Math, String and so forth.

To create a context, you must use the seCreateContext ScriptEase API call. The
only required information for all versions is an seContextParams structure.
You must fill one out and pass it as a parameter to seCreateContext. This
structure is copied into the context on creation. The second parameter is a string.
If you are using a trial version of the ScriptEase ISDK, you must give your
userkey provided to you by Nombas. If you do not, the trial version will fail in its
construction of a new context and return NULL. If you have a purchased version
of ScriptEase, this second parameter is ignored.

The seContextParams Structure
The seContextParams structure contains a number of members which you
must initialize. Most of them can be NULL to indicate no interest in that member.
However, the sePrintErrorFunc member is a required member. Each member
is listed in the order it appears in the structure along with a description of it. For

Nombas ScriptEase ISDK/C 5.01 20

members that are callback functions, the function’s prototype is given. The
member of the seContextParams structure must be filled in with a pointer to a
function that matches that prototype.

For many of these functions, you can find a sample implementation in the
src\app directory of the ScriptEase distribution which you may use or modify.
 SE_CALLBACK(void)
sePrintErrorFunc(secontext context, seconstcharptr text);

This function is called by the core to print an error to the user. This happens
when a script generates an error that is not trapped by a try/catch handler. The
error needs to be displayed to the user. This is the function that is called by
ScriptEase to do so. This parameter is not optional, you must include an
sePrintErrorFunc in your parameters.
 SE_CALLBACK(void)
seAtErrorFunc(secontext context, struct seAtErrorInfo *info);

This optional callback is invoked whenever a script generates an error, at the
point of error. This will occur for any error, even if the error is trapped via a
try/catch handler. Note that some scripts will throw errors as a valid part of
their program such as to indicate an error return from a function which will be
trapped higher up in the script. This is why normally you do not care about an
error until it comes back to you via the sePrintErrorFunc, indicating it never
is trapped. Getting an immediate notification is primarily useful in implementing
a debugger for which the user may want to stop anytime an error is generated
even if it will be handled, in order to step through the handling code.

The seAtErrorFunc is passed an informational structure about the error. Here
is the definition:
struct seAtErrorStruct
{

sebool trapped;
};

Currently, the structure has only a single member. The boolean trapped is TRUE
if the error will be trapped and FALSE if the sePrintErrorFunc will be called
on it.

The actual value of the error is set up in the SE_RETURN object which is
described fully in "SE_RETURN EXPLAINED". For an error, the value is an
Error object as described by the ECMAScript specification. Since working with
variables and return values is not described until later chapters, you should revisit
this description once you have read those chapters.
 SE_CALLBACK(void)
seContinueFunc(secontext se);

This optional function is called by the ScriptEase interpreter after every
statement while evaluating scripts. It is useful to perform periodic work, such as
checking Windows messages in a Windows ScriptEase application. It is also
useful in implementing a debugger to regain control after each statement is
executed.

Nombas ScriptEase ISDK/C 5.01 21

When evaluating scripts using seEval (described in "Using seEval"), you can
pass the SE_INFREQUENT_CONT flag to have the continue function called much
less frequently than once per statement. If all you need to do is an occasional
Windows Message processing, calling this function after every statement wastes
a lot of processing which is when this flag is most useful.

You use the standard ScriptEase wrapper return rules to control execution using
this function. You can return an error in the normal way which will abort script
execution but can be trapped like any other error. Alternately, you can use set the
object,member pair SE_RETURN,SE_EXIT to TRUE in order to force the program
to abort completely. Returning a non error value does nothing, it is ignored.
Either you generate an error in order to abort script execution, or you return
nothing and the script continues as normal.
 SE_CALLBACK(sebool)
seFindFileFunc(secontext se, seconstcharptr fileName,
 secharptr fileResults,
 sememcount fileResultSize,
 sebool lookForExtlib);

This optional function is used by ScriptEase when looking for source files. The
filenames being looked for are the filenames passed to the #include and #link
directives. The parameter lookForExtlib tells you which kind if being looked
for: TRUE for a #link extlib, FALSE for a #include include file.

If you do not implement this function, then files are looked for directly, meaning
that the filename given must appear exactly as specified in the current directory.
By implementing this function, you can handle looking for these files with
various extensions in various directories. You are passed fileName, the file to
be looked for. This is the text that appears in the directive exactly as the user
entered it. You fill in the fileResults buffer (the parameter
fileResultSize tells you how big the buffer is) with the translated filename
and return TRUE to indicate the file is found. If you return FALSE, you specify the
file as not found. See the seGetSourceFunc below for more file-related
behavior.
 SE_CALLBACK(sebool)
seGetSourceFunc(secontext se, struct seSourceInfo *info,
 uint mode);

This optional callback is used to read script files. If you do not provide the
callback, files are read using the normal C I/O functions; fopen, fgets,
fclose. By defining this function and the seFindFileFunc above, you can
completely virtualize your files. Although you can handle the virtualizing of files
in this function alone, error reporting is based on the filename returned from
seFindFileFunc so implementing it is recommended for the user's ease. In
addition, you will need to implement seFindFileFunc to locate extlibs, which
once located are loaded by a system call.

The mode parameter tells you what the call is intended to do. It can be one of
these values:
seSourceOpen open a new file
seSourceGetLine get the next line from the file
seSourceClose close the file

Nombas ScriptEase ISDK/C 5.01 22

The info parameter points to a structure that you fill in accomplish these calls.
Note that each file will be given its own seSourceInfo structure to work with.
In each case, the seSourceOpen routine is called. Returning FALSE results in an
'unable to open file' error in the script. Next the seSourceGetLine is called
repeatedly to get the individual lines of the source until you return FALSE to
indicate no more lines. Finally, seSourceClose is called to close down the file.

The seSourceInfo structure is as follows:
struct seSourceInfo
{

secharptr lineText;
const seconstcharptr filename;
uint lineNum;
void * userdata;

};

filename is preset by ScriptEase and should not be modified. It is the result of
the seFindFileFunc. lineText is where the application should return the
successive lines of the file including the newline character on each line. It is a
pointer to a buffer that the application will allocate and presumably free in the
seSourceClose processing. lineNum is the line number of the file which the
application should update as it returns lines. Finally, the userdata is where the
application keeps whatever information it needs to process the file. A simple
implementation would use a FILE * for userdata, but a more complex one might
need to point to a structure keeping necessary data.
 SE_CALLBACK(sebool)
seGetResourceFunc(secontext se, sint id,
 secharptr buf,
 sememcount buflen);

ScriptEase uses a number of text string resources, which it has internal string
values for. You can use this optional callback function to override those values.
This is useful for internalization, to translate the text strings into whatever
language is appropriate. The id parameter indicates which resource ScriptEase is
trying to access. You fill in the buf with the text you'd like to give the resource.
The buflen tells you how much space buf points to.

The list of identifier numbers and the English strings corresponding to them can
be found in src\core\rsrccore.h and src\lib\common\rsrclib.h.
 SE_CALLBACK(void)
sePrepareContextFunc(secontext se);

After seCreateContext has finished preparing a new context, it invokes this
function. You can do any final setup on your context here, such as adding your
application specific wrapper tables (see "Wrapper functions"). If you do the final
preparation here instead of in your code after calling seCreateContext then all
calls to seCreateContext will do that same preparation. This is useful if you
are using utility libraries that create new contexts with seCreateContext. It
ensures those contexts are properly set up for your application. Nombas has no
utility routines that use seCreateContext. However, some may be created in
the future.
uword32 seOptions;

Nombas ScriptEase ISDK/C 5.01 23

The options parameter is a flags parameter, you can use any combination of the
following |'ed together:

SE_DEFAULT

Default behavior

SE_OPT_REQUIREVAR

All variables must be declared using the var keyword. If this flag is not used, the
normal JavaScript behavior is in effect. When you write to an undeclared
variable, the variable is automatically created as a global variable. Reading from
an undeclared variable always results in an error.

SE_OPT_DEFAULTLOCAL

Variables used without declaring them with the var keyword are declared
automatically as global variables as described above under
SE_OPT_REQUIREVAR. This flag makes them declared as local variables instead.
JavaScript standard behavior is to create the variables as global variables.

SE_OPT_WARNBADMATH

If any math operation involves NaN, an error will be flagged. Normally,
JavaScript allows NaN to be used in an operation and defines specific results.

SE_OPT_EXTRAPARAMS

Wrapper functions indicate the maximum number of parameters they can take,
and extras will cause an error. This flag causes all library functions to take any
number of parameters, ignoring excess parameters. It is normally useful to leave
out this option, as extra parameters usually signal an incorrect usage of these
functions.

SE_OPT_TOBOOLOBJECTS

JavaScript states that any object converted to a Boolean results in TRUE. If this
flag is on, objects are first converted to a primitive then to a boolean. For
instance, without this flag the object new Boolean(False) or new
Number(0) will convert to TRUE, but with the flag they become FALSE.

SE_OPT_DEBUGGER

A debugger is in use, so ignore SE_INFREQUENT_CONT for all seEval calls.

SE_OPT_NO_LIBRARIES

Creates the context but does not initialize the libraries into it. Useful when
sharing libraries via the global _prototype.

SE_OPT_REQ_SEMICOLON

Disables the EcmaScript rules of automatic semicolon insertion, as described in
section 7.9 of the EcmaScript Language Specification. With this flag set errors
will be generated on any statement that is not terminated with a semicolon.

Here is the example from above extended to create a single context:

 SE_CALLBACK(void)
my_error_printer(secontext se,seconstcharptr text)

Nombas ScriptEase ISDK/C 5.01 24

{
 printf_sechar(UNISTR("Error encountered: %s\n"),text);
}

 void
main(int argc,char **argv)
{
 secontext se;
 struct seContextParams params;

 seInitialize();

 memset(params,0,sizeof(params));

 /* The print error function is the one required function.
 */
 params.sePrintErrorFunc = my_error_printer;

 se = seCreateContext(¶ms,MY_JSE_USER_KEY);

 /* your application, including scripting using 'se'
 * as the scripting context.
 */

 seDestroyContext(se);

 seTerminate();
}

Nombas ScriptEase ISDK/C 5.01 25

Working with Variables
The ScriptEase engine keeps track of all variables used by the scripts you
execute. The ScriptEase API provides functions to examine and modify these
variables. The most common place you will use these functions is in the body of
wrapper functions which are described in the next chapter. However, that is not
the only place you might want to examine variables. For instance, the ScriptEase
debugger executes scripts one statement at a time and lets the user examine the
variables as it is doing so. The debugger uses the ScriptEase API to do this.

The most important concept to remember is that every variable is a member of
some object. There are only a few top-level objects that store all variables and
values used by ScriptEase. For instance, if a script says:
var a = 4;

That global variable a is a member of an object, the global object, which is one
of these top-level objects. All global variables are members of this same object.
Similarly, functions can have local variables and parameters, such as in this
function, which are also part of an object:
function foo(b)
{
 var c = 10;
}

This function has two variables, the parameter b and the local variable c. Both
are part of an object called the activation object. Each time a function is called, a
new activation object is created for it. There is one global object but there can be
many activation objects. Activation objects are created for a function when it
starts executing and destroyed when the function finishes. The ScriptEase API
lets you access all activation objects, so you can examine or modify all local
variables for functions currently being run.

IDENTIFYING A VARIABLE
The majority of ScriptEase API functions work with variables, retrieving or
modifying their values. All the functions share a common way to identify which
variable you want to work with. You specify the object and member that the
variable resides at as parameters to each function. ScriptEase provides a number
of predefined objects that you can use which cover all of the places variables are
stored internally. The most common is SE_GLOBAL, the global object. Each such
object is fully explained below. Note that SE_GLOBAL, SE_THIS, and so forth
are the names of the object. You pass that exact text to the function to identify
that as the object you want to work with.

Later, when we discuss the API functions for examining variables, we will see it
is possible for a variable itself to be an object. In that case, seGetObject will
return an object handle for the object the variable contains. This handle, since it
is an object, can be used instead of SE_GLOBAL or the other stock objects in
further variable identifications. In this way, starting from the top-level objects
you can access any variable on the system.

Nombas ScriptEase ISDK/C 5.01 26

While it is possible to access any variable in this way, it is not always
convenient. For instance, let's say you want to get at the variable foo[5].goo.
You could do this in steps. You would get foo as a member of the global object.
After seeing that it is itself an object, you could get the numeric member 5 from
it. That gives yet another object from which you could extract the final member
goo. Not only is that ugly and difficult to understand, but there could be other
caveats. A script, when it refers to foo, might not be getting a global variable.
foo could be a local variable, or it could be found because the code is inside a
with statement. Trying to program all the possibilities would be tedious,
lengthy, and error prone.

Fortunately, ScriptEase provides an API call to do this for you. seVarParse will
take an arbitrary variable name, such as a or foo[5].goo and tell you what
object and member name it is referring to. Once you have the object and member
name, you are ready to call any of the variable access functions we will describe
below to examine or modify that variable. Most of the API function that take an
object/member pair can also use the SE_COMPOUND types to parse arbitrary
variable names.

LIST OF MEMBER SPECIFIERS
The second half of the variable locator is the object member to access. We will
discuss specifying that first as doing so reduces the number of forward
references.

When you want to access a member of some object, you use one of the following
macros to indicate which member you'd like to access.

SE_MEM("member name")
The simplest form, this accesses the named member of the object.

SE_UNIMEM(seconstcharptr)
This member access specifier takes an sechar string such as an sechar [] or
an secharptr.

SE_HIDDEN_MEM("member name")
This is identical to SE_MEM except that the member accessed is visible only the
thei ScriptEase API, and not to the scripts themselves. These hidden members
are an excellent way to associate data with an object (such as a C pointer) that
you don't want to be seen by the script.

SE_HIDDEN_UNIMEM(seconstcharptr)
Like SE_UNIMEM but the member is hidden from the scripts. See
SE_HIDDEN_MEM.

SE_COMPOUND_MEM("compound.member.name")
Similar to SE_MEM but the member name can represent complex expressions.
See seVarParse for limits on these expressions.

SE_COMPOUND_UNIMEM(seconstcharptr)
Like SE_UNIMEM but member expression can be compounded. See seVarParse
for limits on these expressions.

SE_NUM(sememcount)

Nombas ScriptEase ISDK/C 5.01 27

Allows you to access numerically-named members. This is most useful with
arrays. Because of the way JavaScript works, member names that are number use
the text representation of that number as their name. Thus, SE_MEM("10") and
SE_NUM(10) refer to the same member. Because of internal optimizations, not
only is this naming method more convenient for numeric members, it is faster.
Note that this method may only be used for non-negative numbers. For negative
numbers use a string method (e.g. SE_MEM("-1)).

SE_STR(sestring)
Accesses a member using an sestring internalized string that was received
from the ScriptEase API. You can generate such strings using the
seInternalizeString or seInternalizeStringHidden API call. Member names passed
to callback functions are in this format.

An sestring is faster to use than a string literal member name. When you pass
a member name using SE_MEM, it has to be converted into an sestring
internally before continuing. Doing it once and referring to members using the
resulting sestring is faster. In addition, you can compare sestrings for
equality using the == operator which is much faster than the strcmp_sechar
needed to compare text strings.

SE_INDEX(num)
Internally, all objects members are stored in slots. They are contiguous starting
from 0. SE_INDEX lets you access a member by its slot.

The usual use for this method of accessing members is to iterate over all
members of an object. The ScriptEase API call seObjectMemberCount will tell
you how many members an object has and thus how many slots it is using. Those
slots are numbered from 0 to one less than the number of slots.

Note that the slot a particular member uses will changes as members are added to
or removed from an object. Do not try to use SE_INDEX to access regular
members or assume they occupy any particular slot.

SE_STRUCT(memdesc)
You can use this macro to retrieve the member from an seMemberDesc structure
and pass it to any of the functions. You store a member in the structure using the
seStoreMember function. Here is a short code example:
struct seMemberDesc mem;
seStoreMember(&(mem),SE_NUM(0));
sePutNumber(se,myObj,SE_STRUCT(&mem), 10);

Member description structures are useful to pass a member identifier as a
parameter to a function.

SE_VALUE
SE_VALUE means not to work with any member but rather to work with the
object itself. For instance, you can use the object,member pair
SE_GLOBAL,SE_VALUE to examine or change the global object. For most
objects, putting a value to the object itself using SE_VALUE will call the operator
overload function on that object with the operator SE_OP_ASSIGN being
overloaded. If the object has no operator overloading, then the operation does
nothing and is ignored. Several of the special ScriptEase objects have their own

Nombas ScriptEase ISDK/C 5.01 28

behavior when assigned to the SE_VALUE member. For instance, with
SE_GLOBAL doing so changes the global object. Read the individual descriptions
below of the ScriptEase objects to determine if that object allows a put to itself
via SE_VALUE and what that put does.

SE_STOCK(string)
There are a number of stock member names which are accessed via this macro.
The text of such a stock string is put as the argument to the macro such as
SE_STOCK(length) or SE_STOCK(this). For a particular string, such as
length, SE_STOCK(length) is equivalent to SE_MEM(“length”). The
advantage to using the SE_STOCK macro it that the macro is faster. However,
only some of the more commonly used member names are available with
SE_STOCK.

All of the stock strings may be found in the file src/misc/stockstr.h

SE_FUNCTION_TEXT
This is a special member that cannot be created, written to, or deleted. Only
script functions have this member, for all other objects SE_FUNCTION_TEXT is
undefined. The value associated with the member is a text version of the script
function's body.

Some builds, such as when JSE_SAVE_FUNCTION_TEXT is not defined (the
default if JSE_MIN_MEMORY is defined), do not save the information necessary to
rebuild the function's text representation and therefore will always return an
undefined value.

SE_FUNCTION_GLOBAL
If JSE_MULTIPLE_GLOBAL is defined, then this flag can be used with functions
to retrieve or assign the global object that will be associated with that function.
SE_NOWHERE will be used if the function object should not set the global on
entry/exit.

For example, to disable global variable switching on a function named
"anonymous":
 seobject anon;
 anon = seGetObject(se,SE_GLOBAL,SE_MEM("anonymous"));
 sePutObject(se,anon,SE_FUNCTION_GLOBAL,SE_NOWHERE);

SE_LIBRARY_DATA
All wrapper functions have a piece of user data associated with them determined
by the seAddLibTable call that initialized that function. Use seGetPointer to
retrieve that data from a wrapper function. Only wrapper functions have library
data associated with them.

LIST OF STOCK OBJECTS
ScriptEase scripts contain a large amount of data you might want to access. You
access a particular piece of data using one of the following stock object. The
name given is the value you pass as the object parameter to any of the variable
accessing functions described below. After each object name listed below is a
description of that object and what data you will actually be getting or changing
when you access and modify its members.

Nombas ScriptEase ISDK/C 5.01 29

SE_GLOBAL
The members of this object are the global variables of the script. For instance, the
global variable zed is the member zed of this object. You can examine and
change global variables by using this stock object. You can also change the
global object itself by using using sePutObject on SE_GLOBAL,SE_VALUE.

Note that all functions remember the global object in effect when they were first
created and swap that in when they are executing. This facilitates scoping where
multiple scripts are executed using seEval each with a new global object. The
various functions remember their global object so that variables created with the
var keyword in the script the function was evaluated in are accessible whenever
the function is executing. For some programs, this behavior is undesirable. For
instance, a person might want to create utility functions that always act on the
variables currently in effect and thus run them with the current global objects.
There are two ways to change the behavior.

First, by turning off JSE_MULTIPLE_GLOBAL in your jseopt.h file, this
behavior is turned off completely. Alternately, you can turn the behavior off for
any wrapper function by including the SE_KEEP_GLOBAL flag in the function
flags used to define that wrapper function (see chapter on "Wrapper functions"
for more details.)

SE_ARGS
The members of this object are the arguments passed to your wrapper function. If
you are outside a wrapper function, this object has no members. You cannot add
or delete members from this object, you can only access and update the actual
parameters passed to your function.

Since ScriptEase supports named arguments, you can specify a normal member
name. However, most wrapper functions have no names for the arguments, and
names are only present if the caller provided names for the arguments. Normally,
you just use SE_NUM(x) to access argument number x. For instance, SE_NUM(0)
is the 0th argument (i.e. the first argument passed to your function) and so forth.
For the arguments object, SE_INDEX accesses the members just like SE_NUM
does, they are synonymous.

You cannot use SE_VALUE with SE_ARGS.

SE_ACTIVATION
An activation object is the object used to store local variables and parameters to a
function. Since a wrapper function is written in C, it has no such variables.
However, the calling script function does, and it is often convenient to be able to
access them. SE_ACTIVATION accesses the calling script function's activation
object. If there is no calling script function, SE_ACTIVATION accesses the global
object, just as SE_GLOBAL does. You can get the activation object by using
SE_ACTIVATION,SE_VALUE but you cannot write to it.

SE_THIS
Whenever a function is called, it has a this variable associated with it. For
instance, when you call a function such as:
foo.func();

Nombas ScriptEase ISDK/C 5.01 30

foo is the this variable for the function call to func(). When you don't specify
an explicit this variable, such as:
func();

The this variable is implicitly the global object. You can access the this
variable for your wrapper function, which is always an object, and its members
by using the SE_THIS stock object. If you use SE_THIS outside of a wrapper
function, it is always the global object.

You cannot write to SE_THIS,SE_VALUE, it is read-only.

SE_SCOPE
Using SE_SCOPE is a way to locate a variable in the same way that the script
interpreter would, following the _prototype and __parent__ chain of the active
functions. If you know for certain what object a member belongs to (some object
or SE_GLOBAL or SE_THIS for example), then using that object directly is
more efficient, but SE_SCOPE mimics the flexible scoping rules of the
ECMAScript language.

SE_TEMP
Often a ScriptEase API program needs to create variables of its own to store
temporary data. SE_TEMP refers to an object where such data can be stored. This
object lasts for the life of the context, so your data can be long lasting if you
desire. You are free to add and remove members from this object as you need.
Please see the in depth explanation of this object later in this chapter.

You cannot write to SE_TEMP,SE_VALUE.

SE_WRAPPER_TEMP
Like SE_TEMP, but the object and all of its members goes away when the current
wrapper function finishes. If used outside of a wrapper function, it is identical to
SE_TEMP. Like SE_TEMP, you cannot write to the object itself.

SE_NOWHERE
This is a garbage sink object. Any write to any member of this object is ignored,
as are attempts to create new members. Any read of a member returns the
undefined value. It is intended for one particular use, namely as a return from
functions that return an object,member pair when there is an error. If the
programmer doesn't check the error return and just tries to use the returned
object,member, a SE_NOWHERE member is returned so the access does nothing
and doesn't crash.

If you compile the core with the SE_TRAP_NOWHERE option on, accesses to this
object will trigger assert failures. This is intended to facilitate debugging, to find
where you have not properly checked your returns from ScriptEase API calls.

SE_DEFINES
The #define statement defines a macro, an identifier mapped to be a different
value. Note that ScriptEase does not support parameterized macros. This object's
members are the defined macros, the value of the members are strings that are
what the macro is defined to be. In other words, if you have this statement:
#define FOO goo

Nombas ScriptEase ISDK/C 5.01 31

Then one of the members of the SE_DEFINES object will be FOO and its value
will be the string "goo". You can examine and modify the defines as well as add
new ones by creating new members. Note that these defines will only affect
scripts that are executed after you make the change.

You may not write to the SE_DEFINES object itself.

SE_RETURN
This is the place in which the return value from your wrapper function is to be
stored. This discussion will only be minimal for now, a more complete discussion
of this object can be found later in the chapter. SE_RETURN mainly works with
the SE_VALUE member. For the return, the SE_VALUE is the value to be returned.
That is to say, if you want to return the value 10, you would write:
sePutNumber(se, SE_RETURN,SE_VALUE, 10);

The object has four secondary members, all of which are booleans.You set one
(and only one) of them to TRUE to indicate a special return condition. They are:

SE_ERROR
The returned value indicates an error. If this flag is FALSE, the value returned in
SE_VALUE is a normal return like the JavaScript statement return 10;. If this
flag is TRUE, it is the equivelent of throw 10;.

SE_EXIT
Exits out of the script with the returned value being the return of the script. This
is exactly analogous to a C program calling exit(), for instance exit(10); .

SE_YIELD
Causes the script to drop back to the calling seExec API call. This is useful for
fibers, described in "Fibers and Threads". It will allow the next fiber to take its
turn. The return value is still returned as normal once the fiber gets its next turn
to run.

SE_SUSPEND
Similar to SE_YIELD, in that the fiber drops back to the calling ScriptEase ISDK
application. However, the fiber cannot be run until resumed by the application.
Any calls to seExec will return immediately. The application restores the fiber
by putting FALSE to that fiber's SE_RETURN,SE_SUSPEND member. In addition,
the application may also modify the return value after it does so, but before it
seExecs the fiber. This is useful for implementing wrapper functions that delay
the fiber until some needed value is available, then return that value. The
application manager can examine the wrapper function's return value to allow the
wrapper function to communicate with the manager. The chapter on "Fibers and
Threads" has more details.

In addition to a place to put your return, the SE_RETURN object is also where you
receive the result from seEval API invocations. The reason for the dual use is
simple; in many cases, you want to execute some code using seEval then pass
along the result. By putting it in this place, you can immediately return from your
wrapper function, returning that value.

Note that once SE_ERROR is set to true, the return value is locked into place and
cannot be changed. The reason is again for convenience. Many times you want to
just run your snippet of code and not check for errors. In this way, if an error

Nombas ScriptEase ISDK/C 5.01 32

occurs, it takes precedence. You don't have to check for the error to avoid
overwriting it. However, you can reset the SE_ERROR boolean back to FALSE if
you want to erase the error and overwrite it.

SE_AT_EXIT
The SE_AT_EXIT object contains a number of members who are functions,
wrapper or script. These functions should take no parameters. All of the function
members are invoked when the current seEval with the flag SE_EXIT_LEVEL
completes. The this object for these functions will be the SE_AT_EXIT object
they are a part of.

Members of the SE_AT_EXIT object that are not functions are ignored. However,
they can be used to store information to be retrieved by an at-exit function
through its SE_THIS object.

The sePutWrapper API function is useful for creating functions as members of
the SE_AT_EXIT object to then be called.

You should choose member names for your at-exit functions that are unique and
unlikely to be duplicated. Using short, common member names runs the risk of
overwriting another at-exit function or its associated data members.

SE_FILENAMES
This object is an array, so it has members 0, 1, and so forth. Each member’s
value is a string, one of the filenames the script is using. These filenames are the
source files of the script. Because a script can use the #include directive, a
script can be made up of several source files.

SE_STACK_INFO(depth)
These objects contain information about all function calls currently being
executed. SE_STACK_INFO(0) represents info on the wrapper function you are
in, SE_STACK_INFO(1) is the function that called you, and so forth. The
maximum depth you can look back is determined by the compile-time constant
SE_MAX_STACK_INFO_DEPTH which defaults to 64. Thus, by default, you may
use SE_STACK_INFO(0) to SE_STACK_INFO(63).

Here are the members of each stack info object and what that information is.
These members are all read-only:

SE_SI_WRAPPER
A boolean, TRUE if the function is a wrapper function, FALSE if it is a script
function.

SE_SI_FUNCTION
The object for the function.

SE_SI_FUNCNAME
The string name of the function.

SE_SI_TRAPPED
TRUE if an error occuring would be trapped if it occured in this function.

SE_SI_GLOBAL
The global object for this function.

SE_SI_THIS

Nombas ScriptEase ISDK/C 5.01 33

The this object for this function.

SE_SI_DATA
The user data associated with this function if it is a wrapper function. This is
NULL for script functions. You retrieve this value using seGetPointer.

SE_SI_FILENAME
The filename the current line of the script function is in. For wrapper functions,
this will be undefined.

SE_SI_LINENUM
The line number of the current line of the script function, or 0 for wrapper
functions.

SE_SI_ACTIVATION
The activation object for the script function. For wrapper functions, it will be the
same as the global object.

SE_SI_SCOPECHAIN
The current scope chain for the script function. See "Script Execution Topics" for
more information on scope chains.

SE_SI_DEPTH
The depth of the function. As you go deeper into the stack, the depth gets
smaller. For instance, if a script is in a wrapper function called from the main
body of the stack, then the call stack comprises two levels, SE_STACK_INFO(0)
and SE_STACK_INFO(1). The SE_SI_DEPTH is indication of how many
function calls are nested beneath this level, including the level itself. In this case,
the SE_SI_DEPTH of SE_STACK_INFO(0) will be 2, indicating 2 items nested.
The SE_SI_DEPTH of SE_STACK_INFO(1) will be 1, as this function has only
itself and nothing nested beneath it. The depth can be 0 if SE_STACK_INFO(0)
is used while no code is executing and thus no function calls are nested at all.

SE_SERVICES
This is a storage space to associate names with arbitrary data. What data you
associate is reserved for your application. ScriptEase: Desktop, for instance,
stores a number of pointers with names.

You are allowed to retrieve and store values to SE_SERVICES,SE_VALUE. This
is a single slot that is accessed more quickly than the others. However, there is
only one such slot. Therefore, an application writer is given that slot for his
application. Any utility function library that need to associate data with a context
must use a named member of the SE_SERVICES object to store its data.

SE_SHARED_SERVICES
This object is used in the ScriptEase builds that allow objects to be shared among
contexts. In builds in which this is not turned on, it is a synonym for
SE_SERVICES. This means you can use this object to make your code work
correctly when shared and still compile and function in a non-shared build.

See the SHARED SERVICES section in the Fibers and Threads chapter for a
complete discussion of sharing objects and using this stock object.

SE_SELF

Nombas ScriptEase ISDK/C 5.01 34

A wrapper function can use this object to refer to itself, the wrapper function that
is currently executing. It is used most often to retrieve the library data for the
executing wrapper function using the SE_SELF,SE_LIBRARY_DATA pair.

EXAMINING VARIABLES
Now that you know how to select the variable you are interested in, let's look at
examining its value. JavaScript does not have variables of fixed type. When a
script is run, any variable can be assigned a value of any type. Each can be
assigned values of differing types as the script continues. For this reason, you
have to look to see what type a variable currently is. You do this using the
seGetType API call. This tells you what type an object member is. You can use
this information to execute different code based on the type of a variable.

Fortunately, you can let ScriptEase worry about converting types and just ask to
get a variable's value as a certain type. If the variable is not of the correct type, it
is converted. This is useful because many JavaScript functions are designed to
work this way; when passing parameters to the standard JavaScript functions,
they are converted to the type the function expects automatically. If you allow
ScriptEase to do the same when you are accessing variables, you will
automatically follow the JavaScript standard that variables are converted to the
correct type whenever necessary. The seGetXXX functions, where XXX is based
on the type you'd like to get, convert the ScriptEase variable value to the given
type and return it to you, in C format. Note that the variable is not permanently
changed. You can use the seConvertXXX API call to do that.

All of the API calls that read a variable's value, either to get its type or get its
value, read the value exactly once per API call. This is important to understand
the behavior of dynamic objects. If you just use seGetXXX, the value is read,
converted to the required type, and returned to you. This is the preferred method.
However, you may want to read the type then get the value of that particular
type, presumably to do different things based on the variable's type. Understand
that this involves two calls to API functions that read the value, one to seGetType
and one to a seGetXXX. This means the value will be read twice. If the object the
member is being retrieved from is dynamic, that dynamic get will be called
twice. It is possible for it to return two different values, defeating the purpose of
your code.

In this situation, because seGetXXX is safe, your code will not crash just operate
unexpectedly. You can ignore such objects and let the object's designer worry
about it. Alternately, you can use seAssign to grab the value and store it in a
temporary location. This will read the value once. Now you can use seGetType
and seGetXXX on that stored value, knowing it will not change.

MODIFYING VARIABLES
The other thing you do with variables is to change their value. You use
sePutXXX to put a particular value into variable. Again, XXX has various options
for the various types of data you can store in a variable. Like a JavaScript
assignment, whatever value the variable held before the call is discarded in favor

Nombas ScriptEase ISDK/C 5.01 35

of the new value. If the variable is a member of a dynamic object, a dynamic put
will be called to store the value.

In the same way as for reading a variable's value, each API call that modifies a
variable's value does so once, meaning one dynamic put call will be made per
API function call. You can use a similar technique to reading, build up the value
in a temporary location then put the value once to the real location, so any
dynamic put is called only once.

USING SE_TEMP AND
SE_WRAPPER_TEMP
Using these objects is pretty simple. You create a member, store some value it in
it, then delete it when you are done. For SE_WRAPPER_TEMP, you often do not
delete the members explictly and instead let them go away automatically when
your wrapper function exits. The only problem arises in selecting which member
to use. You need to ensure that you do not conflict with some other part of your
program that may also be using a temporary member of these objects or with
utility functions potentially written by someone else.

The way to do this is to choose a member name for your temporary variable that
is not a simple name like foo or i. It is suggested that you use a name that
incorporates the filename and wrapper function name, since that should be
unique for your application. For instance, your member name might be
foo.c:my_wrapper.temp1. In this way, you can ensure that your program
does not mysteriously fail due to conflicting SE_TEMP member names.

SE_RETURN EXPLAINED
The SE_RETURN object is potentially the most confusing of the objects.
However, it does not have to be. The main object,member pair associated with
this object is SE_RETURN,SE_VALUE. This member is where you put the return
value for your wrapper function. For instance, if you want to return the number
10, you would write:
sePutNumber(se, SE_RETURN,SE_VALUE, 10);

That part is easy. However, the SE_RETURN object has four other boolean
members: SE_ERROR, SE_EXIT, SE_YIELD, and SE_SUSPEND. The last two are
used for fibers and are covered in "Fibers and Threads". The first two are
discussed next.

After you return a value (not before), you can mark that as an error result by
setting the SE_RETURN,SE_ERROR member to be TRUE. Consider the JavaScript
statement:

return 10;

versus
throw 10;

In the first case, the result is 10. In the second case it is also 10, but it is an error
result of 10. If you don't understand the throw statement, you should consult a

Nombas ScriptEase ISDK/C 5.01 36

JavaScript reference. The return statement is identical to the example we gave
above. The throw statement is done from the ScriptEase API as follows:
sePutNumber(se, SE_RETURN,SE_VALUE, 10);
sePutBoolean(se, SE_RETURN,SE_ERROR, TRUE);

Throwing arbitrary values in this way is not common and is usually reserved for
complex scripts. Most often, you want to throw an exception. Some error
happens, such as illegal parameters to your wrapper function, and you want to
generate an error return. That is a common occurance, and ScriptEase provides
the seThrow API call to do so. Explicitly setting SE_RETURN,SE_ERROR to
TRUE is very uncommon, and you probably won't ever need to do it.

Similarly, the SE_EXIT flag indicates that the script should exit with the given
value. Consider the C statement:
exit(10);

SE_EXIT is usually used to abort a script when an error occurs. Most of the time,
you will use seThrow to generate an error. seThrow errors can be trapped using
the try/catch statement allowing the script to recover from errors. However, if
something so drastic has happened that the wrapper function decides the script
must abort immediately and should not be trapped, you can duplicate the C
exit() call using the SE_EXIT flag. This code does exactly that:
sePutNumber(se, SE_RETURN,SE_VALUE, 10);
sePutBoolean(se, SE_RETURN,SE_EXIT, TRUE);

There is one final thing you should know. Normally, you can keep overwriting
SE_RETURN,SE_VALUE, and the last value returned is the result of the function.
However, once any of the four boolean members is turned to TRUE,
SE_RETURN,SE_VALUE becomes read-only. Any error is locked in this way.
This means that if you call functions inside your wrapper function that generate
an error, that error will also be the result of your own function, and propagated
back to the user. This is usual desired behavior. In this way, you often do not
need to check the error results of the ScriptEase functions you call, as those
errors take precedence over whatever you try to return. This leads to small, easy-
to-understand wrapper functions in most cases. If you have a more complex
wrapper function that can recover from errors, you can unlock the error result by
setting whichever of the four members that is TRUE back to FALSE.

Nombas ScriptEase ISDK/C 5.01 37

Script Execution Topics
Before we delve into customizing your scripting environment for your
application, it's time to talk about the most common scripting operation:
executing a script.

Using seEval
Having created an secontext, you use this context to execute scripts via the
ScriptEase API. The ScriptEase ISDK function to execute script code is seEval.
This function has a large number of parameters to control its behavior and the
behavior of executed code. This chapter is devoted to explaining seEval. Let's
start with a simple example that uses default values for most of the parameters:

seEval(se,UNISTR("var a = 10;"),SE_TEXT,
 NULL,NULL,SE_DEFAULT,NULL);

All of the NULL values indicate a parameter that we are not interested in
providing, using the default value instead. This call as it is written will evaluate
the simple script var a = 10;. The full prototype of seEval is as follows:

 sebool
seEval(secontext se,void *to_interpret,int interp_type,
 seconstcharptr text_args,
 seobject stack_args,
 uword32 flags,
 struct seEvalParams *params);

The function returns a boolean indicating whether or not the evaluation
succeeded. It would not if the script to evaluate contains an error. In addition to
indicating success or failure, the script returns a value using the return
statement. This value returned from the script being called is stored in the
SE_RETURN object. This means that if you invoke seEval in a wrapper function
then immediately return from the wrapper function, the result of the evaluation is
passed along as the result of your wrapper function. This is a useful technique
which is used, for instance, to implement the ECMAScript eval function.

An important concept of an evaluation is that of the global object. All global
variables in the script, as well as functions, are put into the global object. When
the script completes, all variables and functions are still part of the global object.
This means that additional calls to seEval will find the variables and functions
from past calls. You can specify a particular global object in the params
parameter to put these variables and functions in that object as is described
below.

As was mentioned when describing error returns, once a context has an error as
its return, any attempts to change the return value are ignored. Likewise, any
calls to seEval are ignored for the same reason. It is the most reasonable course
of action when some previous API call generated an error. You must first erase
the error as was described if you want to use seEval.

Let's look at the parameters and explain their use.

Nombas ScriptEase ISDK/C 5.01 38

se
The first parameter, the context, is passed to every ScriptEase API function
including this one.

TO_INTERPRET, INTERP_TYPE
The second and third parameters are linked togethor. The third parameter,
interp_type, indicates what the second parameter, to_interpret, is. Here
are the possibilities:
INTERP_TYPE TO_INTERPRET

SE_FILE seconstcharptr
SE_TEXT seconstcharptr
SE_PRECOMP ubyte *
SE_FUNC seobject

SE_FILE indicates a filename, which is read, parsed, and interpreted.

SE_TEXT, which we've already seen above, indicates the source code is a text
string.

SE_PRECOMP allows you to execute a precompiled script. You pass as the
parameter the script buffer that was given to you by the sePrecompile
ScriptEase API call.

SE_FUNC allows you to execute a function. You pass the function you wish to
execute. Remember, in JavaScript, a function is just an object. You can retrieve
the function you wish to call via the seGetObjectEx API call.

TEXT_ARGS, STACK_ARGS
The next two parameters are likewise related. You can pass arguments to your
script or function via one of them. stack_args takes precedence so if you use
them both the text_args are ignored. In either case, the arguments are
extracted and passed to the called script or function. For a function, these are just
standard arguments. Script arguments are treated like argc and argv for the
main function in a C program. They are stored for the script in the global
variables _argc and _argv.

For text arguments, specify the arguments in a text string, i.e. UNISTR("-v
foo"). This is parsed in exactly the same way as a command line; white space is
used to separate the arguments, and each is turned into a string in the _argv
array. For stack_args, you pass in a ScriptEase stack object created via the
seMakeStack ScriptEase API call. The arguments are defined by setting
members of this object numerically using the SE_INDEX() member format. In
other words SE_INDEX(0) is the first argument, SE_INDEX(1) is the second,
and so forth. This form of parameter passing is more commonly used for
functions. Most scripts that handle arguments expect all of their arguments to be
text strings. If you pass a script arguments that are not text strings, such as
numbers or objects, you will probably confuse it.

When you call a function that passes any parameters by reference, the arguments
in the stack object will be updated appropriately so you can check their final
value before destroying the stack object after the function returns.

Nombas ScriptEase ISDK/C 5.01 39

FLAGS
The flags parameter is some or all of the following values, |'ed together:

SE_NO_INHERIT
An eval is normally treated like the script text appeared in the containing script at
the point it is executed. The script can see the same variables of its parent,
change them, and so forth. If you use this flag, the eval is completely separate. It
has no effect on its parent except to return a value.

If you use this flag, the stock libraries previously added to the parent will have
new copies initialized for the child. See SE_NO_LIBRARIES below.

SE_NO_LIBRARIES
Only used with SE_NO_INHERIT, the stock libraries are not made available. This
flag is usually not useful as the script will not be able to call any of your wrapper
functions. Still, you may want to just perform a computation that doesn't need to
spend the time to reinitialize standard libraries that won't ever be called.

SE_NEW_GLOBALS
If SE_NO_INHERIT flag is used, this flag is also automatically used. When the
flag is not used, any new variable created is stored in the global object of the
parent and is still around after this script finishes executing. If this flag is
included, a new global object is created for variables the script uses, and those
variables go away when the script completes. Specifying your own global
variable in the params parameter overrides this flag.

SE_CALL_MAIN
The ScriptEase extension of calling a function main after the evaluating the code
outside any function will be used. If the flag is not included, a function main is
not treated as special. This does not apply to calling a function.

SE_FUNCS_ONLY
A script is executed in two parts. First, any functions defined in it are extracted
and created. Likewise, any variables defined using the var keyword are
initialized as undefined. This happens at the very start of the script. The second
part executes any code in the script. For instance, consider this script:
function foo()
{
 return 10;
}

var a = 10;

A normal evaluation creates a function foo in the global object as well as a
variable a as the undefined value. Then the code in the script is run, assigning a
to be 10. If you specify the SE_FUNCS_ONLY flag, only the first part is executed.
In this case, the function foo and the variable a are created, but the the script
body is not run, so the assignment to a is not executed.

Understanding this behavior also is helpful in understanding a subtle
ECMAScript rule, that all variables defined with the var keyword are extracted
and initialized before any code is run to be the undefined value. In this script
example, ECMAScript treats the script as if you wrote instead:

Nombas ScriptEase ISDK/C 5.01 40

var a;

function foo()
{
 return 10;
}

a = 10;

SE_EXIT_LEVEL
Normally, any new at-exit functions are added to the parent. This means they are
not called when the seEval is done but rather when the whole context is cleaned
up. If you turn on this flag, at-exit functions created inside the eval are called
when the eval is finished.

This may seem like a good idea, but there is an important caveat. At-exit
functions normally clean up resources. A call to seEval will return a value to
you, and that value may be dependent on those resources. If the at-exit functions
have been called, the value is using resources that have been cleaned up. This is
why you usually want all at-exit functions held until the context is being
destroyed, so you know all such values are no longer used.

SE_NEW_DEFINES
Normally any new defines (i.e. MACROS) are added to a global list and will
remain for any new seEval calls. This flag makes a new list only accessible to
this evaluation for any new #defines defined in the script.

SE_NO_OLD_DEFINES
This flag will automatically turn on SE_NEW_DEFINES as well. Defines already
created, such as by previous seEval calls, will not be applied to this evaluation.

SE_REPORT_ERRORS
In many cases, you just want to interpret a script and continue. The script should
print any errors and then you are ready to do something else. That's what this flag
means. In other cases, you want whatever the call returns returned to you, even if
it was an error. For instance, you may want to pass the result along, error or
otherwise. In this case, don't include this flag and the return value of the called
function will also be copied to your own return value.

SE_INFREQUENT_CONT
Normally, the seContinueFunc function is called after each statement so
debuggers can function properly. With this flag, it is called much less frequently.
This is useful in Windows in which the continue function must check Window
messages so the task doesn't get the 'not responding' problem. However, calling it
after each statement wastes a lot of time. This flag causes the continue function
to be called far less frequently.

SE_START
The script is initialized but not actually run. You use the seExec API call to
execute one block of the script. seExec executes the script until the next time a
seContinueFunc would be needed, so refer to SE_INFREQUENT_CONT above.
The use of this flag is intented to allow easy cooperative multitasking within your
application. You can call seExec to execute one small script piece at a time with
whatever other code you desire between calls. You can run several scripts

Nombas ScriptEase ISDK/C 5.01 41

simultaneously, each in their own secontext, by calling seEval on each with
this flag set then calling seExec on each in turn.

SE_CONSTRUCTOR
This flag is only applicable if calling a function. seEval will then call the
function as a constructor, i.e. as new Func() rather than Func(). The this you
pass is usually NULL, in which case a blank version of the object type is created
for the constructor, the default behavior when you do a new Func(). You can
make the this something else in which case the constructor will get it. Watch
out, this may confuse constructors. Also, some constructors ignore the provided
object and create their own.

SE_NAMED_PARAMS
Passes parameters by name. This can only be used if passing parameters in
stack_args, and all the object members must have a name. You may use this
flag only when calling a function.

SE_INIT_IMPLICIT_THIS
When this flag is specified, initialization code (i.e., global code that is outside of
any function) will execute as if it is in a function with the SE_IMPLICIT_THIS
flag set. This is useful when executing small pieces of code that need function-
like scoping behavior such as browser event handlers.

SE_INIT_IMPLICIT_PARENTS
When this flag is specified, initialization code (i.e., global code that is outside of
any function) will execute as if it is in a function with the
SE_IMPLICIT_PARENTS flag set. Usually you will use this flag in
combination with SE_INIT_IMPLICIT_THIS.

SE_DEFAULT
No special options.

PARAMS
This parameter is a pointer to a structure that contains several optional variables.
You can pass NULL to not specify any of them. If you do pass a pointer to a
structure, you can leave any element of this structure NULL to use the default for
that element. Here are the fields of this structure:

seobject scopestart;
seobject scopeend;

The scope chain is how ScriptEase determines what a variable name is referring
to. The scope chain is a list of objects. For a typical function, the list contains the
activation object in which local variables are stored and the global object in
which global variables are stored. The variables themselves are members of the
object they are a part of. As a result, for a typical function, the local variables are
searched first to try to resolve a variable name followed by the global variables.
You can specify your own objects to be added to the list.

The scopestart and scopeend parameters are objects created using the
seMakeStack API call. The members of these objects should themselves be
objects to be added to the scope chain. In other words, SE_INDEX(0) should be
the first object to be added to the scope chain, SE_INDEX(1) will be the second,

Nombas ScriptEase ISDK/C 5.01 42

and so forth. These objects are added at the start or end of the scope chain
respectively. Those added at scopestart are searched first during script execution.

Note that during execution the scope object is searched from the highest index to
the lowest. For example, if you provide a scopestart object with 3 members and
a scopeend object with 2 parameters, when scopig a variables objects will be
searched in this order
 scopestart[2] -- this object searched first
 scopestart[1]
 scopestart[0]
 .. inherited globals ..
 this object if implicit this
 this.__parent__ chain if implicit parents
 activation object
 scopeend[1]
 scopeend[0] -- this object will be searched last

Adding objects to the start of the scope chain is analogous to a script execution
inside a with statement. A with statement adds a single object to the start of the
scope chain. scopestart allows you to add a list of objects, but the same
principle applies. scopeend works similarly but adds objects to be searched
after all other places to search for a variable name.
 seobject global;

Indicates a new global variable to evaluate the script using.

 seobject default_this;

The default_this parameter allows you to determine which object will be the
this variable for the executed script or function. For a script, the NULL value is
traditionally used which makes the global variable the default this for the
evaluated script as well. For a function, if the function is being invoked as a
member of some object, that object should be passed as the default_this
variable instead.

seobject security_init;
seobject security_term;
seobject security_guard;
seobject security_object;

These are the standard security functions as described in the ScriptEase language
manual chapter on security. These objects work exactly the same in the
ScriptEase ISDK as they do for any other ScriptEase security application.

seconstcharptr filename;
uint line_num;

These parameters are used when the SE_TEXT form of script is executed. They
specify the virtual filename and starting line number for the script text. This is
helpful in reporting errors that might occur in the script text.

FUNCTION GLOBALS

Nombas ScriptEase ISDK/C 5.01 43

One ScriptEase feature that you should keep in mind is that all functions
remember the global object in effect when they are created and use that as their
own global object when called. A script file, especially header files, may be self-
contained packages that add functions and variables to the global object in
initialization. Those functions cannot work if they are run under a different
global object, they need their global object in which their definitions are stored.
Therefore, specifying a different global object for a function to run under has no
effect, because it is changed back when the function is actually run.
If you'd like to turn off this behavior, you can use define:

#define JSE_MULTIPLE_GLOBAL 0

in your jseopt.h file. Be warned, doing so may make script function libraries
written by other people incompatible with your application.

SCOPING
A topic that leads to much confusion is that of scoping, and how to control it.
Scoping is the process of resolving a variable name when it is encountered in a
script. Normally, local variables are searched for the given variable name, if any,
followed by global variables. The JavaScript with statement is the most
common way to alter scoping. The various scoping rules and issues will now be
examined.

SCOPING - GLOBAL CODE
Global code is code outside of any function. Scoping for global code is simple,
only the global object is searched for variables. Modifying the scoping of global
code is done in the seEval call used to invoke that code using the scopestart
and scopeend fields of the eval parameters as described above. The script user
can then modify the scoping by using the with statement.

SCOPING - FUNCTIONS
Functions are more complex. The normal behavior for a function is to search its
local variables and parameters first. Next, the local variables and parameters of
its parent function are searched. This only applies if the function is nested inside
a parent function. All parents are searched if the function is nested several levels
deep. Finally, the global variables are searched. Again, the user can modify this
behavior using the with statement.

There are several methods for controlling the scope of functions. If you call the
function directly using seEval, you can specify additions to the scope chain
using the scopestart and scopeend members of the eval parameters structure.
This method is rarely used because functions are usually called from within a
script.

The second method is to use the SE_IMPLICIT_THIS and
SE_IMPLICIT_PARENTS attributes. A script function can be given these
attributes using the seSetAttribs API call. Both of these attributes modify the
function's scope chain by adding elements to the scope chain after the local
variables but before the global variables. The SE_IMPLICIT_THIS flag makes
the function add its this object to the scope chain. This makes the function
behave much like a C++ function in that members of the this object can be

Nombas ScriptEase ISDK/C 5.01 44

referred to directly without having to qualify them with this. as is normal for
JavaScript. SE_IMPLICIT_PARENTS is similar, except the parents of the this
variable are added to the scope chain. Parents are linked through the
__parent__ (two underscores on each side) member. this.__parent__ is the
parent of the this variable and is added to the scope chain if
SE_IMPLICIT_PARENTS attribute is set in the called function. Next, the parent
of that object is added and so forth for all parents in the chain. This is most useful
for implementing browser behavior, notably event handlers. The parents of an
event handler, the element it belongs to, the document it is in, and the window it
is part of, are all implicitly added in this fashion.

CONTINUE FUNCTION
The continue function is provided to allow an API application to process code
while a script is being executed. One use of it is to implement a debugger. A
second use is to process Windows messages. This section pulls all the
information about the continue function into one place.

The function is provided by the API user in the seContextParams structure
provided to the seCreateContext API call. During seEval script evalation,
the function is called after each statement in the script is processed. However, the
seEval call can be provided with the SE_INFREQUENT_CONT flag to call the
function far less often. This flag is useful when code must be processed
occassionally but not nearly as frequently as after each statement. Because
debuggers must regain control after each statement, the seContextParams has
a flag SE_OPT_DEBUGGER. This flag overrides the SE_INFREQUENT_CONT flag.
This allows the API user to use the SE_INFREQUENT_CONT flag whenever it
makes sense. A debugger can then optionally be used on the same code correctly,
without changing that code.

Finally, when using the SE_START flag with seEval to execute code one piece
at a time, control is automatically returned from the seExec API call after each
script chunk. The amount of code executed in each call to seExec is determined
by the presence or absence of the SE_INFREQUENT_CONT flag and the
SE_OPT_DEBUGGER flag. Since control is returned to the caller after each seExec
call, the continue function is not called in this case. However, you may wish to
call it yourself, depending on your application.

Nombas ScriptEase ISDK/C 5.01 45

Wrapper functions
Wrapper functions are script functions that are written in C using the ScriptEase
API instead of being written in JavaScript. From the script's point of view, they
appear just like any other function and can be called identically. Most wrapper
functions are initialized by the application before running scripts so as to be
available to the script user right from the start. This is done by writing a wrapper
function table and adding it to your secontext using the seAddLibTable
ScriptEase API call. The table is added before the application makes any calls to
the seEval ScriptEase API call. All of the standard ECMAScript objects, such
as String, Math, or Number, are written using wrapper functions and wrapper
function tables, so you have a large body of example wrapper functions included
with ScriptEase to look at.

Here is a sample wrapper function, to get an idea of how one looks. The rest of
this chapter is devoted to demystifying it:
 SE_CALLBACK(void)
print(secontext se,sememcount argc)
{
 switch(seGetType(se,SE_ARGS,SE_INDEX(0)))
 {
 case SE_TYPE_NUMBER:
 /* for whatever reason, need a specific number
 * format
 */
 printf("%0.20g",seGetNumber(se,SE_ARGS,SE_INDEX(0)));
 break;

 default:
 /* Oh what the heck, just let ScriptEase convert
 * whatever it is to a String.
 */
 printf("%s",seGetString(se,SE_ARGS,SE_INDEX(0)));
 break;
 }
 /* let's return something because we can */
 sePutString(se,SE_RETURN,SE_VALUE,
 "Go away, you bother me kid.",SE_PS_STRLEN);
}

Before looking into the wrapper function tables, a basic overview of a wrapper
function is necessary. The example above is simple but it demonstrates all that a
wrapper function does. It gets its arguments, uses them to perform the body of
the wrapper function, and returns a result.

THE FUNCTION HEADER
Starting with the definition of the function, notice that the return value is
SE_CALLBACK(void). The wrapper function returns a void result because it
uses the ScriptEase API functions to indicate its return value which will of course
be some ScriptEase value. Therefore, the C return value is not used for a wrapper
function. The SE_CALLBACK macro takes as its parameter a C type, void. The
macro itself is used to define functions that will be called from the ScriptEase
engine rather than from your code. Some systems have special requirements to be

Nombas ScriptEase ISDK/C 5.01 46

able to do this, and the SE_CALLBACK macro fills those requirements for your
system.

Wrapper functions are usually called during an seEval ScriptEase API function
call. seEval evaluates a script, and if that script invokes any of your functions
that are implemented via a wrapper function, that wrapper function will be called
by ScriptEase. Wrapper functions receives two parameters. The first is the
secontext that is doing the callback. A wrapper function can be added to
several contexts, and it needs to know which one is doing the callback. You
should use this provided context in any calls to ScriptEase API functions inside
your wrapper function. You can compare the returned pointer against any you
might have to determine which context is being called back, but doing so is
frowned upon. It is better to store any needed data along with each context using
the SE_SERVICES object and retrieve it in your wrapper function. The second
argument is simply a numeric count of the number of ScriptEase parameters
passed to your function. ScriptEase wrapper functions can take varying number
of arguments depending on how you define them as we will see later. If your
wrapper function takes a fixed number of arguments, you can ignore this
parameter.

THE ARGUMENTS
To access the arguments to your wrapper function, you use any of the ScriptEase
API's retrieval functions such as seGetNumber, seGetString, and so forth.
These functions will automatically convert the value to the correct type if it is not
of that type already. You can use seGetType to check the type first if you wish
to be more stringent. The object,member pair to use for your arguments is
SE_ARGS, SE_NUM(x) where x is the argument number. You can also use
SE_INDEX(x), as for arguments it is synonymous. Arguments range from 0 to
one less than the number of arguments. SE_ARGS,SE_NUM(0) is the first
argument.

THE RETURN
You return a value by using the standard ScriptEase API calls sePutNumber,
sePutString, and so forth. The object/member pair to put to is
SE_RETURN,SE_VALUE. See "SE_RETURN EXPLAINED" for a thorough
discussion of using SE_RETURN. For the simple case, you just put a value to
SE_RETURN,SE_VALUE. For instance, your wrapper function could return the
number 10 via:
sePutNumber(se, SE_RETURN,SE_VALUE, 10);

If you return nothing, by default the undefined value is returned. For constructor
functions, the pre-constructed object is returned in this case.

WRAPPER TABLES
The basic idea behind a wrapper table is that it is a list of wrapper functions to be
made available to your scripts. However, wrapper tables have additional
capabilities as well. You can define entire object classes using these tables.

Nombas ScriptEase ISDK/C 5.01 47

Here is a sample wrapper table that includes many of the options that can be
used.
SE_BEGIN_LIB_TABLE(my_lib)

 SE_NUMLITERAL(UNISTR("Identification"), UNISTR(“1.03”),
 SE_DONTENUM)
 SE_STRING(UNISTR("IdentString"), UNISTR("Version 1.03b"),
 SE_DONTENUM)

 /* Move into "Clib" */
 SE_INOBJECT(UNISTR("Clib"),SE_DONTENUM)

 /* SE_METHOD is a synonym for SE_FUNCTION */
 SE_FUNCTION(UNISTR("MyFuncCall"), MyFuncCallWrapper,
 0, 10, SE_SECURE|SE_BYREF, SE_READONLY)

 SE_CLASS(UNISTR("MyDate"), MyDateWrapper, 0,1,
 SE_INSECURE, SE_STOCK_ATTRIBS)
 /* Stock attributes are DontDelete, ReadOnly,
 * and DontEnum
 */
 SE_PROTO
 SE_FUNCTION(UNISTR("valueOf"), MyDateValueOfWrapper,
 0, 0, SE_SECURE, SE_STOCK_ATTRIBS)
 SE_END_PROTO
 SE_END_CLASS

 SE_END_OBJECT

 /* And why not some stuff in "SElib", note that 'INOBJECT'
 * is always relative to the global object
 */
 SE_INOBJECT(UNISTR("SElib"), SE_STOCK_ATTRIBS)
 SE_FUNCTION(UNISTR("Version"), MyVersionWrapper,
 0,0, SE_SECURE, SE_STOCK_ATTRIBS)

 SE_END_OBJECT

 /* And demonstrate the last two functions. First we make
 * 'MyLib' a copy of 'Clib'. Then we change the attributes
 * on an existing variable.
 */
 SE_COPY(UNISTR("MyLib"),UNISTR("Clib"), SE_READONLY)
 SE_ATTRIB(UNISTR("varname"), SE_READONLY | SE_DONTDELETE)

SE_END_LIB_TABLE

As you can see, the table is a list of elements where each element is one of a
number of macros such as SE_FUNCTION or SE_CLASS. We will list each
individual macro and what it does below. Note that the elements are not
separated by commas. The whole table is begun with SE_BEGIN_LIB_TABLE
macro and ended with the SE_END_LIB_TABLE macro.

First, some overview. Most macros define something and use a name as the first
parameter. For instance, the first element defines a number:
SE_NUMLITERAL(UNISTR("Identification"), UNISTR(“1.03”),
 SE_DONTENUM)

Nombas ScriptEase ISDK/C 5.01 48

The name parameter follows identical rules for all of the different macros. First,
when using string literals, encase them in the UNISTR() macro to ensure
compatibility with all ScriptEase builds. When the table is added, these
definitions in the macro table are created in the global object. Recall, members of
the global object are the global variables of the script. This line therefore declares
a new global variable named Identification. As the table is parsed, however,
certain entries will cause this base object to change from the global object to
some other object. This line is such an entry.
SE_INOBJECT(UNISTR("Clib"), SE_DONTENUM)

First, it too has a name Clib. Like all other names, it follows the same rules, so it
refers to the Clib member of the global object. However, the purpose of the line
is to make the named member the new base. Therefore, new names declared after
this line are no longer relative to the global object, but rather to the Clib
member of the global object. A few lines later, the SE_END_OBJECT macro
undoes this, reverting back. This scheme allows a more readable table. It is a
simple hierarchical scheme that matches well with the way objects and classes
are defined.

There are two conveniences implemented. First, if you specify a name preceeded
by global., for instance global.foo, the global. means that foo is relative
to the global variable and the base is ignored for this entry only. Second, you can
use object notation such as foo.goo. For instance, instead of writing:
SE_INOBJECT(UNISTR("Clib"), SE_DONTENUM)
SE_INTEGER(UNISTR("foo"), 10, SE_DONTENUM)

You could instead write:
SE_INTEGER(UNISTR("Clib.foo"), 10, SE_DONTENUM)

When using this notation, the base for further statements is not changed. The
Clib. part of it applies only to this particular definition. Also, if the object
referred to, in this case Clib, does not already exist or is not an object, it is
converted to an object.

Choose the notation in a particular instance that is clearer. If you are going to
define more than one item in an object, it is clearer to move into that object using
SE_INOBJECT while a single item can be clearer to write out a dot-separated
name.

WRAPPER MACROS
What follows is a description of each macro you can use in a wrapper table and
what each does.
SYNTAX: SE_BEGIN_LIB_TABLE(name)
DESCRIPTION: All wrapper tables are started with this macro. It specifies the

name of the table. Use the table name in your call to
seAddLibTable to add the wrapper table to your context.

SYNTAX: SE_INITFUNC(func)
DESCRIPTION: Specify a function to be called whenever the table is initialized.

Nombas ScriptEase ISDK/C 5.01 49

The function's type must be:
typedef SE_CALLBACK(void *)
(*seLibraryInitFunc)(secontext se,void *userdata);

The initial data you pass in to seAddLibTable (as its final
parameter) is passed to the initialization function. That
initialization function in turn returns the userdata for the
particular instance of the library table. It could just return the
userdata to use the same data for all instances. If there is no
initialization function, the supplied data is used directly in all
instances of the library.

Note that the library can be initialized more than once, and you
must be prepared to handle that case. The first time the library is
initialized is when you call seAddLibTable, but the library will
be reinitialized in certain circumstances.

SYNTAX: SE_TERMFUNC(func)
DESCRIPTION: The companion to the initialization function, the term function

looks like:
typedef SE_CALLBACK(void)
*seLibraryTermFunc)(secontext se,void *userdata);

When the library terminates, it passes its instance (not the
original instance) of the userdata, the value returned from the
initialization function. For each call to the initialization function,
there will be one call to the termination function.

SYNTAX: SE_NUMLITERAL(name,string,vflags)
DESCRIPTION: Create a variable in the current base object with the given name

and the given value. The string passed must be parsable as a
floating point number. The flags of the variable are set to the
vflags value. The allowable flags are:

SE_DEFAULT No special attributes

SE_READONLY The member is read-only and cannot be
modified.

SE_DONTENUM The member should not be enumerated when a
script uses for..in.

SE_DONTDELETE The member cannot be deleted using the
JavaScript delete operator.

SYNTAX: SE_INTEGER(name,number,vflags)
DESCRIPTION: Create a variable in the current base object with the given name

and the given value. Identical to SE_NUMLITERAL, except an
integer value is given.

Nombas ScriptEase ISDK/C 5.01 50

SYNTAX: SE_STRING(name,string,vflags)
DESCRIPTION: Very similar to SE_NUMLITERAL, except the variable is set to a

string value.

SYNTAX: SE_INOBJECT(name,vflags)
DESCRIPTION: The given name is treated as an object, and if the name is not

currently an object, it is turned into one. The object has its flags
set to the vflags value. Finally, that object is the new base for
all names until an SE_END_OBJECT is found.

SYNTAX: SE_END_OBJECT
DESCRIPTION: Undoes the SE_INOBJECT above so all names are derived from

the base before the SE_INOBJECT took effect.

SYNTAX: SE_FUNCTION(name,func,min_args,max_args,

 func_flags,var_flags)
DESCRIPTION: Declares a wrapper function. The parameters are the function's

name, the function itself (a wrapper function), the minimum and
maximum number of arguments, the function flags, and the
variable flags.

The maximum number of arguments can be -1 to specify no
limit.

The function flags are one or more from the following:

SE_DEFAULT No special flags.

SE_DYNAUNDEF The object's dynamic callbacks are only called
if the object does not already have the member in its internal
storage, or if that member is SE_TYPE_UNDEFINED. (See
"DYNAMIC OBJECTS" for a complete description of
callbacks.)

SE_BYREF Parameters passed to this function are passed by
reference, so that any changes to them are reflected in the
variables passed as the parameters.

SE_SECURE The function is secure. Only mark a wrapper
function as secure if it can not perform any dangerous task.
When in doubt, do not make it secure. The general rule is that
any access to the system, such as reading a file or calling a
system function, makes a function insecure.

SE_KEEP_GLOBAL Normally when a function is executed, the
global object in effect when the function was created is used as
the global object when the function is executed. With this flag,
the current global object is retained whenever the function is
executed.

SYNTAX: SE_METHOD(name,func,min_args,max_args,

 func_flags,var_flags)

Nombas ScriptEase ISDK/C 5.01 51

DESCRIPTION: This is a synonym for SE_FUNCTION.

SYNTAX: SE_CLASS(name,func,min_args,max_args,

 func_flags,var_flags)
DESCRIPTION: This works similarly to SE_FUNCTION in that it adds the given

entry as a function. However, as a class, such a function is
expected to be used as a constructor. Several additional items are
therefore created to facilitate this. First, the function is given a
prototype which has the attributes SE_STOCK_ATTRIBS.
Second, the prototype is given an _class member with a name
equal to the name of the class. Finally, the prototype also gets a
constructor member which points back to the class. All of
these items are standard for ECMA classes.

After this table entry is finished, the base is moved to the class
object so you can add members or use SE_PROTO to add
prototype members. This works in the same way SE_INOBJECT
works. Use SE_END_CLASS to move back out of the object.

SYNTAX: SE_END_CLASS
DESCRIPTION: Changes the base to its value before the SE_CLASS entry.

SYNTAX: SE_PROTO
DESCRIPTION: Changes the base to the prototype of the current object. This is

used to define the methods available to members of the current
class. It is identical to:

 SE_INOBJECT(UNISTR(“prototype”)).

SYNTAX: SE_END_PROTO
DESCRIPTION: Changes the base to its value before the SE_PROTO entry.

SYNTAX: SE_COPY(name,source,var_flags)
DESCRIPTION: Acts as an assignment, copying the source value to the given

name. It sets the destination flags as well.

SYNTAX: SE_ATTRIB(name,var_flags)
DESCRIPTION: Sets the variable flags on a given name, changing nothing else

about it.

SYNTAX: SE_END_LIB_TABLE
DESCRIPTION: This must be the last entry in a wrapper table.

Nombas ScriptEase ISDK/C 5.01 53

Lifetimes

Many ScriptEase API calls such as seGetString, seGetBuffer,
seGetObject, and seMakeObject return handles to a ScriptEase items. These
handles remain valid for a specific amount of time, the handle’s lifetime. In the
API manual chapter in the descriptions of these functions, they are said to follow
the standard ScriptEase lifetime model. That model is what is described in this
chapter. We will use an seobject handle as an example for this chapter, but the
other handles follow the same rules.

The critical concept to understand is the difference between the object itself and
the handle to the object. The handle is what is returned to you when you call the
API functions that follow the ScriptEase lifetime model. A handle is simply a
way to refer to the underlying object. There are several API functions that control
the lifetime of the handle. These functions allow you to control how long the
handle will be valid. As long as the handle is valid, you can use it to refer to the
object it represents in the many ScriptEase API calls that take an object as a
parameter. This chapter describes the rules about how long a handle is valid and
the API functions that determine this length.

The point to remember is that a handle is not the object itself but a way to refer to
the object. When the handle becomes invalid, you may no longer use that handle
to refer to the object. However, that does not mean the object itself will be
deleted. The object is completely under the control of the ScriptEase runtime
system which will delete the object when it determines that the object is no
longer needed. It is quite possible that any particular object you have a handle to
is also being used by some other part of the runtime system. When you delete
your handle to the object, do not assume that the object will then be immediately
freed. It may be but more likely the object will be retained because it is still being
used elsewhere. There is no way to force any actual object on the system to be
deleted.

The handles to objects and other items follow a simple set of lifetime rules. As
long as the handle is valid, you may use it in any ScriptEase API call that
requires an object. All handles are by default valid from the time they are
returned to you from a ScriptEase API call until the current callback function you
are in returns. All callback functions in ScriptEase are easily identified by having
their return value enclosed in SE_CALLBACK. Common callback functions
include those in the seContextParams structure, wrapper functions, and
dynamic object functions.

This rule facilitates simple callback functions. Since the handle is automatically
freed when the callback function returns, you do not have to explicitly free the
handle. It is analogous to a C local variable to your callback function. Here is a
valid sample wrapper function that uses an object handle:
 SE_CALLBACK(void)
foo(secontext se,sememcount argc)
{
 seobject myobj = seMakeObject(se);
 sePutObject(se, SE_RETURN,SE_VALUE, myobj);

Nombas ScriptEase ISDK/C 5.01 54

}

The purpose of this wrapper should be obvious, it creates and returns a new blank
object. Here is an example of an invalid wrapper function:
static seobject myobj = NULL;

 SE_CALLBACK(void)
foo(secontext se,sememcount argc)
{
 if(myobj==NULL)
 {
 myobj = seMakeObject(se);
 }

 sePutObject(se, SE_RETURN,SE_VALUE, myobj);
}

The intent is clear, to create a new object and return it then keep returning that
same object for any further calls to the function. But, the handle returned by
seMakeObject is only valid until the end of the wrapper function so when the
wrapper function returns the first time, myobj comes invalid. Trying to use that
handle in later invocations will use it after it has become invalid and obviously
not work. We will see how to make this example work as intended shortly.

The careful reader will be wondering what happens if you get a handle when not
inside a callback function. Keeping with the C analogy, handles retrieved in a
callback function are local variables and handles retrieved not in a callback
function are global variables. Just as global variables last the life of a program so
to do handles retrieved while not in a callback function. The handle is permanent
and lasts until the secontext is destroyed and all variables and objects in it are
freed.

While you may sometimes want to use a handle for your entire program, often
you want to manipulate an object for a few lines of code and then be done with it.
Eventually, when everyone else is done using the object, you'd like it to be freed.
If you allow the handle to stay valid, you keep the object locked and it can never
be freed. It will continue to use up memory until your program is done. For this
reason, you may use the seFreeXXX API routines, seFreeObject in this case
because we have been using seobjects in our discussion. seFreeObject tells
ScriptEase that you are done using the object at that point and that your handle is
to be freed then. Remember, this does not destroy the object. It only tells
ScriptEase that you are no longer using the handle. As was emphasized before,
ScriptEase will actually destroy the object some time in the future when it
determines it is safe to do so.

To summarize the rules so far, a handle retrieved inside a callback function lasts
until the handle is explicitely freed or the callback function returns, whichever
comes first. A handle retrieved outside a callback function lasts until the handle
is explicitly freed or the ScriptEase context is destroyed, whichever comes first.

An issue related to object lifetimes was brought up in the second wrapper
function described above. How do we keep an object handle past the wrapper
function it was created in? Using the C analogy, we want to turn a local variable
into a global variable in the same way that the C keyword static does. The
answer is that you use the seLockXXX API calls, in this case seLockObject.

Nombas ScriptEase ISDK/C 5.01 55

This call indicates that the given object handle is to be valid for the life of the
program. Once you pass an seobject to this routine, it will be treated exactly
like a handle returned outside of a callback function: it lasts until the handle is
explicitely freed or the ScriptEase context is destroyed, whichever comes first. If
a handle already is a global handle, seLockObject has no additional effect.

So, the second wrapper function written correctly is:
static seobject myobj = NULL;

 SE_CALLBACK(void)
foo(secontext se,sememcount argc)
{
 if(myobj==NULL)
 {
 myobj = seMakeObject(se);
 seLockObject(se,myobj);

 /* make the lock permanent
 * so we can keep using it
 * in every call to this
 * wrapper function.
 */
 }

 sePutObject(se, SE_RETURN,SE_VALUE, myobj);
}

You will notice the seCloneXXX API calls such as seCloneObject. These
calls take a handle, which follows the rules just described, and makes a second
handle identical to the first. If the first handle was to be freed at the end of the
current callback function, the clone will be freed then as well. Once created, you
have two independent handles with different pointer values although they both
refer to the same ScriptEase object. They both follow the lifetime rules given
above independently. For instance, you might clone a regular local handle and
pass it to a utility routine. You continue to use the original handle until it goes
away at the end of the wrapper function. The utility routine may call
seLockObject on the cloned handle and use it for a while. That is perfectly
valid, both handle are independent.

Nombas ScriptEase ISDK/C 5.01 57

Objects and Classes
One of the most important tasks for a ScriptEase application writer is to design
and implement object classes for the application’s scripts to use. Most
applications will have underlying data and functions that the script should be able
to access in object form. This chapter will start with a discussion of object classes
and finish with details on implementing those classes using ScriptEase.

OBJECT CLASSES
An object class starts with a constructor function. A constructor function’s job is
to initialize a new object of the object class. It can be written in C using wrapper
functions or implemented in JavaScript. When the user wishes to create a new
object of your class, he calls your constructor function using the new operator
such as:
var a = new MyClass();

In this case, the constructor function is MyClass. Your constructor function will
have a new blank object of its class provided to it as its this variable. The
function can then add members to the this variable as appropriate for the task
your object class is designed to perform. Here is a simple circle class constructor
written in JavaScript:
function circle(radius)
{
 this.radius = radius;
}

With this constructor in your script, you can create a new circle object in
JavaScript such as new circle(10). Although this example has implemented
the circle constructor in JavaScript, you could also implement the circle
constructor using the ScriptEase API as we will demonstrate later in this chapter.

The particular parameters you pass to your constructor as well as how you set up
your new object are determined by the object’s intended use. The main point to
remember is that the this variable passed to your constructor is already a blank
object of the constructor’s object class. All objects of a single class share
common members via their prototype. This sharing is set up for the premade
this variable passed to your constructor.

You designate the methods to share by putting them in the prototype member
of the constructor function. All object’s of the constructor’s class have access to
those members. Here is a simple script that uses a slightly extended version of
the circle constructor:
function circle(radius)
{
 this.radius = radius;
}

function circle.prototype.toString()
{
 return "circle of radius " + this.radius;
}

Nombas ScriptEase ISDK/C 5.01 58

var a = new circle(5);
Clib.puts(a.toString());

This is a simple program that will print circle of radius 5. Although we've
implemented this in script form, you can do the same using the ScriptEase API.
Here is the version that does so:
 SE_CALLBACK(void)
circle(secontext se,sememcount argc)
{
 assert(argc==1);
 seAssign(se, SE_THIS,SE_MEM("radius"), SE_ARGS,SE_NUM(0));
}
 SE_CALLBACK(void)
circleToString(secontext se,sememcount argc)
{
 sechar buffer[128];

 sprintf_sechar(buffer,UNISTR("circle of radius %d"),

 (int)seGetNumber(se,SE_THIS,SE_MEM("radius")));
 sePutString(se, SE_RETURN,SE_VALUE, buffer, SE_PS_STRLEN);
}

SE_BEGIN_LIB_TABLE(circleTable)
 SE_CLASS("circle", circle, 1, 1, SE_SECURE, SE_DEFAULT)
 SE_PROTO
 SE_METHOD("toString", circleToString, 0, 0, SE_SECURE,
 SE_DEFAULT)
 SE_END_PROTO
 SE_END_CLASS
SE_END_TABLE

. . .

seAddLibTable(se,circleTable,NULL);

Notice that the circle function in both the JavaScript and ScriptEase API versions
returns no value. It instead initializes the provided this variable. Constructors
can return a value which will override the default preconstructed this variable.
However, doing so requires you to do all of the initialization for the object you
intend to return yourself.

Please refer to a JavaScript language book for more information on objects and
object classes.

DYNAMIC OBJECTS
We've seen how to make class objects constructors and prototype functions.
However, it is often desirable to produce objects that are more flexible than a
standard object. You may want to map an object to a real entity in your
application and have changes to it immediately reflected. For instance, you might
want to map an object to your display screen such that when a user writes:
displayObj.background = BLUE;

Your screen changes to the color blue. You do this using dynamic objects. While
dynamic objects are most often used to make flexible class members, any object
can be dynamic not just members of a class.

Nombas ScriptEase ISDK/C 5.01 59

Very often you will want to associate one or more C or C++ pointer directly with
your object, so that when your wrapper function retrieve that object that can also
retrieve the C/C++ pointer. Using seGetPointer() and sePutPointer() along with
SE_HIDDEN_MEM or SE_HIDDEN_UNIMEM or with an
seInternalizeStringHidden property, is an excellent way to keep the data on your
C/C++ side safe from the script code and always associated with the proper
objects.

ScriptEase allows you to implement a table of callback functions that you
associate with your object using the seSetCallbacks API function. Normally you
do this in your constructor when initializing an object of your class. This table
has callbacks for all the object manipulation tasks such as getting a member,
putting a value to a member, deleting a member, etc.

Your callbacks will override the normal behavior for the object. To implement
the above example, you would override the put behavior of the displayObj
object. Your code would check for your special property background and
changing the screen color to match the color being put to that member. You can
override only some of the behaviors by leaving the others you are not interested
in as NULL in the table.

Here is a list of the functions in the table. The function prototypes are given for
the various functions, when they are called, and what their parameters and return
mean. When implementing any of these functions for your own object, remember
that SE_THIS refers to the object being manipulated.

 SE_CALLBACK(sebool)
get(secontext se,sestring prop,sebool call_hint);

The get callback is used when a member's value is being accessed. It is also
used when trying to determine if an object has a property if you have not
declared hasProp (see below). Declaring hasProp is the preferred method.

The prop parameter, a parameter to most of these dynamic callback functions,
indicates which member of the SE_THIS object is to be accessed. Normally, you
use seInternalizeString at the beginning of your program to internalize your
special properties, then you can compare them with the property being accessed
using a single pointer comparison. The alternative is to turn prop into a string
using seGetInternalString then compare with a strcmp_sechar, but this is a lot
of work and must be done on each get operation.

call_hint is a boolean indicating if ScriptEase believes the returned value is
going to be used as a function to call. This would be the difference between:
a = yourobj.foo; /* call_hint==FALSE */

and
a = yourobj.foo(); /* call_hint==TRUE */

Knowing this information is useful in certain dynamic objects in which a
property and a method require different setup routines, such as COM.

Nombas ScriptEase ISDK/C 5.01 60

Once you've decided what value the dynamic property should have, you return it
using the usual SE_RETURN object and return TRUE from the function. If you've
decided the property is not one you are interested in, return FALSE. ScriptEase
will act just as if the dynamic callback did not exist in this case, looking up the
property in its internal storage for the object.

Note that you can access the internal storage of the object within your dynamic
callback implementation. You should use the Direct versions of the seGetXXX
and sePutXXX API calls in order to bypass your dynamic properties. If you use
the non-Direct versions, the internal storage will be used for your object but
only for gets. This is because a particular callback for an object is shut off inside
that callback, to prevent infinite recursion. However, only that one callback is
shut off. If you use the object in a way that uses another callback, ScriptEase will
use that callback. On rare occasions, you want that behavior. Most of the time,
however, the implementation of a dynamic callback will want to directly access
the members of its object. It is usually much clearer and quicker to just use the
Direct versions of all ScriptEase API calls while implementing a dynamic
callback.

 SE_CALLBACK(sebool)
put(secontext se,sestring prop);

This callback is used whenever any of the object’s members is being put to. Like
the get callback, the parameter prop indicates the property being updated. The
value being put to that property is the first (and only) parameter to the callback,
SE_ARGS,SE_NUM(0). Also like get, you return TRUE if you've handled the put
operation and FALSE if you still want ScriptEase to update its internal storage
for the object in the regular way.

Like the other dynamic callbacks, the put callback for your object is turned off
while inside of it. However, it is usually better to make this behavior irrelevent
by always using the Direct versions of the ScriptEase API calls inside a
dynamic callback.

 SE_CALLBACK(int)
hasProp(secontext se,sestring prop);

This callback is used when searching for a variable. ScriptEase maintains an
internal list of objects to search when resolving a variable reference. This list is
called the scope chain and is described fully in the Execution chapter. This list
usually consists of the Activation Object, where local variables are stored,
followed by the Global Object. It is easy to add objects to the list by using the
with statement. If your object is on this list, this callback will be used to
determine if your object contains any property being searched for.

The return value can one of the following:
HP_HAS

Nombas ScriptEase ISDK/C 5.01 61

The object has the property.
HP_HASNOT

The object does not have the property.
HP_CHECK

Disregard this callback and check in the normal way. The normal way involves
calling your dynamic get callback if you have one.
HP_DIRECTCHECK

Disregard this callback and check for the property in the object's internal storage
only, do not call the get callback.

 SE_CALLBACK(sebool)
canPut(secontext se,sestring prop);

Before trying to put a value, canPut will be called to determine if it is to be
allowed. You determine whether or not an property can be updated with this
callback. Return TRUE to allow the put. Implementing this callback is most useful
if you are not implementing a put callback, because if you are then you can
merge the functionality of this callback into the put callback by simply not doing
any updating.

 SE_CALLBACK(sebool)
deleteProp(secontext se,sestring prop);

When a property of an object is to be deleted, this callback will be invoked. As
usual, return FALSE if you want ScriptEase to delete the property from its
internal storage. This routine will also be called when the object itself is to be
deleted, a destructor. In this case, the prop parameter will be SE_NO_VARNAME.

 SE_CALLBACK(void)
defaultValue(secontext se,seDataType hint);

When an object is used in a situation when it has to be converted to a primitive
value (i.e. a string or number), this callback is used to do so. The only parameter
is hint, the type that the system needs the value as. It is permissible to always
convert to a single primitive type, which will then itself be converted to the
correct value, if you don't want to take the hint into account. Return the value in
the SE_RETURN object.

 SE_CALLBACK(sebool)

Nombas ScriptEase ISDK/C 5.01 62

operatorOverload(secontext se,sword16 op);

ScriptEase implements operator overloading. Whenever an object is used as the
left-hand operand, this callback is invoked. The op parameter will be the operator
being overloaded, according to this table:

SE_OP_PREINC ++expr

SE_OP_POSTING expr++

SE_OP_PREDEC --expr

SE_OP_POSTDEC expr--

SE_OP_ASSIGN lhs = expr

SE_OP_NOT !expr

SE_OP_UNARY_PLUS +expr

SE_OP_UNARY_MINUS -expr

SE_OP_BITNOT ~expr

SE_OP_EQUAL expr==expr

SE_OP_NOTEQUAL expr!=expr

SE_OP_STRICT_EQUAL expr===expr

SE_OP_STRING_NOTEQUAL expr!==expr

SE_OP_LESS expr<expr

SE_OP_LESS_EQUAL expr<=expr

SE_OP_GREATER expr>expr

SE_OP_GREATER_EQUAL expr>=expr

SE_OP_SUBTRACT expr-expr

SE_OP_ADD expr+expr

SE_OP_MULTIPLY expr*expr

SE_OP_DIVIDE expr/expr

SE_OP_MOD expr%expr

SE_OP_SHIFTLEFT expr<<expr

SE_OP_SHIFTRIGHT expr>>expr

SE_OP_USHIFTRIGHT expr>>>expr

SE_OP_OR expr|expr

SE_OP_XOR expr^expr

SE_OP_AND expr&expr

Nombas ScriptEase ISDK/C 5.01 63

The assign operators, such as *=, are performed as two separate operations, as if
written expr = expr * expr instead of expr *= expr.

The right-hand side of the operator is to be found in SE_ARGS,SE_NUM(0). The
result of the operation should be returned in the SE_RETURN object with a return
from the function of TRUE. A return of FALSE will do the normal operation
which will involve converting the object to a primitive type compatible with the
other operand and doing the JavaScript operation.

Note that the operator overload will be called with the op SE_OP_ASSIGN if the
object is assigned to. Normally, this operation is ignored since you cannot assign
to an object directly. In a script, you can write:
some_obj = 10;

but this just discards the object in the given variable and replaces it with 10. If
the object has operator overloading, this will call the overload callback instead. If
you return FALSE, the normal changing of some_obj's value takes place. If you
return TRUE, it does not. Be careful, you can make a variable whose value the
user can never change in this way.

 SE_CALLBACK(sebool)
getByIndex(secontext se,int index);

This callback is used to get an object member's value by index. This will be used
solely by the ScriptEase API when a programmer is trying to iterate the members
of your dynamic object. There is no hint as there is no way to know how the
programmer intends to use the retrieved value. Return FALSE if you have no such
indexed member.

In order to implement this routine correctly, you need to internally order the
members of your dynamic object in a consistent way. A person will be using this
routine to iterate all of your members, from 0 on up. You must return each
member once only and always in the same index. It is only permissible to
reorganize the members if a member is added or removed. Return the member in
the SE_RETURN object.

 SE_CALLBACK(sestring)
getNameByIndex(secontext se,int index);

A companion routine to getByIndex, this is used when a script wants to iterate
through your object using the for..in statement. You must return the names of
your object's members according to their index. Like getByIndex above, it is
only permissible to reorder your object if a member is added or removed. Return
SE_NO_VARNAME to indicate an index beyond the number of members in your
object. Otherwise return the internalized version of your member's name (see
seInternalizeString). The internalized string will be freed when you return it just
as if you called seFreeInternalString. This is useful in the majority of cases

Nombas ScriptEase ISDK/C 5.01 64

in which you create the name to return and no longer need it locked. If you do
need to retain a lock on the returned string, use seCloneInternalString to
make a duplicate to return.

 SE_CALLBACK(sememcount)
getMaxIndex(secontext se);

Return the maximum index of the members of your objects which is equal to the
number of members minus one.

For all of the above callbacks, the SE_DYNA_UNDEF flag will cause your dynamic
property to be called only if the object does not contain the property in its
internal storage. This is useful for speed. When your dynamic put callback is
invoked on a property, if that property is not special, you can return FALSE to put
it into the object's internal storage. From then on, that property will be treated
normally. The properties you are interested in you do not store in the object, you
handle them in your callback. They will continue to be routed through your
callbacks each time they are accessed.

FUNCTION REDIRECTION
Normally, an object is either a function or it is not. If it is a function, it can be
invoked or used as a constructor such as by Func(); or new Func();. Each of
these behaviors can be overridden. Two special members can be added to an
object to override, _call and _construct. They are used in the two instances
above, _call when invoked as a regular function and _construct when used
in a constructor with the new operator. These special members must themselves
be functions that are called in the appropriate case. It is possible to turn a regular
non-function object into a callable function by giving it an _call member and a
constructable object likewise by giving it an _construct member.

Nombas ScriptEase ISDK/C 5.01 65

API Function List
Here are the API functions organized by functionality. For all the API functions,
if the call has an output parameter, a pointer to something filled in by the
function, you can always pass NULL if you don't care about that particular output.

INITIALIZATION/CONTEXT
CREATION
seInitialize
SYNTAX: uint

seInitialize(void);
WHERE: None
RETURN: The ScriptEase engine's version identifier.
DESCRIPTION: seInitialize is used to initialize the engine, once per

application. See seTerminate for the termination. Call this at
the start of your program, before doing any other ScriptEase
calls. All ScriptEase applications, even multithreaded ones,
should call this routine only once.

SEE: seTerminate

seTerminate
SYNTAX: void

seTerminate(void);
WHERE: None
RETURN: None
DESCRIPTION: Call seTerminate once before your application exits to cleanup

ScriptEase. You must destroy any secontexts created before
calling this routine.

SEE: seInitialize

seCreateContext
SYNTAX: secontext

seCreateContext(struct seContextParams *params,
 seconstcharptr userkey);

WHERE: params a pointer to an seContextParams structure filled in
with context options.

userkey the userkey, if applicable
RETURN: An secontext, suitable to be used in further ScriptEase API

calls.
DESCRIPTION: Create a scripting context. Chapter "Initialization and Contexts"

is devoted to initializing and creating new contexts, see it for full
details.

Nombas ScriptEase ISDK/C 5.01 66

The userkey is provided to you via email when you download an
evaluation version of ScriptEase. Purchased versions ignore this
parameter, for which you can pass NULL.

SEE: seDestroyContext

seCreateBlankContext
SYNTAX: secontext

seCreateBlankContext(
 struct seContextParams *params,
 seconstcharptr userkey);

WHERE: params a pointer to an seContextParams structure filled in
with context options.

userkey the userkey, if applicable
RETURN: An secontext, suitable to be used in further ScriptEase API

calls.
DESCRIPTION: This routine create a scripting context without standard

functions. You should use seCreateContext to create your
scripting contexts. This function is used by seCreateContext
to do so. If you create a scripting context using this function
directly, scripts run in this context will have no standard
functions available such as eval or any of the standard objects
String, Number, etc.

The userkey is provided to you via email when you download an
evaluation version of ScriptEase. Purchased versions ignore this
parameter, for which you can pass NULL.

SEE: seCreateContext, seDestroyContext

seCreateFiber
SYNTAX: secontext

seCreateFiber(secontext parent);
WHERE: parent a parent context to relate the fiber to
RETURN: An secontext, suitable to be used in further ScriptEase API

calls.
DESCRIPTION: Create a fiber context. See chapter on Fibers and Threads for full

details on the topic of multithreading and fiber contexts.
SEE: seCreateContext, seDestroyContext

seGetContextParams
SYNTAX: struct seContextParams *

seGetContextParams(secontext se);
WHERE: se the context to get the parameters from.
RETURN: A pointer to the seContextParams structure for this context.
DESCRIPTION: Get a pointer to the context's parameter structure. The contents of

the seContextParams structure used to create the context is

Nombas ScriptEase ISDK/C 5.01 67

stored with the context. You get a pointer to it and examine or
modify the parameters for the context.

SEE: seCreateContext

seDestroyContext
SYNTAX: void

seDestroyContext(secontext se);
WHERE: se the context to destroy
RETURN: None
DESCRIPTION: When you are done with a context, you destroy it to free up all

associated resources, such as memory allocated.
SEE: seCreateContext, seCreateBlankContext, seCreateFiber

seAddLibTable
SYNTAX: sebool

seAddLibTable(secontext se,
 struct seLibraryTableEntry *table,
 void *data);

WHERE: se the context to add the functions to

table the table of functions to add

data user data for the library
RETURN: A boolean indicating success. Failure can happen on an illegal

table or if memory becomes exhausted.
DESCRIPTION: This routine parses a library table and adds the variables,

functions, and classes defined in it to your context. You need to
add the tables to your context only once, right after you create it.
From then on, all scripts run in the context will have access to
the things you've defined in it. You do need to add the table to
each context. You should consider consolidating all of your
seAddLibTable calls into an sePrepareContextFunc
callback (see Initialization and Contexts) so all contexts created
in your application have access to the functions.

SEE: None

seGarbageCollect
SYNTAX: void

seGarbageCollect(secontext se,int action);
WHERE: se the context to collect

action the garbage collection action to perform
RETURN: None
DESCRIPTION: This routine allows you to manipulate and invoke garbage

collection on a given context. action can be one of the
following:

Nombas ScriptEase ISDK/C 5.01 68

SE_GARBAGE_COLLECT

Perform a garbage collection immediately, even if it has been
disabled.
SE_GARBAGE_OFF

Disable garbage collection. Instead of collecting to free up
unused memory, more memory is always allocated from the
system whenever existing storage is exhausted.
SE_GARBAGE_ON

Re-enable garbage collection.

Note that each SE_GARBAGE_OFF must be paired with one
SE_GARBAGE_ON. If SE_GARBAGE_OFF has been invoked
several times, garbage collection will not be restarted until
SE_GARBAGE_ON has been invoked the same number of times.
However, a garbage collection can always be forced using the
SE_GARBAGE_COLLECT action.

SEE: None

VARIABLE LOCATING
seVarParse
SYNTAX: sebool

seVarParse(secontext se,
 seobject start_object,
 seconstcharptr string,
 seobject *object,
 sestring *member,
 uint flags);

WHERE: se the context to look for the variable in

start_object the object to start seaching from

string the string name of the variable

object an output parameter filled in with the object

member an output parameter filled in with the member

flags flags to control variable resolution.
RETURN: A boolean indicating if the variable was found.
DESCRIPTION: Turn a text variable name into the correspond Object,member

pair. Both output-only parameters, object and member, follow
the usual ScriptEase lifetime rules for the returned value types.
See seGetObject and seInternalizeString for more information on
the object and member respectively.

This routine parses a variable name and returns the given
variable's location. This allows you to read and update the
variable's value. The variable name must be constant. For
instance, foo[5].goo is acceptable but foo[goo].goo is not

Nombas ScriptEase ISDK/C 5.01 69

because in this case [goo] would mean to access the variable
goo as a string and use that member name. Similarly,
goo(5).zoo is not allowed because it calls a function. The
reasoning is that this routine is used to access variables by name,
but it should be quick. If you need to use full-fledged
expressions, you should use the seEval routine instead although
that is much slower.

The primary return is the output parameters which are filled in
with an Object,Member pair you use to access or update that
variable. You would later pass the object and
SE_STR(member) to any of the other API functions to
manipulate that variable. These return values follow standard
rules for Lifetimes, and so may need extra code for cleaning up if
this is not called in a wrapper function. You may often choose
SE_COMPOUND_MEM or SE_COMPOUND_UNIMEM along
with standard seGet and sePut calls for simple access to complex
representations of a single variable.

The flags may be any combination of the follows, |'ed togethor:
SE_DEFAULT

SE_GF_COMPOUND_CREATE - objects will be created if they
don't yet exist. see VARIABLE READING for more information
on this flag.

SEE: seGetObject, seInternalizeString

seGetName
SYNTAX: seconstcharptr

seGetName(secontext se,
 seobject object,
 semember member,
 sememcount *len);

WHERE: se the context the name is resolved in

object the object the variable is in

member the member name

len an output parameter, the length of the string
RETURN: The text of the variable's name
DESCRIPTION: Given an Object,Member pair, get a name for the variable This

function gets the full name of the given variable. It is intended
for error reporting. Be warned, this is a very slow function.

The returned string follows the usual ScriptEase lifetime rules.
SEE: None

seInternalizeString
seInternalizeStringHidden

Nombas ScriptEase ISDK/C 5.01 70

SYNTAX: sestring
seInternalizeString(secontext se,
 seconstcharptr string,
 sememcount len);
 sestring
seInternalizeStringHidden(secontext se,
 seconstcharptr string,
 sememcount len);

WHERE: se the context to internalize the string into

string the text of the member name to internalize

len the length in characters (not bytes) of the string, or
SE_IS_STRLEN to let seInternalizeString use
strlen_sechar() to determine the length of the string.

RETURN: The internalized sestring
DESCRIPTION: All object member names are internalized by the ScriptEase

engine before use. This API call is used to get the internalized
version of a particular string. It is useful for commonly-used
strings as whenever you use the text of the string, ScriptEase
must internalize that string. In addition, ScriptEase internal
strings can be directly compared using a single == comparison
rather than the much slower strcmp_sechar.

The resulting sestring can be used as a member name using the
SE_STR() member name specifier. In addition, object callbacks
return sestring for the member name being accessed.

ScriptEase internal strings are always locked until explicitly
freed. Use seFreeInternalString to indicate you are
finished with a particular internal sestring. You can also
duplicate an sestring using seCloneInternalString.
Refer to the standard ScriptEase lifetime model, as internal
strings follow that with the exception that no internal strings are
freed automatically when a wrapper function exits.

The difference between seInternalizeString() and
seInternalizeStringHidden() is that seInternalizeStringHidden()
will create a property name that is not accesible from scripts
(similar to SE_HIDDEN_MEM or SE_HIDDEN_UNIMEM).

SEE: seCloneInternalString, seFreeInternalString, seGetInternalString

seCloneInternalString
SYNTAX: sestring

seCloneInternalString(secontext se,
 sestring str);

WHERE: se the context the string belongs to

str the internal string to clone
RETURN: A duplicate of the sestring
DESCRIPTION: This is a standard clone function as described in the Lifetimes

chapter. The returned sestring acts as an exact duplicate of the

Nombas ScriptEase ISDK/C 5.01 71

original sestring.
SEE: seInternalizeString, seInternalizeStringHidden,

seFreeInternalString, seGetInternalString

seFreeInternalString
SYNTAX: void

seFreeInternalString(secontext se,
 sestring str);

WHERE: se the context the string belongs to

str the internal string to free
RETURN: None
DESCRIPTION: This is a standard free function as described in the Lifetimes

chapter. Once called, the sestring is freed up and is no longer
valid.

SEE: seInternalizeString,
seInternalizeStringHidden,seCloneInternalString,
seGetInternalString

seGetInternalString
SYNTAX: seconstcharptr

seGetInternalString(secontext se,
 sestring str,
 sememcount *len);

WHERE: se the context the string is part of

str the sestring to get the text of

len an output parameter filled in with the length of the string's
text in characters (len may be NULL)

RETURN: The text of the string
DESCRIPTION: Retrieves the text of a member described by an sestring. The

len parameter (if not NULL) is filled in with the length of the
returned string in characters. The value returned by this call
follows the same lifetime rules as seGetString, and the string
returned by seGetInternalString may in all other ways be treated
as one returned by seGetString.

Note: Prior to the se501a release, the value returned by this call
could be stored in a temporary location and was only guaranteed
to be valid until the next call into the script-engine API. This
older behavior may be defining
SE_GETINTERNALSTRING_NO_LIFETIME in your jseopt.h
file.

SEE: seInternalizeString,
seInternalizeStringHidden,seCloneInternalString,
seFreeInternalString, seGetString, seFreeString

Nombas ScriptEase ISDK/C 5.01 72

VARIABLE READING
seGetBool
seGetBoolEx
seGetNumber
seGetNumberEx
seGetPointer
seGetPointerEx
seGetObject
seGetObjectEx
seGetString
seGetStringEx
SYNTAX: sebool

seGetBoolEx(secontext se,
 seobject object,
 semember member,
 int fl);

 senumber
seGetNumberEx(secontext se,
 seobject object,
 semember member,
 int fl);

 void *
seGetPointerEx(secontext se,
 seobject object,
 semember member,
 int fl);

 seobject
seGetObjectEx(secontext se,
 seobject object,
 semember member,
 int fl);

 seconstcharptr
seGetStringEx(secontext se,
 seobject object,
 semember member,
 sememcount *len,
 int fl);

WHERE: se the context to get the variable from

object the object half of an Object,Member pair

member the member half of an Object,Member pair

Nombas ScriptEase ISDK/C 5.01 73

fl flags determining how the variable is retrieved

len the length of the returned data for seGetStringEx in
characters

RETURN: The C value for the variable.
DESCRIPTION: These routines are a core element of the ScriptEase API. Given

an Object,Member pair, these routines extract the current value
as the given type, converting if necessary, and return the result.
Note that the underlying variable does not change type, its value
is retrieved and converted without changing the source variable.
A valid return will always result from these functions. If an
internal error occurs, like an illegal conversion, that error will be
set up as the result of your function (see seThrow), but a valid
result is still returned. The intent is that you can write a simple
wrapper with no error checking that uses these routines. See the
section SE_RETURN EXPLAINED in "Working with
Variables" for a discussion of the implications of this behavior.
The value returned if an error occurs will always be a stock
value. For numbers, it is SE_NAN (or 0 for non-floating point
numbers). For strings, an empty string, UNISTR(“”), is
returned. For objects, SE_NOWHERE is returned. Finally, for
booleans FALSE is returned.

The flags parameter can be any of the following |'d togethor:
SE_DEFAULT

SE_GF_NOPROTOTYPE - ignore the object's prototype when
looking for the property

SE_GF_NOCALLBACKS - ignore the object's dynamic methods
when looking for the property. It directly accesses the object's
internal structure. It is intended for writing faster dynamic
routines.

SE_GF_DIRECT - This is a bitwise OR of SE_GF_NOPROTOTYPE
and SE_GF_NOCALLBACKS to ignore the object's prototype and
dynamic methods when looking for the property. See the
sections on DYNAMIC OBJECTS for more information on
using this flag

SE_GF_CALL_HINT - if the member is retrieved via a dynamic
get callback (on DYNAMIC OBJECTS for more information
about get callbacks), then this flag will set the call_hint value
to TRUE for that callback.

SE_GF_UNDEF_OBJ_OK - if seGetObject() is called and the
property cannot be converted to an object because it is
SE_TYPE_UNDEFINED or SE_TYPE_NULL, then normally an
exception will be generated because these types cannot be
converted to an object. With this flag set the property will stay
as it is and no exception will be generated (although your
returned object will be SE_NOWHERE).

Nombas ScriptEase ISDK/C 5.01 74

SE_GF_COMPOUND_CREATE - This flag applies only to the
SE_COMPOUND_MEM and SE_COMPOUND_UNIMEM types, or to
calls to seVarParse(). This flag means that the variable is created
so it always exists after the call even if it did not before the call.
Any piece of the variable is likewise created, so if you refer to
foo.goo and there is no variable foo, then foo is created and
made an object and is given the member goo which will initially
be of type SE_TYPE_UNDEFINED; but if you refer to
foo.goo.zoo and there is no variable foo then foo and
foo.goo are created and made objects.

In addition, you can specify the flags by using different named
functions that have the flags as part of their name. In this case,
you do not specify the flags, they are implicit. Taking
seGetNumberEx as an example:
seGetNumber(...) = seGetNumberEx(...,SE_DEFAULT)

seGetDirectNumber(...) =
seGetNumberEx(...,SE_GF_DIRECT)

The return from seGetStringEx and seGetObjectEx both follow
the usual ScriptEase lifetime rules described in the Lifetimes
chapter.

SEE: None

seFreeObject
seFreeString
SYNTAX: void

seFreeObject(secontext se,seobject item);

 void
seFreeString(secontext se,seconstcharptr item);

WHERE: se the context the item is associated with

item the item to free
RETURN: None
DESCRIPTION: These are the standard lifetime free routines corresponding to

seGetXXX. See Lifetimes for the standard ScriptEase lifetime
rules.

You use these functions to explicitly free an object or string
returned from seGetObjectEx and seGetStringEx. Once freed,
the object or string is no longer valid.

SEE: seGetObjectEx, seGetStringEx

seCloneObject
seCloneString
SYNTAX: seobject

Nombas ScriptEase ISDK/C 5.01 75

seCloneObject(secontext se,seobject item);

 seconstcharptr
seCloneString(secontextse,seconstcharptr item);

WHERE: se the context the item belongs to

item the item to clone
RETURN: The cloned item
DESCRIPTION: The standard lifetime clone routines corresponding to

seGetXXX. See Lifetimes for the standard ScriptEase lifetime
rules which these functions are a part of.

These calls produce a duplicate of the item. The duplicate and
the original handle refer to the same item but are independent.
For instance, freeing one of the handles means that handle can no
longer be used, but the other handle is still valid until it to is
freed.

SEE: seGetObjectEx, seGetStringEx

seWeakLockObject
SYNTAX: void

seWeakLockObject(secontext se,seobject obj,
 sebool weak);

WHERE: se the context the object is part of

obj the object to weak lock

weak should the object be weak locked
RETURN: None
DESCRIPTION: Lock an item to produce a weak lock. Like jseLockObject, the

handle will remain until explicitly freed. The boolean determines
if the lock is weak. jseLockObject always produces normal
locks. Therefore, this routines is usually used to produce weak
locks, so the parameter is TRUE. On occasion, you may need to
turn off an existing weak lock and restore it to a full lock which
is when the parameter may be FALSE.

This API function is designed to resolve a common problem. It is
typical when mapping a C object to a JavaScript object for a
programmer to want each item to have a reference to the other.
This allows both sides to have access to its counterpart to
perform any needed task. The problem that arises is that the lock
on the ScriptEase object by the API keeps the object
permanently in memory, even when ScriptEase is no longer
using the object. It is a cyclic loop that cannot be detected
because the cycle extends outside of the ScriptEase core.

Using seWeakLockObject, the programmer retains a handle to
the object but that handle does not lock the object in memory. If
ScriptEase is no longer using the object, the presence of this lock
does not keep it from being garbage collected. Other than that

Nombas ScriptEase ISDK/C 5.01 76

difference, this function performs exactly like seLockObject.

Be careful with this function. The object can be cleaned up at
any time once the script is no longer using it. If you try to use a
handle to such an object, you will probably crash the system.
You should make sure to add a destructor to the object so that
you know when you must stop using the handle and free the
handle using seFreeObject at that time. Any use for this function
other than this intended one is likely to crash your application.

SEE: seLockObject, seFreeObject

seLockObject
seLockString
SYNTAX: void

seLockObject(secontext se,seobject obj);

 void
seLockString(secontext se,seconstcharptr str);

WHERE: se the context the object is part of

obj the object to lock

str the string to lock
RETURN: None
DESCRIPTION: Lock an item. The item will remain locked until it is explicitly

freed. seLockObject always produces normal locks.
SEE: seFreeObject, seWeakLockObject, seFreeString

seGetType
SYNTAX: sedatatype

seGetType(secontext se,seobject object,
 semember member);

WHERE: se the context the member is in

object the Object half of an Object,Member pair

member the Member half of an Object,Member pair
RETURN: The type of the member.
DESCRIPTION: This is a simple function, it returns the current type of the given

variable. Members that do not exist are reported as type
SE_TYPE_UNDEFINED. Members can also exist with type
SE_TYPE_UNDEFINED. Use the seExists api call to
differentiate them.

SEE: seExists, seExistsDirect

seExists
SYNTAX: sebool

seExists(secontext se,seobject object,
 semember member);

Nombas ScriptEase ISDK/C 5.01 77

WHERE: se the context the member is in

object the Object half of an Object,Member pair

member the Member half of an Object,Member pair
RETURN: TRUE if the member exists, else FALSE.
DESCRIPTION: This API function is used in place of seGetType when you do

not care what the type of the member is, only if it exists or not.
SEE: seGetType, seExistsDirect

seExistsDirect
SYNTAX: sebool

seExistsDirect(secontext se,seobject object,
 semember member);

WHERE: se the context the member is in

object the Object half of an Object,Member pair

member the Member half of an Object,Member pair
RETURN: TRUE if the member exists, else FALSE.
DESCRIPTION: This API function is used in place of seGetType when you do

not care what the type of the member is, only if it exists or not.
Unlike seExists, this function ignores any dynamic properties
on the object and only checks if the internal ScriptEase storage
for the object contains the given member. Like all the Direct
functions, it is meant to be used in implementing object dynamic
functions so that the dynamic functions themselves can use the
internal ScriptEase store without having to take into account the
possibility of being called by each other.

SEE: seGetType, seExists

seGetAttribs
SYNTAX: seAttributes

seGetAttribs(secontext,seobject object,
 semember member);

WHERE: se the context the member is in

object the Object half of an Object,Member pair

member the Member half of an Object,Member pair
RETURN: The attributes of the member
DESCRIPTION: This function gets a member's attributes. The attributes a

member has can be one or more of the following flags, |'d
togethor:
SE_DEFAULT

No special attributes
SE_DONTENUM

Nombas ScriptEase ISDK/C 5.01 78

The member is not enumerated when the for..in statement is
used on this object.
SE_DONTDELETE

Using the delete operator on this member is ignored.
SE_READONLY

Attempts to write to the member are ignored.
SE_IMPLICIT_THIS

Only objects can have this attribute, it has no meaning for a non-
object member. When the object is called as a function, the this
variable is added to the function's scope chain. See the
SCOPING section for more information.
SE_IMPLICIT_THIS

Only objects can have this attribute, it has no meaning for a non-
object member. When the object is called as a function, the this
variable's parents are added to the function's scope chain. See the
SCOPING section for more information.
SE_DYNA_UNDEF

Only objects can have this attribute, it has no meaning for a non-
object member. Dynamic callbacks of the object are only
invoked if the object does not have the member being worked on
in its internal store. See DYNAMIC OBJECTS for more
information.

SEE: seSetAttribs

seCompare
SYNTAX: sebool

seCompare(secontext se,seobject obj1,
 semember mem1,
 seobject obj2,
 semember mem2,
 slong *result);

WHERE: se the context the members belong to

obj1 the object half of the Object,Member pair for the first
operand.

mem1 the member half of the Object,Member pair for the first
operand.

obj2 the object half of the Object,Member pair for the second
operand.

mem2 the member half of the Object,Member pair for the second
operand.

result an output parameter returning -1, 0, or 1 to indicate that
the first member is less than, equal to, or greater than the second
member.

Nombas ScriptEase ISDK/C 5.01 79

RETURN: TRUE if the two members are equal
DESCRIPTION: This function uses the ECMAScript rules to determine the

relationship between the two variables. Since ECMAScript only
defines a less-than relationship, this routine internally has to
compare twice to give all the possibilities. For that reason, you
can narrow the information you are interested in by specifying
one of the following special values as the result parameter. In
that case, only the boolean return of the function is used as
described in each case:
SE_COMP_EQUAL

Determine if the two members are equal
SE_COMP_LESS

Determine only if the first member is less than the second.
SEE: None

OBJECT ACCESS ROUTINES
seObjectMemberCount
SYNTAX: sememcount

seObjectMemberCount(secontext se,
 seobject object);

WHERE: se the context the object is a part of

object the object to query
RETURN: The number of members the object has.
DESCRIPTION: This call returns the number of members an object has. The usual

use is to iterate through all the members, using SE_INDEX()
from 0 to one less than the result of this call.

SEE: seObjectMemberName, ObjectMemberCountDirect

seObjectMemberCountDirect
SYNTAX: sememcount

seObjectMemberCountDirect(secontext se,
 seobject object);

WHERE: se the context the object is a part of

object the object to query
RETURN: The number of members the object has.
DESCRIPTION: This call returns the number of members an object has. The usual

use is to iterate through all the members, using SE_INDEX()
from 0 to one less than the result of this call. This version of the
call ignores the object callback getMaxIndex and returns the
number of members the object has in its internal storage. It is
useful for implementing object callbacks.

SEE: seObjectMemberName, ObjectMemberCount

Nombas ScriptEase ISDK/C 5.01 80

seObjectMemberName
SYNTAX: seconstcharptr

seObjectMemberName(secontext se,
 seobject object,
 semember member,
 sememcount *len);

WHERE: se the context the member is a part of

object the object the member is in

member which member to get the name of

len the length in characters of the member name
RETURN: The member name.
DESCRIPTION: This function is used to get the name of a member. It is most

useful when enumerating the members of an object using the
SE_INDEX() member access macro. If there is no such member
then a blank string is returned and SE_RETURN,SE_ERROR will
have been set.

Unlike seGetName, only the members name is returned, not a
fully-qualified variable name.

The returned value is treated just like a return from
seGetStringEx in terms of its lifetime, following the usual
ScriptEase lifetime rules.

SEE: seGetStringEx, seGetName, seObjectMemberCount

seIsFunc
SYNTAX: sebool

seIsFunc(secontext se,seobject object,
 semember member,
 sebool *script);

WHERE: se the context the object belongs to

object the object half of an Object,Member pair.

member the member half of an Object,Member pair.

script an output parameter, TRUE if the function is a script
function as opposed to a wrapper function.

RETURN: The boolean TRUE if the object is a function.
DESCRIPTION: All functions in ScriptEase are objects, but not all objects are

functions. The API call lets you determine if an object is in fact a
function. If it is, the output boolean script will be TRUE if the
function is a script function, FALSE if it is a wrapper function.

SEE: seIsArray

seIsArray
SYNTAX: sebool

seIsArray(secontext se,seobject object,
 semember member,

Nombas ScriptEase ISDK/C 5.01 81

 sememcount *length);
WHERE: se the context the object belongs to

object the object half of an Object,Member pair.

member the member half of an Object,Member pair.

length an output parameter filled in with one more than the
highest numbered element, 0 if no numbered element.

RETURN: The boolean TRUE if the object is an ECMA Array. Note that
objects that are not true Arrays can still have numbered
elements. Thus, the length parameter will be filled in for all
objects, though it will usually be 0.

DESCRIPTION: Determine if an object is an ECMA Array.
SEE: seIsFunction, seSetArray

seSetArray
SYNTAX: sebool

seSetArray(secontext se,seobject object,
 sememcount length);

WHERE: se the context the object belongs to

object the object to adjust

length one more than the new max element
RETURN: This function returns TRUE if the object was adjusted, FALSE if it

was already an Array and no elements were eliminated.
DESCRIPTION: This call turns an object into an ECMA Array and adjust its

elements. Any numbered element greater than or equal to the
length is deleted. In addition, the object is permanently marked
as an ECMA Array object. This means that its length element
corresponds to the numbered elements and adjusting either
adjusts the other just as for an Array.

If you want to turn an object into an Array without altering any
elements, use SE_MAX_INDEX as the length parameters.

SEE: seIsArray

seShareReadObject
SYNTAX: sebool

seShareReadObject(secontext se,seobject object);
WHERE: se the context the object belongs to

object the object to make shared read
RETURN: This function returns TRUE if the object was successfully shared

for reading, FALSE if it could not be.
DESCRIPTION: Calling this routine makes the given object, and all its children,

read-only and shareable. The object handle no longer follows the
usual ScriptEase lifetime rules but rather is valid until the

Nombas ScriptEase ISDK/C 5.01 82

ScriptEase engine is cleaned up using the seTerminate call.
All shared objects exist for the life of the program. The
seobject handle passed to the routine can be used from then on
in any context.

When using this routine, you must remember that any object and
all its children are shared. This means the object's base class,
which it refers to via its _prototype is also shared. If you have
a complicated object hierarchy, you may end up sharing a large
number of objects. All these objects will persist until the
program terminates the ScriptEase engine. Also remember that
shared objects and their children become read-only to all
contexts, including the one that originally shared them.

Objects can only be made sharable when there is a single context
existing. You must mark all objects you wish to share before
making additional contexts. This routine will fail once two or
more contexts exist.

SEE:

VARIABLE WRITING
sePutBoolEx
sePutNumberEx
sePutPointerEx
sePutObjectEx
sePutStringEx
sePutUndefinedEx
sePutNullEx
SYNTAX: sebool

sePutBoolEx(secontext se,seobject obj,
 semember mem,
 int fl,
 sebool val);

 sebool
sePutNumberEx(secontext se,seobject obj,
 semember mem,
 int fl,
 senumber val);

 sebool
sePutPointerEx(secontext se,seobject obj,
 semember mem,
 int fl,
 void *val);

 sebool
sePutObjectEx(secontext se,seobject obj,

Nombas ScriptEase ISDK/C 5.01 83

 semember mem,
 int fl,
 seobject val);

 sebool
sePutStringEx(secontext se,seobject obj,
 semember mem,
 int fl,
 seconstcharptr val,
 sememcount len);

 sebool
sePutUndefinedEx(secontext se,seobject obj,
 semember mem,
 int fl);

 sebool
sePutNullEx(secontext se,seobject obj,
 semember mem,
 int fl);

WHERE: se the context to put the variable to

object the object half of an Object,Member pair

member the member half of an Object,Member pair

fl flags determining how the variable is stored

val the value to put, type based on which routine you are using

len for strings, the length of the item in characters for strings, or
SE_PS_STRLEN to let sePutStringEx use strlen_sechar to
determine the length of the string.

RETURN: The boolean TRUE if the member was created, FALSE if it
already existed.

DESCRIPTION: These functions are the inverse of the seGetXXX versions, they
put a value into the given Object,Member location. Like their get
counterparts, these functions have versions that make the flags
implicit in their name. However, there is one additional flag,
SE_GF_MUST. SE_GF_MUST means that the value should ignore
the SE_READONLY attribute. This eases updating internal
members in your objects that should be read-only for the script
but not for you. It is equivelent to turning off the read-only bit,
putting the value, then turning it back on. It is most-often used in
combination with SE_GF_DIRECT. Here are the name/flag
equivalents using sePutNumberEx as an example:
sePutNumber(...) =
sePutNumberEx(...,SE_GF_DEFAULT)

sePutDirectNumber(...) =
sePutNumberEx(...,SE_GF_DIRECT)

seMustPutNumber(...) =
sePutNumberEx(...,SE_GF_MUST)

seMustPutDirectNumber(...) =
sePutNumberEx(...,SE_GF_MUST|SE_GF_DIRECT)

Nombas ScriptEase ISDK/C 5.01 84

The sePutStringEx call has two extra possible flags,
SE_PS_USEPOINTER and SE_PS_BORROWPOINTER. Normally,
any string passed to the core is copied and retained internally.
With these flag, a particular string pointer is given to the core.
For SE_PS_USEPOINTER, the memory pointed to must have
previously been allocated using one of the ScriptEase allocation
routines. ScriptEase will free this pointer when it finishes using
it, so you are giving up control of it permanently. For
SE_PS_BORROWPOINTER, the ScriptEase core will use the
pointer but never free it. This second flag is intended to use in
conjunction with constant strings or strings that last the life of
your application.

In either case, the string must be ‘\0’-terminated. This means
there must be an extra ‘\0’ at the end of the string beyond the
number of characters specified in the length. This character is not
considered to be part of the string and should not be included in
the length tally.

SEE: None

seDelete
SYNTAX: sebool

seDelete(secontext se,seobject obj,
 semember mem);

WHERE: se the context to remove the member from

obj the object half of the Object,Member pair

mem the member half of the Object,Member pair
RETURN: The boolean TRUE if the member was deleted or did not exist,

FALSE if it could not be deleted such as trying to delete a virtual
object's member.

DESCRIPTION: This call deletes a member of an object. seDelete is not
affected by the SE_DONTDELETE flag (only the delete operator
is affected.) If you would like to respect the flag, use
seGetAttribs to check attributes before deleting a member.

SEE: seGetAttribs

seMakeObject
SYNTAX: seobject

seMakeObject(secontext se);
WHERE: se the context to create the object in
RETURN: A handle to the created object.
DESCRIPTION: This call creates a new object. The returned object handle

follows the standard object lifetime rules described in the
Lifetimes chapter. The returned object is blank, meaning it has
no members. You'll usually want to store the object using

Nombas ScriptEase ISDK/C 5.01 85

sePutObject, either to assign it to a variable or return it as the
result of your wrapper function.

SEE: seMakeStack, sePutObject

seMakeStack
SYNTAX: seobject

seMakeStack(secontext se);
WHERE: se the context to create the object in
RETURN: A handle to the created object (stack).
DESCRIPTION: This call creates a new stack. The returned object handle follows

the standard object lifetime rules described in Lifetimes.

A stack is an object and can be used wherever an object can be
used. However, you should not use stacks as just another type of
object, as stacks are significantly slower to manipulate than
objects. Stacks do have the benefit of guaranteeing that members
will remain in the order they are created, so that SE_INDEX(0)
is always the first member created, SE_INDEX(1) is the second,
and so forth. Regular objects do not have this property. Stacks
are used when needing to pass a list of items to the API, such as
the parameters or the scope chain to seEval.

SEE: seMakeObject, seEval

sePutWrapper
SYNTAX: sebool

sePutWrapper(secontext se,
 seobject obj,
 semember mem,
 seconstcharptr name,
 seWrapper wrapper_func,
 int minArgs,
 int maxArgs,
 uword32 funcFlags,
 uword32 varFlags,
 void *data);

WHERE: se the context to put the wrapper to

obj the object half of the Object,Member pair

mem the member half of the Object,Member pair

name the name of the function for error reporting

wrapper_func the function

minArgs the minimum arguments to the function

maxArgs the maximum arguments to the function

funcFlags the function flags

varFlags the variable-type flags

data data associated with the function.

Nombas ScriptEase ISDK/C 5.01 86

RETURN: A boolean, TRUE if the put was successful.
DESCRIPTION: This call turns a variable into a wrapper function. See the

"Wrapper functions" chapter for complete details about wrapper
functions. The parameters to this function correspond to the
parameters to the SE_FUNCTION() library table entry. Since you
specify the exact Object,Member location to put the new
wrapper function in, the name parameter does not indicate where
to put the function. It is used if an error message occurs related
to the function.

SEE: None

seSetCallbacks
SYNTAX: sebool

seSetCallbacks(secontext se,
 seobject obj,
 semember mem,
 const struct seObjectCallbacks *cbs);

WHERE: se the context the object is a part of

obj the object half of the Object,Member pair

mem the member half of the Object,Member pair

cbs a pointer to the callbacks structure
RETURN: True. This will only return non-TRUE if compiling with

JSE_MIN_OBJ_SIZE and if there is a non-recoverable memory
allocation error.

DESCRIPTION: This routine sets the object callbacks for an object. If the variable
is not an object, nothing is done. Otherwise, the internal table of
object callbacks for the object is changed to point to the given
table. See DYNAMIC OBJECTS for a complete discussion of
dynamic objects and object callbacks.

SEE: seEnableDynamicMethod

seEnableDynamicMethod
SYNTAX: restoreDynamicMethodState

seEnableDynamicMethod(
 secontext se,
 seobject obj,
 semember mem,
 enum whichDynamicCallback whichCallback,
 sebool enable,
 restoreDynamicMethodState restore_state);

WHERE: se the context the object is a part of

obj the object half of the Object,Member pair

mem the member half of the Object,Member pair

whichCallback which method to enable/disable, this may be
any of:
SE_GET_CALLBACK

Nombas ScriptEase ISDK/C 5.01 87

SE_PUT_CALLBACK
SE_HASPROP_CALLBACK
SE_CANPUT_CALLBACK
SE_DELETEPROP_CALLBACK
SE_DEFAULTVALUE_CALLBACK
SE_OPERATOROVERLOAD_CALLBACK
SE_GETBYINDEX_CALLBACK
SE_GETNAMEBYINDEX_CALLBACK
SE_GETMAXINDEX_CALLBACK
SE_ALL_CALLBACK /* all of the above */

enable whether to enable dynamic method

restore_state NULL for first call in pair, for second call set to
value returned by the first call

RETURN: In first call in pair, this returns the value to be passed as
retore_state for second call. For second call in pair the
return value has no meaning.

DESCRIPTION: Enable (if enable is TRUE) the calling of the dynamic method
named methodName else disable calling of that dynamic
method. These methods are disabled during a callback of that
method (i.e. put is disabled while within put to prevent
recursion). This is a risky function and not a default part of the
API. To enable this API function compile with
JSE_ENABLE_DYNAMETH.

This function is always used in a pair. For the first call in the
pair restore_state should be NULL. For the second call,
which will undo the first, restore_state must be the value
returned by the first call of the pair.

SEE: seSetCallbacks

seConvert
SYNTAX: void

seConvert(secontext se,
 seobject obj,
 semember mem,
 seConversionTarget type);

WHERE: se the context containing the variable

obj the object half of an Object,Member pair

mem the member half of an Object,Member pair

type the type to convert to.
RETURN: None
DESCRIPTION: This routine retrieves the value using a get from the

Object,Member pair, converts it, and puts it back to the same
location. The possible conversions are:
SE_TOPRIMITIVE

Convert to a primitive value. A primitive value is a non-object

Nombas ScriptEase ISDK/C 5.01 88

value.
SE_TOBOOLEAN

Converts to a boolean
SE_TONUMBER

Converts to a number
SE_TOINTEGER

Converts to an integer. It is system-dependent the range of an
integer, but it corresponds to the int type on the system.
SE_TOINT32

Converts to a signed 32-bit integer
SE_TOUINT32

Converts to an unsigned 32-bit integer
SE_TOUINT16

Converts to an unsigned 16-bit integer
SE_TOSTRING

Converts to a string
SE_TOOBJECT

Converts to an object.
SEE: None

seSetAttribs
SYNTAX: void

seSetAttribs(secontext se,
 seobject obj,
 semember mem,
 seAttributes attributes);

WHERE: se the context containing the variable

obj the object half of an Object,Member pair

mem the member half of an Object,Member pair

attributes the attributes to assign to the variable
RETURN: None
DESCRIPTION: This call sets the variable's attributes. The attributes can be any

of the following, |'d togethor:
SE_DEFAULT

The default, no special attributes
SE_READONLY

Any attempt to update the member is ignored
SE_DONTDELETE

Attempts to delete the member using the ECMAScript delete

Nombas ScriptEase ISDK/C 5.01 89

operator are ignored
SE_DONTENUM

The member is not included in for..in enumerations

The following flags apply only if the variable is an object:
SE_DYNA_UNDEF

Dynamic callbacks for the objects are only used if the object
does not contain the member in the ScriptEase internal storage
for the object.
SE_IMPLICIT_THIS

When the function is executed, the this variable is added to the
front of the scope chain so all members of this are visible
without putting this. in front of them. This is exactly as if the
entire body of the function was wrapped in the statement with(
this) ... This behavior is similar to how C++ member
functions work.
SE_IMPLICIT_PARENTS

Similar to SE_IMPLICIT_THIS, the parents of the this
variable are put into the scope chain. This chain begins with
this.__parent__ and continues as long as each such object
itself has a __parent__ property. Note that there are two
underscores on each side of parent above. This is useful for
browsers in which event handlers can refer to variables in the
enclosing element, document, and window. By chaining these
objects togethor using __parent__ and adding
SE_IMPLICIT_THIS and SE_IMPLICIT_PARENTS to the event
handler function, the desired behavior is achieved.

SEE: seGetAttribs()

seAssignEx
SYNTAX: sebool

seAssignEx(secontext se,seobject destObj,
 semember destMem,
 seobject srcObj,
 semember srcMem,
 int flags);

WHERE: se the context the members are a part of

destObj the desination object half of the Object,Member pair

destMem the desination member half of the Object,Member pair

srcObj the source object half of the Object,Member pair

srcMem the desination member half of the Object,Member pair

flags the assignment flags
RETURN: A boolean, TRUE if the destination member was created, FALSE

Nombas ScriptEase ISDK/C 5.01 90

if it already existed.
DESCRIPTION: This function does a get on the source Object,Member followed

by a put of that value to the destination Object,Member.

seAssign is similar to the sePut functions in that it has the
Must and Direct name forms as an alternative to the flags.

SEE:

seThrow
SYNTAX: void

seThrow(secontext se,seconstcharptr message,
 ...);

WHERE: se the current context

message the message of the error message in standard
ScriptEase format.

... printf-style arguments
RETURN: None
DESCRIPTION: An error object is constructed and set up in the SE_RETURN

object. In addition, the error flag is turned on. If the wrapper
function calling seThrow returns after this call, it’s result will be
the given error.

The standard error message format for ScriptEase allows
information on the type of the error to be included. By default, a
stock Exception object is constructed with the text passed to
this function. The extended form of the string is:
!TYPE NUM: MESSAGE

For instance, you could pass:
!SyntaxError 9999: You made a mistake.

The TYPE indicates the type of the error. An error object of this
type is constructed to contain the error. The error types are:
SyntaxError

ReferenceError

ConversionError

ArrayLengthError

TypeError

URIError

EvalError

RegExpError

These types are defined by ECMA, including what errors are
generated in normal error situations. When writing your own
wrapper functions, pick the error type you feel is most

Nombas ScriptEase ISDK/C 5.01 91

appropriate.

The NUM indicates a resource number for your error message.
Values of 10000 or more are reserved for user errors, and you
should use one. These numbers are used by the
seGetResourceFunc to internationalize the text associated
with various text strings, including error messages.

MESSAGE is the text of the error message.

When the internal exception object is generated (for seThrow
exceptions or any internally generated exception), these
properties of that object are created:

• name - Name of the exception class, e.g. "SyntaxError"
• message - text of error, e.g. "9999: You made a mistake."
• fileName - Name of the source file where error occurred, if

available, e.g. "c:\foo\myscript.jsa"
• lineNum - Line number if file where error occurred, if

available, e.g. "173"
• functionName - Name of executing function where error

occurred, if available, e.g. "foobar"
SEE: None

EXECUTING SCRIPTS
seEval
SYNTAX: sebool

seEval(secontext se,
 void *to_interpret,
 int interp_type,
 seconstcharptr text_args,
 seobject stack_args,
 uword32 flags,
 struct seEvalParams *params);

WHERE: se the context to execute in

to_interpret the script or function to execute

interp_type what the to_interpret parameter is

text_args arguments as a text string

stack_args arguments on a stack seobject

flags options on how to eval

params eval params
RETURN: A boolean, TRUE if the evaluation was successful
DESCRIPTION: See “Using seEval” in the chapter “Script Execution Topics” for

details on using the seEval ScriptEase API call.
SEE: seExec, seEnd

Nombas ScriptEase ISDK/C 5.01 92

seExec
SYNTAX: sebool

seExec(secontext se);
WHERE: se the context to execute the next statement on
RETURN: TRUE if there are more statements to execute, FALSE when the

seEval is completed.
DESCRIPTION: This routine executes one script statement from a script started

with seEval using the SE_START option. When the eval is
completed, the return value will be stored in the SE_RETURN
object.

SEE: seEval, seEnd

seEnd
SYNTAX: void

seEnd(secontext se);
WHERE: se the context running the script to be aborted.
RETURN: None
DESCRIPTION: This call aborts a script started with seEval using the

SE_START option. This will immediately terminate the script
which is being executed one statement at a time. There is no
return value from an aborted script.

SEE: seEval, seExec

sePrecompile
SYNTAX: ubyte *

sePrecompile(secontext se,
 const void *to_interpret,
 int interp_type,
 sememcount *len,
 struct seEvalParams *params);

WHERE: se the context to precompile in

to_interpret the text of the script or the filename to compile

interp_type how to interpret to_interpret, either
SE_TEXT or SE_FILE

len an output parameter, the length of the returned bytecodes in
bytes.

params used to get the virtual file and line number only.
RETURN: The bytecodes
DESCRIPTION: This routine compiles a script into the corresponding bytecodes.

The file to precompile is specified exactly like seEval and must
be either SE_TEXT or SE_FILE. The given file is precompiled
and the resulting bytecodes are returned. In addition, len is
filled in with the size of the resulting bytecodes. Usually, these
bytecodes are then written to disk for use later. The bytecodes

Nombas ScriptEase ISDK/C 5.01 93

should be treated as an array of *len bytes.

The bytecodes can be passed as the item to evaluate in a later
seEval call with SE_PRECOMP as the type. The bytecodes must
be freed using seFreeBytecodes. Although the script is
precompiled, it is not added to the context or run. The context
will be unchanged as a result of this call.

You can provide the optional params structure. Only the virtual
filename and linenumber members of the structure are used.

SEE: seFreeBytecodes

seFreeBytecodes
SYNTAX: void

seFreeBytecodes(secontext se,ubyte *codes,
 sememcount len_unused);

WHERE: se any valid context

codes the bytecodes returned from sePrecompile

len_unused the number of bytes, this parameter is not used
RETURN: None
DESCRIPTION: Call this routine to free the bytecodes given to you from

sePrecompile after you are finished using them, such as after
writing them to disk.

SEE: sePrecompile

seIsBreakpoint
SYNTAX: sebool

seIsBreakpoint(secontext se,
 seconstcharptr filename,
 uint lineNumber);

WHERE: se the context to check in

filename the file interested in

lineNumber the line in that file
RETURN: A boolean, TRUE if the line is a valid breakpoint.
DESCRIPTION: This function is provided for use by a debugger. It checks to see

if it is possible for any function currently loaded to break at the
given file and line. This check is intended to be called in
response to a user request to set a breakpoint. Be warned that this
call is very slow. The filename must match one of the currently
loaded filenames (which can be found in the SE_FILENAMES
object) or it cannot be a breakpoint and this function will return
FALSE. If you have a seFindFileFunc callback in your
context (described in The seContextParams Structure), the
filenames that are used are the ones returned from this function,
the translated filename, not the untranslated ones passed to the
callback.

Nombas ScriptEase ISDK/C 5.01 94

SEE: None

Nombas ScriptEase ISDK/C 5.01 95

The Debugger

Many customers desire to add debugger-like operations to their ScriptEase
application. Some want their own debugger instead of the Nombas-provided one
while others have similar needs that a debugger doesn't exactly fill such as
writing out a trace log. Later in this chapter, we will examine hooking the
Nombas debugger into your application. The first part of this chapter will involve
writing a simple text-based debugger to see how you can go about it.

SECONTINUEFUNC
The proper place to put a debugger hook is in the seContinueFunc specified in
your ScriptEase seContextParams structure. This function is called after each
statement is processed. An alternative would be to evaluate a script using
seEval with the SE_START option and do debugging work after each call to
seExec. The problem with this alternative is that calls to wrapper functions are
atomic. Therefore, if a wrapper function itself invokes code, such as a script call
to eval(), your debugging work would not be called during that code.

The debugger must regain control after each statement to be useful. The easiest
way to force this is to use seGetContextParams and set the
SE_OPT_DEBUGGER flag on, like this:
struct seContextParams *params = seGetContextParams(se);
params->seOptions |= SE_OPT_DEBUGGER;

THE SIMPLE DEBUGGER
For this simple debugger, it is assumed that the application will be a console-
based application so standard C functions such as printf are available. The
output from the script and the debugger will be intermixed on this console. That
suffices for a simple debugger. The implementation of this debugger will help
you to understand how to write debuggers and debugger-like programs to add to
your application in a simple way. The ScriptEase debugger is a much more
complex example of a full debugger.

This debugger is able to debug multiple scripts, such as a multi-fiber application
(described in "Fibers and Threads") simultaneously because it store all
information for each context in that context.

The simple debugger function follows. To use it in your application, simply
define an seContinueFunc callback in your application and call this function.
A ScriptEase ISDK sample application using this debugger can be found as the
debug sample.

#define DBG_NEXT SE_MEM("debugger_next_depth")
#define DBG_OFF SE_MEM("debugger_off")
#define BREAK_LIST SE_MEM("debugger breakpoints")

/* A place to save commands between calls */

Nombas ScriptEase ISDK/C 5.01 96

static sechar commandbuf2[256];

 sebool
simple_text_debugger(secontext se)
{
 sechar linebuf[256];
 sechar commandbuf[256];
 sebool is_break = FALSE;
 seobject list;
 int frame = 0; /* current stack frame */

 /* Make sure our breakpoint list object exists and is an
 * object
 */
 if(seGetType(se,SE_SERVICES,BREAK_LIST)!=SE_TYPE_OBJECT)
 {
 sePutObject(se,SE_SERVICES,BREAK_LIST,seMakeObject(se));
 }

 list = seGetObject(se,SE_SERVICES,BREAK_LIST);

 sprintf_sechar(linebuf,"%s:%g",
 seGetString(se,SE_STACK_INFO(0),SE_SI_FILENAME,NULL),
 seGetNumber(se,SE_STACK_INFO(0),SE_SI_LINENUM));
 if(seExists(se,list,SE_UNIMEM(linebuf)))
 is_break = TRUE;

 /* When executing a print statement, breakpoints should
 * not be called, I think. I can see it both ways, but this
 * way makes more sense to me.
 */
 if(seExists(se,SE_SERVICES,DBG_OFF))
 return TRUE;

 if(is_break && seExists(se,SE_SERVICES,DBG_NEXT))
 printf_sechar("\nBreakpoint reached.\n\n");

 if(seExists(se,SE_SERVICES,DBG_NEXT))
 {
 if(seGetNumber(se,SE_STACK_INFO(0),SE_SI_DEPTH)>
 seGetNumber(se,SE_SERVICES,DBG_NEXT) &&
 !is_break)
 {
 /* a higher depth means we've gone into a function, wait
 * until we return to this depth or less. However, if
 * we reach a breakpoint, we always stop.
 */
 return TRUE;
 }

 /* we've stopped, get rid of the marker */
 seDelete(se,SE_SERVICES,DBG_NEXT);
 }
 do
 {
 secharptr loc;
 printf_sechar(UNISTR("DBG %s> "),linebuf);
 fgets_sechar(commandbuf,sizeof(commandbuf)/sizeof(sechar),
 stdin);
 loc = SECHARPTR_OFFSET(commandbuf,
 strlen_sechar(commandbuf)-1);
 if(SECHARPTR_GETC(loc)=='\n')

Nombas ScriptEase ISDK/C 5.01 97

 SECHARPTR_PUTC(loc,'\0');
 if(strlen_sechar(commandbuf)>0)
 {
 strcpy_sechar(commandbuf2,commandbuf);
 }
 else
 {
 /* retrieve last command */
 strcpy_sechar(commandbuf,commandbuf2);
 }

 if(strcmp_sechar(commandbuf,UNISTR("step"))==0)
 {
 /* step one statement, including going into functions */
 return TRUE;
 }
 else if(strcmp_sechar(commandbuf,UNISTR("abort"))==0)
 {
 /* break the program, note that we retain the
 * breakpoints in the services object for more runs,
 * users usually want to keep breakpoints around.
 */
 seThrow(se,UNISTR(“Script aborted by user.”));
 return FALSE;
 }
 else if(strcmp_sechar(commandbuf,UNISTR("next"))==0)
 {
 /* step to next statement, over any function call */
 sePutNumber(se,SE_SERVICES,DBG_NEXT,
 seGetNumber(se,SE_STACK_INFO(0),SE_SI_DEPTH));
 return TRUE;
 }
 else if(strcmp_sechar(commandbuf,UNISTR("cont"))==0)
 {
 /* keep stepping, since depth never is -1, this does it
 */
 sePutNumber(se,SE_SERVICES,DBG_NEXT,-1);
 return TRUE;
 }
 else if(strncmp_sechar(commandbuf,UNISTR("print "),6)==0)
 {
 struct seEvalParams params;

 /* print an arbitrary expression
 * don't debug this evaluation, it doesn't matter what
 * we put here, it just must exist
 */
 sePutNull(se,SE_SERVICES,DBG_OFF);

 /* evaluate the expression */
 memset(¶ms,0,sizeof(params));

 /* set our scope chain to search in the given frame */
 params.scopestart =
 seGetObject(se,SE_STACK_INFO(frame),SE_SI_SCOPECHAIN);
 params.global =
 seGetObject(se,SE_STACK_INFO(frame),SE_SI_GLOBAL);
 params.default_this =
 seGetObject(se,SE_STACK_INFO(frame),SE_SI_THIS);

 /* We are specifying our own scope chain, so no need
 * inherit existing ones. We don't need any new
 * libraries, because the old ones are in the scope

Nombas ScriptEase ISDK/C 5.01 98

 * chain we are giving.
 */
 seEval(se,SECHARPTR_OFFSET(commandbuf,6),SE_TEXT,
 NULL,NULL,SE_NO_INHERIT|SE_NO_LIBRARIES,¶ms);
 sePutBool(se,SE_RETURN,SE_ERROR,FALSE);

 /* turn debugger back on */
 seDelete(se,SE_SERVICES,DBG_OFF);
 printf_sechar(UNISTR("%s\n"),
 seGetString(se,SE_RETURN,SE_VALUE,NULL));

 /* In case an error */
 sePutBool(se,SE_RETURN,SE_VALUE,FALSE);
 continue;
 }
 else if(strncmp_sechar(commandbuf,UNISTR("break "),6)==0)
 {
 /* The presence of the member signals a break point */

 sePutNull(se,list,
 SE_UNIMEM(SECHARPTR_OFFSET(commandbuf,6)));
 continue;
 }
 else if(strncmp_sechar(commandbuf,UNISTR("remove "),7)==0)
 {
 /* The presence of the member signals a break point,
 * so remove it
 */

 seDelete(se,list,
 SE_UNIMEM(SECHARPTR_OFFSET(commandbuf,7)));
 continue;
 }
 else if(strcmp_sechar(commandbuf,UNISTR("list"))==0)
 {
 seconstcharptr name;
 sememcount i;

 if(seObjectMemberCount(se,list))
 {
 printf("\nBreakpoints:\n");
 for(i=0; i < seObjectMemberCount(se,list); i++)
 {
 name =
 seObjectMemberName(se,list,SE_INDEX(i),NULL);
 printf("breakpoint #%d at %s\n",i,name);
 }
 printf("\n");
 }
 else
 {
 printf("\nNo breakpoints.\n\n");
 }
 continue;
 }
 else if(strncmp_sechar(commandbuf,UNISTR("frame "),6)==0)
 {
 int fr =
 strtol_sechar(SECHARPTR_OFFSET(commandbuf,6),NULL,10);

 if(fr < 0 ||
 fr > seGetNumber(se,SE_STACK_INFO(0),SE_SI_DEPTH))
 {

Nombas ScriptEase ISDK/C 5.01 99

 printf_sechar(UNISTR("\nNo such frame.\n\n"));
 }
 else
 {
 frame = fr;
 sprintf_sechar(linebuf,"%s:%g",
 seGetString(se,SE_STACK_INFO(frame),
 SE_SI_FILENAME,NULL),
 seGetNumber(se,SE_STACK_INFO(frame),
 SE_SI_LINENUM));
 }
 continue;
 }
 else if(strcmp_sechar(commandbuf,UNISTR("help"))==0)
 {
 /* simple help */
 printf_sechar(UNISTR("\n"));
 printf_sechar(UNISTR("cont ")
 UNISTR("continue running program\n"));
 printf_sechar(UNISTR("step ")
 UNISTR(step (into functions)\n"));
 printf_sechar(UNISTR("next ")
 UNISTR(step (over functions)\n"));
 printf_sechar(UNISTR("abort ")
 UNISTR(stop script execution\n"));
 printf_sechar(UNISTR("print <expr> ")
 UNISTR(evaluate expression\n"));
 printf_sechar(UNISTR("break file:line ")
 UNISTR(set breakpoint\n"));
 printf_sechar(UNISTR("remove file:line ")
 UNISTR(remove breakpoint\n"));
 printf_sechar(UNISTR("list ")
 UNISTR(list breakpoints\n"));
 printf_sechar(UNISTR("frame <num> ")
 UNISTR(change stack frame\n"));
 printf_sechar(UNISTR("help - ")
 UNISTR(list all commands\n\n"));
 continue;
 }

 printf_sechar(UNISTR("Unrecognized command %s, ")
 UNISTR("use 'abort' to exit program.\n"),
 commandbuf);
 } while(1);

}

INTEGRATING THE SCRIPTEASE
DEBUGGER
The ScriptEase debugger can be used to debug scripts being run in your
ScriptEase:ISDK application. This section explains the steps you need to take to
enable debugger support in your application.

There are two basic ways a debugging session can operate. First, your application
may wish to connect to the debugger and debug a script. For instance, you may
have a menu option to debug a script. In this case, your application runs normally
until the time you wish to debug a particular script. When that debugging is
complete, your application continues as normal. The second way to initiate
debugging is by the command of the debugger. Typically, the ScriptEase IDE is
being used to edit a script meant to be run by your application. When the user

Nombas ScriptEase ISDK/C 5.01 100

wants to try the script out, your application is invoked in the background to
execute the script. Your application recognizes this situation by the presence of a
/debug command-line switch. The rest of the command-line consists of the
script to be run and any parameters to be passed to the script.

In either case, ScriptEase API calls are provided to establish a connection with
the debugger and execute the script under the debugger's control. The connection
between an application and the ScriptEase debugger is a TCP-IP socket.
Connections can be established remotely, when the application and debugger
reside on different machines.

THE CONTINUE FUNCTION
The first step in integrating debugging support into your application is modifying
the continue functions. Your application may or may not have such a function
currently. If it does not, you will need to add one in order to integrate with the
debugger. The continue function is specified by one of the context parameters
passed when creating a new context. At the end of your continue function, you
need to invoke this ScriptEase debugger API call:
 void
seDbgContinue(secontext se);

This call communicates with debugger. This is a blocking call so it will not
return until the debugger gives the application more work to perform. A second,
non-blocking version of this API is available:
 sebool
seDbgNBContinue(secontext se,sememcount timeout);

This version will return to you after the given number of milliseconds as
specified by the timeout. If the function returns FALSE, you may exit from the
continue function. However, if it returns TRUE you must call the routine again
before exiting from the continue function. The continue function itself consists of
any code that must be executed periodically. You would use this call as in this
example:
 SE_CALLBACK(void)
myContinueFunc(secontext se)
{
 do
 {
 /* your existing continue code here */
 }
 while(seDbgNBContinue(se,TIMEOUT));
}

The timeout you specify depends on the needs of your code. For an application
that handles GUI interface interaction in its continue function, responsiveness is
important. A timeout of 100 milliseconds would be a reasonable choice in this
case.

Once you have modified or created your continue function, it must be called after
each statement in the script is executed. This may not be the case depending on
the parameters passed to your seEval calls or to such calls in libraries you are
using. To ensure this is always the case, set the SE_OPT_DEBUGGER flag in the
context parameter's options. There is no need to alter any of your seEval calls.

Nombas ScriptEase ISDK/C 5.01 101

THE AT ERROR FUNCTION
This step is very similar to the continue function, you must make a call to a
ScriptEase debug API in your at-error function. If you do not currently have one,
you must add one. It is in the context parameter structure just like the continue
function is.
 void
seDbgAtError(secontext se);

This function will not lock your application up because it uses your continue
function internally while it is waiting.

INVOKING THE DEBUGGER
To connect to the debugger, the application needs to know the host machine
name and the port the debugger is running on. This information can be obtained
in a number of ways such as by preferences settings for the application user.
However, when an application is started by the debugger, it is always given a
command-line switch to tell it this information. The switch is of the form:
/debug=<host>:<port>

The application should extract and use the provided host and port if this switch is
passed to it. In addition, it should immediately connect to the debugger and
execute the script passed on its command-line, as previously described. If there is
no such switch, the application can debug at any time by connecting to an
arbitrary debugger on any machine. The usual port for a ScriptEase debugger is
SEDBG_STANDARD_PORT.

In any case, once the application has the host and port, it connects to the
debugger using the following ScriptEase debug API call. The password is
optional, needed if you want the debugger’s user to provide this password before
debugging your application. Use NULL if you don’t want a password. The
application_id is arbitrary text to identify your application.
 sebool
seDbgConnect(secontext se,
 seconstcharptr host,
 uint port,
 seconstcharptr application_id,
 seconstcharptr password);

The result is a boolean indicating success. If it is FALSE, then the debugging
connection could not be established. To determine the reason for the failure, use
this ScriptEase Debug API call:
 seconstcharptr
seDbgLastError(secontext se);

If a connection cannot be established, a text explanation of the failure can be
retrieved using this call.

Once the debug session is begun, is must be terminated with this call:
 void
seDbgStop(secontext se);

Nombas ScriptEase ISDK/C 5.01 102

Normally this call is used when the script finishes executing. However, it can be
used while the script is executing to terminate debugging of the script. The script
will continue as normal as this call only stops the debugger control of the
application.

Between connecting and stopping, you execute a script using seEval. It is
possible to leave the connection open and run multiple scripts. The debugger will
handle them all. However, doing so may confuse the debugger user. It is usually
better to use seDbgStop after the script is done and reconnect to the debugger if
another script needs to be debugged.

INVOKING THE DEBUGGER ON AN ERROR
It is often desirable to invoke the debugger only if an error occurs in the script so
that the user can debug it. You can do this by initializing the debugger
connection not when the script starts but rather only when the error occurs. This
is done in the seAtErrorFunc callback in the context parameters. You don’t do
this in the sePrintErrorFunc found in the same parameters structure. The first
callback is called when the error occurs. The script is still executing at the point
of the error with the correct variables and call stack for the error. The second
function isn’t called until the script terminates with the error, by which time the
context of the error is lost.

In addition, the other steps of the debugger integration mentioned above must
still be completed. The only difference is that you do not call seDbgConnect
before executing any scripts but rather only in response to an error. Here is an
example seAtErrorFunc taken from ScriptEase Desktop Win32 which
demonstrates invoking the debugger at the point of the error:
/* This at-error function will, if debugger support is enabled,
 * give the user the option to connect to the debugger to
 * debug the script from the point of the error.
 */
 static SE_CALLBACK(void)
SeAtErrorFunc(secontext se,struct seAtErrorInfo *info)
{
#if SE_DEBUGGER_SUPPORT==1 && defined(__JSE_WIN32__)

 /* If this is an untrapped error, debug it at the point
 * of error. Untrapped errors are the ones that will
 * eventually be printed to the screen. We don't
 * debug trapped errors because those are usually
 * used for program flow control with throw/catch.
 */
 if(!seDbgConnected(se) &&
 !info->trapped &&
 MessageBox(0,seGetString(se,SE_RETURN,SE_VALUE,NULL),
 "Would you like to debug this error?",
 MB_YESNO)==IDYES
)
 {
 struct seContextParams *params;

 params = seGetContextParams(se);
 params->seOptions |= SE_OPT_DEBUGGER;

 if(!seDbgConnect(se,"localhost",SEDBG_STANDARD_PORT,
 "Scriptease Desktop Win32",NULL))
 {

Nombas ScriptEase ISDK/C 5.01 103

 sememcount i;

 system("start workshop.exe");

 /* Wait 10 seconds checking every 1/10th if

* debugger is ready
*/

 for(i=0;i<100;i++)
 {
 Sleep(100);
 if(seDbgConnect(se,"localhost",SEDBG_STANDARD_PORT,
 "Scriptease Desktop Win32",NULL))
 break;
 }
 }
 }

 seDbgAtError(se);
#endif
}

THE SCRIPTEASE DEBUGGER
PROTOCOL VERSION 1.0
It is possible to replace the ScriptEase debugger with a custom debugger. This
section describes the protocol that the debugger is expected to understand.

Debugging occurs on TCP-IP sockets. The debugger must provide a port to
receive debug requests on. If the debugger starts up an application to execute a
script, it will give the host and port it is monitoring to the application via the
command-line switch /debug=HOST:PORT. Applications can also run their
scripts under a debugger at any time if they know a host and port combination a
debugger is currently monitoring. This is especially useful to debug applications
remotely. The ScriptEase debugger uses the port 0xdead so that all applications
can find it. Custom debuggers can use whatever port they like or can mimic the
standard debugger's port.

Each socket connection will be an application wishing to debug a script. It is up
to the debugger writer if the debugger will allow multiple debug sessions
simultaneously. If it does not, it should still accept the connection and use the
DENIED response, described below, to refuse the debugging indicating that a
debug session is currently processing.

Once a connection is established, the protocol consists of text messages sent back
and forth between the debugger and the application as described below. The
description of these messages specify the text in uppercase. This is done for
clarity, as the commands are case-insensitive. However, on some systems
filenames are case-sensitive so the debugger must preserve the case on all
filenames. In the following description, parameters to the command are written in
lowercase. The lowercase text is meant to describe the purpose of the parameter.
The parameter is to be replaced by the appropriate value.

All text send by the application and the debugger to each other using this
protocol is in ascii except for the specific exceptions mentioned below. All
command lines are in ascii. Unicode can appear in only a specific few places.
Two of the commands can optionally return unicode strings. When they do, they

Nombas ScriptEase ISDK/C 5.01 104

have a different response to indicate their return is unicode. The last place
unicode can appear is in filenames. The filenames will be ascii strings, but
unicode characters can be indicated by escaping them. In this case, the sequence
\uXXXX is used where XXXX are exactly four hex characters indicating the value
of the unicode character.

All command lines in this protocol are terminated by a \r\n\r\n marker. Data
lines are always exactly what the data is, so they may have some combination of
\r and \n in them. Data is always identified to be of a certain length by a
preceeding header line before it is sent. That length is always exactly the number
of bytes the data encompasses.

INITIALIZATION
When the debugger accepts a connection, the first task is to initialize the debug
session. Both sides communicate their application name and which ScriptEase
debug version they expect. If the application is password-protected, the debugger
provides the password. Either side, the debugger or the application, has
opportunities to terminate the connection for a number of reasons.

The application begins by identifying itself:
SCRIPTEASE DEBUG version application-identifier

For instance:
SCRIPTEASE DEBUG 1.0 Sewse

The version cannot have spaces in it. Whatever text is provided is split by the
first whitespace character into the version and the application identifier. Also
note that TCP-IP provides the IP address of the connecting application. The
application already knows the IP address of the debugger else it would not have
been able to establish the connection in the first place. IP addresses are important
as they allow both sides to know if a remote debugging session is taking place.
The debugger should generally allow all local debugging sessions to take place
but will probably want to query its user if a remote debugging session should be
allowed.

In the case of a local debugging session, filenames sent by the application will be
the same filenames the debugger should display. However, for remote
applications the filenames will not match. In a remote debugging session, it is
erronous to display files of the given names even if they exist with the given
name on the local machine: the contents of those files may be different on the
remote machine. For each new filename, the debugger should use the SEND
FILE command (described below) to get the contents of the file and make a local
copy of that file. The local copy will be stored in a temporary location to be
deleted when the session is complete. The debugger will translate filename
references to the local copies. In the case of local files that the debugger cannot
locate, the same mechanism should still be applied.

The debugger's response to the application is a line of the same format as the
application's, with the debugger's identifier string in place of the application's.
The version must match exactly, to verify the debugger understands the version.
However, if the debugger does not accept the debug session, it instead denies the
debug session with the following command:

Nombas ScriptEase ISDK/C 5.01 105

DENIED text message indicating reason for denial

Some examples include:
DENIED Too many active debug sessions currently.
DENIED Version 1.0 is not understood.
DENIED 200.0.1.6 is a known hacker site.
DENIED This debugger is JoeBob's Super App-specific.
DENIED User denied this request.

The application has three possible responses to an accepted connection by the
server. It can deny the connection itself in the same way the server can. It can
accept the connection by:
DEBUG BEGUN

In this case, the debug connection goes into the main debug mode described
below. Finally, the application can ask the server for a password:
SEND PASSWORD

The debugger responds with:
PASSWORD password

The application can respond with another PASSWORD message if the password
was incorrect. If the password is missed three times, the application will give a
DENIED. Once the password is accepted, the application uses DEBUG BEGUN to
enter the main debug mode.

MAIN DEBUG MODE
This is the main loop of the debugging session. It continues until the session is
ended by either side closing their socket or by the debugger sending the QUIT
command. The debugger is always in control, sending a single command at a
time for the application to execute. The application always gives a response to
each command. If the command is not understood, it results in a DENIED
response.

Note that it is possible to not use the GO command described below and the
various breakpoint commands that go along with it. This could be done by using
STEP only and making the checks yourself in the debugger. This is strongly
discouraged. Experimentation has shown that the speed penalty is enormous.

REPORT
This is the main debugger status command. The application responds with one of
these two:
LOCATION filename:line-number DEPTH depth
DEPTH 0

Note that depth 0 represents being outside of a script. In the first instance, depth
will never be 0. When the script reaches its end, the depth will be 0. If the
debugger find the depth to be 0 on the first call, it means the script had a syntax
error in it. See GET/STRING below to retrieve error messages.

Often, the debugger will follow up this command with a SEND FILE command if
the given filename is one it has not seen before. The REPORT command is
typically issued when the connection first begins then right after any of the

Nombas ScriptEase ISDK/C 5.01 106

GO/STEP commands listed below. However, the debugger may use this
command more frequently in development to ensure it is properly keeping itself
in sync. It can issue this command and check against its internal records and, if
they don't match, the debugger has a problem.

If the filename contains spaces, it must be enclosed in quotes (i.e. "filename").

SEND FILE filename
The debugger uses this when remote debugging and finding a new filename. The
application responds by sending the file using this format:
FILE filename LENGTH length-in-bytes
file contents
FILE DONE

UNICODE FILE filename LENGTH length-in-bytes
file contents
FILE DONE

The length field is confirmed by finding FILE DONE at the right place. For files
of unicode characters, the length in bytes will be twice the number of unicode
characters. Unicode chars are passed in little endian byte order.

It is alternately possible to see a DENIED response from the application. Only
filenames sent in a REPORT are valid. This is a check against someone trying to
read arbitrary files. If the DENIED message text consists of a single ?, the
application is indicating it does not have access to the source text. This is
possible when the application is executing compiled scripts. In this case, the
debugger will have to make a decision as to what it does in this case. One
possibility is to expect the user to run the debugger from the machine that
originally compiled those scripts. In this case, the filenames will correspond to
files on the debugging machine.

CLEAR BREAKPOINTS
All breakpoints the application has received from the debugger are deleted. This
included both kinds of breakpoints, file and line based as well as expression
based. Application will respond with:
BREAKPOINTS CLEARED

BREAKPOINT ADD/REMOVE filename:line-number
Will add or remove a breakpoint at a certain file and line. The application will
respond with one of:
BREAKPOINT filename:line-number ADDED
BREAKPOINT filename:line-number REMOVED
BREAKPOINT filename:line-number EXISTS
BREAKPOINT filename:line-number NOT FOUND

The last two messages are errors in trying to add a breakpoint that already exists
or remove one that doesn't.

EXPR ADD expression
An expression is added as a breakpoint. The application responds:
EXPR #number ADDED

Nombas ScriptEase ISDK/C 5.01 107

Where the number is the expression number, assigned by the application.
Expressions are evaluated after each statement and a break occurs when the
expression becomes true.

A warning is in order, because these are full evaluated expressions done after
every statement, their presence will drastically slow down execution of the script.

EXPR REMOVE #number
Remove an expression breakpoint using the number returned when it was
created. The application responds:
EXPR #number REMOVED
EXPR #number NOT FOUND

GO number
Tells the application to start executing until it reaches one of the breakpoints, an
error, or the depth equals the number given above. The application responds:
GO COMPLETE
GO COMPLETE WITH ERROR
GO COMPLETE WITH TRAPPED ERROR
GO STOPPED

depending on if the go stopped due to an error being received or because of
reaching a breakpoint. In the case of an error, an untrapped error indicates that
the error message is going to printed to the user and so should be printed to the
debugger's user as well. See GET below on how to get the error's value.

Use the depth to implement step over and step out. A normal go should have
depth as 0, meaning it only stops when it reaches depth 0 (i.e. the script ends).
Use the current depth, retrieved by REPORT, to step over. Use the current depth
minus one to step out.

Stopping with TRAPPED ERROR means that the exception is going to be handled,
perhaps by a try/catch block. However, often debuggers will have the option
to break on any error. If the debugger is not using this option, it will want to
ignore trapped error returns. Use REPORT to find the current depth and see if the
action (step out/step over) is complete. If it is not complete, or in the case of a
generic run, just call GO again. This same mechanism can be used to trap some
errors, such as range errors, but not others. Most debuggers have all kinds of
options on exactly which errors should stop execution and which should not.

The final possible response, GO STOPPED, happens if the debugger stops the go
command prematurely. It does this by sending a STOP command to the
application while the GO is still processing. If this command is received at any
other time, it is ignored completely with no response. This is because the
debugger may send the command but the application finish its GO before
receiving it. The stop will then be the next command the application finds. If it
made some kind of response to it, the debugger sends command, application
responds format we be broken.

STEP
One statement is executed. The application always responds with:
STEP COMPLETE
STEP COMPLETE WITH ERROR

Nombas ScriptEase ISDK/C 5.01 108

STEP COMPLETE WITH TRAPPED ERROR

In the case of a single step any of the returns indicates the statement is finished.
Step means do one statement, regardless of whether or not it resulted in an error.
The return lets the debugger know if an error was encountered.

TEST BREAKPOINT filename:line-number
Tests to see if the given filename and line number is a valid breakpoint. The
applications responds with:
IS BREAKPOINT
NOT BREAKPOINT

Note: this does not mean that the line has been flagged with the BREAKPOINT
command. It tests if the script could possibly break at this line, i.e. if this line is
one that can support a breakpoint.

EVAL expression
The expression is evaluated by the application. It responds with:
EVAL SUCCEEDED
EVAL FAILED

The second response indicating an error return. In either case, the expression's
value is retrieved using the GET command described below.

GET object index
Get any variable on the application. The object can be:
GLOBAL
LOCAL
THIS
FUNCTION
EVAL_RESULT
#object-id

The object id is returned when getting variables and allows recursing of
variables. The index, which does not apply to EVAL_RESULT and should not be
included in this case, indicates which member of the object is being queried.

The values returned for GLOBAL are the global variables. LOCAL is the local
variables. THIS is the current this object. FUNCTION does not take an index and
is the name of the executing function. EVAL_RESULT also does not take an index
and is the result of the last EVAL command. Errors are also stored here.

Results from the application include:
 NO SUCH MEMBER

If the index is beyond the number of members
 NULL
 UNDEFINED
 BOOL true or false
 NUMBER number

The given member is of the given type and value.
 STRING LENGTH string-length-in-bytes
 string data
 END STRING

If the value is a string.

Nombas ScriptEase ISDK/C 5.01 109

 UNICODE STRING LENGTH string-length-in-bytes
 string data
 END STRING

To pass a unicode string, length will be twice number of chars. Unicode chars are
passed in little endian byte order.
 OBJECT #object-id

If the value is another object.

STRING object index
This works just like GET, but the value is converted to a string. This is useful for
output. For instance, errors result in error objects. The debugger may not be
interested in that object and may just want to put an error message to the screen.
This allows that to occur easily.

VARNAME object index
Works much like STRING, but the returned string is not the value of the
members, but the member's name. Before the string is returned, the attributes of
the variable are returned on their own line, in brackets. If the variable has no
attributes set, the brackets will be empty. Otherwise, they will be a comma-
separated list of the attributes. The possibilities are: DontEnum, DontDelete,
ReadOnly, ImplicitThis, ImplicitParents.

STACK index
Set the call stack index to the given value. 0 is the normal value indicating the
current top of the call stack, i.e. what is executing. 1 is the function that called it,
etc. If it is out of range, the result will be a DENIED, else it will be:
STACK SET TO index

Once the call stack index is changed, all of the reporting functions are going to
return values relative to that index. For instance, REPORT gives the file/line
number of the function in that index, GET LOCAL refers to the local variables of
that function, and so forth.

RELEASE #object-id
Used after a GET that returned an object identifier to indicate no longer interested
in the object and can release that identifier. The application response is:
OBJECT RELEASED
OBJECT NOT FOUND

The debugger must release object identifiers after it uses them to query
subobjects, else it will lock a lot of memory on an application and can alter the
behavior of the application. You are not allowed to have any pending locks when
you issue a GO or STEP command, and if you do that command will be DENIED
with a message to this effect.

QUIT
Use to indicate to the application that the connection is to be closed.

Nombas ScriptEase ISDK/C 5.01 111

Extlibs
Extlibs, or external libraries, are a method to include wrapper libraries in an
external object, a dynamic link library or shared object depending on the system.
These extlibs are only loaded when the script writer needs them, via the #link
directive. In addition, extlibs allow an application to include additional wrapper
libraries for its scripts that were not available when the application was released.

ScriptEase releases for each operating system include sample extlibs as well as
the source code for all extlibs shipped with that version. The source code is found
in subdirectories of the src\lib directory, while the projects or makefiles are
found in subdirectories of the extlibs directory.

BUILDING AN EXTLIB
To build an extlib for your system, you should set up your compiler to build a
new dll or shared object. The extlibs shipped with the ScriptEase ISDK have
their appropriate makefiles/projects for you to look at if you have any questions.
Include the base directory of the ScriptEase distribution as an include path in
addition to any include paths needed for your extlib’s source files. Finally, link
with the extlib library found in lib/extlibs/<system>/libsee501ar.a.
The format of this file and its name is consistent with the format and name for the
core and library versions described in the chapter on "Integration Into Your
C/C++ Application".

The source code for the extlib itself is not an application. Instead you implement
a few functions needed by the extlib framework provided in
src\lib\common\selink.c. These functions allow your extlib to initialize
itself on load. Usually, you will use the load as an opportunity to add new
wrapper function tables to the context corresponding to the functionality of the
extlib you are implementing. Therefore, in addition to the stock routines to be
described next, you will have a number of wrapper functions implemented in the
normal way as described in the chapter on "Wrapper functions".

For most operating systems, you need only define a single function in your extlib
implementation. That function is defined as follows:
 SE_CALLBACK(sebool)
seExtensionLoadFunc(secontext se);

The function adds its function libraries to the context using seAddLibTable() and
does any other initialization. It return TRUE to indicate success. A FALSE return
will cause the extension library load to fail.

The exception is Netware. Because of the way Netware works, it must define
two additional functions. The following code gives an example of these functions
for the sesock extlib:
#if defined(__JSE_NWNLM__)

#ifdef _cplusplus
extern "C" {
#endif

 JSEEXTNSN_EXPORT(long)

Nombas ScriptEase ISDK/C 5.01 112

sesockjseExtensionVer(secontext se)
{
 return seExtensionVer(se);
}

 JSEEXTNSN_EXPORT(sebool)
sesockjseLoadExtension(secontext se)
{
 return seLoadExtension(se);
}

#ifdef _cplusplus
}
#endif

#endif

The only change you must make is in the name of the two routines. sesock must
be replaced with the name of your extlib. It must correspond exactly to the .nlm
executable to which the extlib is built; you cannot rename NLM extlibs. If the
name of the .nlm does not correspond to the name of these two routines, the
extlib will fail to load.

Nombas ScriptEase ISDK/C 5.01 113

Core Customization Topics
The ScriptEase core is highly customizable to suit the needs of a variety of
scripted applications. This chapter described the customization options available.
All of these options are determined by compile-time #defines. Once the options
are set, the ScriptEase core must be recompiled to reflect these options. As a
result, only customers who have purchased ScriptEase and thus have the source
code to the ScriptEase core can benefit from customizing the core.

The jseopt.h file found in the distribution contains the same documentation as
is here. For each define, it starts either on or off (off being commented out). Read
through this chapter and the jseopt.h file and change the state of any of the
options you like. Below, each option is listed as either on or off, reflecting the
default state.

CHARACTER SET CUSTOMIZATIONS
Choose a character set. These are exclusive options, uncomment the define for
the character type you wish to use. JSE_ASCII stands for an ASCII character set
build and is the default. JSE_UNICODE and JSE_MBCS (multibyte character set
builds) are the other two possibilities.

JSE_ASCII (on)
Select an ASCII build explicitly, the default.

JSE_UNICODE (off)
Build using Unicode instead of ASCII.

JSE_MBCS (off)
Build using MBCS instead of ASCII.

JSE_USER_DEFINED_MBCS (off)
ScriptEase allows an MBCS build to specify the functions for reading and
writing characters into strings. By default, the standard system MBCS routines
are used to do so. Turn this define on if using an MBCS build to utilize your own
routines.

CORE CUSTOMIZATION
The following options modify the internals of the ScriptEase core, and are used
mostly to balance performance and memory use.

JSE_MIN_MEMORY (off for most systems)
The most important definition related to memory use is JSE_MIN_MEMORY. This
value determines the default values are a number of other defines.
JSE_MIN_MEMORY turned on indicates that the values that conserve memory are
selected in each case. Generally, you can simply turn on this define for small
memory systems rather than picking and choosing among the options. By default,

Nombas ScriptEase ISDK/C 5.01 114

this define is off for most systems. The particular systems it is normally on for
are DOS 16-bit, WINCE, Blackberry, and Palm.

JSE_MULTIPLE_GLOBAL (on)
By default, ScriptEase remembers the global object in effect when each function
is created and runs each function under its original global object. This flag can be
used to turn off this behavior.

JSE_HASH_SIZE (256)
Determines the number of slots in the string hash table. This table is used to store
all member names. Increasing the size will improve performance slightly at the
cost of more memory.

JSE_ONE_STRING_TABLE (off)
Normally, each context has its own string table. Turning on this define makes a
single string table be used. A single string table is not compatible with a
multithreaded application using more than one context.

JSE_INFREQUENT_COUNT (5000)
ScriptEase normally calls an application's continue function after each script
statement is executed. seEval provides the option to call less frequently. This
define indicates how many statements are to be processed between each call to
the continue function.

JSE_INTERNAL_PROFILING (off)
ScriptEase can keep a timing count for time spent in various areas of the
ScriptEase engine and the user's application. Normally, this option is turned off.

JSE_GET_RESOURCE (off)
Normally, all resources (text error messages for instance) have their text stored
with the application. If this option is on, rather than using the stored text, the
application's seGetResourceFunc callback is used to retrieve the text for any
resource.

JSE_SHORT_RESOURCE (off)
When this define is turned on, all resource strings retain only their identifier. If
you provide an seGetResourceFunc, those identifiers will be turned into real
strings using it. If you do not, error messages and other resources will contain
only the error number and no message.

JSE_TRAP_NOWHERE (off)
Normally, when an API function tries to get an object that doesn't exist or can't
be converted to an object, the engine returns SE_NOWHERE. This allows your
application to use that object without error checking the result. However, you
may instead wish to check all your results for errors and ensure that this object is
never used. Turning on this define, which defaults to being off, causes an error if
SE_NOWHERE is ever tried to be used.

JSE_INLINES (on, off if JSE_MIN_MEMORY is defined)

Nombas ScriptEase ISDK/C 5.01 115

In the ScriptEase core, a number of functions are expanded inline to improve
speed. These functions take up considerable code space. The define
JSE_INLINES defaults to on only if JSE_MIN_MEMORY is not defined, inlining
only when memory conservation is not an issue.

JSE_PEEPHOLE_OPTIMIZER (on)
The peephole optimizer is run on the bytecodes ScriptEase produces for each
function, transforming certain inefficient common sequences into more efficient
ones. It speeds up programs and shrinks the resulting bytecodes. The only
disadvantage is an increase in compilation time, which may outweigh speed
performance if scripts consist of a number of quick and tiny functions.

JSE_CACHE_GLOBAL_VARS (on)
When on, ScriptEase maintains a cache of recently-accessed global variables,
speeding access to them in many cases. However, without certain transformations
done by the peephole optimizer, the global variable cache can be too aggressive
and return the wrong result at times. Therefore, you should only use the global
cache if the peephole optimizer is turned on, as is the default.

JSE_GLOBAL_CACHE_SIZE (10)
By default, the number of global variables retained in the cache is 10. Increasing
the size of the cache could increase cache hits, but the time to look through them
may slow misses. Our internal testing indicates the value of 10 is about optimal.
Global caching must be enabled for this define to be useful.

JSE_COMPACT_LIBFUNCS (off)
By default, this is on. ScriptEase stores wrapper functions in a minimal way,
expanding them on first use. Since most applications include a large number of
wrapper functions such as the standard ECMA library, and scripts use only a
fraction of them, this setting conserves a lot of memory. There doesn't seem to be
a good reason to turn it off, but the option exists nonetheless.

JSE_ALIGN_DATA (off)
Some systems require structures to have their members aligned and thus this flag
is on for them. It is off for most systems. By not defining it, the default,
ScriptEase chooses the right value for your system. However, you can always
force it to be on. This will always work, but use more memory if it did not need
to be used.

JSE_REFCOUNT (off)

JSE_GC (on)
Normally, JSE_GC is on meaning ScriptEase reclaims memory by garbage
collecting. If JSE_GC is off and JSE_REFCOUNT is on, ScriptEase uses a
reference counting scheme. This takes more memory and is slower, but it frees
objects as soon as they become unused. It cannot detect cyclic loops. If both are
on, reference counting is supplemented via garbage collection to find cyclic
loops.

Nombas ScriptEase ISDK/C 5.01 116

JSE_GC is noticeably quicker and less memory-hungry than is JSE_REFCOUNT.
Garbage collection passes are quick as well, on the order of tenths of a
milliseconds on a typical machine. Therefore, the main benefit of
JSE_REFCOUNT is to find objects that have become freed as soon as they have
done so. However, in most applications, you are better off leaving JSE_GC on
and forcing a garbage collection (by calling seGarbageCollect) at any critical
point that you need to ensure unused objects are freed.

By default, JSE_GC is on and JSE_REFCOUNT is off. Note that either one or both
of them may be defined. However, at least one of the two must be defined. If
both are turned off, JSE_GC will be selected automatically.

SE_OBJ_POOL_SIZE (1024, 128 if JSE_MIN_MEMORY is on)
ScriptEase maintains a pool of objects for its needs so that it doesn't need to
allocate and free objects to the system often. The bigger the pool, the less system
allocation is required at the expense of more memory used by the pool. Also, the
emptying of the pool triggers garbage collection, so the bigger the pool, the
longer ScriptEase can go between garbage collections.

Because emptying a pool triggers garbage collection, reducing the pool sizes
below the value for a JSE_MIN_MEMORY build will cause ScriptEase's execution
speed to slow drastically due to constant collection while freeing up very little
memory. It is advised that you treat 128 as the minimum for this define.

SE_MEM_POOL_SIZE (1024, 128 if JSE_MIN_MEMORY is on)
The members of an object are stored in a separate structure that works exactly
like SE_OBJ_POOL_SIZE. Since each object requires one descriptor for its
members, it is usually best to keep these two pool sizes identical.

SE_STRING_POOL_SIZE (512, 64 if JSE_MIN_MEMORY is on)
Each string in a script requires a string descriptor. These are pooled just like
object and member descriptors. This define determines the size of that pool. Like
the other pools, it has default sizes depending on the min-memory setting. With
min-memory on, it is 64 entries otherwise it is 512 entries.

JSE_STRINGS_COLLECT (1000000, 100000 if
JSE_MIN_MEMORY is on)
ScriptEase's GC engine triggers collection whenever its internal pools (of
objects) are exhausted and refills them. However, for string data, ScriptEase
instead collects after each set number of bytes of strings are allocated. This
option allows you to change how many bytes trigger a collection. The default is
100000 for min-memory, 1000000 for bigger systems.

JSE_PACK_OBJECTS (off, on is JSE_MIN_MEMORY is on)
Objects are packed to use the minimum memory. This setting is incompatible
with JSE_ALIGN_DATA. Turning this on saves significant memory, but on many
systems brings an equally significant loss in performance when dealing with
objects.

JSE_PACK_SECODES (off, on if JSE_MIN_MEMORY is on)

Nombas ScriptEase ISDK/C 5.01 117

The bytecodes are packed, conserving memory at the cost of execution speed.
Bytecodes can only be run on a ScriptEase application with the same setting for
this define as the one that created the bytecodes.

JSE_POOL_STRINGDATA (on, off if JSE_MIN_MEMORY is on)
ScriptEase always pools string descriptors. If this define is on, ScriptEase also
retains the string data space to be reused when the string descriptor is next used.
This allows faster string manipulations but uses up more memory. By default, it
is on only if not using a min memory setting.

JSE_PER_OBJECT_CACHE (on, off if JSE_MIN_MEMORY is
on)
Each object caches the last member in it that was accessed. In many programs,
this improves performance. Turning it off reduces memory requirements for
objects slightly at the cost of performance.

JSE_PER_OBJECT_MISS_CACHE (on, off if
JSE_MIN_MEMORY is on)
Objects store the last member searched for that the object did not have. This
speeds up searching for global variables in which a chain of objects is searched
for a particular member, often missing each time for the first few objects in the
chain. By default, non-min memory builds have a per-object miss cache.

SE_APISTRING_POOL_SIZE (5)
The ScriptEase API uses a string locking structure when strings are returned to
the user. Like many other internal structures, this structure is pooled in order to
reduce calls to the memory allocation routines. However, this pool is very small;
typically only one or a few strings will be allocated at once, so a large pool is
unnecessary.

SE_APIVARNAME_POOL_SIZE (5)
Varname structures are used by the API for internalized variable names. Like
string locking structures, they are needed only when the user has an internal
string locked. While many programs will lock a number of such names, they
remain locked for the life of the program. Typically, only one or a few names are
locked and then freed at a time.

SE_STACK_SIZE (2048, 512 if JSE_MIN_MEMORY is on)
ScriptEase uses an internal stack for resolving function calls and evaluating
expressions. Each function call needs a few entries for overhead plus one entry
per parameter passed to it and per local variable it allocates. The default size of
this stack is 2048 entries, enough to recurse typical functions to a depth in the
hundreds. 512 entries is allocated for a min-memory build.

SE_MAX_STACK_INFO_DEPTH (64)
The SE_STACK_INFO stock objects allow the API user to examine the call stack
of a running script. This macro determines the maximum depth that can be
examined. Each depth only requires one pointer (usually four bytes), so

Nombas ScriptEase ISDK/C 5.01 118

increasing the max depth isn’t costly. However, it is unlikely any program will
need more depth.

FEATURE CUSTOMIZATION
The following options all turn on or off certain JavaScript features. These
features are part of standard ECMAScript, but you may choose to disable certain
features to conserve space for low-memory systems.

JSE_COMPILER (on)
The ScriptEase compiler is necessary to run script code. With the compiler
turned off, your application will only be able to run precompiled scripts. The
JavaScript eval function relies on the compiler being enabled. The compiler is
on by default.

JSE_TOOLKIT_APPSOURCE (on)
This define determines whether the seGetSourceFunc is to be used by the
compiler when it reads text. By default, it is on. This define is only applicable for
the compiler.

JSE_SAVE_FUNCTION_TEXT (on, off if JSE_MIN_MEMORY
is on or JSE_COMPILER is off)
ScriptEase needs to retain information about the source of script functions to
allow the toSource call to turn those functions back into the source they came
from. This option tells it to do so.

JSE_PROTOTYPES (on)
Allows the JavaScript prototype-related features. JavaScript is heavily dependent
on prototypes and many of its features are built on top of them. Turning this off
is probably a bad idea.

JSE_ALWAYS_IMPLICIT_THIS (off)
With this flag set, the this variable is always searched as part of the scope
chain. Normally, the user must set the SE_IMPLICIT_THIS flag for each
function individually. Turning this compile-time option on will make that the
default for all functions.

JSE_ALWAYS_IMPLICIT_PARENTS (off)
Similar to JSE_ALWAYS_IMPLICIT_THIS, this flag will turn on implicit parents
for every function, causing the engine to search the __parent__ member of the
this variable when resolving variable names.

JSE_FUNCTION_ARGUMENTS (on)
When calling a function, some older scripts use the <function>.arguments
syntax rather than just using arguments. This behavior is rare but by default we
support it.

JSE_AUTO_OBJECT (off)

Nombas ScriptEase ISDK/C 5.01 119

An older ScriptEase behavior, undefined variables are automatically converted to
an object when used as an object.

JSE_REGEXP_LITERALS (on)
By default, JavaScript regular expression literals are allowed. They are a standard
part of JavaScript. However, if you turn off the regular expression portion of the
ECMA library, you should turn this off as well. The regular expression code is
large and is commonly left out of applications running in tight memory.

JSE_FUNCTION_LENGTHS (on)
Each function gets a .length property, the number of parameters it takes.
Turning this off will conserve memory slightly. Because it is a JavaScript feature,
this option is on by default.

JSE_HTML_COMMENT_STYLE (off)
If this option is turned on, HTML-style comments will be accepted (i.e. <!--
... -->).

SE_ECMA_RETURNS (on)
If no value is explicitly returned from the body of a script, the last expression
evaluated is returned implicitly. Normally, each expression evaluated has its
result preserved against the possibility it is the last expression evaluated and thus
needs to be returned. If this flag is turned off, the last expression is determined by
an alternate algorithm. While this algorithm is faster, some cases will confuse the
algorithm and cause an improper value to be returned.

SCRIPTEASE FEATURE
CUSTOMIZATION
The following options are similar to Feature Customization, but they modify
ScriptEase-only features.

JSE_TOKENSRC (on)
Allows ScriptEase to produce tokens. You can use sePrecompile only if this
define is on. The compiler portion of ScriptEase must also be turned on.

JSE_TOKENDST (on)
Allows ScriptEase to run precompiled scripts. This option is necessary to pass
precompiled scripts to seEval.

JSE_DYNAMIC_CALLBACKS (on)
By default, objects can be given a callback table to implement their get, put,
delete, and other operators using the seSetCallbacks API call. Turning off
this option removes that capability.

JSE_OPERATOR_OVERLOADING (on)
Operator overloading is one of the object callbacks. It can be individually turned
off.

Nombas ScriptEase ISDK/C 5.01 120

JSE_ENABLE_DYNAMETH (off)
Object callbacks are normally not recursive, they are shut off while active. In
other words, if you are implementing the dynamic get for an object and you try to
get a member of that object, you won't be stuck in an infinite loop; rather that get
will get the property from the internal ScriptEase store. It is possible that a
particular application does want the recursive behavior. This option makes
available the seEnableDynamicMethod API call, which allows a particular
dynamic method to be turned back on.

JSE_GETFILENAMELIST (off)
If your application does not need to use the SE_FILENAMES object, you can turn
it off and save the code and runtime space associated with storing these
filenames.

JSE_BREAKPOINT_TEST (off)
If your application does not need to use the seIsBreakpoint call, you can get
rid of it to save some space. The ScriptEase debugger requires this call to
operate.

JSE_TASK_SCHEDULER (on)
ScriptEase supports the concept of fibers. Turning off this option will turn off the
seCreateFiber API call as well as the SE_YIELD and SE_SUSPEND members
of the SE_RETURN object.

JSE_LINK (on)
Turns on the #link directive.

JSE_INCLUDE (on)
Turns on the #include directive.

JSE_DEFINE (on)
Turns on the #define directive.

JSE_CONDITIONAL_COMPILE (on)
Turns on the #if, #elif, #else, #ifdef, and #ifndef directives.

JSE_SECUREJSE (on)
By default, the ScriptEase security model is on. If you are not intending to use
security, you can turn it off to save space.

JSE_NUMTOSTRING_ROUNDING (on)
When turning a number into a string, ScriptEase performs rounding. This is an
attempt to counteract the fact that certain numbers cannot be stored exactly using
the C double, and they look odd when printed out. If this option is turned off,
numbers will be printed out exactly as they are stored.

JSE_MAIN_ARGC_ARGV (on)

Nombas ScriptEase ISDK/C 5.01 121

ScriptEase has the legacy option to treat a function named main as special, auto-
calling it like C. The SE_CALL_MAIN option to seEval causes this to be done.
By default, this is available. If you have no interest in this option, you can get rid
of it completely and save some code space.

JSE_TOSOURCE (on)
ScriptEase provides a number of helper functions that ease turning an object class
into its appropriate source code, to implement the toSource method. Many of
the standard ECMA objects we provide rely on this code. Turn it off only if you
are not using the ECMA objects and do not need the helper routines for your own
functions.

JSE_NAMED_PARAMS (on)
ScriptEase allows passing parameters by name, such as calling a function like
foo(a:10,b:"blah");. Turn off this option to remove this capability.

JSE_TIMEZONE_GLOBAL (off)
Some implementations do not have knowledge of the local machines timezone.
In this case, you can turn on this define, and fill in this global variable with the
information:
extern slong jse_minutes_from_gmtime;

JSE_TOLOCALEDATE_FUNCTION (off)
The optional toLocaleDate method of the the Date object is off by default.

JSE_MILLENIUM (off)
Several JavaScript date functions deal with 2-digit dates, assumed to be from the
20th century. Because such functions are not year-2000 compatible, they are
turned off by default.

JSE_NO_AUTO_INIT (off)
If this option is on, extlibs when loading will not automatically add their
functions to the current global object. Instead, you'll have to explicitly call the
LoadLibrary_XXX function in the extlib. This define is only applicable to
building extlibs.

JSE_BROWSEROBJECTS (off)
Nombas provides a framework for implementing the browser objects such as
window, document, etc. If you turn on this option, they will be added. You will
need to implement a number of routines to get these to work. See the files in
src/browser for documentation.

JSE_THREADSAFE_POSIX_CRTL (off)
This option causes ScriptEase to use threadsafe versions of the standard C library
routines that use internal buffers.

JSE_PREEMPTIVE_THREADS (on)

Nombas ScriptEase ISDK/C 5.01 122

Determine if you intend to use multiple threads with ScriptEase. Generally, it is
safe to leave this define on as even if you are not using multiple threads, it
doesn't hurt.

SE_SHARED_OBJECTS (on)

Activates the API function seShareReadObject which allows objects to be
shared among threads.

JSE_PASSBYREF (on)

ScriptEase supports the passing of parameters to script functions by reference by
using the & operator and to wrapper functions by using the SE_BYREF flag. This
define turns the support on, which is the default.

DEBUGGING CUSTOMIZATION
These options affect debugging and the level of internal checks ScriptEase
performs.

NDEBUG
This is not usually defined in the jseopt.h file, but rather by your compiler
depending on if you are building a release or debug version. However, it is a very
important define which ScriptEase uses extensively. When NDEBUG is not
defined (i.e. a debug build), ScriptEase does a significant amount of internal
checking for any bugs, either errors in ScriptEase itself or errors in an
application's use of the API. You should do all development without the NDEBUG
flag as you can find many bugs this way. When you are ready to release, turn
NDEBUG back on for the fastest possible code.

JSE_MEM_DEBUG (on if NDEBUG not defined)
In debug mode (i.e. NDEBUG not defined), by default ScriptEase adds extensive
tests on top of the memory allocation system. These tests will locate unfreed
memory, will fill freed memory with garbage, will test for writing past either end
of a block of memory, and several other memory-related tests. It is usually best to
leave this define on for your debug builds.

JSE_SLOW_MEM_ALLOC (off)
Some systems allocate memory very slowly. ScriptEase can emulate slow
memory routines to help reproduce these problems.

JSE_ENFORCE_MEMCHECK (on)
By default ScriptEase will cause calls to the standard allocation routines to be
marked as errors. This is because ScriptEase always uses its own allocation
routines. In non-JSE_MEM_DEBUG mode, these routines just internally use the
standard allocation routines. If you need to call the standard allocation routines
directly, turn this define off.

JSE_TRACK_MEMUSE (off)
Enables a more detailed memory tracking system which keeps track of the
number of allocations, maximum allocated at any point, and total allocated for

Nombas ScriptEase ISDK/C 5.01 123

every structure within the ScriptEase engine. It is primarily used only for internal
debugging and to detect excessive memory waste.

JSE_TRACK_OBJECT_USE (off)
This is an internal routine that keeps track of how many times object members
are accessed, and whether they are found in the cache or needed to be looked up.
It is used primarily to optimize the object cache and detect bottlenecks in
member lookup.

JSE_NEVER_FREE (off)
An extreme bug-detection setting used for self-debugging by the ScriptEase
engine. When on, the garbage collector never frees unused memory. It does fill
the memory with a particular byte value when no longer used. This will cause
ScriptEase to use enormous memory, but is useful to isolate internal garbage-
collection related bugs.

JSE_DONT_POOL (off)
Another garbage collection setting. ScriptEase normally maintains a pool of
objects and reuses them whenever possible. In this mode, all memory is returned
to the system when not in use and reallocated when needed. This is a very slow
mode designed to shake out any internal bugs.

JSE_ALWAYS_COLLECT (off)
The garbage collector normally runs only when ScriptEase detects it is low on
memory. If this is on, the garbage collector is run any time it could possibly be
run, regardless of memory. This is an important setting to self-diagnose
ScriptEase core bugs, but is very slow. 'very slow' means that - VERY slow.

JSE_PSEUDO_PALMOS (off)
This define turns on many of the 'weird' settings necessary to get ScriptEase to
run on the Palm. Since the Palm is very difficult to debug on, it is useful to debug
these palm-specific oddities on a larger system.

FLOATING POINT CUSTOMIZATION
The ECMAScript standard specifies that an ECMAScript number match the
double-precision 64-bit format IEEE 754 values. In most compilers this is
represented as double, and this is the default for the ScriptEase engine.
However, there may be situations where a different meaning for “number” may
be more appropriate, such as when a double is too large or requires too much
processing time (e.g., small systems without floating-point coprocessors), or
when floating-point numbers are not needed at all.

Within the ScriptEase:ISDK/C the exact type for an ECMAScript number is
never hard coded, but is instead defined by the senumber type. By default
senumber is defined the same as the C double type, but that may be changed to
any definition that is better suited to your system. The file
src/include/sefp.h defines defaults for this value for floating-point and
integer-only builds. You may choose to modify the type of senumber to be

Nombas ScriptEase ISDK/C 5.01 124

anything else, such as a float, an integer, a packed value, a string, or even a
structure (as is found in the fpemul sample).

JSE_FLOATING_POINT (on)
This value defines whether the ScriptEase interpreter and libraries will support
floating-point operations. If this is not defined then the engine will only support
integers, and any use of a floating-point number or operation will result in an
exception (e.g. pi=3.1415, Math.cos(), 0.0). An application for a small
device may run much smaller and faster when JSE_FLOATING_POINT is not
defined if floating-point math is not needed.

JSE_FP_EMULATOR (off)
You can completely redefine all of the floating-point types and operations by
compiling with JSE_FP_EMULATOR defined. If this flag is defined, then you
must implement, through macros or function calls, all of the basic and extended
math operations. Even such a simple operations as adding two numbers or
converting a number to an integer must be defined by your macros and functions.
Those macros and functions are all defined in the file src/include/sefp.h.

One example has been provided for using JSE_FP_EMULATOR. If the tester
(tests/testers/config/fpemul.h) header file is used, it defines
JSE_FP_EMULATOR and includes a sample implementation of all the math
routines as found in src/app/fpemul.*. This example is built for systems
that need floating-point support but which have very slow FP emulation. The
goal is to make numbers be kept as integers as long as possible and only
converted to floats when they cannot be represented accurately as integers—the
resulting code matches the ECMAScript specification but with optimal speed on
a slow-FP system. Note that this is just one sample implementation; different
platforms will have different schemes for FP emulation.

MEMORY EXTENSIONS
The ideal computer for a high-level scripting language would have unlimited fast
RAM but many platforms are a long way from this ideal. For example, some
systems have a relatively small amount of heap memory and a larger switched
area for external RAM storage; some systems have relatively small memory but a
huge amount of disk storage; some systems go through periodic heap
compression and so allocated memory must be allowed to move; some systems
have memory that is really a database; some systems support fast reads on
memory but slower writes; and so on…

JSE_MEMEXT_MEMBERS (off)
JSE_MEMEXT_OBJECTS (off)
JSE_MEMEXT_SECODES (off)
JSE_MEMEXT_STRINGS (off)
JSE_MEMEXT_READONLY (off)

Nombas ScriptEase ISDK/C 5.01 125

These flags define whether the memory extensions will be used. There are four
types of data for which the memory extensions are used: objects, members of
objects, strings, and secodes (which are the virtual-machine bytecodes associated
with each script function). Usually you would define all or none of these, but you
may want to turn some on or some off depending on the type of scripts you’ll be
running and the balance needed between memory use and performance (for
example, for the function overlay technique described below you may choose to
only implement JSE_MEMEXT_SECODES).

JSE_MEMEXT_READONLY is defined for systems that distinguish between
memory that is read-only and memory that is read-write. If it is just as fast to use
writeable memory as it is to use read-only memory, then leave this flag off. If
this flag is defined then the engine will access memory in read-only mode as
much as possible, and so improve overall performance.

The memory-extension routines in the ScriptEase engine use a caching algorithm
to balance memory use versus performance, so that memory handles that are
more likely to be used soon are maintained in a cache. These cache sizes can be
adjusted by overwriting the compile-time parameters in the
src/include/sememext.h file.

The PalmOS version of SE:ISDK/C makes extensive use of memory extensions
because the PalmOS has relatively little heap space, but much more long-term
storage. Another interesting example of the use of memory extensions is to
implement a function-overlaying system. As one example, a systems may have a
small amount of RAM and much more disk space. As the scripting functionality
expands on the system (because it is much easier to implement new functionality
via scripts) memory may run short. One solution is to enable
JSE_MEMEXT_SECODES and JSE_MEMEXT_READONLY so that the virtual-
machine bytecodes for functions are cached to the hard disk, with seldom-used
functions taking up no memory unless they are needed.

There are many more situations and sample implementations for which memory
extensions are needed. For more information see the comments in the
src/include/sememext.h file about typedefs and macros that you must
define to use memory extensions. Also see two sample implementations
included with the SDK in the tests/testers subdirectory: mmemext.h and
mmemext.c demonstrate handles to externally allocated memory, and fmemext.h
and fmemext.c demonstrate using file handles as memory extensions. These two
samples are both more useful for education and testing than they are useful for
real world situations.

Nombas ScriptEase ISDK/C 5.01 127

Fibers and Threads
Each secontext can be used by only a single thread at one time. If you want to
run multiple scripts simultaneously in a multithreaded application, you need to
create one secontext using seCreateContext per thread. You can in fact
create more than one secontext per thread if you like.

Each context contains a copy of much of the same data. Namely, each context
will initialize the standard function libraries into its global object in order to
allow its scripts to see them. In addition, each context keeps a pool of various
kinds of memory available in order to increase performance. As a result, each
context has significant overhead of memory. Fibers exist to help alleviate this
problem.

Fibers are like sibling contexts. Each fiber in the same group has access to the
same variables, uses the same pools of memory, and so forth. Therefore the
overhead described exists only once even when a large number of fibers exist in
the same group. However, fibers are not a replacement for separate contexts in
multiple threads. All fibers in the same group are considered one context, so they
can only be used by a single thread and only one fiber can be active at once. You
can use fibers to cooperatively multitask scripts but since only one fiber can be
run at once, fibers do not take advantage of multiple processors. If your machine
has multiple processors, and you would like to run multiple scripts taking
advantage of all the processors, you must use full contexts not fibers.

Fibers are created using the ScriptEase seCreateFiber API call. You pass as a
parameter an existing context. The new fiber is created as part of the same fiber
group the existing context is part of. You create the first context using
seCreateContext then create any number of fiber siblings using
seCreateFiber. When you are done, you have a number of related contexts,
each which can run its own script. However, all of the contexts share a single
global object. You can change the global object in any of the fibers, but the intent
of the fibers is to conserve memory so sharing the global object is the norm.

USING SE_START
As was mentioned, each fiber group has the limitation that only one of the fibers
can be running at the same time. If you use seEval to evaluate a script in one
fiber, you must wait for it to complete before evaluating another script in a
different fiber. To get around this limitation, seEval has the SE_START flag
option.

SE_START initializes an eval and then returns. Successive lines of the script are
run using the ScriptEase seExec API call. Using this method, when you
initialize each fiber you begin the script it is to run using seEval and SE_START,
which then returns to you quickly. You do the same for each fiber. Now you can
execute a single line of each script using seExec. Typically, you keep evaluating
one line on each fiber in a round-robin fashion in this way. As each fiber
completes its task, it is removed from the list of fibers to execute in this way.
New fibers can be created and added into the list easily.

Nombas ScriptEase ISDK/C 5.01 128

GLOBAL MANIPULATION
Although the intent of fibers is to conserve memory by sharing overhead, often
each fiber should still be independent. For instance, you may not want them to
share global variables. This is easy to accomplish. After you create the initial
context and set up the libraries in it using seCreateContext, you preserve that
global object. Then for each fiber (including the original context returned by
seCreateContext), you give it a new global object with its _prototype
pointing to the preserved global object. Thus, all new variables created in a fiber
will be created in its private global object, yet it still can refer via the global’s
prototype to the original global object which contains all the standard function
libraries.

Here is a short example ScriptEase API application that creates several fibers and
runs them all.
#define MAX_FIBERS 5

/* ---
 * Error handler
 * --- */

 SE_CALLBACK(void)
my_error_printer(secontext se,seconstcharptr text)
{
 printf_sechar(UNISTR("Error encountered: %s\n"),text);
}

/* A wrapper function to write out a string. It converts
 * whatever argument it is given to a string then writes it
 * to the terminal using 'printf'. The user would use it like
 * this:
 *
 * StringOut("Hello, world!");
 */

/* ---
 * Text output
 * --- */

 SE_CALLBACK(void)
StringOut(secontext se,sememcount argc)
{
 sememcount i;
 seconstcharptr text;

 for(i=0;i<argc;i++)
 {
 /* Get each successive argument and print them
 */
 text = seGetString(se, SE_ARGS,SE_NUM(i), NULL);
 printf_sechar(UNISTR("%s\n"),text);
 }
}

SE_BEGIN_LIB_TABLE(SampleFunctionList)
 SE_FUNCTION("StringOut", StringOut, 1, -1,
 SE_SECURE, SE_DONTENUM),
SE_END_LIB_TABLE

Nombas ScriptEase ISDK/C 5.01 129

 void
add_fiber(secontext se,secontext *table,int *number,
 seobject glob)
{
 assert((*number)<MAX_FIBERS);
 table[(*number)++] = se;

 /* give the fiber a private global */
 sePutObject(se,SE_GLOBAL,SE_VALUE,seMakeObject(se));
 /* but point back to shared so can see it */
 sePutObject(se,SE_GLOBAL,SE_STOCK(_prototype),glob);

 seEval(se,UNISTR("var a = 10;\nStringOut(a);\n"),SE_TEXT,
 NULL,NULL,SE_START,NULL);
}

 void
remove_fiber(int num,secontext *table,int *number)
{
 assert(num<(*number));

 /* we are done with the context */
 seDestroyContext(table[num]);

 /* remove it from the table */
 while(num<(*number)-1)
 {
 table[num] = table[num+1];
 num++;
 }
 (*number)--;
}

 void
main(int argc,char **argv)
{
 secontext se;
 secontext fibers[MAX_FIBERS];
 int fibers_used = 0;
 int fiber_current = 0;
 seobject shared_global;
 struct seContextParams params;

 seInitialize();

 memset(¶ms,0,sizeof(params));

 /* the print error function is the one required function. */
 params.sePrintErrorFunc = my_error_printer;

 /* initialize the main context */
 se = seCreateContext(¶ms,MY_JSE_USER_KEY);
 if(se==NULL)
 {
 printf_sechar(UNISTR("Invalid user key.\n"));
 exit(0);
 }

 shared_global = seGetObject(se,SE_GLOBAL,SE_VALUE);

Nombas ScriptEase ISDK/C 5.01 130

 /* add libaries so we have the StringOut function */
 seAddLibTable(se,SampleFunctionList,NULL);

 /* Add the original context to our fiber list. All contexts
 * including the parent will be treated identically
 */
 add_fiber(se,fibers,&fibers_used,shared_global);

 /* Create some more fibers. All are added to one big
 * pool.
 */
 while(fibers_used<MAX_FIBERS)
 add_fiber(seCreateFiber(fibers[0]),fibers,
 &fibers_used,shared_global);

 /* run the fibers until all have exited. For each fiber,
 * execute its next available statement using seExec().
 * Notice that an seEval using SE_START was started in
 * each fiber when it was added above. As each fiber
 * finishes its seEval(), we remove it from the fiber list.
 * We exit when all fibers are done.
 */
 while(fibers_used>0)
 {
 if(!seExec(fibers[fiber_current]))
 {
 remove_fiber(fiber_current,fibers,&fibers_used);
 /* and continue using the fiber that fell into its
 * place
 */
 }
 else
 {
 fiber_current++;
 }
 if(fiber_current>=fibers_used) fiber_current = 0;
 }

 /* Done with the sample, shut everything down. */
 seTerminate();
}

YIELDING AND SUSPENDING
At times, you may want to control the behavior of your fiber execution more than
the simple control provided by executing a single statement at a time. Two
methods are provided for you to do so. Both methods are invoked by a wrapper
function to affect the execution of the fiber the wrapper functions is within.

When a wrapper function is ready to return, it sets up its value in the SE_RETURN
object. Two members of the object, SE_YIELD and SE_SUSPEND, can likewise
be set. Both are boolean members and are set TRUE to invoke their relevent
behavior.

First is SE_YIELD. By yielding, the fiber ensures that the current seExec
statement is immediately ended. Recall that the SE_INFREQUENT_CONT option
to seEval means that several statements are executed for each call to seExec. If

Nombas ScriptEase ISDK/C 5.01 131

a wrapper function yields, the seExec returns immediately. The return value for
the wrapper function is still treated normally. The next time the fiber is executed
using seExec, execution resumes with the code that called the wrapper function
getting that value as the return.

The second option is SE_SUSPEND. Suspending functions is similar to yielding in
that the calling seExec finishes immediately. However, the fiber is put into a
suspended state. This means that further calls to seExec will immediately return
without executing any code of the fiber. It is the job of your application to
determine when the fiber is ready to be restored and remove its suspended state.
This is done by assigning FALSE to the fiber’s SE_RETURN,SE_SUSPEND
member. After the suspend is removed, the application can also change the return
value to be returned by the wrapper function before again executing any code. It
does this by assigning the new value to the SE_RETURN,SE_VALUE member as
normal. If it does not, the value returned by the wrapper function is used. This is
useful if the value to be returned is unknown when the wrapper function
suspended, perhaps that is why it needed to be suspended. Remember, though,
that the SE_RETURN,SE_VALUE member is read-only as long as any of the
boolean members are TRUE including the SE_SUSPEND member. You must turn
the suspension off before you are allowed to write a new return value. Of course,
you must do it also before you call seExec on the fiber after it is unsuspended.

OTHER CONSIDERATIONS
It is important to understand that values returned from the ScriptEase API that
follow the usual ScriptEase lifetime rules, such as seobjects, sestrings, and
seconstcharptrs, are tied to the context they were created in. Any ScriptEase
call that is passed that parameter must be passed the same context used to
initially get that item. You cannot use an seobject created in one context with
another, for instance.

Fibers are one exception. Fibers are designed to allow several contexts to share
the same variables. All fibers in the same fiber group can share these items and
use them in any context of the same fiber group. Items created in this way still
must not be used with a context that is not part of the fiber group, however.

READ-ONLY SHARED OBJECTS
ScriptEase supports one other sharing mechanism via the API call
seShareReadObject. This call allows sharing ScriptEase objects across
threads albeit with several limitations.

Object handles, i.e. seobjects, can be made sharable by passing them to the
seShareReadObject api call. Once this is done, the handle can be used in any
context and thus the object it refers to can be used in any context as well. Such
handles no longer follow the usual ScriptEase lifetime rules. Such handles can
only be created in the first ScriptEase context before any other contexts are
created. These handles are valid until that context is destroyed.

A typical use for read-shared objects is to initialize a context using
seCreateContext as normal. Whatever standard libraries are defined in your
jseopt.h file are added to the context as normal. Any program-specific
libraries are added in the context’s sePrepareContextFunc callback. The

Nombas ScriptEase ISDK/C 5.01 132

result is that all of the wrapper functions normally available to a script are
initialized in that context’s global object. That global object is made read-shared
so that many new contexts can be created and share the same set of wrapper
functions without having to reinitialize them in each context. This saves
considerable startup time and memory for each new context created.

With this method, new contexts are created passing the SE_OPT_NO_LIBRARIES
option to seCreateContext. This is because the new contexts will be sharing
the old libraries and do not need their own copy of the libraries created.
Likewise, these new contexts do not add program-specific libraries during their
sePrepareContextFunc callback, instead using the copies created by the first
context. The _prototype member of the global object of each new context is
assigned with the shared global object thus allowing all new contexts to see and
share the original libraries.

The ScriptEase sample objshare does exactly what is described above.

Read-shared objects are completely read-only as are their children. No changes at
all can be made to them; they cannot get new members, have members deleted,
alter member values, or be modified in any way. This applies in all contexts
including the first context that originally created the object.

The shared objects are cleaned up when the context creating them, the first
context, is destroyed. This means object destructors will be called and library
termination routines invoked. The first context can only be destroyed if there are
no other contexts sharing its objects. If you have shared any objects then a call to
seDestroyContext on the first context will fail with an appropriate api error if
there are any other contexts still undestroyed.

SHARED SERVICES
It is common practice for function libraries to initialize and store data in the
SE_SERVICES object for retrieval by their wrapper functions. However, the
SE_SERVICES object is per-context. If you create and store information in that
object, it will only be accessable from the context that created it. If the libraries
are to be made read-shared, they cannot use this object to store data that should
be accessable from any context using it.

Libraries that want to be able to be shared must use the
SE_SHARED_SERVICES object to store any data that needs to be accessable
from any context using the code. This object functions similarly to
SE_SERVICES, you create members using a name that will not conflict with
other applications and retrieve those members as needed.

The SE_SHARED_SERVICES object is a read-shared object and thus cannot be
modified. The only time you can write to it is in the sePrepareContextFunc
callback of the first context. Therefore, you want to ensure any initialization code
that may write to this object, such as seAddLibTable calls, are put into the
prepare context callback for your first context.

Take care when designing your applications and carefully consider the purpose
of the data you are storing in the SE_SERVICES object. You may want that data
to be per-context. In other cases, the data should be identical between contexts,
and that is when you use the SE_SHARED_SERVICES object.

Nombas ScriptEase ISDK/C 5.01 133

The SE_SHARED_SERVICES object is a synonym for SE_SERVICES if you
do not have the read-only shared objects enabled. Thus, you can write your code
to properly function when shared and use it unchanged in a non-shared build
(determined by the options in your jseopt.h file) by using
SE_SHARED_SERVICES when appropriate.

Nombas ScriptEase ISDK/C 5.01 135

ScriptEase JavaScript
ScriptEase is a scripting or programming language that allows a computer user or
programmer to write simple scripts with tremendous power. The guiding
principles for ScriptEase are simplicity and power which add up to easy
elegance in scripting. Scripts are much easier to write and use than the source
code for compiled languages such as C++.

ScriptEase uses JavaScript, one of the most popular scripting language in today's
world, as its core language. In fact, ScriptEase uses the ECMAScript standard for
JavaScript. ECMAScript is the core version of JavaScript which has been
standardized by the European Computer Manufacturers Association and is the
only standardization of JavaScript. ScriptEase closely follows and will follow
this standardized JavaScript.

ScriptEase is not limited to JavaScript, as good as it may be. ScriptEase has
enhanced the power of JavaScript by adding two objects, Clib and SElib, that
have the power of the C programming language. Indeed, ScriptEase implements
a scripting version of C which has the power of C in a simple scripting language.
With the power of C readily available, computer users or programmers are able
to accomplish any tasks that they pursue. Both JavaScript and C script can be
intermingled in ScriptEase code, which allows scripters flexibility, power, and
simplicity.

The following line is a complete script which could be saved as a script file and
run as a program. The program simply displays a message, "A simple one line
script," on a computer screen
Screen.writeln("A simple one line script")

The following code fragment uses a more structured approach to accomplish the
same task. JavaScript and C share similar programming styles, such as the main()
function shown in this fragment.
function main()
{
 Clib.puts("A simple one line script");
}

A ScriptEase script may be written using a very straightforward scripting
approach as shown in the first example above, which is similar to the simple
scripting of a DOS batch file. A second line could be added to the single line as
shown in the following fragment.
Screen.writeln("A simple one line script")
Clib.puts("Now there are two lines")

The example using the main() function could be expanded as follows.
function main()
{
 Clib.puts("A simple one line script");
 Screen.writeln("Now there are two lines");
}

Nombas ScriptEase ISDK/C 5.01 136

These examples illustrate how easily ScriptEase can be used in a simple scripting
mode and how easily the power of functions can be put in a script, and not just
the power of functions, but the power of C. They show how easily JavaScript and
C script can be intermingled, since C is implemented as a JavaScript object.
Functions and other programming concepts are explained in the following
descriptions of the ScriptEase language. A tutorial section provides illustrations
of scripts in addition to the example code fragments in the text.

Most JavaScript, other than ScriptEase, is part of web browsers and is used while
users are connected to the Internet. Usually people are unaware that JavaScript is
commonly being executed on their computers when they are connected to various
Internet sites. Not only are they unaware, they are unable to write and execute
scripts on their computers for their own uses. ScriptEase steps in at this point.
ScriptEase Desktop is designed for users to control their own computers in a
stand alone mode. Users do not have to be connected to the Internet to use
ScriptEase, as they must be with other JavaScript interpreters.

Whether the desire is to write a simple script to copy a document to a backup
folder or to write an entire data processing program, ScriptEase can do the job or
any other job desired. ScriptEase has joined JavaScript and C. Further,
ScriptEase adds commands and functions not available in standard
implementations of either. In short, ScriptEase is the most powerful and
advanced scripting language available today, and it achieves its power while still
being simple to use.

The following sections of this manual will help you to start enjoying the power of
ScriptEase.

Basics of ScriptEase
Case sensitivity
ScriptEase is case sensitive. A variable named "testvar" is a different variable
than one named "TestVar", and both of them can exist in a script at the same
time. Thus, the following code fragment defines two separate variables:
var testvar = 5
var TestVar = "five"

All identifiers in ScriptEase are case sensitive. For example, to display the word
"dog" on the screen, the Screen.write() method could be used:
Screen.write("dog"). But, if the capitalization is changed to something like,
Screen.Write("dog"), then the ScriptEase interpreter generates an error
message. Control statements and preprocessor directives are also case sensitive.
For example, the statement while is valid, but the word While is not. The
directive #if works, but the letters #IF fail.

White space characters
White space characters, space, tab, carriage-return and new-line, govern the
spacing and placement of text. White space makes code more readable for
humans, but is ignored by the interpreter.

Lines of script end with a carriage-return, and each line is usually a separate
statement. (Technically, in many editors, lines end with a carriage-return and

Nombas ScriptEase ISDK/C 5.01 137

linefeed pair, "\r\n".) Since the interpreter usually sees one or more white space
characters between identifiers as simply white space, the following ScriptEase
statements are equivalent to each other:
var x=a+b
var x = a + b
var x = a + b
var x = a
 + b

White space separates identifiers into separate entities. For example, "ab" is one
variable name, and "a b" is two. Thus, the fragment, var ab = 2 is valid, but
var a b = 2 is not.

Many programmers use all spaces and no tabs, because tab size settings vary
from editor to editor and programmer to programmer. By using spaces only, the
format of a script will look the same on all editors. All scripts provided by
Nombas with ScriptEase use spaces only.

Comments
A comment is text in a script to be read by humans and not the interpreter which
skips over comments. Comments help people to understand the purpose and
program flow of a program. Good comments, which explain lines of code well,
help people alter code that they have written in the past or that was written by
others.

There are two formats for comments: single-line comments (end of line
comments) and multi-line comments (block comments). Single-line comments
may contain any character except a line terminator character ("\n").

• Single-line comments begin with two slash characters, "//". Any text after
two consecutive slash characters is ignored to the end of the current line. The
interpreter begins interpreting text as code on the next line.

• Multi-line comments are enclosed within a beginning block comment, "/*",
and an end of block comment, "*/". Any text between these markers is a
comment, even if the comment extends over multiple lines. Multi-line
comments may not be nested within other multi-line comments, but single-
line comments can exist within multi-line comments.

The following code fragments are examples of valid comments:
// this is a single-line comment

/* this is a multi-line comment
 This is one big comment block.
 // this comment is okay inside the block
 Isn't it pretty?
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "this line is not a comment";

Expressions, statements, and blocks

Nombas ScriptEase ISDK/C 5.01 138

An expression or statement is any sequence of code that performs a computation
or an action, such as the code var TestSum = 4 + 3 which computes a sum
and assigns it to a variable. ScriptEase code is executed one statement at a time in
the order in which it is read. Many programmers put semicolons at the end of
statements, although they are not required. Each statement is usually written on a
separate line, with or without semicolons, to make scripts easier to read and edit.

A statement block is a group of statements enclosed in curly braces, "{}", which
indicate that the enclosed individual statements are a group and are to be treated
as one statement. A block can be used anywhere that a single statement can.

A while statement causes the statement after it to be executed in a loop. By
enclosing multiple statements in curly braces, they are treated as one statement
and are executed in the while loop. The following fragment illustrates:
while(ThereAreUncalledNamesOnTheList() == true)
{
 var name = GetNameFromTheList();
 CallthePerson(name);
 LeaveTheMessage();
}

All three lines after the while statement are treated as a unit. If the braces were
omitted, the while loop would only apply to the first line. With the braces, the
script goes through all lines until everyone on the list has been called. Without
the braces, the script goes through all names on the list, but only the last one is
called. Two very different procedures.

Statements within blocks are often indented for easier reading.

Identifiers
Identifiers are merely names for variables and functions. Programmers must
know the names of built in variables and functions to use them in scripts and
must know some rules about identifiers to define their own variables and
functions. The following rules are simple and intuitive.

• Identifiers may use only ASCII letters, upper or lower case, digits, the
underscore, "_", and the dollar sign, "$". That is, they may use only
characters from the following sets of characters.
"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"0123456789"
"_$"

• Identifiers may not use the following characters.
"+- <>&|=!*/%^~?:{};()[].'"`#,"

• Identifiers must begin with a letter, underscore, or dollar sign, but may have
digits anywhere else.

• Identifiers may not have white space in them since white space separates
identifiers for the interpreter.

• Identifiers may be as long a programmer needs.

The following identifiers, variables and functions, are valid:
Sid

Nombas ScriptEase ISDK/C 5.01 139

Nancy7436
annualReport
sid_and_nancy_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
_Divide$All()

The following identifiers, variables and functions, are not valid:
1sid
2nancy
this&that
Sid and Nancy
ratsAndCats?
=Total()
(Minus)()
Add Both Figures()

Prohibited identifiers
The following words or tokens have special meaning for the interpreter and
should not or may not be used as identifiers, neither as variable nor as function
names. See identifiers to avoid for a list of words to shun as identifiers.

abstract as break boolean byte case
catch char class const continue debugger
default delete do double else enum
export extends false final finally float
for function goto if implements import
in instanceof int interface is long
namespace native new null package private
protected public return short static super
switch synchronized this throw throws transient
true try typeof use var void
volatile while with

Identifiers to avoid
Safe programming suggests that the following words or tokens should not be
used as identifiers, neither as variable nor as function names. See prohibited
identifiers for a list of words to that simply should not be used as identifiers.

arguments Array Boolean Date
decodeURI decodeURIComponent encodeURI
Error escape eval EvalError
Function Infinity isFinite isNaN
Math NaN Number Object
parseFloat parseInt RangeError ReferenceError
RegExp String SyntaxError TypeError
undefined unescape URIError

Variables

Nombas ScriptEase ISDK/C 5.01 140

A variable is an identifier to which data may be assigned. Variables are used to
store and represent information in a script. Variables may change their values,
but literals may not. For example, if programmers want to display a name
literally, they must use something like the following fragment multiple times.
Screen.writeln("Rumpelstiltskin Henry Constantinople")

But they could use a variable to make their task easier, as in the following.
var Name = "Rumpelstiltskin Henry Constantinople"
Screen.write(Name)

Then they can use shorter lines of code for display and use the same lines of code
repeatedly by simply changing the contents of the variable Name.

Variable scope
Variables in ScriptEase may be either global or local. Global variables may be
accessed and modified from anywhere in a script. Local variables may only be
accessed from the functions in which they are created. There are no absolute
rules for preferring or using global or local variables. Each type has value. In
general, programmers prefer to use local variables when reasonable since they
facilitate modular code that is easier to alter and develop over time. It is generally
easier to understand how local variables are used in a single function than how
global variables are used throughout an entire program. Further, local variables
conserve system resources.

To make a local variable, declare it in a function using the var keyword:
var perfectNumber;

A value may be assigned to a variable when it is declared:
var perfectNumber = 28;

The default behavior of ScriptEase is that variables declared outside of any
function or inside a function without the var keyword are global variables.
However, this behavior can be changed by the DefaultLocalVars and
RequireVarKeyword settings of the #option preprocessor directive. This
directive is explained in the section on preprocessing. For now, consider the
following code fragment.
var a = 1;
function main()
{
 b = 1;
 var d = 3;
 someFunction(d);
}

function someFunction(e)
{
 var c = 2
 ...
}

In this example, a and b are both global variables, since a is declared outside of a
function and b is defined without the var keyword. The variables, d and c, are
both local, since they are defined within functions with the var keyword. The

Nombas ScriptEase ISDK/C 5.01 141

variable c may not be used in the main() function, since it is undefined in the
scope of that function. The variable d may be used in the main() function and is
explicitly passed as an argument to someFunction() as the parameter e. The
following lines show which variables are available to the two functions:
main(): a, b, d
someFunction(): a, b, c, e

It is possible, though not usually a good idea, to have local and global variables
with the same name. In such a case, a global variable must be referenced as a
property of the global object, and the variable name used by itself refers to the
local variable. In the fragment above, the global variable a can be referenced
anywhere in its script by using: global.a.

Function identifier
Functions are identified by names, as variables are. Functions perform script
operations, and variables store data. Functions do the work of a script and will be
discussed in more detail later. The reason they are mentioned here is simply to
point out that they have identifiers, names, that follow the same rules for
identifiers as variable names do.

Function scope
Functions are all global in scope, much like global variables. A function may not
be declared within another function so that its scope is merely within a certain
function or section of a script. All functions may be called from anywhere in a
script. If it is helpful, think of functions as methods of the global object. The
following two code fragments do exactly the same thing. The first calls a
function, SumTwo(), as a function, and the second calls SumTwo() as a method
of the global object.
// fragment one
function SumTwo(a, b)
{
 return a + b
}

Screen.writeln(SumTwo(3, 4))

// fragment two
function SumTwo(a, b)
{
 return a + b
}

Screen.writeln(global.SumTwo(3, 4))

Data types
Data types in ScriptEase can be classified into three groupings: primitive,
composite, and special. In a script, data can be represented by literals or
variables. The following lines illustrates variables and literals:
var TestVar = 14;
var aString = "test string";

Nombas ScriptEase ISDK/C 5.01 142

The variable TestVar is assigned the literal 14, and the variable aString is
assigned the literal "test string". After these assignments of literal values to
variables, the variables can be used anywhere in a script where the literal values
could to be used.

In the fragment above which defines and uses the function SumTwo(), the
literals, 3 and 4, are passed as arguments to the function SumTwo() which has
corresponding parameters, a and b. The parameters, a and b, are variables for the
function the hold the literal values that were passed to it.

Data types need to be understood in terms of their literal representations in a
script and of their characteristics as variables.

Data , in literal or variable form, is assigned to a variable with an assignment
operator which is often merely an equal sign, "=" as the following lines illustrate.
var happyVariable = 7;
var joyfulVariable = "free chocolate";
var theWorldIsFlat = true;
var happyToo = happyVariable;

The first time a variable is used, its type is determined by the interpreter, and the
type remains until a later assignment changes the type automatically. The
example above creates three variables, each of a different type. The first is a
number, the second is a string, and the third is a boolean variable. Variable types
are described below. Since ScriptEase automatically converts variables from one
type to another when needed, programmers normally do not have to worry about
type conversions as they do in strongly typed languages, such as C.

Primitive data types
Variables that have primitive data types pass their data by value, by actually
copying the data to the new location. The following fragment illustrates:
var a = "abc";
var b = ReturnValue(a);

function ReturnValue(c)
{
 return c;
}

After "abc" is assigned to variable a, two copies of the string "abc" exist, the
original literal and the copy in the variable a. While the function ReturnValue is
active, the parameter/variable c has a copy, and three copies of the string "abc"
exist. If c were to be changed in such a function, variable a, which was passed as
an argument to the function, would remain unchanged. After the function
ReturnValue is finished, a copy of "abc" is in the variable b, but the copy in the
variable c in the function is gone because the function is finished. During the
execution of the fragment, as many as three copies of "abc" exist at one time.

The primitive data types are: Number, Boolean, and String.

Number type
Integer

Nombas ScriptEase ISDK/C 5.01 143

Integers are whole numbers. Decimal integers, such as 1 or 10, are the most
common numbers encountered in daily life. ScriptEase has three notations for
integers: decimal, hexadecimal, and octal.

Decimal
Decimal notation is the way people write numbers in everyday life and uses base
10 digits from the set of 0-9. Examples are:
1, 10, 0, and 999
var a = 101;

Hexadecimal
Hexadecimal notation uses base 16 digits from the sets of 0-9, A-F, and a-f.
These digits are preceded by 0x. ScriptEase is not case sensitive when it comes
to hexadecimal numbers. Examples are:
0x1, 0x01, 0x100, 0x1F, 0x1f, 0xABCD
var a = 0x1b2E;

Octal
Octal notation uses base 8 digits from the set of 0-7. These digits are preceded
by 0. Examples are:
00, 05, and 077
var a = 0143;

Floating point
Floating point numbers are number with fractional parts which are often
indicated by a period, for example, 10.33. Floating point numbers are often
referred to as floats.

Decimal floats
Decimal floats use the same digits as decimal integers but allow a period to
indicate a fractional part. Examples are:
0.32, 1.44, and 99.44
var a = 100.55 + .45;

Scientific floats
Scientific floats are often used in the scientific community for very large or small
numbers. They use the same digits as decimals plus exponential notation.
Scientific notation is sometimes referred to as exponential notation. Examples
are:
4.087e2, 4.087E2, 4.087e+2, and 4.087E-2
var a = 5.321e33 + 9.333e-2;

Boolean type
Booleans may have only one of two possible values: false or true. Since
ScriptEase automatically converts values when appropriate, Booleans can be
used as they are in languages such as C. Namely, false is zero, and true is
non-zero. A script is more precise when it uses the actual ScriptEase values,
false and true, but it will work using the concepts of zero and not zero. When

Nombas ScriptEase ISDK/C 5.01 144

a Boolean is used in a numeric context, it is converted to 0, if it is false, and 1,
if it is true.

String type
A String is a series of characters linked together. A string is written using
quotation marks, for example: "I am a string", 'so am I', `me too`, and "344". The
string "344" is different from the number 344. The first is an array of characters,
and the second is a value that may be used in numerical calculations.

ScriptEase automatically converts strings to numbers and numbers to string,
depending on context. If a number is used in a string context, it is converted to a
string. If a string is used in a number context, it is converted to a numeric value.
Automatic type conversion is discussed more fully in a later section

Strings, though classified as a primitive, are actually a hybrid type that shares
characteristics of primitive and composite data types. Strings are discussed more
fully a later section.

Composite data types
Whereas primitive types are passed by value, composite types are passed by
reference. When a composite type is assigned to a variable or passed to a
parameter, only a reference that points to its data is passed. The following
fragment illustrates:
var AnObj = new Object;
AnObj.name = "Joe";
AnObj.old = ReturnName(AnObj)

function ReturnName(CurObj)
{
 return CurObj.name
}

After the object AnObj is created, the string "Joe" is assigned, by value since a
property is a variable within an Object, to the property AnObj.name. Two copies
of the string "Joe" exist. When AnObj is passed to the function ReturnName, it is
passed by reference. CurObj does not receive a copy of the Object, but only a
reference to the Object. With this reference, CurObj can access every property
and method of the original. If CurObj.name were to be changed while the
function was executing, then AnObj.name would be changed at the same time.
When AnObj.old receives the return from the function, the return is assigned by
value, and a copy of the string "Joe" transferred to the property. Thus, AnObj
holds two copies of the string "Joe": one in the property .name and one in the
property .old. Three total copies of "Joe" exist, counting the original string literal.

The composite data types are: Object and Array.

Object type
An object is a compound data type, consisting of one or more pieces of data of
any type which are grouped together in an object. Data that are part of an object
are called properties of the object. The Object data type is similar to the structure
data type in C and in previous versions of ScriptEase. The object data type also
allows functions, called methods, to be used as object properties. Indeed, in
ScriptEase, functions are considered to be like variables. But for practical

Nombas ScriptEase ISDK/C 5.01 145

programming, think of objects as having methods, which are functions, and
properties, which are variables and constants.

Objects and their characteristics are discussed more fully in a later section.

Array type
An array is a series of data stored in a variable that is accessed using index
numbers that indicate particular data. The following fragments illustrate the
storage of the data in separate variables or in one array variable:
var Test0 = "one";
var Test1 = "two";
var Test2 = "three";

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

After either fragment is executed, the three strings are stored for later use. In the
first fragment, three separate variables have the three separate strings. These
variables must be used separately. In the second fragment, one variable holds all
three strings. This array variable can be used as one unit, and the strings can be
accessed individually. The similarities, in grouping, between Arrays and Objects
is more than slight. In fact, Arrays and Objects are both objects in ScriptEase
with different notations for accessing properties. For practical programming,
Arrays may be considered as a data type of their own.

Arrays and their characteristics are discussed more fully in a later section.

Special values
undefined
If a variable is created or accessed with nothing assigned to it, it is of type
undefined. An undefined variable merely occupies space until a value is
assigned to it. When a variable is assigned a value, it is assigned a type according
to the value assigned. Though variables may be of type undefined, there is no
literal representation for undefined. Consider the following invalid fragment.
var test;
if (test == undefined)
 Screen.writeln("test is undefined")

After var test is declared, it is undefined since no value has been assigned to it.
But, the test, test == undefined, is invalid because there is no way to
literally represent undefined.

null
The value null is a special data type that indicates that a variable is empty, a
condition that is different from being undefined. A null variable holds no
value, though it might have previously. The null type is represented literally by
the identifier, null. Since ScriptEase automatically converts data types, null is
both useful and versatile. The code fragment above will work if undefined is
changed to null, as shown in the following:
var test;
if (test == null)

Nombas ScriptEase ISDK/C 5.01 146

 Screen.write("test is undefined")

Since null has a literal representation, assignments like the following are valid:
var test = null;

Any variable that has been assigned a value of null can be compared to the
null literal.

The value null is an internal standard ECMAScript value. However, the value
NULL is defined as 0 in seutil.jsh and is used in some scripts as it is found in C
based documentation. Because of automatic conversion in JavaScript, the two
values often operate alike, but not always. They are two separate values.

NaN
The NaN type means "Not a Number". NaN is an acronym for the phrase.
However, NaN does not have a literal representation. To test for NaN, the
function, global.isNaN(), must be used, as illustrated in the following fragment:
var Test = "a string";
if (isNaN(parseInt(Test)))
 Screen.writeln("Test is Not a Number");

When the global.parseInt() function tries to parse the string "a string" into an
integer, it returns NaN, since "a string" does not represent a number like the string
"22" does.

Number constants
Several numeric constants can be accessed as properties of the Number object,
though they do not have a literal representation.

Constant Value Description
Number.MAX_VALUE 1.7976931348623157e+308 Largest number

(positive)
Number.MIN_VALUE 2.2250738585072014e- 308 Smallest

number
(negative)

Number.NaN NaN Not a Number
Number.POSITIVE_INFINITY Infinity Number above

MAX_VALUE
Number.NEGATIVE_INFINITY - Infinity Number below

MIN_VALUE

Automatic type conversion
When a variable is used in a context where it makes sense to convert it to a
different type, ScriptEase automatically converts the variable to the appropriate
type. Such conversions most commonly happen with numbers and strings. For
example:
"dog" + "house" == "doghouse" // two strings are joined
"dog" + 4 == "dog4" // a number is converted
4 + "4" == "44" // to a string
4 + 4 == 8 // two numbers are added
23 - "17" == 6 // a string is converted
 // to a number

Nombas ScriptEase ISDK/C 5.01 147

Converting numbers to strings is fairly straightforward. However, when
converting strings to numbers there are several limitations. While subtracting a
string from a number or a number from a string converts the string to a number
and subtracts the two, adding the two converts the number to a string and
concatenates them. String always convert to a base 10 number and must not
contain any characters other than digits. The string "110n" will not convert to a
number, because the ScriptEase interpreter does not know what to make of the
"n" character.

You can specify more stringent conversions by using the global methods,
global.parseInt() and global.parseFloat() methods. Further, ScriptEase has many
global functions to cast data as a specific type, functions that are not part of the
ECMAScript standard. These functions are described in the section on global
functions that are specific to ScriptEase.

Properties and methods of basic data
types
The basic data types, such as Number and String, have properties and methods
assigned to them that may be used with any variable of that type. For example,
all String variables may use all String methods.

The properties and methods of the basic data types are retrieved in the same way
as from objects. For the most part, they are used internally by the interpreter, but
you may use them if choose. For example, if you have a numeric variable called
number and you want to convert it to a string, you can use the toString() method
as illustrated in the following fragment.
 var n = 5
 var s = n.toString()

After this fragment executes, the variable n contains the number 5 and the
variable s contains the string "5".

The following two methods are common to all variables and data types.

toString()
This method returns the value of a variable expressed as a string. Every data type
has toString() as a method. Thus, toString() is documented here and not
in every conceivable place that it might be used.

valueOf()
This method returns the value of a variable. Every data type has valueOf() as a
method. Thus, valueOf() is documented here and not in every conceivable
place that it might be used.

Operators
Object operator

Nombas ScriptEase ISDK/C 5.01 148

The object operator is a period, ".". This operator allows properties and methods
of an object to be accessed and used. For example, Math.abs() is a method of the
Math object. It may be accessed as follows:
var AbsNum = Math.abs(-3)

The variable AbsNum now equals 3. The variable AbsNum is an instance of the
Number object, not an instance of the Math object. Why? It is assigned the
number 3 which is the return of the Math.abs() method.

The Math.abs() method is a static method, that is, it is used directly with the
Math object instead of an instance of the object. Many methods are instance
methods, that is, they are used with instances of an object instead of the object
itself. The String substring() method is an instance method of the String object.
An instance method is not used with an object itself but only with instances of an
object. The String substring() method is never used with the String object
as String.substring(). The following fragment declares and initializes a
string variable, which is an instance of the String object, and then uses the
String substring() method with this instance by using the object operator.
var s = "One Two Three";
var new = s.substring(4,7);

The variable s is an instance of the String object since it is initialized as a string.
The variable new now equals "Two" and is also an instance of the String object
since the String substring() method returns a string.

The main point here is that the period "." is an object operator that may be used
with both static and instance methods and properties. A method or property is
simply attached to an appropriate identifier using the object operator, which then
accesses the method or property.

Mathematical operators
Mathematical operators are used to make calculations using mathematical data.
The following sections illustrate the mathematical operators in ScriptEase.

Basic arithmetic
The arithmetic operators in ScriptEase are pretty standard.
= assignment assigns a value to a variable
+ addition adds two numbers
- subtraction subtracts a number from another
* multiplication multiplies two numbers
/ division divides a number by another
% modulo returns a remainder after division

The following are examples using variables and arithmetic operators.
var i;
i = 2; i is now 2
i = i + 3; i is now 5, (2+3)
i = i - 3; i is now 2, (5- 3)
i = i * 5; i is now 10, (2*5)
i = i / 3; i is now 3, (10/3) (remainder is ignored)
i = 10; i is now 10

Nombas ScriptEase ISDK/C 5.01 149

i = i % 3; i is now 1, (10%3)

Expressions may be grouped to affect the sequence of processing. All
multiplications and divisions are calculated for an expression before additions
and subtractions unless parentheses are used to override the normal order.
Expressions inside parentheses are processed first, before other calculations. In
the following examples, the information inside square brackets, "[]," are
summaries of calculations provided with these examples and not part of the
calculations.

Notice that:
4 * 7 - 5 * 3; [28 - 15 = 13]

has the same meaning, due to the order of precedence, as:
(4 * 7) - (5 * 3); [28 - 15 = 13]

but has a different meaning than:
4 * (7 - 5) * 3; [4 * 2 * 3 = 24]

which is still different from:
4 * (7 - (5 * 3)); [4 * (-8) = - 32]

The use of parentheses is recommended in all cases where there may be
confusion about how the expression is to be evaluated, even when they are not
necessary.

Assignment arithmetic
Each of the above operators can be combined with the assignment operator, =, as
a shortcut for performing operations. Such assignments use the value to the right
of the assignment operator to perform an operation with the value to the left. The
result of the operation is then assigned to the value on the left.
= assignment assigns a value to a variable
+= assign addition adds a value to a variable
-= assign subtraction subtracts a value from a variable
*= assign multiplication multiplies a variable by a value
/= assign division divides a variable by a value
%= assign remainder returns a remainder after division

The following lines are examples using assignment arithmetic.
var i;
i = 2; i is now 2
i += 3; i is now 5, (2+3) same as i = i + 3
i -= 3; i is now 2, (5-3) same as i = i - 3
i *= 5; i is now 10, (2*5) same as i = i * 5
i /= 3; i is now 3, (10/3) same as i = i / 3
i = 10; i is now 10
i %= 3; i is now 1, (10%3) same as i = i % 3

Auto-increment (++) and auto-decrement (--)

Nombas ScriptEase ISDK/C 5.01 150

To add or subtract one, 1, to or from a variable, use the auto- increment, ++, or
auto- decrement, - - , operator. These operators add or subtract 1 from the
value to which they are applied. Thus, i++ is a shortcut for i += 1, which is a
shortcut for i = i + 1.

These operators can be used before, as a prefix operator, or after, as a postfix
operator, their variables. If they are used before a variable, it is altered before it is
used in a statement, and if used after, the variable is altered after it is used in the
statement. The following lines demonstrates prefix and postfix operations.
i = 4; i is 4
j = ++i; j is 5, i is 5 (i was incremented before use)
j = i++; j is 5, i is 6 (i was incremented after use)
j = --i; j is 5, i is 5 (i was decremented before use)
j = i--; j is 5, i is 4 (i was decremented after use)
i++; i is 5 (i was incremented)

Bit operators
ScriptEase contains many operators for operating directly on the bits in a byte or
an integer. Bit operations require a knowledge of bits, bytes, integers, binary
numbers, and hexadecimal numbers. Not every programmer needs to or will
choose to use bit operators.
<< shift left i = i << 2;
<<= assignment shift left i <<= 2;
>> shift right i = i >> 2;
>>= assignment shift right i >>= 2;
>>> shift left with zeros i = i >>> 2
>>>= assignment shift left with zeros i >>>= 2
& bitwise and i = i & 1
&= assignment bitwise and i &= 1;
| bitwise or i = i | 1
|= assignment bitwise or i |= 1;
^ bitwise xor, exclusive or i = i ^ 1
^= assignment bitwise xor, exclusive or i ^= 1
~ Bitwise not, complement i = ~i;

Logical operators and conditional expressions
Logical operators compare two values and evaluate whether the resulting
expression is false or true. The value false is zero, and true is not false,
that is, anything not zero. A variable or any other expression may be false or
true, that is, zero or non-zero. An expression that does a comparison is called a
conditional expression.

Many values are evaluated as true, in fact, everything except 0. It is often safer
to make comparisons based on false, which is only one value, rather than to
true, which can be many. Expressions can be combined with logic operators to
make complex true/false decisions.

Logical operators are used to make decisions about which statements in a script
will be executed, based on how a conditional expression evaluates. As an

Nombas ScriptEase ISDK/C 5.01 151

example, suppose that you are designing a simple guessing game. The computer
thinks of a number between 1 and 100, and you guess what it is. The computer
tells you if you are right or not and whether your guess is higher or lower than
the target number. This procedure uses the if statement, which is introduced in
the next section. Basically, if the conditional expression in the parenthesis
following an if statement is true, the statement block following the if statement
is executed. If false, the statement block is ignored, and the computer continues
executing the script at the next statement after the ignored block. The script
might have a structure similar to the one below in which GetTheGuess() is a
function that gets your guess.
var guess = GetTheGuess(); //get the user input
if (guess > target_number)
{
 ...guess is too high...
}

if (guess < target_number)
{
 ...guess is too low...
}

if (guess == target_number)
{
 ...you guessed the number!...
}

This example is simple, but it illustrates how logical operators can be used to
make decisions in ScriptEase.

The logical operators are:
! not reverses an expression. If (a+b) is true, then

!(a+b) is false.
&& and true if, and only if, both expressions are

true. Since both expressions must be true
for the statement as a whole to be true, if the
first expression is false, there is no need to
evaluate the second expression, since the
whole expression is false.

|| or true if either expression is true. Since only
one of the expressions in the or statement
needs to be true for the expression to
evaluate as true, if the first expression
evaluates as true, the interpreter returns
true and does not bother with evaluating the
second.

== equality true if the values are equal, else false. Do
not confuse the equality operator, ==, with the
assignment operator, =.

!= inequality true if the values are not equal, else false.
=== identity true if the values are identical or strictly

equal, else false. No type conversions are
performed as with the equality operator.

Nombas ScriptEase ISDK/C 5.01 152

!== non-identity true if the values are not identical or not
strictly equal, else false. No type
conversions are performed as with the
inequality operator.

< less than a < b is true if a is less than b.
> greater than a > b is true if a is greater than b.
<= less than or equal to a <= b is true if a is less than or equal to b.
>= greater than or equal

to
a >= b is true if a is greater than b.

Remember, the assignment operator, =, is different than the equality operator,
==. If you use one equal sign when you intend two, your script will not function
the way you want it to. This is a common pitfall, even among experienced
programmers. The two meanings of equal signs must be kept separate, since there
are times when you have to use them both in the same statement, and there is no
way the computer can differentiate them by context.

Concatenation operator
The plus + may also be used to concatenate strings. The following expression:
"one" + "--" + "two"

results in the following string:
"one--two"

delete operator
The delete operator deletes properties from objects and elements from arrays.
Deleted properties and arrays are actually undefined. Any memory cleanup is
handled by normal garbage collection.

The following fragment defines an array with three elements: 0, 1, and 2, and an
object with three properties: four, five, and six. It then deletes the middle, that is,
the second, element of the array and property of the object.
var a = ["one", "two", "three"];
var o = {four:444, five:555, six:666};

delete(a[1]);
delete(o.five);

There are several ways to eliminate the data in a property of an object or in an
element of an array. The delete operator is the most complete way. Three other
techniques use undefine(), undefined, and void, as illustrated next:
undefine(a[1]);
undefine(o.five);

a[1] = undefined;
o.five = undefined;

a[1] = void a[1];
o.five = void o.five;

These three techniques may be used with any variable, whereas the delete
operator may be used only with properties of objects and elements of arrays.

Nombas ScriptEase ISDK/C 5.01 153

Generally, delete is the best to use with properties of objects and elements of
arrays, thought in specific situations the other techniques might be preferable.

See global.undefine() and undefined for more information.

in operator
The in operator determines if a property exists in an object. The following script
fragment illustrates for the discussion in this section:
var isProp;
var obj = {one:111, two:222, Three:333};
var test = 'one';

isProp = test in obj;

if (isProp)
 Screen.writeln(isProp);
Screen.writeln('two' in obj);
Screen.writeln('three' in obj);

/********************************
Display is:
 true
 true
 false
********************************/

The script above defines an object, obj, with three properties: "one", "two", and
"Three" (note the capitalization). The in operator is used three times to see if the
following strings are properties in obj: "one", "two", "three" (note the
capitalization). The first two uses of in result in true and the third in false.
Look at the expression "test in obj". The expression to the left, in this case
test, of the in operator must be a string or be able to convert to a string (since
properties of objects are represented as strings). The expression to the right must
be an object or array.

ScriptEase JavaScript has a global.defined() function which is useful. The in
operator may be used in a similar way. In the following fragment, both in and
defined() result in true, and the display is:
true
true

The fragment is:
var test = 'TEST';

Screen.writeln('test' in global);
Screen.writeln(defined(test));

instanceof operator
The instanceof operator, which also may used as instanceof(), determines
if a variable is an instance of a particular object. Since the variable s is created as
an instance of the String object in the following code fragment, the second line
displays true.
var s = new String("abcde");

Nombas ScriptEase ISDK/C 5.01 154

Screen.writeln(s instanceof String);

The display is:
true

The second line could also be written as:
Screen.writeln(s instanceof(String));

The instanceof operator does not work with the class of an object, rather it
determines if a variable was constructed from an object. In the example above,
the variable s was defined as an instance of String so it is an instance of the
String object and is in the class of String. That is, both of the following lines
display true:
Screen.writeln(s instanceof(String));
Screen.writeln(s._class == "String");

The display is:
true
true

The following code defines a new object and defines the variable ms as an
instance of MyString, a user defined object. In this case, the variable ms is an
instance of MyString but is in the class of Object.
var ms = new MyString("abcde");
Screen.writeln(ms instanceof(MyString));
Screen.writeln(ms._class == "Object");
ms.show();

function MyString(string)
{

 this.data = string;
 return this;
} // MyString

function MyString.prototype.show()
{
 Screen.writeln(this.data);
} // MyString.prototype.show

The display is:
true
true
abcde

typeof operator
The typeof operator, which also may be used as typeof(), provides a way to
determine and to test the data type of a variable and may use either of the
following notations, with or without parentheses.
var result = typeof variable
var result = typeof(variable)

Nombas ScriptEase ISDK/C 5.01 155

After either line, the variable result is set to a string that is represents the
variable's type: "undefined", "boolean", "string", "object", "number", or
"function".

Flow decisions statements
This section describes statements that control the flow of a program. Use these
statements to make decisions and to repeatedly execute statement blocks.

if
The if statement is the most commonly used mechanism for making decisions in
a program. It allows you to test a condition and act on it. If an if statement finds
the condition you test to be true, the statement or statement block following it
are executed. The following fragment is an example of an if statement.
if (goo < 10)
{
 Screen.write("goo is smaller than 10\n");
}

else
The else statement is an extension of the if statement. It allows you to tell your
program to do something else if the condition in the if statement was found to be
false. In ScriptEase code, it looks like the following.
if (goo < 10)
{
 Screen.write("goo is smaller than 10\n");
}
else
{
 Screen.write("goo is not smaller than 10\n");
}

To make more complex decisions, else can be combined with if to match one out
of a number of possible conditions. The following fragment illustrates using
else with if.
if (goo < 10)
{
 Screen.write("goo is less than 10\n");
 if (goo < 0)
 {
 Screen.write("goo is negative; so it's less than 10\n");
 }
}
else if (goo > 10)
{
 Screen.write("goo is greater than 10\n");
}
else
{
 Screen.write("goo is 10\n");
}

while

Nombas ScriptEase ISDK/C 5.01 156

The while statement is used to execute a particular section of code, over and
over again, until an expression evaluates as false.
while (expression)
{
 DoSomething();
}

When the interpreter comes across a while statement, it first tests to see whether
the expression is true or not. If the expression is true, the interpreter carries
out the statement or statement block following it. Then the interpreter tests the
expression again. A while loop repeats until the test expression evaluates to
false, whereupon the program continues after the code associated with the
while statement.

The following fragment illustrates a while statement with a two lines of code in a
statement block.
while(ThereAreUncalledNamesOnTheList() != false)
{
 var name=GetNameFromTheList();
 SendEmail(name);
}

do {...} while
The do statement is different from the while statement in that the code block is
executed at least once, before the test condition is checked.
var value = 0;
do
{
 value++;
 ProcessData(value);
} while(value < 100);

The code used to demonstrate the while statement could also be written as the
following fragment.
do
{
 var name = GetNameFromTheList();
 SendEmail(name)
} while (name != TheLastNameOnTheList());

Of course, if there are no names on the list, the script will run into problems!

for
The for statement is a special looping statement. It allows for more precise
control of the number of times a section of code is executed. The for statement
has the following form.
for (initialization; conditional; loop_expression)
{
 statement
}

The initialization is performed first, and then the expression is evaluated. If the
result is true or if there is no conditional expression, the statement is executed.

Nombas ScriptEase ISDK/C 5.01 157

Then the loop_expression is executed, and the expression is re- evaluated,
beginning the loop again. If the expression evaluates as false, then the
statement is not executed, and the program continues with the next line of code
after the statement. For example, the following code displays the numbers from 1
to 10.
for(var x=1; x<11; x++)
{
 Screen.write(x);
}

None of the statements that appear in the parentheses following the for statement
are mandatory, so the above code demonstrating the while statement would be
rewritten this way if you preferred to use a for statement:
for(; ThereAreUncalledNamesOnTheList() ;)
{
 var name=GetNameFromTheList();
 SendEmail(name)
}

Since we are not keeping track of the number of iterations in the loop, there is no
need to have an initialization or loop_expression statement. You can use an
empty for statement to create an endless loop:
for(;;)
{
 //the code in this block will repeat forever,
 //unless the program breaks out of the for loop somehow.
}

break
Break and continue are used to control the behavior of the looping statements:
for, switch, while, and do ... while. The break statement terminates the
innermost loop of for, while, or do statements. The program resumes execution
on the next line following the loop. The following code fragment does nothing
but illustrate the break statement.
for(;;)
{
 break;
}

The break statement is also used at the close of a case statement, as shown
below. See switch, case, and default.

continue
The continue statement ends the current iteration of a loop and begins the next.
Any conditional expressions are reevaluated before the loop reiterates. The
continue statement works with the same loops as the break statement.

switch, case, and default
The switch statement makes a decision based on the value of a variable or
statement. The switch statement follows the following format:
switch(switch_variable)

Nombas ScriptEase ISDK/C 5.01 158

{
case value1:
 statement1
 break;
case value2:
 statement2
 break;

...

default:
 default_statement
}

The variable switch_variable is evaluated, and then it is compared to all of the
values in the case statements (value1, value2, . . . , default) until a match is
found. The statement or statements following the matched case are executed until
the end of the switch block is reached or until a break statement exits the
switch block. If no match is found, the default statement is executed, if there
is one.

For example, suppose you had a series of account numbers, each beginning with
a letter that determines what type of account it is. You could use a switch
statement to carry out actions depending on that first letter. The same task could
be accomplished with a series of nested if statements, but they require much
more typing and are harder to read.
switch (key[0])
{
case 'A':
 Screen.write("A"); //handle 'A' accounts...
 break;
case 'B':
 Screen.write("B"); //handle 'B' accounts...
 break;
case 'C':
 Screen.write("C"); //handle 'C' accounts...
 break;
default:
 Screen.write("Invalid account number.\n");
 break;
}

A common mistake is to omit a break statement to end each case. In the
preceding example, if the break statement after the Screen.write("B")
statement were omitted, the computer would print both "B" and "C", since the
interpreter executes commands until a break statement is encountered.

Normally, if a switch and series of case statements reference array variables,
then a comparison is performed whether or not the reference the same array data.
But if either the switch variable or one of the case values is a literal string, then
the comparison of the strings is done using the values of the strings in a
Clib.strcmp() type of comparison.

goto and labels
You may jump to any location within a function block by using the goto
statement. The syntax is:

Nombas ScriptEase ISDK/C 5.01 159

goto LABEL;

where label is an identifier followed by a colon (:). The following code
fragment continuously prompts for a number until a number less than 2 is
entered.
beginning:
Screen.write("Enter a number less than 2:")
var x = getche(); //get a value for x
if (a >= 2)
 goto beginning;
Screen.write(a);

As a rule, goto statements should be used sparingly, since they make it difficult
to track program flow.

Conditional operator
The conditional operator, "? :", provides a shorthand method for writing if
statements. It is harder to read than conventional if statements, and so is
generally used when the expressions in the if statements are brief. The syntax is:
test_expression ? expression_if_true : expression_if_false

First, test_expression is evaluated. If test_expression is non- zero, true, then
expression_if_true is evaluated, and the value of the entire expression replaced
by the value of expression_if_true. If test_expression is false, then
expression_if_false is evaluated, and the value of the entire expression is that of
expression_if_false.

The following fragment illustrates the use of the conditional operator.
foo = (5 < 6) ? 100 : 200; // foo is set to 100
Screen.write("Name is " + ((null==name) ? "unknown" : name));

Exception handling
Exception handling statements consist of: throw, try, catch, and finally.
The concept of exception handling includes dealing with unusual results in a
function and with errors and recovery from them. Exception handling that uses
the try related statements is most useful with complex error handling and
recovery. Testing for simple errors and unwanted results is usually handled most
easily with familiar if or switch statements. In this section, the discussion and
examples deal with simple situations, since explanation and illustration are the
goals. The exception handling statements might seem clumsy or bulky here, but
do not lose sight of the fact that they are very powerful and elegant in real world
programming where error recovery can be very complex and require much code
when using traditional statements.

Another advantage of using try related exception handling is that much of the
error trapping code may be in a function rather than in the all the places that call
a function.

Before getting to specifics, here is some generalized phrasing that might help
working with exception handling statements. A function may have code in it to

Nombas ScriptEase ISDK/C 5.01 160

detect unusual results and to throw an exception. The function is called from
inside a try statement block which will try to run the function successfully. If
there is a problem in the function, the exception thrown is caught and handled
in a catch statement block. If all exceptions have been handled when execution
reaches the finally statement block, the final code is executed.

Remember these execution guides:

• When a throw statement executes, the rest of the code in a function is
ignored, and the function does not return a value.

• A program continues in the next catch statement block after the try
statement block in which an exception occurred., and any value thrown is
caught in a parameter in the catch statement.

• A program executes a finally statement block if all thrown exceptions
have been caught and handled.

catch will receive an error object that can be printed directly as a string, and
which will contain these properties

• name - Name of the exception class, e.g. "ConversionError"
• message - text of error, e.g. "1607: Variable "b" is undefined."
• fileName - Name of the source file where error occurred, if available, e.g.

"c:\foo\myscript.jsa"
• lineNum - Line number if file where error occurred, if available, e.g. "173"
• functionName - Name of executing function where error occurred, if

available, e.g. "foobar"

The following simple script illustrates all exception handling statements. The
main() function has try, catch, and finally statement blocks. The try block
calls SquareEven(), which throws an exception if an odd number is passed to
it. If an even number is passed to the function, then the number is squared and
returned. If an odd number is passed, it is fixed, and an exception is thrown.
When the throw statement executes, it passes an object, as an argument, with
information for the catch statement to use.
For example, the script below, as shown, displays:
16
We caught odd and squared even.

If you change rtn = SquareEven(4) to rtn = SquareEven(3), the display
is:
Fixed odd number to next higher even. 16
We caught odd and squared even.

function main(argc, argv)
{
 var rtn;

 try
 {
 rtn = SquareEven(4);
 // No display here if number is odd
 Screen.writeln(rtn);
 }

Nombas ScriptEase ISDK/C 5.01 161

 catch (err)
 {
 // Catch the exception info
 // that was thrown by the function.
 // In this case, the info was returned
 // in an object.
 Screen.writeln(err);
 Screen.write("Error occurred at line " + err.lineNum);
 if (err.fileName)
 Screen.write(" of file " + err.fileName);
 if (err.functionName)
 Screen.writeln(" in function " + err.functionName);
 Screen.writeln("");
 }
 finally
 {
 // Finally, display this line after normal processing
 // or exceptions have been caught.
 Screen.writeln("We caught odd and squared even.");
 }

 Screen.write("Paused..."); Clib.getch();
} //main

 // Check for odd integers
 // If odd, make even, simplistic by adding 1
 // Square even number
function SquareEven(num)
{
 // Catch an odd number and fix it.
 // "throw an exception" to be caught by caller
 if ((num % 2) != 0)
 {
 num += 1;
 throw {msg:"Fixed odd number to next higher even. ",
 rtn:num * num};

 // We throw an object here. We could have thrown
 // a primitive, such as:
 // throw("Caught and odd");
 // We would have to alter the catch statement
 // to expect whatever data type is used.
 }
 // Normal return for an even number.
 return num * num;
} //SquareEven

This example script does not actually handle errors. Its purpose is to illustrate
how exception handling statements work. For purposes of this illustration,
assume that an odd number being passed to SquareEven() is an error or
extraordinary event.

Functions
A function is an independent section of code that receives information from a
program and performs some action with it. Once a function has been written, you
do not have to think again about how to perform the operations in it. Just call the
function, and let it handle the work for you. You only need to know what
information the function needs to receive, that is, the parameters, and whether it
returns a value to the statement that called it.

Nombas ScriptEase ISDK/C 5.01 162

Screen.write() is an example of a function which provides an easy way to display
formatted text. It receives a string from the function that called it and displays the
string on the screen. Screen.write is a void function, meaning it has no return
value.

In JavaScript, functions are considered a data type, evaluating to whatever the
function's return value is. You can use a function anywhere you can use a
variable. Any valid variable name may be used as a function name. Like
comments, using descriptive function names helps you keep track of what is
going on with your script.

Two things set functions apart from the other variable types: instead of being
declared with the "var" keyword, functions are declared with the "function"
keyword, and functions have the function operator, "()", following their names.
Data to be passed to a function is included within these parentheses.

Several sets of built- in functions are included as part of the ScriptEase
interpreter. These functions are described in this manual. They are internal to the
interpreter and may be used at any time. In addition, ScriptEase ships with a
number of external libraries or .jsh files. External libraries must be explicitly
included in your script to use the functions in them. See the description of the
include directive in the preprocessor.

ScriptEase allows you to have two functions with the same name. The interpreter
uses the function nearest the end of the script, that is, the last function to load is
the one that to be executed when the function name is called. By taking
advantage of this behavior, you can write functions that supersede the ones
included in the interpreter or .jsh files.

Function return statement
The return statement passes a value back to the function that called it. Any
code in a function following the execution of a return statement is not
executed.
function DoubleAndDivideBy5(a)
{
 return (a*2)/5
}

Here is an example of a script using the above function.
function main()
{
 var a = DoubleAndDivideBy5(10);
 var b = DoubleAndDivideBy5(20);
 Screen.write(a + b);
}

This script displays12.

Passing information to functions
JavaScript uses different methods to pass variables to functions, depending on the
type of variable being passed. Such distinctions ensure that information gets to
functions in the most complete and logical ways. To be technically correct, the
data that is passed to a function are called arguments, and the variables in a
function definition that receive the data are called parameters.

Nombas ScriptEase ISDK/C 5.01 163

Primitive types, namely, strings, numbers, and booleans, are passed by value.
The value of theses variables are passed to a function. If a function changes one
of these variables, the changes will not be visible outside of the function where
the change took place.

Composite types, objects and arrays, are passed by reference. Instead of passing
the value of the object, that is, the values of each property, a reference to the
object is passed. The reference indicates where in a computer's memory that
values of an object's properties are stored. If you make a change in a property of
an object passed by reference, that change will be reflected throughout in the
calling routine.

In ScriptEase it is possible to pass primitive types by reference instead of by
value, which is the default. When a function is defined, an ampersand, &, may be
put in front of one or more of its parameters. Thus, when the function is called,
an argument, corresponding to a parameter with an ampersand, is passed by
reference instead of by value. The following fragment illustrates.
var num1 = 4;
var num2 = 4;
var num3;
SetNumbers(num1, num2, num3, 6)

function SetNumbers(&n1, n2, &n3, &n4)
{
 n1 = n2 = n3 = n4 = 5;
}

After executing this code, the values of variables is:
num1 == 5
num2 == 4
num3 == 5

The variable num1 was passed by reference to parameter n1. When n1 was set to
5, num1 was actually set to 5 since n1 merely pointed to num1. The variable
num2 was passed by value to parameter n2. When n2, which received an actual
value of 4, was set to 5, num2 remained unchanged. The variable num3 was
undefined when passed by reference to parameter n3. When n3, which pointed
to num3, was set to 5, num3 was actually set to 5 and defined as an integer type.
The literal value 6 was passed to parameter n4, but not by reference since 6 is not
a variable that can be changed. Though n4 has an ampersand, the literal value 6
was passed by value to n4 which, in this example, becomes merely a local
variable for the function SetNumbers().

Simulated named parameters
The properties of object data types may be used like named parameters. The
following line simulates named parameters in a call to a function (note the use of
curly braces {}):
var area = RectangleArea({length:4, width:2});

The following line uses traditional ordered parameters:
var area = RectangleArea(4, 2);

Nombas ScriptEase ISDK/C 5.01 164

The following function definition receives the named and ordered parameters in
the lines above. The definition allows for named or ordered parameters to be
used.
function RectangleArea(length, width)
{
 if (typeof(length) == "object")
 {
 width = length.width;
 length = length.length;
 }
 return length * width;
} //RectangleArea

The function above could be rewritten as:
function RectangleArea(length, width)
{
 if (typeof(arguments[0]) == "object")
 {
 width = arguments[0].width;
 length = arguments[0].length;
 }
 return length * width;
} //RectangleArea

Either function definition works the same. The choice of one over the other is a
matter of personal preference.

Though JavaScript allows many variations in how objects may be used, this
straightforward example illustrates the essence of simulating named parameters
in JavaScript. See the section "Named parameters in JavaScript" in the
ScriptEase Tutorial for a detailed discussion about simulating named parameters
in JavaScript.

Function property arguments[]
The arguments[] property is an array of all of the arguments passed to a
function. The first variable passed to a function is referred to as arguments[0],
the second as arguments[1], and so forth.

The most useful aspect of this property is that it allows you to have functions
with an indefinite number of parameters. Here is an example of a function that
takes a variable number of arguments and returns the sum of them all.
function SumAll()
{
 var total = 0;
 for (var ssk = 0; ssk < SumAll.arguments.length; ssk++)
 {
 total += SumAll.arguments[ssk];
 }
 return total;
}

Function recursion
A recursive function is a function that calls itself or that calls another function
that calls the first function. Recursion is permitted in ScriptEase. Each call to a
function is independent of any other call to that function. (See the section on

Nombas ScriptEase ISDK/C 5.01 165

variable scope.) Be aware that recursion has limits. If a function calls itself too
many times, a script will run out of memory and abort.

Do not worry if recursion is confusing, since you rarely have to use it. Just
remember that a function can call itself if it needs to. For example, the following
function, factor(), factors a number. Factoring is an ideal candidate for recursion
because it is a repetitive process where the result of one factor is then itself
factored according to the same rules.
function factor(i) // recursive function to print all factors of
i,
{// and return the number of factors in i
 if (2 <= i)
 {
 for (var test = 2; test <= i; test++)
 {
 if (0 == (i % test))
 {
 // found a factor, so print this factor then call
 // factor() recursively to find the next factor
 return(1 + factor(i/test));
 }
 }
 }
 // if this point was reached, then factor not found
 return(0);
}

Error checking for functions
Some functions return a special value if they fail to do what they are supposed to
do. For example, the Clib.fopen() method opens or creates a file for a script to
read from or write to. But suppose that the computer is unable to open a file. In
such a case, the Clib.fopen() method returns null.

If you try to read from or write to a file that was not properly opened, you get all
kinds of errors. To prevent these errors, make sure that Clib.fopen() does not
return null when it tries to open a file. Instead of just calling Clib.fopen() as
follows:
var fp = Clib.fopen("myfile.txt", "r");

check to make sure that null is not returned:
if (null == (var fp = Clib.fopen("myfile.txt", "r")))
{
 ErrorMsg("Clib.fopen returned null");
}

You may abort a script in such a case, but at least you will know why. See the
section on the Clib object.

main() function
If a script has a function called main(), it is the first function executed. (For
more information on what takes place when a script is run, see the section on
running a script.) Other than the fact that main() is the first function executed, it
is like other functions. If the main() function returns a value, that value is
returned to the operating system or whatever process called the script.

Nombas ScriptEase ISDK/C 5.01 166

The main() function automatically receives two parameters, which, by
convention, are called argc and argv. The parameter argc, argument count, is the
number of parameters passed to the script and the parameter argv is an array of
strings, with each element being one of the parameters. The first element,
argv[0], of this array is always the name of the script, thus if argc == 1, then
no variables were passed to a script.

Arguments are passed to a script as parameters when it is called from a command
line as illustrated in the following line.
sewin32.exe jseedit.jse document.txt

In the example above, argc == 2, argv[0] == "jseedit.jse" and
argv[1] == "document.txt".

Objects
Variables and functions may be grouped together in one variable and referenced
as a group. A compound variable of this sort is called an object in which each
individual item of the object is called a property. In general, it is adequate to
think of object properties, which are variables or constants, and of object
methods, which are functions.

To refer to a property of an object, use both the name of the object and of the
property, separated by the object operator ".", a period. Any valid variable name
may be used as a property name. For example, the code fragment below assigns
values to the width and height properties of a rectangle object and calculates the
area of a rectangle and displays the result:
var Rectangle;

Rectangle.height = 4;
Rectangle.width = 6;

Screen.write(Rectangle.height * Rectangle.width);

The main advantage of objects occurs with data that naturally occurs in groups.
An object forms a template that can be used to work with data groups in a
consistent way. Instead of having a single object called Rectangle, you can have
a number of Rectangle objects, each with their own values for width and height.

Terminology for objects
The terminology used to describe the methods and properties of objects is not
consistent in the programming community. The following list shows three
common naming schemes.

• Object members
Object methods
Object properties

• Object properties

Object methods
Object attributes

Nombas ScriptEase ISDK/C 5.01 167

• Object properties
Object methods
Object properties

In the first scheme uses "members" as the term to encompass "methods" and
"properties". The second scheme uses "properties" as the term to encompass
"methods" and "attributes". The third scheme uses "properties" as the term to
encompass "methods" and "properties". The order in which the schemes are
presented is in order from least ambiguous to most ambiguous. Unfortunately this
order does not conform to age of use of the schemes nor to the popularity of the
schemes. As a result of the lack of consensus in the programming community, all
of these naming schemes are represented in ScriptEase documentation, though
the first one is preferred because it is not ambiguous. The following paragraphs
explain these schemes in more detail.

The first scheme uses the term "member" for the both functions and data. A
"method" is a function attached to an object and a "property" is a datum attached
to an object. This scheme has the advantages of being clear and of using common
terminology. The disadvantage is that the use of "members" to refer to "methods"
and "properties" is not the most common. This scheme is preferred in ScriptEase
documentation for a couple of reasons. First, objects are thought of as collections
of routines and data, which is an intuitive and useful metaphor for describing
objects. The term "member" fits nicely with the metaphor and is distinct from the
terms for items in the collection. Second, the use of the terms "method" and
"property" for the routines and data attached to or collected in an object is the
most common usage.

The second scheme uses the term "property" for the both functions and data. A
"method" is a function attached to an object and an "attribute" is a datum
attached to an object. This scheme has the advantages of being clear and of using
common terminology. The disadvantage is that the use of "attributes" for the data
of objects is not the most common.

The third scheme uses the term "property" for the both functions and data. A
"method" is a function attached to an object and a "property" is a datum attached
to an object. This scheme is inherently confusing because it uses the same term
"property" for two different concepts about an object.

Predefining objects with constructor functions
A constructor function creates an object template. For example, a constructor
function to create Rectangle objects might be defined like the following.
function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

The keyword this is used to refer to the parameters passed to the constructor
function and can be conceptually thought of as "this object." To create a
Rectangle object, call the constructor function with the "new" operator:
var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);

Nombas ScriptEase ISDK/C 5.01 168

This code fragment creates two rectangle objects: one named joe, with a width of
3 and a height of 4, and another named sally, with a width of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object
created by a constructor function is called an instance of that class. The examples
above creates a Rectangle class and two instances of it. All of the instances of a
class share the same properties, although a particular instance of the class may
have additional properties unique to it. For example, if we add the following line:
joe.motto = "ad astra per aspera";

we add a motto property to the Rectangle joe. But the rectangle sally has no
motto property.

Initializers for objects and arrays
Variables may be initialized as objects and arrays using lists inside of "{}" and
"[]". By using these initializers, instances of Objects and Arrays may be created
without using the new constructor. Objects may be initialized using a syntax
similar to the following:
var o = {a:1, b:2, c:3};

This line creates a new object with the properties a, b, and c set to the values
shown. The properties may be used with normal object syntax, for example,
o.a == 1.

Arrays may initialized using a syntax similar to the following:
var a = [1, 2, 3];

This line creates a new array with three elements set to 1, 2, and 3. The elements
may be used with normal array syntax, for example, a[0] == 1.

The distinction between Object and Array initializer might be a bit confusing
when using a line with syntax similar to the following:
var a = {1, 2, 3};

This line also creates a new array with three elements set to 1, 2, and 3. The line
differs from the first line, Object initializer, in that there are no property
identifiers and differs from the second line, Array initializer, in that it uses "{}"
instead of "[]". In fact, the second and third lines produce the same results. The
elements may be used with normal array syntax, for example, a[0] == 1.

The following code fragment shows the differences.
var o= {a:1, b:2, c:3};
Screen.writeln(typeof o +" | "+ o._class +" | "+ o);

var a = [1, 2, 3];
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

var a= {1, 2, 3};
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

The display from this code is:
object | Object | [object Object]
object | Array | 1,2,3

Nombas ScriptEase ISDK/C 5.01 169

object | Array | 1,2,3

As shown in the first display line, the variable o is created and initialized as an
Object. The second and third lines both initialize the variable a as an Array.
Notice that in all cases the typeof the variable is object, but the class, which
corresponds to the particular object and which is reflected in the _class
property, shows which specific object is created and initialized.

Methods - assigning functions to objects
Objects may contain functions as well as variables. A function assigned to an
object is called a method of that object.

Like a constructor function, a method refers to its variables with the this
operator. The following fragment is an example of a method that computes the
area of a rectangle.
function rectangle_area()
{
 return this.width * this.height;
}

Because there are no parameters passed to it, this function is meaningless unless
it is called from an object. It needs to have an object to provide values for
this.width and this.height.

A method is assigned to an object as the following lines illustrates.
joe.area = rectangle_area;

The function will now use the values for height and width that were defined
when we created the rectangle object joe.

Methods may also be assigned in a constructor function, again using the this
keyword. For example, the following code:
function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
 this.area = rectangle_area;
}

creates an object class Rectangle with the rectangle_area method included as one
of its properties. The method is available to any instance of the class:
var joe = Rectangle(3,4);
var sally = Rectangle(5,3);

var area1 = joe.area;
var area2 = sally.area;

This code sets the value of area1 to 12, and the values of area2 to 15.

Object prototypes

Nombas ScriptEase ISDK/C 5.01 170

An object prototype lets you specify a set of default values for an object. When
an object property that has not been assigned a value is accessed, the prototype is
consulted. If such a property exists in the prototype, its value is used for the
object property.

Object prototypes are useful for two reasons: they ensure that all instances of an
object use the same default values, and they conserve the amount of memory
needed to run a script. When the two Rectangles, joe and sally, were created in
the previous section, they were each assigned an area method. Memory was
allocated for this function twice, even though the method is exactly the same in
each instance. This redundant memory waste can be avoided by putting the
shared function or property in an object's prototype. Then all instances of the
object will use the same function instead of each using its own copy of it.

The following fragment shows how to create a Rectangle object with an area
method in a prototype.
function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

Rectangle.prototype.area = rectangle_area;

The rectangle_area method can now be accessed as a method of any Rectangle
object as shown in the following.
var area1 = joe.area();
var area2 = sally.area();

You can add methods and data to an object prototype at any time. The object
class must be defined, but you do not have to create an instance of the object
before assigning it prototype values. If you assign a method or data to an object
prototype, all instances of that object are updated to include the prototype.

If you try to write to a property that was assigned through a prototype, a new
variable will be created for the newly assigned value. This value will be used for
the value of this instance of the object's property. All other instances of the object
will still refer to the prototype for their values. If, for the sake of this example,
we assume that joe is a special Rectangle, whose area is equal to three times its
width plus half its height, we can modify joe as follows.
joe.area = function joe_area()
{
 (this.width * 3) + (this.height/2);
}

This fragment creates a value, which in this case is a function, for joe.area that
supercedes the prototype value. The property sally.area is still the default
value defined by the prototype. The instance joe uses the new definition for its
area method.

Nombas ScriptEase ISDK/C 5.01 171

for/in
The for/in statement is a way to loop through all of the properties of an object,
even if the names of the properties are unknown. The statement has the following
form.
for (var property in object)
{
 DoSomething(object[property]);
}

where object is the name of an object previously defined in a script. When using
the for . . . in statement in this way, the statement block will execute once for
every property of the object. For each iteration of the loop, the variable property
contains the name of one of the properties of object and may be accessed with
"object[property]". Note that properties that have been marked with the
DontEnum attribute are not accessible to a for . . . in statement.

SElib.getObjectProperties() is similar to the ECMAScript for/in loop. The
important difference is that a for/in loop does not enumerate properties that have
DONT_ENUM as part of their attributes (global.setAttributes()), whereas
SElib.getObjectProperties() includes them in the array that it returns.
See Object propertyIsEnumerable().

with
The with statement is used to save time when working with objects. It lets you
assign a default object to a statement block, so you need not put the object name
in front of its properties and methods. The object is automatically supplied by the
interpreter. The following fragment illustrates using the Clib object.
with (Clib)
{
 printf("I am a camera");
 srand();
 xxx = rand() % 5;
 putchar(xxx);
}

The Clib methods, Clib.printf(), Clib.srand(), Clib.rand(), and Clib.putchar(), in
the sample above are called as if they had been written with Clib prefixed. All
code in the block following a with statement seems to be treated as if the
methods associated with the object named by the with statement were global
functions. Global functions are still treated normally, that is, you do not need to
prefix "global." to them unless you are distinguishing between two like- named
functions common to both objects.

If you were to jump, from within a with statement, to another part of a script, the
with statement would no longer apply. In other words, the with statement only
applies to the code within its own block, regardless of how the interpreter
accesses or leaves the block.

You may not use goto and labels to jump into or out of the middle of a with
statement block.

_construct(...)

Nombas ScriptEase ISDK/C 5.01 172

This method is called whenever a new object is created with the new operator.
The object will have been already created and passed as the this variable to the
.construct() method.

_call(...)
The call function is called whenever an object method is called. Whatever
parameters are passed to the original function will be passed to the call()
function.

The following example creates an Annoying object that beeps whenever it
retrieves the value of a property.
function myget(prop)
{
 System.beep();
 return this[property];
}

var Annoying = new Object;

Annoying.get = myget;

Note that the System.beep() method is used only for this example and must be
explicitly created for actual use.

Nombas ScriptEase ISDK/C 5.01 173

ScriptEase versus C language
This section is primarily for those who already know how to program in C,
though novice programmers can learn more about the Clib and SElib objects and
C concepts by reading it. The emphasis is on those elements of ScriptEase that
differ from standard C. Most of the pertinent differences involve the Clib object,
SElib object, and CString object. Users who are not familiar with C should first
read the section on ScriptEase JavaScript.

The assumption here is that readers of this section already know C. Thus, only
those aspects of the C portion of ScriptEase that differ from C are described. If
something is not mentioned here, ScriptEase follows standard C behavior. While
in this section on the differences from C, the term ScriptEase is used for the
portion of ScriptEase that implements the standard C library and ScriptEase
additions to that library. Almost all of the implementation of C in ScriptEase
involves the use of Clib objects, SElib objects, or CString. Thus, references to
ScriptEase as the C portion of ScriptEase usually involve Clib, SElib, or CString.

Deviations from C result from following several principles:

• simplicity
• power
• safety

The C portion of ScriptEase is different from C where changes make ScriptEase
more convenient for scripting, writing small programs, and entering command
line code or where unaltered C rules encourage coding that is potentially unsafe.
Keep in mind, that most issues involved in this section involve the use of Clib,
SElib, and CString.

The C portion of ScriptEase is C without type declarations and pointers. If you
already know C and can forget these two aspects of C while using ScriptEase,
then you already know the C portion of ScriptEase. If you were to take C code
and delete all the lines, code words, and symbols that either declare data types or
explicitly point to data, then you would be left with code that would work with
Clib, SElib, and CString. Though you would be altering source code, you would
not be removing capabilities.

The most basic idea underlying this section is that the C portion of ScriptEase is
C without type declarations and pointers.

Data types in C and SE
ScriptEase uses the same data types as JavaScript.

Automatic type declaration
There are no type declarations nor type castings as found in C. Types are
determined from context. In the statement, var i = 6, the variable i is a
number type. For example, the following C code:
int max(int a, int b)
{

Nombas ScriptEase ISDK/C 5.01 174

 int result;
 result = (a < b) ? b : a;
 return result;
}

could be converted to the following ScriptEase code:
Clib.max(a, b)
{
 var result = (a < b) ? b : a;
 return result;
}

The code could be made even more like C by using a with statement as in the
following fragment.
with (Clib)
{
 max(a, b)
 {
 var result = (a < b) ? b : a;
 return result;
 }
}

A with statement can be used with large blocks of code which would allow Clib
and SElib methods to be called like C functions. C programmers will appreciate
this ability. Other users who decide to use the extra power of C functions will
come to appreciate this ability.

Array representation
This section on the representation of arrays in memory only deals with automatic
arrays which are part of the C portion of ScriptEase. JavaScript uses constructor
functions that create instances of JavaScript arrays which are actually objects
more than arrays. Everything said in this section is about automatic arrays
compared to C arrays. The methods and functions used to work with JavaScript
constructed arrays and ScriptEase automatic arrays are different. The following
fragment creates a JavaScript array.
var aj = new Array();

The following line creates an automatic array in ScriptEase.
var ac[3][3];

The two arrays are different entities that require different methods and functions.
For example, the property aj.length provides the length of the aj array, but the
function getArrayLength(ac)provides the length of the ac automatic array.
When the term array is used in the rest of this section, the reference is to an
automatic array. JavaScript arrays are covered in the section on ScriptEase
JavaScript.

Arrays are used in ScriptEase much like they are in C, except that they are stored
differently. A single dimension array, for example, an array of numbers, is stored
in consecutive bytes in memory, just as in C, but arrays of arrays are not in
consecutive memory locations. The following C declaration:
char c[3][3]; // this is the C version

Nombas ScriptEase ISDK/C 5.01 175

indicates that there are nine consecutive bytes in memory. In ScriptEase a similar
statement such as the following:
var c[2][2] = 'a'; // this is the ScriptEase version

indicates that there are at least three arrays of characters, and the third array of
arrays has at least three characters in it. Though the characters in c[0] and the
characters in c[1] are in consecutive bytes, the two arrays c[0] and c[1] are not
necessarily adjacent in memory.

Automatic array allocation
Arrays are dynamic, and any index, positive or negative, into an array is always
valid. If an element of an array is referenced, then ScriptEase ensures that such
an element exists. For example, if a statement in a script is:
var foo[4] = 7;

then ScriptEase makes an array of 5 integers referenced by the variable foo. If a
later statement refers to foo[6] then ScriptEase expands foo, if necessary, to
ensure that the element foo[6] exists. The same is true for negative indices.
When foo[- 10] is referenced, foo is grown in the negative direction if necessary,
but foo[4] still refers to the initial 7. Arrays can be of any order of dimensions,
thus foo[6][7][34][- 1][4] is a valid variable or array.

Automatic and JavaScript Arrays
C style automatic arrays have just been discussed. Perhaps some simple and
direct comparisons of the two different kinds of arrays would be helpful.

The following lines of code create an automatic array of 3 elements:
var a;
a[0] = 0;
a[1] = "one";
a[2] = 2;

The following line of code creates an automatic array consisting of objects that
have information about files in the root directory of drive C. See
SElib.directory(). Several functions from the C library objects, Clib and SElib,
return automatic arrays.
var a = SElib.directory("c:*.*");

The following two lines of code both produce identical JavaScript arrays of 3
elements each.
var a = new Array(0, "one", 2);
var a = [0, "one", 2];

The following lines of code also produce a JavaScript array which is identical to
the two immediately preceding arrays:
var a = new Array();
a[0] = 0;
a[1] = "one";
a[2] = 2;

Nombas ScriptEase ISDK/C 5.01 176

The elements of automatic and JavaScript arrays are accessed in the same way
using indices, for example:
a[3] = "three";
Screen.writeln(a[3]);

These lines behave the same for both automatic and JavaScript arrays. But what
are some of the differences? The following fragment:
var aa;
aa[0] = 0;
aa[1] = "one";

var ja = [0, "one"];

Screen.writeln(typeof(aa));
Screen.writeln(typeof(ja));

Screen.writeln(aa._class);
Screen.writeln(ja._class);

results in the following display:
object
object
Object
Array

which shows that both automatic and JavaScript arrays are of type object. But
automatic arrays belong to the Object class and JavaScript arrays belong to the
Array class. See array.jsh - arrays and objects for more information on the
differences. The Array class inherits the properties of the Object class but the
Object class does not have the properties of the Array class. What does that
mean?

Instances of both automatic arrays and JavaScript arrays may use the properties
and methods of the Object class, but only JavaScript arrays may use the
properties of the Array class. For example and using the two arrays defined
immediately above, the length property of the Array class may only be used
with the JavaScript array ja, that is, var len = ja.length is valid but var
len = aa.length is an error. To get the length of aa, an automatic array, the
function global.getArrayLength() must be used with it. As just explained, the
JavaScript array ja may also be used with the function. That is, both of the
following are valid: getArrrayLength(aa) and getArrrayLength(ja).

Having both types of arrays is a result of providing the C standard library in the
Clib and SElib objects. If you want to simplify matters use the Object convert()
method to convert arrays from one class to the other. In general, if you convert
automatic arrays to JavaScript arrays and work only with JavaScript arrays, your
scripting will be simpler and more powerful. But, remember, if you are only
going to do simple things with arrays, then working with either class of array is
quick and simple.

Literal strings
A literal string in ScriptEase is any array of characters, that is, a string, appearing
in source code within double, single, or back quotes. Back quotes are sometimes

Nombas ScriptEase ISDK/C 5.01 177

referred to as back-ticks. The following lines show examples of literal strings in
ScriptEase:
"dog" // literal string (double quote)
'dog' // literal string (single quotes)
`dog` // literal string (back- ticks)
{'d','o','g','\0'} // not a literal string, rather
 // an array initialization

Literal strings have special treatment for certain ScriptEase operations for the
following reasons.

• To protect literal string data from being overwritten accidentally
• To reduce confusion for novice programmers who do not think of strings as

arrays of bytes
• To simplify writing code for common operations, for example, the statement:

TestStr == "MYLONGPASSWORD"

is simpler than :
Clib.strcmp(TestStr, "MYLONGPASSWORD").

In general, literal strings adhere to the two following rules.

• Comparisons are intrinsically handled by Clib.strcmp()
• Assignment and passing of literal strings is done by making copies of the

literal string

Literal strings and assignments
When a literal string is assigned to a variable, a copy is made of the string, and
the variable is assigned the copy of the literal string. For example, the following
code:
for (var i = 0; i < 3; i++)
{
 var str = "dog";
 Clib.strcat(str, "house");
 Clib.puts(str);
}

results in the following output:
doghouse
doghouse
doghouse

A strict C interpretation of this code would not only overwrite memory, but
would also generate the following output:
doghouse
doghousehouse
doghousehousehouse

Literal strings and comparisons
If both sides of a comparison operator are strings, and at least one of them is a
literal string, then the comparison is performed as if Clib.strcmp() were being

Nombas ScriptEase ISDK/C 5.01 178

used. If one or both variables are literal strings, then the following translation of
the comparison operation is performed.
lvar operator rvar Clib.strcmp(lvar, rvar) operator 0

The following examples demonstrate how literal strings follow the logic of
Clib.strcmp().
if (animal == "dog") // if (Clib.strcmp(animal, "dog") == 0)
if (animal < "dog") // if (Clib.strcmp(animal, "dog") < 0)
if ("dog" <= animal) // if (Clib.strcmp("dog", animal) <= 0)

In ScriptEase, the following fragment:
var animal = "dog";
if (animal == "dog")
Clib.puts("hush puppy");

displays:
"hush puppy"

Literal strings and parameters
When a literal string is a parameter to a function, it is passed as a copy, that is, by
value. For example, the following code:
for (var i = 0; i < 3; i++)
{
 var str = Clib.strcat("dog", "house");
 Clib.puts(str)
}

results in the following output:
doghouse
doghouse
doghouse

Literal strings and returns
When a literal string is returned from a function by a return statement, it is
returned as a copy of the string. The following code:
for (var i = 0; i < 3; i++)
{
 var str = Clib.strcat(dog(),"house");
 Clib.puts(str)
}

function dog()
{
 return "dog";
}

results in the following output:
doghouse
doghouse
doghouse

Literal Strings and switch statements

Nombas ScriptEase ISDK/C 5.01 179

If either a switch expression or a case expression is a literal string, then the case
statement match is based on a string comparison using Clib.strcmp() logic. The
following fragment illustrates.
switch(Clib.strlwr(temp, argv[1]))
{
case "add":
{
 DoTheAddThing();
 break;
}
case "remove":
{
 DoTheRemoveThing();
 break;
}
default:
{
 Clib.puts("Whaddya want?");
}
}

Structures
Structures are created dynamically, and their elements are not necessarily
contiguous in memory. When ScriptEase encounters a statement such as:
foo.animal = "dog"

it creates a structure element of foo that is referenced by "animal" and that is an
array of characters. The "animal" variable becomes an element of the "foo"
variable. Though foo, in this example, may be thought of and used as a structure
and animal as an element, in actuality, foo is a JavaScript object and animal is a
property. The resulting code looks like regular C code, except that there is no
separate structure definition anywhere. The following C code:
struct Point
{
 int Row;
 int Column;
}

struct Square
{
 struct Point BottomLeft;
 struct Point TopRight;
}

void main()
{
 struct Square sq;
 int Area;
 sq.BottomLeft.Row = 1;
 sq.BottomLeft.Column = 15;
 sq.TopRight.Row = 82;
 sq.TopRight.Column = 120;
 Area = AreaOfASquare(sq);
}

int AreaOfASquare(struct Square s)

Nombas ScriptEase ISDK/C 5.01 180

{
 int width, height;
 width = s.TopRight.Column - s.BottomLeft.Column + 1;
 height = s.TopRight.Row - s.BottomLeft.Row + 1;
 return(width * height);
}

can be easily converted into ScriptEase code as shown in the following.
function main()
{
 var sq.BottomLeft.Row = 1;
 sq.BottomLeft.Column = 15;
 sq.TopRight.Row = 82;
 sq.TopRight.Column = 120;
 var Area = AreaOfASquare(sq);
}

function AreaOfASquare(s)
{
 var width = s.TopRight.Column - s.BottomLeft.Column + 1;
 var height = s.TopRight.Row - s.BottomLeft.Row + 1;
 return(width * height);
}

Structures can be passed, returned, and modified just as any other variable. Of
course, structures and arrays are different and independent, which allows a
statement like the following.
foo[8].animal.forge[3] = bil.bo

Some operations, such as addition, are not defined for structures.

Passing variables by reference
By default, lvalues in ScriptEase are passed to functions by value (that is, the
function cannot alter the lvalue) . But if a variable is declared in a function with
the "&" symbol then it is passed by reference. I a function alters a pass-by-
reference (i.e. &argument) variable, then the variable passed as an argument by
the calling routine is altered also, if it is an lvalue. So instead of the following C
code which uses address and pointer operators:
main()
{
 CQuadrupleInPlace(&i);
 ...
}

void CQuadrupleInPlace(int *j)
{
 *j += 4;
}

a ScriptEase conversion could be:
function main()
{
 ...
 QuadrupleInPlace(i);
 ...
}

Nombas ScriptEase ISDK/C 5.01 181

function QuadrupleInPlace(&j)
{
 j += 4;
}

The following calls to QuadrupleInPlace() are valid in ScriptEase, but the values
passed as arguments are not changed after QuadrupleInPlace() is called. Why?
None of the arguments being passed are lvalues.
QuadrupleInPlace(8);
QuadrupleInPlace(i+1);
QuadrupleInPlace(8+1);

Pointer operator * and address
operator &
No pointers. None. The * symbol never means pointer in ScriptEase, which
might cause seasoned C programmers to gasp in disbelief. But the situation turns
out not to be such a big deal. The pointer operator is easily replaced. For
example, *var can be replaced by var[0].

Because it is common in C to use address arithmetic on string, ScriptEase
providces the CString object, which provides most of the array and address
functionaliity of a C string pointer. The following function displays the string in
the variable s. In the first display line shows:
abcde

The second display line, which uses address arithmetic "s+2" shows:
cde

function main(argc, argv)
{
 var s = new CString("abcde");
 Screen.writeln(s);
 Screen.writeln(s+2);
}

Remember that in functions, all variables, except primitive data types, are passed
by reference. ScriptEase adds the address operator & for primitive data types. If
you want to pass a primitive data type by reference in a JavaScript function, use
the address operator in the parameter list. For example,
function SetNumbers(&n1, n2, &n3, &n4)
{
 n1 = n2 = n3 = n4 = 5;
}

Case statements
Case statements in a switch statement may be constants, variables, or other
statements that can be evaluated to a value. The following switch statement has
case statements which are valid in ScriptEase.
switch(i)

Nombas ScriptEase ISDK/C 5.01 182

{
 case 4:
 case foe():
 case "thorax":
 case Math.sqrt(foe()):
 case (PILLBOX * 3 - 2):
 default:
}

As described in the section on literal strings above, if either a switch expression
or a case expression is a literal string, then any comparisons are based on the
logic of Clib.strcmp(), that is, as if the comparisons were
!Clib.strcmp(switch_expr, case_expr).

Initialization code which is external to
functions
All code not inside a function block is interpreted before main() is called and
can be thought of as initialization code. When a script has initialization code
outside of functions and code inside of functions, it shares characteristics of both
batch and program scripts. Thus, the following ScriptEase code:
Clib.printf("first ");

function main()
{
 Clib.printf("third.");
}

Clib.printf("second ");

results in the following output:
first second third.

Unnecessary tokens
If symbols are redundant, they are usually unnecessary in ScriptEase which
allows more flexibility in writing scripts and is less onerous for users not trained
in C. Semicolons that end statements are usually redundant and do not do
anything extra when a script is interpreted. C programmers are trained to use
semicolons to end statements, a practice that can be followed in ScriptEase.
Indeed, some programmers think that the use of semicolons in ScriptEase and
JavaScript is a good to be pursued. Many people who are not trained in C wonder
at the use of redundant semicolons and are sometimes confused by their use. The
use of semicolons is personal. If a programmer wants to use them, then he
should, but if he does not want to, then he should not.

In ScriptEase the two statements, "foo()" and "foo();" are identical. It does
not hurt to use semicolons, especially when used with return statements, such as
"return;". But widespread or regular use of semicolons simply is not
necessary. Similarly, parentheses, "(" and ")", are often unnecessary. For
example, the following fragment is valid and results in both of the variables, n
and x, being equal to 7.
var n = 1 + 2 * 3 var x = 2 * 3 + 1

Nombas ScriptEase ISDK/C 5.01 183

The following fragment is identical and is clearer, but it requires more typing
because of the addition of redundant tokens.
var n = 1 + (2 * 3); var x = (2 * 3) + 1;

The fragments could be rewritten to be:
var n = 1 + 2 * 3
var x = 2 * 3 + 1

and:
var n = 1 + (2 * 3);
var x = (2 * 3) + 1;

Which fragment is better? The answer depends on personal taste. Efforts to
standardize programming styles over the last three decades have been abysmal
failures, not unlike efforts to control the Internet.

Macros
Function macros are not supported. Since speed is not of primary importance in a
scripting language, a macro gains little over a function call. Macros simply
become functions.

Token replacement macros
The #define preprocessor directive, which can be thought of and used as a macro,
is supported by ScriptEase. As an example, the following token replacement is
recognized and implemented during the preprocessing phase of script
interpretation.
#define NULL 0

Back quote strings
Back quotes are not used at all for strings in the C language. The back quote
character, `, also known as a back- tick or grave accent, may be used in
ScriptEase in place of double or single quotes to specify strings. However, strings
that are delimited by back quotes do not translate escape sequences. For example,
the following two lines describe the same file name:
"c:\\autoexec.bat" // traditional C method, which is also
 // valid in ScriptEase
`c:\autoexec.bat` // alternative ScriptEase method

Converting existing C code to
ScriptEase
Converting existing C code to ScriptEase is mostly a process of deleting
unnecessary text. Type declarations, such as int, float, struct, char, and
[], should be deleted. The following two columns give examples of how to make
such changes. C code is on the left and can be replaced by the ScriptEase code on
the right.

Nombas ScriptEase ISDK/C 5.01 184

C ScriptEase
int i; var i; // or nothing
int foo = 3; var foo = 3;
struct var st; // no struct type
{ // Simply use st.row
 int row; // and st.col
 int col; // when needed.
}
char name[] = "George"; var name = "George";
int goo(int a, char *s, int c); var goo(a, buf, c);
int zoo[] = {1, 2, 3}; var zoo = {1, 2, 3};

Another step in converting C to ScriptEase is to search for pointer and address
operators, * and &. Since the * operator and & operator work together when the
address of a variable is passed to a function, these operators are unnecessary in
the C portion of ScriptEase. If code has * operators in it, they usually refer to the
base value of a pointer address. A statement like "*foo = 4" can be replaced by
"foo[0] = 4".

 Finally, the - > operator in C which is used with structures may be replaced by
a period for values passed by address and then by reference.

Nombas ScriptEase ISDK/C 5.01 185

Security
As a scripting language, ScriptEase provides the power to completely control a
computer system. But there are times when this power can be dangerous. Many
applications, such as those using distributed scripting, might need to run scripts
that you do not want to have access to all of the power of ScriptEase. You do not
want these scripts to delete files on your machine, read and transmit important
data to a remote machine, execute arbitrary system programs, or any other such
activities. ScriptEase security allows you to limit scripts so they cannot do these
things.

ScriptEase security works by dividing functions on the system into secure
functions, those which can perform no dangerous actions, and insecure
functions, those which can perform dangerous activities. When you execute a
script, you can attach a security manager to it. This manager will determine
which insecure functions can be called.

If the script tries to call an insecure function which the manager does not allow, it
will not call the function but will generate a security error. By using ScriptEase
security, you can run scripts you trust and give them full access to dangerous
functions, such as Clib.system() and Clib.remove(), while denying access
to these same functions to other scripts you do not trust.

Writing a Security Manager
Whenever you wish to interpret a script, via the API using jseInterpret() or
in a script using SElib.interpret(), you can attach a security manager to the
child script that you are running. As long as that child script calls other functions
only within that script, it is allowed to do so. If it tries to call an insecure
function, your security gets called. Obviously, insecure wrapper functions are
always checked.

In the case of a script using SElib.interpret() to interpret a child script, that
child may be able to try to call functions in the parent. Since the security you
added only applies to the child script, the functions in your original script are also
considered insecure to the child. The child must get permission to call them
exactly like it would need to get permission to call an insecure wrapper function
directly.

You can think of your security manager as a big wall with a heavily guarded
door. As long as the script stays on its side of the wall, it is fine. The parent script
and all wrapper functions are on the other side of the wall. If the child script
wants to get access to them, it must convince the guards to let it through.

Let's look at the pieces that make up these security guards.

jseSecurityInit
This function is the main security function. It is run before the script that it is
protecting is run, and it sets up the security the child is going to be run under. It
specifies which functions the child will be allowed to call. By default, the child
will not be allowed to call any insecure functions. In this function, you explicitly
specify which insecure functions the child will be allowed to call. You do this by

Nombas ScriptEase ISDK/C 5.01 186

calling the setSecurity() method, which is a method of all ScriptEase
functions.

In case that is confusing, a quick example of a jseSecurityInit function
should clear it up:
function jseSecurityInit(security_var)
{
 Clib.remove.setSecurity(jseSecureAllow);
}

This particular security initialization function is written in ScriptEase script.
However, you can also implement all of these functions using the ScriptEase API
and wrapper functions. We will implement the examples as scripts for clarity.
The first thing you notice about the function is that it takes a parameter, we have
named it security_var. We did not use it in this example. This parameter is
the "security variable" described below."

The body of the function usually lists which functions are to be allowed. Notice
that we call the setSecurity() method of the particular function we want to
allow. This method takes one parameter, the security state of the function.
jseSecureAllow specifies that this function is allowed to be called.

There are two other values we could have used instead. The value
jseSecureReject causes calls to the function to fail. This is the default for all
functions, so it is usually redundant to specify it. However, if setSecurity() is
called more than once for the same function, the last call takes precedence. You
can use this value to undo allowing access to a particular function.

The final value is jseSecureGuard, which says that any time this function is
called, we must first call the jseSecurityGuard function to determine if the
call will be allowed. This function is described below.

Note: The setSecurity() method can only be called in a security initialization
function. Trying to call it at other times generates errors.

jseSecurityTerm
Whenever you have an initialization function, you have a corresponding
termination function. Like jseSecurityInit, this function gets a single
parameter, the security variable (described below.) This function is rarely
needed, and you can simply not specify it most of the time. It is included so that
you can clean up the security variable before exiting. You do not need to unset
the setSecurity() calls done, as the engine knows that they go away when
they are no longer used. The security termination function looks like this:
function jseSecurityTerm(security_var)
{
 /* do any necessary cleanup */
}

This function is not usually called until the end of the program (not just the end
of the script.) Why is this? For ISDK developers, if you have read the advanced
concepts chapter, you know that all of the functions in a jseInterpret() stick
around in the global object, even after the jseInterpret() call itself is

Nombas ScriptEase ISDK/C 5.01 187

finished. This is why you can load functions using jseInterpret() and later
call them. Whatever security they had when they were created is not forgotten.

All functions remember the security in effect when they were created, and that
applies if they are again called later. So, the security termination function is not
actually called until all of the functions have gone away, which happens at the
end of the program when the ScriptEase engine cleans up everything.

jseSecurityGuard
Usually it is enough to specify which functions you want to allow to be called in
the jseSecurityInit function and leave it at that. There can be cases in which
you want to allow a function to be called with certain parameters but reject it
with others. For instance, you may want to limit creating sockets to certain ports
or limit opening files to certain filenames. You specify jseSecureGuard for the
setSecurity() options for these functions, and before they can be called, your
jseSecurityGuard function will first be called to validate this call.

Here is an example:
function jseSecurityGuard(security_var, func, filename)
{
 if(func==Clib.fopen)
 {
 /* get the full path so the user can't trick us with
 * something like: 'c:\\temp\\..\\windows\\win.ini'
 */
 var actualname = SElib.fullpath(filename);

 /* We only want to allow files in this directory
 *to be opened.
 */
 return Clib.strnicmp("c:\\temp\\",actualname,8)==0;
 }
 else
 {
 return false;
 }
}

This function, like the other two, gets the security variable as its first parameter.
Again, we will describe that shortly. The second parameter is the actual function
being called. In this example, we compare it to Clib.fopen() so that we can
validate a call to Clib.fopen(). The security guard function must return true
to allow the call or false to disallow it. In this case, we return false if it is not
Clib.fopen(). Presumably, we only label Clib.fopen() as
jseSecureGuard, so only Clib.fopen() will be using this guard function.

We include the else clause because it is always a good idea to cover all bases. If
it is something we do not expect, we just say no. This is good programming
practice in general. If the parameters are not what you expect, even if you think it
is impossible for them not to be, still do something sensible even if that turns out
not to be the case.

Notice that this function has a third parameter, filename. All of the parameters
that are being passed to the called function are also passed to the security guard
function after the two parameters it always gets. The first parameter to the called
function is the third to security guard, the second we receive as our fourth, and so

Nombas ScriptEase ISDK/C 5.01 188

on. This allows us to examine the parameters that the function will get when
deciding if we want to allow the call. In fact, there would be little point in not
examining the parameters. If we are always going to reject or accept a particular
call regardless of the parameters, we can instead just set that up in the
jseSecurityInit function.

 Perceptive readers will note that Clib.fopen() actually takes two parameters,
but we have only named one of them. In JavaScript, you can pass extra
parameters to script functions, more than are named in the parameter list. These
parameters are still there and can be accessed using the arguments object. In
this case, filename is the same as arguments[2], and we could have referred
to it that way. The file mode parameter to Clib.fopen() will also be passed to
us. We can refer to it as arguments[3], or we can name it in the parameter list
if we need to check it as well.

This example checks the name and only allows file access in the C:\temp\
directory. We could limit it in any way we choose, this is just one possibility.

securityVariable
We mentioned above that each function gets a security variable passed to it. Each
security manager has a single variable associated with it. You can specify this
when you specify your security functions (see below for specifying security).
Alternately, if you do not, a blank ScriptEase object is created (as if calling new
Object()) and used. This variable cannot be accessed by the script being run,
but it is passed to each security function whenever it is called. This allows you to
store data needed to implement your security and keep it safe from the script
being run.

Specifying Security
The ScriptEase API call jseInterpret() has among its settings
jseNewSecurity. If you turn this on, then the script being run will have
security applied to it. If you leave it off, no security applies and all functions can
be called. The four security items we just finished discussing correspond to the
four fields of the jseExternalLinkParameters structure of the same name.
Before you interpret the script, you use jseGetExternalLinkParameters()
to get the parameters structure, fill in these fields, then call jseInterpret()
with the jseNewSecurity flag turned on. You must fill in the
jseSecurityInit function. If you do not, the jseNewSecurity flag will be
ignored.

Since the parameters are jseVariables, you set them to any function you like. You
can use jseCreateWrapperFunction() to create a wrapper function to do the
security tasks. In the example above, we used script examples. ScriptEase
Desktop implements security this way. The three functions are put in a script.
You tell ScriptEase Desktop the name of the script using the command line
parameter /secure=<security script name>. ScriptEase Desktop
interprets that script first, picks out the security functions, and uses them when it
interprets the script you are really interested in. The functions in the security
script must be given the names we described above.

Nombas ScriptEase ISDK/C 5.01 189

When you interpret a script from within a script, using SElib.interpret(),
you can also specify the security for that child script. See the manual description
of SElib.interpret() for details on how you do this.

Wrapper Functions And Security
Wrapper functions are insecure because they are labeled that way. When you
write your own wrapper functions and add them using jseAddLibrary(), you
get to label them as either secure or insecure. Remember, if there is any possible
way the function could be misused, make it insecure. If you are in doubt about
whether a particular function should be labeled secure or insecure, choose
insecure.

When you are writing a wrapper function, it is possible for it to use
jseCallFunction() or jseInterpret() to execute more code. These calls
are affected by security. This allows security to propagate. For instance, the
ECMAScript function eval() executes a text string as script code exactly like
the text string appeared directly in the script. In this case, the wrapper acts just as
a pass through, and the code it executes should follow all of the standard security
rules. In fact, the ECMAScript eval() function itself is secure; whatever text it
executes has the same security as what was already executing. ScriptEase uses
this model when you use these two API calls. As a result, the following behavior
applies:

When calling a function using jseCallFunction(), the call is treated as if the
wrapper function's caller was making the call. This means that the calling script
function will need to get approval to call the new function. Typically, a wrapper
function that just turns around and uses jseCallFunction() is itself secure.

jseInterpret() has different behavior depending on the wrapper function
itself. If the wrapper function is insecure, then the script run with
jseInterpret() starts with no security. If the wrapper function is secure, then
jseInterpret() starts with the same security as the calling function.

So, for instance, ECMAScript eval() is secure as we already mentioned. Thus,
when it runs a new script, that script has the existing security restrictions still on
it. If the function was labeled insecure, then it has already passed a security check
to be able to call it, and it can continue to do dangerous things, so any scripts it
interprets are likewise at this high level of security. jseInterpret() allows
security to be added using the jseNewSecurity flag. This is on top of whatever
security it already has as specified above.

Sample Script
Here is a sample ScriptEase Desktop security script. If you use it, then the
desktop scripts will not be allowed to use any insecure functions except a few
file-related ones. In addition, Clib.fopen() will only be allowed to open files
in the C:\temp\ directory.
function jseSecurityInit(security_var)
{
 /* allow basic file manipulations, but nothing fancy, and
 * make sure to examine all open calls very carefully.

Nombas ScriptEase ISDK/C 5.01 190

 */
 Clib.fopen.setSecurity(jseSecureGuard);
 Clib.fclose.setSecurity(jseSecureAllow);
 Clib.fprintf.setSecurity(jseSecureAllow);
 Clib.fread.setSecurity(jseSecureAllow);
 Clib.fwrite.setSecurity(jseSecureAllow);
}

function jseSecurityGuard(security_var, func, filename)
{
 /* we only guard the fopen call, so this should be it */
 Clib.assert(security_var==Clib.fopen);

 /* get the full path so the user can't trick us with something
 * like: 'c:\\temp\\..\\windows\\win.ini'
 */
 var actualname = SElib.fullpath(filename);

 /* We only want to allow files in this directory to be opened.
 */
 return Clib.strnicmp("c:\\temp\\",actualname,8)==0;
}

Nombas ScriptEase ISDK/C 5.01 191

Internal Objects

See:

• Global object
• Array object
• Blob Object
• Boolean Object
• Buffer Object
• Clib Object
• Date Object
• Dos Object
• Function Object
• Math Object
• Number Object
• Object Object
• RegExp Object
• SElib Object
• String Object
• Unix Object

Nombas ScriptEase ISDK/C 5.01 193

Global object
The properties and methods of the global object may be thought of as global
variables and functions. The object identifier global is not required when
invoking a global method or function. Indeed, the object name generally is not
used. For example, the following two if statements are identical, but the first
one illustrates how global functions are usually invoked.
if (defined(name))
 Screen.writeln("name is defined");

if (global.defined(name))
 Screen.writeln("name is defined");

The following two lines of code are also equivalent.
var aString = ToString(123)
var aString = global.ToString(123)

Remember, global variables are members of the global object. To access global
properties, you do not need to use an object name. The exception to this rule
occurs when you are in a function that has a local variable with the same name as
a global variable. In such a case, you must use the global keyword to reference
the global variable.

Most of the global methods, functions, described in this section are defined in
the ECMAScript standards. A few are unique additions to ScriptEase. In other
words, they are not part of the ECMAScript standard, but they are useful. Avoid
using the unique functions in a script if it will be used with a JavaScript
interpreter that does not support these few unique functions.

Conversion or casting
Though ScriptEase does well in automatic data conversion, there are times when
the types of variables or data must be specified and controlled. Each of the
following casting functions, the functions below that begin with "To", has one
parameter, which is a variable or piece of data, to be converted to or cast as the
data type specified in the name of the function. For example, the following
fragment creates two variables.
var aString = ToString(123);
var aNumber = ToNumber("123");

The first variable aString is created as a string from the number 123 converted to
or cast as a string. The second variable aNumber is created as a number from the
string "123" converted to or cast as a number. Since aString had already been
created with the value "123", the second line could also have been:
var aNumber = ToNumber(aString);

The type of the variable or piece of data passed as a parameter affects the returns
of some of these functions.

global._argc
SYNTAX: _argc
DESCRIPTION: This property refers to the number of parameters passed to the

Nombas ScriptEase ISDK/C 5.01 194

main() function of a script. The name of the script is always the
first parameter, so if _argc == 1, then the script received no
arguments. See the main() function for more information on
argc and the main() function. General programming practice
uses argc, a parameter to the main()function rather than
_argc.

SEE: main() function, global._argv
EXAMPLE: function main(argc, argv)

{
 // At this point, unless deliberately changed
 // by special programming, _argc == argc
}

global._argv
SYNTAX: _argv
DESCRIPTION: This property is an array of strings. Each string is a parameter

passed to the main() function. The value of argv[0] is always
the name of the script being called. The first parameter passed to
the script is in argv[1]. See the main() function for more
information on argc, argv, and the main() function. General
programming practice uses argv, a parameter to the
main()function rather than _argv.

SEE: main() function, global._argc

global object methods/functions
global.defined()
SYNTAX: defined(value)
WHERE: value - a value or variable to check to see if it is defined.
RETURN: boolean - true if the value has been defined, else false
DESCRIPTION: This function tests whether a variable, object property, or value

has been defined. The function returns true if a value has been
defined, or else returns false. The function defined() may be
used during script execution and during preprocessing. When
used in preprocessing with the directive #if, the function
defined() is similar to the directive #ifdef, but is more
powerful. The following fragment illustrates three uses of
defined().

SEE: global.undefine(), in operator, undefined
EXAMPLE: var t = 1;

#if defined(_WIN32_)
 Screen.writeln("in Win32");
 if (defined(t))
 Screen.writeln("t is defined");
 if (!defined(t.t))
 Screen.writeln("t.t is not defined");
#endif

Nombas ScriptEase ISDK/C 5.01 195

// The first use of defined() checks whether a value
// is available to the preprocessor
// to determine which platform is running the script.
// The second use checks a variable "t".
// The third use checks an object "t.t"

global.escape()
SYNTAX: escape(str)
WHERE: str - with special characters that need to be handled specially,

that is, escaped.
RETURN: string - with special characters escaped or fixed so that the string

may be used in special ways, such as being a URL.
DESCRIPTION: The escape() method receives a string and escapes the

special characters so that the string may be used with a
URL. This escaping conversion may be called encoding.
All uppercase and lowercase letters, numbers, and the
special symbols, @ * + - . /, remain in the string. All other
characters are replaced by their respective unicode
sequence, a hexadecimal escape sequence. This method is
the reverse of global.unescape().

SEE: global.unescape(), String escape()
EXAMPLE: escape("Hello there!");

// Returns "Hello%20there%21"

global.eval()
SYNTAX: eval(expression)
WHERE: expression - a valid expression to be parsed and treated as if it

were code or script.
RETURN: value - the result of the evaluation of expression as code.
DESCRIPTION: Evaluates whatever is represented by the parameter expression.

If expression is not a string, it will be returned. For example,
calling eval(5) returns the value 5.

If expression is a string, the interpreter tries to interpret the string
as if it were JavaScript code. If successful, the method returns
the last variable with which was working, for example, the return
variable. If the method is not successful, it returns the special
value, undefined.

SEE: SElib.interpret()
EXAMPLE: var a = "who";

 // Displays the string as is
Screen.writeln('a == "who"');
 // Evaluates the contents of the string as code,
 // and displays "true",
 // the result of the evaluation
Screen.writeln(eval('a == "who"'));

global.isFinite()

Nombas ScriptEase ISDK/C 5.01 196

SYNTAX: isFinite(number)
WHERE: number - to check if it is a finite number.
RETURN: boolean - if the parameter is or can be converted to a number,

else false.
DESCRIPTION: This method returns true if the parameter, number, is or can be

converted to a number. If the parameter evaluates as NaN,
Number.POSITIVE_INFINITY, or
Number.NEGATIVE_INFINITY, the method returns false.

SEE: global.isNaN()
EXAMPLE: if (isFinite(99)) Screen.writeln("A number");

global.isNaN()
SYNTAX: isNaN(number)
WHERE: number - a value to if it is not a number.
RETURN: boolean - true if number is not a number, else false.
DESCRIPTION: This method returns true if the parameter, number, evaluates to

NaN, "Not a Number". Otherwise it returns false.
SEE: global.isFinite()
EXAMPLE: if (isNan(99)) Screen.writeln("Not a number");

global.getArrayLength()
SYNTAX: getArrayLength(array[, minIndex])
WHERE: array - an automatic array.

minIndex - the minimum index to use.
RETURN: number - the length of an array.
DESCRIPTION: This function should be used with dynamically created arrays,

that is, with arrays that were not created using the new Array()
operator and constructor. When working with arrays created
using the new Array() operator and constructor, use the
length property of the Array object. The length property is
not available for dynamically created arrays which must use the
functions, global.getArrayLength() and
global.setArrayLength(), when working with array lengths.

The getArrayLength() function returns the length of a
dynamic array, which is one more than the highest index of an
array, if the first element of the array is at index 0, which is most
common. If the parameter minIndex is passed, then it is used to
set to the minimum index, which will be zero or less. You can
use this function to get the length of an array that was not created
with the Array() constructor function.

This function and its counterpart, setArrayLength(), are
intended for use with dynamically created arrays, that is, arrays
not created with the Array() constructor function. Use the

Nombas ScriptEase ISDK/C 5.01 197

Array length property to get the length of arrays created with the
constructor function and not getArrayLength().

SEE: global.setArrayLength(), Array length
EXAMPLE: // automatic object array

var arr;
arr[0] = "zero";
arr[1] = 1;
arr[2] = 2;
Screen.writeln(getArrayLength(arr)); // 3

 // JavaScript Array object
var arr = ["zero", 1, 2]
Screen.writeln(arr.length); // 3

global.getAttributes()
SYNTAX: getAttributes(variable)
WHERE: variable - a variable identifier, name.
RETURN: number - representing the attributes set for a variable. If no

attributes are set, the return is 0. See global.setAttributes() for a
list of predefined constants for the attributes that a variable may
have.

DESCRIPTION: Gets and returns the variable attributes for the parameter
variable. Variable attributes may be set using the function
setAttributes(). See global.setAttributes() for more
information and descriptions of the attributes of variables that
can be set.

SEE: global.setAttributes()

global.parseFloat()
SYNTAX: parseFloat(str)
WHERE: str - to be converted to a decimal float.
RETURN: number - the float to which the string converts, else NaN.
DESCRIPTION: This method is similar to global.parseInt() except that it reads

decimal numbers with fractional parts. In other words, the first
period, ".", in the parameter string is considered to be a decimal
point, and any following digits are the fractional part of the
number. The method parseFloat() does not take a second
parameter.

SEE: global.parseInt()
EXAMPLE: var i = parseInt("9.3");

global.parseInt()
SYNTAX: parseInt(str[, radix])
WHERE: str - to be converted to an integer.

radix - the number base to use, default is 10.

Nombas ScriptEase ISDK/C 5.01 198

RETURN: number - the integer to which string converts, else NaN.
DESCRIPTION: This method converts an alphanumeric string to an integer

number. The first parameter, str, is the string to be converted,
and the second parameter, radix, is an optional number indicating
which base to use for the number. If the radix parameter is not
supplied, the method defaults to base 10, which is decimal. If the
first digit of string is a zero, radix defaults to base 8, which is
octal. If the first digit is zero followed by an "x", that is, "0x",
radix defaults to base 16, which is hexadecimal.

White space characters at the beginning of the string are ignored.
The first non-white space character must be either a digit or a
minus sign (-). All numeric characters following the string will
be read, up to the first non-numeric character, and the result will
be converted into a number, expressed in the base specified by
the radix variable. All characters including and following the
first non-numeric character are ignored. If the string is unable to
be converted to a number, the special value NaN is returned.

SEE: global.parseFloat()
EXAMPLE: var i = parseInt("9");

var i = parseInt("9.3");
// In both cases, i == 9

global.setArrayLength()
SYNTAX: setArrayLength(array[, minIndex[, length]])
WHERE: array - may be an array, buffer, or string. Though there are

multiple ways to set length on these data types,
setArrayLength() may be used on all three.

minIndex - the minimum index to use. Default is 0.

length - the length of the array to set.
RETURN: void.
DESCRIPTION: This function sets the first index and length of an array. Any

elements outside the bounds set by MinIndex and length are lost,
that is, become undefined. If only two arguments are passed to
setArrayLength(), the second argument is length and the
minimum index of the newly sized array is 0. If three arguments
are passed to setArrayLength(), the second argument, which
must be 0 or less, is the minimum index of the newly sized array,
and the third argument is the length.

SEE: global.getArrayLength(), Array length, Blob.size()
EXAMPLE: #include <string.jsh>

var arr = [4,5,6,7];
Screen.writeln(getArrayLength(arr));
setArrayLength(arr, 5);
// arr is now [4,5,6,7,,];

/********************************

Nombas ScriptEase ISDK/C 5.01 199

 The examples below illustrate using
 setArrayLength() with:
 arrays
 strings
 buffers

 When appropriate alternatives exist for setting
 length, they are shown as comments.

 These examples are not 100% exhaustive, but show
 most ways to use setArrayLength().
********************************/

// Two ways to create an array
// with 5 undefined elements
var a1 = new Array();
setArrayLength(a1, 5);
//a1.length = 5 // Does the same

var a2 = [];
setArrayLength(a2, 5);
//a2.length = 5 // Does the same

// Two ways to create a string
// of five "\0" characters
var s1 = "\0".repeat(5);

var s2 = "";
setArrayLength(s2, 5);

// Three ways to create a buffer
// of five "\0" characters
var b1 = new Buffer(s1);

var b2 = new Buffer(5);

var b3 = new Buffer(5);
setArrayLength(b3, 5);
//Blob.size(b3, 5); // Does the same
//b3.length = 5; // Does the same

global.setAttributes()
SYNTAX: setAttributes(variable, attributes)
WHERE: variable - a variable identifier, name.

attributes - the attribute or attributes to be set for a variable. If
more than one attribute is being set, use the or operator, "|", to
combine them.

RETURN: void.
DESCRIPTION: This function sets the variable attributes for the parameter

variable using the parameter attributes. Variables in ScriptEase
may have various attributes set that affect the behavior of
variables. This function has no return.

The following list describes the attributes that may be set for
variables. Multiple attributes may be set for variables by
combining them with the or operator. For example, the flag
setting READ_ONLY | DONT_ENUM sets both of these attributes

Nombas ScriptEase ISDK/C 5.01 200

for one variable.

• DONT_DELETE
This variable may not be deleted. If the delete operator is
used with a variable, nothing is done.

• DONT_ENUM
This variable is not enumerated when using a for/in loop.

• IMPLICIT_PARENTS
This attribute applies only to local functions and allows a
scope chain to be altered based on the __parent__ property
of the "this" variable. If this flag is set, if the __parent__
property is present, and if a variable is not found in the local
variable context, activation object, of a function, then the
parents of the "this" variable are searched backwards before
searching the global object. The example below illustrates
the effect of this flag.

• IMPLICIT_THIS
This attribute applies only to local functions. If this flag is
set, then the "this" variable is inserted into a scope chain
before the activation object. For example, if variable TestVar
is not found in a local variable context, activation object, the
interpreter searches the current "this" variable of a function.

• READ_ONLY
This variable is read-only. Any attempt to write to or change
this variable fails.

SEE: global.getAttributes()
EXAMPLE: // The following fragment illustrates the use

// of setAttributes() and the behavior affected
// by the IMPLICIT_PARENTS flag.
function foo()
{
 value = 5;
}
setAttributes(foo, IMPLICIT_PARENTS)

var a;
a.value = 4;
var b;
b.__parent__ = a;
b.foo = foo;
b.foo();

// After this code is run, a.value is set to 5.

global.ToBoolean()
SYNTAX: ToBoolean(value)
WHERE: value - to be cast as a boolean.
RETURN: boolean - conversion of value.
DESCRIPTION: The following list indicates how different data types are

converted by this function.

• Boolean

Nombas ScriptEase ISDK/C 5.01 201

same as value
• Buffer

same as for String
• null

false
• Number

false, if value is 0, +0, -0 or NaN, else true
• Object

true
• String

false if empty string, "", else true
• undefined

false

global.ToBuffer()
SYNTAX: ToBuffer(value)
WHERE: value - to be cast as a buffer.
RETURN: buffer - conversion of value.
DESCRIPTION: This function converts value to a buffer in a manner similar to

global.ToString() except that the resulting array of characters is a
sequence of ASCII bytes and not a unicode string.

SEE: global.ToBytes()

global.ToBytes()
SYNTAX: ToBytes(value)
WHERE: value - to be cast as a buffer.
RETURN: buffer - conversion of value.
DESCRIPTION: This function converts value to a buffer and differs from

global.ToBuffer() in that the conversion is actually a raw transfer
of data to a buffer. The raw transfer does not convert unicode
values to corresponding ASCII values. For example, the unicode
string "Hit" is stored in a buffer as "\0H\0\i\0t", that is, as
the hexadecimal sequence: 00 48 00 69 00 74.

SEE: global.ToBuffer()

global.ToInt32()
SYNTAX: ToInt32(value)
WHERE: value - to be cast as a signed 32-bit integer.
RETURN: number - conversion of value.
DESCRIPTION: This function is the same as global.ToInteger() except that if the

return is an integer, it is in the range of - 231 through 231 - 1.
SEE: global.ToInteger(), global.ToNumber()

Nombas ScriptEase ISDK/C 5.01 202

global.ToInteger()
SYNTAX: ToInteger(value)
WHERE: value - to be cast as an integer.
RETURN: number - conversion of value.
DESCRIPTION: This function converts value to an integer type. First, call

global.ToNumber(). If result is NaN, return +0. If result is +0, -0,
+Infinity or -Infinity, return result. Else return floor(abs(result))
with the appropriate sign. For example, the value -4.8 is
converted to -4.

SEE: global.ToInt32(), global.ToNumber()

global.ToNumber()
SYNTAX: ToNumber(value)
WHERE: value - to be cast as a number.
RETURN: number - conversion of value.
DESCRIPTION: The following table lists how different data types are converted

by this function.

• Boolean
+0, if value is false, else 1

• Buffer
same as for String

• null
+0

• Number
same as value

• Object
first, call ToPrimitive(), then call ToNumber() and return
result

• String
number, if successful, else NaN

• undefined
NaN

SEE: global.ToInteger(), global.ToInt32()

global.ToObject()
SYNTAX: ToObject(value)
WHERE: value - to be cast as an object.
RETURN: object - conversion of value.
DESCRIPTION: The following table lists how different data types are converted

by this function.

• Boolean
new Boolean object with value

• null

Nombas ScriptEase ISDK/C 5.01 203

generate runtime error
• Number

new Number object with value
• Object

same as parameter
• String

new String object with value
• undefined

generate runtime error

SEE: global.ToPrimitive()

global.ToPrimitive
SYNTAX: ToPrimitive(value)
WHERE: value - to be cast as a primitive.
RETURN: value - conversion of value to one of the primitive data types.
DESCRIPTION: This function does conversions only for parameters of type

Object. An internal default value of the Object is returned.
SEE: global.ToObject()

global.ToSource()
SYNTAX: ToSource(value)
WHERE: value - a variable or value to convert to a source string that will

reproduce value when the string is evaluated or interpreted.
RETURN: string - a string representation of value, which can be evaluated

or interpreted.
DESCRIPTION: A variable or value may be represented by a string comprised of

JavaScript statements which, when evaluated or interpreted,
reproduce the variable or value. The source string may be
evaluated by global.eval() or by SElib.interpret(). It is sometimes
convenient or powerful to use source strings, for example, in the
Data object the DSP object.

Though the source string may be read by humans, it is daunting.
Remember, ToSource() is designed for interpretation by the
ScriptEase interpreters, not by users.

The example below compares source strings created by the
global.ToSource() function and the Object toSource()
method. In these examples, the source strings are identical,
which is not guaranteed always to be so. But, no matter which
one is used, the source strings can be evaluated or interpreted.

SEE: Object toSource(), global.eval(), SElib.interpret()
EXAMPLE: // An Array

var a = [1, '2', 3];

Screen.writeln(ToSource(a));

Nombas ScriptEase ISDK/C 5.01 204

Screen.writeln();
Screen.writeln(a.toSource());
Screen.writeln();
/********************************
Displays:

((new Function("var tmp1 = [1,\"2\",3]; tmp1[\"0\"] =
1;
tmp1[\"1\"] = \"2\"; tmp1[\"2\"] = 3; return
tmp1;"))())

((new Function("var tmp1 = [1,\"2\",3]; tmp1[\"0\"] =
1;
tmp1[\"1\"] = \"2\"; tmp1[\"2\"] = 3; return
tmp1;"))())
********************************/

// An Object
var o = {one:1, two:'2', three:3};

Screen.writeln(ToSource(o));
Screen.writeln();
Screen.writeln(o.toSource());
Screen.writeln();
/********************************
Displays:

((new Function("var tmp1 = new Object();
tmp1[\"three\"] = 3;
tmp1[\"one\"] = 1; tmp1[\"two\"] = \"2\"; return
tmp1;"))())

((new Function("var tmp1 = new Object();
tmp1[\"three\"] = 3;
tmp1[\"one\"] = 1; tmp1[\"two\"] = \"2\"; return
tmp1;"))())
********************************/

global.ToString()
SYNTAX: ToString(value)
WHERE: value - to be cast as a string.
RETURN: string - conversion of value.
DESCRIPTION: The following table lists how different data types are converted

by is this function.

• Boolean
"false", if value is false, else "true"

• null
"null"

• Number
if value is NaN, return "NaN". If +0 or -0, return "0". If
Infinity, return "Infinity". If a number, return a string
representing the number. If a number is negative, return "-"
concatenated with the string representation of the number.

• Object
first, call ToPrimitive(), then call ToString() and return result

Nombas ScriptEase ISDK/C 5.01 205

• String
same as value

• undefined
"undefined"

SEE: global.ToPrimitive(), global.ToNumber()

global.ToUint16()
SYNTAX: ToUint16(value)
WHERE: value - to be cast as a 16 bit unsigned integer.
RETURN: number - conversion of value.
DESCRIPTION: This function is the same as global.ToInteger() except that if the

return is an integer, it is in the range of 0 through 216 - 1.
SEE: global.ToUint32(), global.ToInteger()

global.ToUint32()
SYNTAX: ToUint32(value)
WHERE: value - to be cast as a 32 bit unsigned integer.
RETURN: number - conversion of value.
DESCRIPTION: This function is the same as global.ToInteger() except that if the

return is an integer, it is in the range of 232 - 1.
SEE: global.ToInt32(), global.ToInteger()

global.unescape()
SYNTAX: unescape(str)
WHERE: str - holding escape characters.
RETURN: string - with escape characters replaced by appropriate

characters.
DESCRIPTION: This method is the reverse of the global.escape() method and

removes escape sequences from a string and replaces them with
the relevant characters. That is, an encoded string is decoded.

SEE: global.escape(), String unescape()
EXAMPLE: unescape("Hello%20there%21");

// Returns "Hello there!"

global.undefine()
SYNTAX: undefine(value)
WHERE: value - value, variable, or property to be undefined.
RETURN: void.
DESCRIPTION: This function undefines a variable, Object property, or value. If a

value was previously defined so that its use with the function
global.defined() returns true, then after using undefine()

Nombas ScriptEase ISDK/C 5.01 206

with the value, defined() returns false. Undefining a value is
different than setting a value to null.

The delete operator may be used only with properties of objects
and elements of arrays and is more complete than undefine().
Two other techniques, using undefined and void, are equivalent
to undefine(). The following three techniques for undefining
test are equivalent:
var test = 111;

undefine(test);
test = undefined;
test = void test;

SEE: global.defined(), delete operator, undefined
EXAMPLE: // In the following fragment, the variable n

// is defined with the number value of 2 and
// then undefined.
var n = 2;
undefine(n);

// In the following fragment an object o
// is created and a property o.one is defined.
// The property is then undefined but
// the object o remains defined.
var o = new Object;
o.one = 1;
undefine(o.one);

Nombas ScriptEase ISDK/C 5.01 207

Array object
An Array object is an object in JavaScript and is in the underlying ECMAScript
standard. Be careful not to confuse an array variable that has been constructed as
an instance of the Array object with the automatic or dynamic arrays of
ScriptEase. ScriptEase offers automatic arrays in addition to the Array object of
ECMAScript. The purpose is to ease the programming task by providing another
easy to use tool for scripters. The current section is about Array objects.

An Array is a special class of object that refers to its properties with numbers
rather than with variable names. Properties of an Array object are called elements
of the array. The number used to identify an element, called an index, is written
in brackets following an array name. Array indices must be either numbers or
strings.

Array elements can be of any data type. The elements in an array do not all need
to be of the same type, and there is no limit to the number of elements an array
may have.

The following statements demonstrate assigning values to arrays.
var array = new Array();
array[0] = "fish";
array[1] = "fowl";
array["joe"] = new Rectangle(3,4);
array[foo] = "creeping things"
array[goo + 1] = "etc."

The variables foo and goo must be either numbers or strings.

Since arrays use a number to identify the data they contain, they provide an easy
way to work with sequential data. For example, suppose you wanted to keep
track of how many jellybeans you ate each day, so you can graph your jellybean
consumption at the end of the month. Arrays provide an ideal solution for storing
such data.
var April = new Array();
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;

Now you have all your data stored conveniently in one variable. You can find out
how many jellybeans you ate on day x by checking the value of April[x]:
for(var x = 1; x < 32; x++)
 Screen.write("On April " + x + " I ate " + April[x] +
 " jellybeans.\n");

Arrays usually start at index [0], not index [1]. Note that arrays do not have to be
continuous, that is, you can have an array with elements at indices 0 and 2 but
none at 1.

SEE: array.jsh - arrays and objects

Creating arrays

Nombas ScriptEase ISDK/C 5.01 208

Like other objects, arrays are created using the new operator and the Array
constructor function. There are three possible ways to use this function to create
an array. The simplest is to call the function with no parameters:
var a = new Array();

This line initializes variable a as an array with no elements. The parentheses are
optional when creating a new array, if there are no arguments. If you wish to
create an array of a predefined size, pass variable a the size as a parameter of the
Array() function. The following line creates an array with a length of the size
passed.
var b = new Array(31);

In this case, an array with length 31 is created.

Finally, you can pass a list of elements to the Array()function, which creates an
array containing all of the parameters passed. For example:
var c = new Array(5, 4, 3, 2, 1, "blast off");

creates an array with a length of 6. c[0] is set to 5, c[1] is set to 4, and so on up to
c[5], which is set to the string "blast off". Note that the first element of the array
is array[0], not array[1].

Arrays may also be created dynamically. By referring to a variable with an index
in brackets, a variable is created as or converted to an array. The array that is
created is an automatic or dynamic array which is different than an instance of an
Array object created as described in this section. Automatic arrays, created as
described in this paragraph, are unable to use the methods and properties
described below, so it is recommended that you use, in most circumstances, the
new Array() constructor function to create arrays.

Initializers for arrays and objects
Variables may be initialized as objects and arrays using lists inside of "{}" and
"[]". By using these initializers, instances of Objects and Arrays may be created
without using the new constructor. Objects may be initialized using syntax
similar to the following:
var o = {a:1, b:2, c:3};

This line creates a new object with the properties a, b, and c set to the values
shown. The properties may be used with normal object syntax, for example, o.a
== 1.

Arrays may be initialized using syntax similar to the following:
var a = [1, 2, 3];

This line creates a new array with three elements set to 1, 2, and 3. The elements
may be used with normal array syntax, for example, a[0] == 1.

The distinction between Object and Array initializer might be a bit confusing
when using a line with syntax similar to the following:
var a = {1, 2, 3};

Nombas ScriptEase ISDK/C 5.01 209

This line also creates a new array with three elements set to 1, 2, and 3. The line
differs from the first line, Object initializer, in that there are no property
identifiers and differs from the second line, Array initializer, in that it uses "{}"
instead of "[]". In fact, the second and third lines produce the same results. The
elements may be used with normal array syntax, for example, a[0] == 1.

The following code fragment shows the differences.
var o = {a:1, b:2, c:3};
Screen.writeln(typeof o +" | "+ o._class +" | "+ o);

var a = [1, 2, 3];
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

var a= {1, 2, 3};
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

The display from this code is:
object | Object | [object Object]
object | Array | 1,2,3
object | Array | 1,2,3

As shown in the first display line, the variable o is created and initialized as an
Object. The second and third lines both initialize the variable a as an Array.
Notice that in all cases the typeof the variable is object, but the class, which
corresponds to the particular object and which is reflected in the _class
property, shows which specific object is created and initialized.

Array object instance properties
Array length
SYNTAX: array.length
DESCRIPTION: The length property returns one more than the largest index

of the array. Note that this value does not necessarily
represent the actual number of elements in an array, since
elements do not have to be contiguous.

By changing the value of the length property, you can
remove array elements. For example, if you change
ant.length to 2, ant will only have the first two members,
and the values stored at the other indices will be lost. If we
set bee.length to 2, then bee will consist of two members:
bee[0], with a value of 88, and bee[1], with an
undefined value.

SEE: Array(), global.getArrayLength(), global.setArrayLength()
EXAMPLE: // Suppose we had two arrays "ant" and "bee",

// with the following elements:

var ant = new Array();
ant[0] = 3;
ant[1] = 4;
ant[2] = 5;
ant[3] = 6;

var bee = new Array();

Nombas ScriptEase ISDK/C 5.01 210

bee[0] = 88;
bee[3] = 99;

// The length property of both ant and bee
// is equal to 4, even though ant has twice
// as many actual elements as bee does.

Array object instance methods
Array()
SYNTAX: new Array(length)

new Array([element1, ...])
WHERE: length - If this is a number, then it is the length of the array to be

created. Otherwise, it is the element of a single-element array to
be created.

elementN - list of elements to be in the new Array object being
created.

RETURN: object - an Array object of the length specified or an Array
object with the elements specified.

DESCRIPTION: The array returned from this function is an empty array whose
length is equal to the length parameter. If length is not a
number, then the length of the new array is set to 1, and the first
element is set to the length parameter. Note that this can also
be called as a function, without the new operator.

The alternate form of the Array constructor initializes the
elements of the new array with the arguments passed to the
function. The arguments are inserted in order into the array,
starting with element 0. The length of the new array is set to the
total number of arguments. If no arguments are supplied, then an
empty array of length 0 is created.

SEE: Automatic array allocation
EXAMPLE: var a = new Array(5);

var a = new Array(1,"two",three);

Array concat()
SYNTAX: array.concat([element1, ...])
WHERE: elementN - list of elements to be concatenated to this Array

object.
RETURN: object - a new array consisting of the elements of the current

object, with any additional arguments appended.
DESCRIPTION: The return array is first constructed to consist of the elements of

the current object. If the current object is not an Array object,
then the object is converted to a string and inserted as the first
element of the newly created array. This method then cycles
through all of the arguments, and if they are arrays then the
elements of the array are appended to the end of the return array,
including empty elements. If an argument is not an array, then it
is first converted to a string and appended as the last element of

Nombas ScriptEase ISDK/C 5.01 211

the array. The length of the newly created array is adjusted to
reflect the new length. Note that the original object remains
unaltered.

SEE: String concat()
EXAMPLE: var a = new Array(1,2);

var b = a.concat(3);

Array join()
SYNTAX: array.join([separator])
WHERE: separator - a value to be converted to a string and used to

separate the list of array elements. The default is an empty string.
RETURN: string - string consisting of the elements, delimited by separator,

of an array.
DESCRIPTION: The elements of the current object, from 0 to the length of the

object, are sequentially converted to strings and appended to the
return string. In between each element, the separator is added. If
separator is not supplied, then the single-character string "," is
used. The string conversion is the standard conversion, except
the undefined and null elements are converted to the empty
string "".

The Array join() method creates a string of all of array
elements. The join() method has an optional parameter, a
string which represents the character or characters that will
separate the array elements. By default, the array elements will
be separated by a comma. For example:
var a = new Array(3, 5, 6, 3);
var string = a.join();

will set the value of "string" to "3,5,6,3". You can use another
string to separate the array elements by passing it as an optional
parameter to the join() method. For example,
var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

creates the string "3*/*5*/*6*/*3".
SEE: Array toString()
EXAMPLE: // The following code:

var array = new Array("one", 2, 3, undefined);
Screen.writeln(array.join("::"));

// Will print out the string "one::2::3::".

Array pop()
SYNTAX: array.pop()
RETURN: value - the last element of the current Array object. The element

is removed from the array after being returned.

Nombas ScriptEase ISDK/C 5.01 212

DESCRIPTION: This method first gets the length of the current object. If the
length is undefined or 0, then undefined is returned.
Otherwise, the element at this index is returned. This element is
then deleted, and the length of current object is decreased by one.
The pop() method works on the end of an array, whereas, the
Array shift() method works on the beginning.

SEE: Array push()
EXAMPLE: // The following code:

var array = new Array("four");
Screen.writeln(array.pop());
Screen.writeln(array.pop());

// Will first print out the string "four", and
// then print out "undefined",
// which is the result of converting
// the undefined value to a string.
// The array will be empty after these calls.

Array push()
SYNTAX: array.push([element1, ...])
WHERE: elementN - a list of elements to append to the end of an array.
RETURN: number - the length of the new array.
DESCRIPTION: This method appends the arguments to the end of this array, in

the order that they appear. The length of the current Array object
is adjusted to reflect the change.

SEE: Array pop()
EXAMPLE: // The following code:

var array = new Array(1, 2);
array.push(3, 4);
Screen.writeln(array);

// Will print the array converted
// to the string "1,2,3,4".

Array reverse()
SYNTAX: array.reverse()
RETURN: object - a new array consisting of the elements in the current

Array object in reverse order.
DESCRIPTION: If the length of the current Array object is 0, then the current

Array object is simply returned. Otherwise, a new Array object is
created, and the elements of the current Array object are put into
this new array in reverse order, preserving any empty or
undefined elements.

EXAMPLE: var a = new Array(1,2,3);
var b = a.reverse();

// The following code:
var array = new Array;
array[0] = "ant";

Nombas ScriptEase ISDK/C 5.01 213

array[1] = "bee";
array[2] = "wasp";
array.reverse();

//produces the following array:

array[0] == "wasp"
array[1] == "bee"
array[2] == "ant"

Array shift()
SYNTAX: array.shift()
RETURN: value - the first element of the current Array object. The element

is removed from the array after being returned.
DESCRIPTION: If the length of the current Array object is 0, then undefined is

returned. Otherwise, the first element is returned. This element
is deleted from the array, and any remaining elements are shifted
down to fill the gap that was created. The shift() method
works on the beginning of an array, whereas, the Array pop()
method works on the end.

SEE: Array unshift(), Array pop()
EXAMPLE: //The following code:

var array = new Array(1, 2, 3);
Screen.writeln(array.shift());
Screen.writeln(array);

// First prints out "1",
// and then the contents of the array,
// which converts to the string "2,3".

Array slice()
SYNTAX: array.slice(start[, end])
WHERE: start - the element offset to start from.

end - the element offset to end at.
RETURN: object - a new array containing the elements of the current object

from start up to, but not including, element end.
DESCRIPTION: This method creates a subset of the current array. If end is not

supplied, then the length of the current object is used instead. If
either start or end is negative, then it is treated as an offset
from the end of the array, and the value length+start or
length+end is used instead. If either is beyond the length of
the array, then the length is used instead. If either is less than 0
after adjusting for negative values, then the value 0 is used
instead. The elements are then copied into the newly created
array, starting at start and proceeding to (but not including)
end.

SEE: String substring()
EXAMPLE: // The following code:

Nombas ScriptEase ISDK/C 5.01 214

var array = new Array(1, 2, 3, 4);
Screen.writeln(array.slice(1, -1));

// Print out the elements from 1 up to 4,
// which results in the string "2,3".

Array sort()
SYNTAX: array.sort([compareFunction])
WHERE: compareFunction - identifier for a function which expects two

parameters x and y, and returns a negative value if x < y, zero if
x = y, or a positive value if x > y.

RETURN: object - this Array object after being sorted.
DESCRIPTION: This method sorts the elements of the array. The sort is not

necessarily stable (that is, elements which compare equal do not
necessarily remain in their original order). The comparison of
elements is done based on the supplied compareFunction. If
compareFunction is not supplied, then the elements are
converted to strings and compared. Non-existent elements are
always greater than any other element, and consequently are
sorted to the end of the array. Undefined values are also always
greater than any defined element, and appear at the end of the
Array before any empty values. Once these two tests are
performed, then the appropriate comparison is done.

If a compare function is supplied, the array elements are sorted
according to the return value of the compare function. If a and b
are two elements being compared, then:

• If compareFunction(a, b) is less than zero, sort b to a
lower index than a.

• If compareFunction(a, b) returns zero, leave a and b
unchanged relative to each other.

• If compareFunction(a, b) is greater than zero, sort b to
a higher index than a.

By specifying the following function as a sort function, you will
get the desired result when comparing numbers:
function compareNumbers(a, b)
{
 return a � b
}

SEE: Clib strcmp()
EXAMPLE: // Consider the following code,

// which sorts based on numerical values,
// rather than the default string comparison.

function compare(x, y)
{
 x = ToNumber(x);
 y = ToNumber(y);

 if(x < y)

Nombas ScriptEase ISDK/C 5.01 215

 return -1;
 else if (x == y)
 return 0;
 else
 return 1;
}

 var array = new Array(3, undefined, "4", -1);
 array.sort(compare);
 Screen.writeln(array);

// Prints out the sorted array,
// which is "-1,3,4,,".
// Notice the undefined value
// at the end of the array.

Array splice()
SYNTAX: array.splice(start, deleteCount[, element1,

...])
WHERE: start - the index at which to splice in the items. If this is

negative, then (length+start) is used instead, and if it beyond the
end of the array, then the length of the array is used.

deletecount - the number of items to remove from the array.

elementN - a list of elements to insert into the array in place of
the ones which were deleted.

RETURN: object - an array consisting of the elements which were removed
from the current Array object.

DESCRIPTION: This method splices in any supplied elements in place of any
elements deleted. Beginning at index start, deleteCount
elements are first deleted from the array and inserted into the
newly created return array in the same order. The elements of the
current object are then adjusted to make room for the all of the
items passed to this method. The remaining arguments are then
inserted sequentially in the space created in the current object.

SEE: Array push()
EXAMPLE: // The following code:

var array = new Array(1, 2, 3, 4, 5);
Screen.writeln(array.splice(1, 2, 6, 7, 8);
Screen.writeln(array);

// Will print "2,3" and then "1,6,7,8,4,5".//
// The array has been modified to include
// the extra items in place of those
// that were deleted.

Array toString()
SYNTAX: array.toString()
RETURN: string - string representation of an Array object.
DESCRIPTION: This method behaves exactly the same as if Array join() was

called on the current object with no arguments. The result is a

Nombas ScriptEase ISDK/C 5.01 216

string consisting of the string representation of the array
elements (except for null and undefined, which are empty
strings) separated by commas.

SEE: Array join()
EXAMPLE: // The following code:

var array = new Array(1, "two", , null, false);
Screen.writeln(array.toString());

// Will print out the string "1,two,,,false".
// Note that this method is rarely called,
// rather the function ToString() is used,
// which implicitly calls this method.

Array unshift()
SYNTAX: array.unshift([element1, ...])
WHERE: elementN - a list of items to insert at the beginning of the array.
RETURN: number - the length of the new array after inserting the items.
DESCRIPTION: Any arguments are inserted at the beginning of the array, such

that their order within the array is the same as the order in which
they appear in the argument list. Note that this method is the
opposite of Array push(), which adds the items to the end of the
array.

SEE: Array shift(), Array push()
EXAMPLE: var a = new Array(2,3);

var b = a.unshift(1);

Nombas ScriptEase ISDK/C 5.01 217

Blob Object
This section describes Blobs, Binary Large Objects.

The methods in this section are preceded with the object name Blob, since
individual instances of the Blob object are not created. For example,
Blob.get() is the syntax to use to get data from a Blob. Blob and Buffer
variables overlap. The Buffer is the newer construct, and the Blob is retained
mostly for compatibility with previous versions of ScriptEase. When necessary to
work with data in memory, use a Buffer object if possible.

SEE: Buffer object, Win32 structure definitions

Blob object static methods
Blob.get()
SYNTAX: Blob.get(BlobVar, offset, DataType)

Blob.get(BlobVar, offset, bufferLen)
Blob.get(BlobVar, offset,
DataStructureDefinition)

WHERE: BlobVar - binary large object variable to use.

offset - the offset or position in the Blob from which to work.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of a structure (object)
variable.

RETURN: value - the data retrieved according to the defining parameters.
DESCRIPTION: This method reads data from a specified location of a Binary

Large Object, a Blob and is the companion function to
Blob.put(). The parameter BlobVar specifies the Blob to use.
The parameter offset specifies where, in the Blob, to get data.
The last parameter specifies the format of the data in the Blob
and, hence, determines the type of the value returned which is
the data read from the Blob.

Valid values for DataType are:
UWORD8, SWORD8, UWORD16, SWORD16, UWORD24, SWORD24,
UWORD32, SWORD32, FLOAT32, FLOAT64, FLOAT80

See Clib.fread() or blobDescriptor object, below, for more
information on these DataType values.

SEE: Blob put(), Blob size(), _BigEndianMode, Buffer object

Blob.put()
SYNTAX: Blob.put(BlobVar[, offset], variable, DataType)

Blob.put(BlobVar[, offset], buffer, bufferLen)
Blob.put(BlobVar[, offset], SrcStruct,

Nombas ScriptEase ISDK/C 5.01 218

DataStructureDefinition)
WHERE: BlobVar - binary large object variable to use.

offset - the offset or position in the Blob from which to work.

variable - variable with data to put into a Blob.

buffer - buffer with data to put into a Blob.

SrcStruct - structure (object) with data to put into a Blob.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of an object (structure)
variable.

RETURN: number - the byte offset to the next byte following the data that
was just inserted into a Blob. If at the end of a Blob, then return
the value that equals Blob.size(Blob).

DESCRIPTION: This method puts data into a specified location of a Binary Large
Object, Blob and, along with Blob.get(), allows for direct access
to memory within a variable. The contents of such a variable
may be viewed as a packed structure. Data can be placed at any
location within a Blob. The parameter BlobVar specifies the
Blob to use. The parameter offset specifies where, in the Blob, to
write data. The third parameter is the data to write. The last
parameter specifies the format of the data in the Blob.

Blob.put() returns the byte offset for the next byte following
the section where data was just put. If the data is put at the end of
the Blob, then the return is equivalent to the size of the Blob.

If offset is not supplied, then the data is put at the end of the
Blob, or at offset 0 if the Blob is not yet defined.

The data in v is converted to the specified DataType and then
copied into the bytes specified by offset.

If DataType is not the length of a byte buffer, then it must be one
of these types:
UWORD8, SWORD8, UWORD16, SWORD16, UWORD24, SWORD24,
UWORD32, SWORD32, FLOAT32, FLOAT64, FLOAT80

See Clib.fread() or blobDescriptor object, below, for more
information on these DataType values.

SEE: Blob get(), Blob size(), _BigEndianMode, Buffer object
EXAMPLE: // If you were sending a pointer to data

// in an external C library and knew
// that the library expected the data
// in a packed DOS structure of the form:

struct foo
{
 signed char a;

Nombas ScriptEase ISDK/C 5.01 219

 unsigned int b;
 double c;
};

// and if you were building this structure
// from three corresponding variables,
// then such a building function might look
// like the following:

function BuildFooBlob(a, b, c)
{
 var offset = Blob.put(foo, 0, a, SWORD8);
 offset = Blob.put(foo, offset, b, UWORD16);
 Blob.put(foo, offset, c, FLOAT64);
 return foo;
}

// or, if an offset were not supplied:

BuildFooBlob(a, b, c)
{
 Blob.put(foo, a, SWORD8);
 Blob.put(foo, b, UWORD16);
 Blob.put(foo, c, FLOAT64);
 return foo;
}

Blob.size()
SYNTAX: Blob.size(BlobVar[, SetSize])

Blob.size(DataType)
Blob.size(bufferLen)
Blob.size(DataStructureDefinition)

WHERE: BlobVar - binary large object variable to use.

SetSize - size to which to set BlobVar.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of a structure (object)
variable.

RETURN: number - bytes in a Blob variable. If SetSize is passed, then that
value is returned.

DESCRIPTION: This method determines the size of a Binary Large Object, Blob.
The parameter BlobVar specifies the Blob to use. If SetSize is
provided, then the Blob BlobVar is altered to this size or created
with this size.

If DataType, bufferLen, or DataStructureDefinition are used,
Blob.size() returns the size of a Blob that would contain the
type of data item used in by Blob.get() or Blob.put(). In these
cases, these parameters specify the type to be used for converting
ScriptEase data to and from a Blob.

Blob.size returns the size of a Blob, which is the number of bytes
in BlobVar. If SetSize is supplied, then the return is SetSize.

Nombas ScriptEase ISDK/C 5.01 220

SEE: Blob get(), Blob put(), _BigEndianMode, Buffer object

blobDescriptor object
When an object (structure) needs to be sent to a process other than the ScriptEase
interpreter, such as to a Windows API function, a blobDescriptor object must
be created that describes the order and type of data in the object to be sent. This
description tells how the properties of the object are stored in memory and used
with functions such as Clib.fread() and SElib.dynamicLink().

A blobDescriptor has the same data properties as the object it describes. Each
property must be assigned a value that specifies how much memory is required
for the data held by that property. Consider the following object.
Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

The following code creates a blobDescriptor object that describes the
Rectangle object defined above:
var bd = new blobDescriptor();

bd.width = UWORD32;
bd.height = UWORD32;

You can now pass bd as a blobDescriptor parameter to functions, (such as
SElib.dynamicLink(), Clib.fread(), and Clib.fwrite(), which might require one.
The values assigned to the properties depend on what the receiving function
expects. In the example above, the function that is called expects to receive an
object that contains two 32-bit words or data values. If you write a
blobDescriptor for a function that expects to receive an object containing two
16-bit words, assign the two properties a value of UWORD16.

The following values may be used for blobDescriptors.
UWORD8 Stored as a byte
SWORD8 Stored as an integer
UWORD16 Stored as an integer
SWORD16 Stored as an integer
UWORD24 Stored as an integer
SWORD24 Stored as an integer
UWORD32 Stored as an integer
SWORD32 Stored as an integer
FLOAT32 Stored as a float
FLOAT64 Stored as a float
FLOAT80 Stored as a float (not available in Win32)

If a blobDescriptor describes an object property that is a string, the
corresponding property should be assigned a numeric value that is larger than the
length of the longest string the property may hold. Object methods usually may
be omitted from a blobDescriptor.

Nombas ScriptEase ISDK/C 5.01 221

See Win32 structure definitions.

blobDescriptor example
The Win32 API function GetOpenFileName is being used for this example. The
syntax, in the Win32 API documentation, for this function is:
BOOL GetOpenFileName(LPOPENFILENAME lpofn);

The ScriptEase syntax for calling the Win32 API is:
SElib.dynamicLink(library, procedure, convention
 [, [desc,] param …])

The first three parameters in the ScriptEase syntax are standard for all calls to the
Win32 API and are not discussed here. See SElib.dynamicLink() - for Win32 for
a complete discussion. In the current section, we are only dealing a structure
parameter since the lpofn parameter in the GetOpenFileName API function is a
pointer to a structure. Other parameters, not discussed here, such as, integers and
double words, are handled in a straightforward way.

An actual call to the GetOpenFileName function might look like the following:
var rtn;
rtn = SElib.dynamicLink("COMDLG32", "GetOpenFileNameA", STDCALL,
 ofnDesc, ofn);

We are concerned with the parameters: ofnDesc and ofn. The original function
only required one parameter, lpofn, but we are passing two parameters.
(Remember that the first three parameters: library, procedure, and
convention, are parameters for SElib.dynamicLink and that the parameters
to API functions begin after the first three.) Why two parameters? Because ofn
is a structure and ScriptEase requires a description of the structure. Hence,
ofnDesc is a blobDescriptor object and ofn is a structure, and, in ScriptEase, a
structure is considered a binary large object.

Lets look at the OpenFileName structure that is defined in the Win32 API and
required by the GetOpenFileName function. The structure is defined as:
typedef struct tagOFN {// ofn
 DWORD lStructSize;
 HWND hwndOwner;
 HINSTANCE hInstance;
 LPCTSTR lpstrFilter;
 LPTSTR lpstrCustomFilter;
 DWORD nMaxCustFilter;
 DWORD nFilterIndex;
 LPTSTR lpstrFile;
 DWORD nMaxFile;
 LPTSTR lpstrFileTitle;
 DWORD nMaxFileTitle;
 LPCTSTR lpstrInitialDir;
 LPCTSTR lpstrTitle;
 DWORD Flags;
 WORD nFileOffset;
 WORD nFileExtension;
 LPCTSTR lpstrDefExt;
 DWORD lCustData;
 LPOFNHOOKPROC lpfnHook;

Nombas ScriptEase ISDK/C 5.01 222

 LPCTSTR lpTemplateName;
} OPENFILENAME;

In ScriptEase, the blobDescriptor for the OpenFileName structure above
could look like the following:
var ofnDesc = new blobDescriptor();

ofnDesc.lStructSize = UWORD32;
ofnDesc.hwndOwner = UWORD32;
ofnDesc.hInstance = UWORD32;
ofnDesc.lpstrFilter = UWORD32;
ofnDesc.lpstrCustomFilter = UWORD32;
ofnDesc.nMaxCustFilter = UWORD32;
ofnDesc.nFilterIndex = UWORD32;
ofnDesc.lpstrFile = UWORD32;
ofnDesc.nMaxFile = UWORD32;
ofnDesc.lpstrFileTitle = UWORD32;
ofnDesc.nMaxFileTitle = UWORD32;
ofnDesc.lpstrInitialDir = UWORD32;
ofnDesc.lpstrTitle = UWORD32;
ofnDesc.Flags = UWORD32;
ofnDesc.nFileOffset = UWORD16;
ofnDesc.nFileExtension = UWORD16;
ofnDesc.lpstrDefExt = UWORD32;
ofnDesc.lCustData = UWORD32;
ofnDesc.lpfnHook = UWORD32;
ofnDesc.lpTemplateName = UWORD32;

As you can see, the ScriptEase blobDescriptor functions like a structure
definition in another language and, specifically, like struct in C. The
OpenFileName shown above is used with typedef for a struct, which might
be a more useful comparison than just a structure definition. In any case, the
similarity between structures and blobDescriptors is evident. Each property of the
blobDescriptor object describes or determines how much memory is used by
an element of a structure. For example, the first element of the Win32 API
OpenFileName structure is lStructSize of type DWORD. In ScriptEase, the
corresponding first property in ofnDesc is lStructSize and is defined as
UWORD32. Both DWORD in the Win32 API and UWORD32 in ScriptEase designate
32 bits of memory to hold data. Thus, the memory requirements, for a structure,
in the Win32 API and in ScriptEase are coordinated.

Notice that the original structure element name is lStructSize and the object
property name lStructSize are the same. They did not need to be. The
property names in a blobDescriptor object can be any names of your
choosing. It is the size designations, such as, UWORD32, that are important. This
blobDescriptor is the parameter desc in the syntax statement for
SElib.dynamicLink().

Now we need to define the parameter param that is described. (Remember, desc
is required only if the following param is a structure.) In our current example,
ofn is the structure that is passed as param following the ofnDesc which is
passed as desc. How might ofn be built since ScriptEase no longer has structure
data types? Objects may be used as structures with object properties being
equivalent to structure elements. So the following lines of code could be used:
#include "comdlg32.jsh"

Nombas ScriptEase ISDK/C 5.01 223

#define MAXFILESIZE 65

var ofn = new Object();
 // Size of the ofn structure
ofn.lStructSize = Blob.size(ofnDesc);

 // Handle of owner, a ScriptEase screen in this example
ofn.hwndOwner = Screen.handle();

 // Set a buffer to pass and receive a filespec
var fileSpec;
fileSpec = new Buffer(MAXFILESIZE);
fileSpec.putString(`c:\bat*.bat`);
fileSpec = fileSpec.toString();
 // Actually pass a pointer to this buffer
ofn.lpstrFile = SElib.pointer(fileSpec);
 // Set the maxsize for a filespec to pass and received
ofn.nMaxFile = MAXFILESIZE - 1;

 // Do the API call and get the function return
var rtn;
rtn = SElib.dynamicLink("COMDLG32", "GetOpenFileNameA", STDCALL,
 ofnDesc, ofn);

This code fragment would create a common open file dialog in a directory
c:\bat and would show files with extensions of bat. The last statement is the
SElib.dynamicLink() call. The object/structure ofn is passed, corresponding
to the lpofn parameter in the original Win32 API syntax. The ofnDesc
blobDescriptor is passed to describe ofn to ScriptEase so that ScriptEase may
communicate properly with the Win32 API.

Notice two things about the ofn object/structure.

• The property names match the properties in the blobDescriptor ofnDesc that
describes the ofn object/structure.

• Not all of the properties of the ofn object/structure needed to be initialized to
values. We created a simple open dialog that did not need any data except the
properties/elements that we defined. Often, it is not necessary to define data
elements that are passed to an API function, if the data is not used. Be careful
though. If you are not sure about whether or not to initialize all elements, it is
a safe practice to initialize them to default values specified by API
documentation.

Another thing of interest in this code fragment is how it handles string data. The
lpstrFile property/element is used to pass a string to and receive a string from
the GetOpenFileNameA API function. The method shown here is one way,
among other techniques to handle string data. The API OpenFileName structure
requires a point to a string buffer, not the string itself. Therefore, this fragment
creates a buffer filespec of the proper size. It then puts the string with a file
specification into the buffer and then converts the buffer to a string. ScriptEase
strings may contain "\0" characters. The Buffer toString() method creates a
string of the same length as the buffer and includes all of the "\0" characters
after the string `c:\bat*.bat`. Then the element lpstrFile is assigned a
pointer to the string filespec, which started its existence as a Buffer object.
The file name selected in the open dialog will be returned in the filespec
string/buffer. We have been discussing the following lines:

Nombas ScriptEase ISDK/C 5.01 224

var fileSpec;
fileSpec = new Buffer(MAXFILESIZE);
fileSpec.putString(`c:\bat*.bat`);
fileSpec = fileSpec.toString();
 // Actually pass a pointer to this buffer
ofn.lpstrFile = SElib.pointer(fileSpec);

We could have accomplished the task of passing and receiving string data with
the following lines (which are similar to the ones above):
var fileSpec;
fileSpec = new Buffer(MAXFILESIZE);
fileSpec.putString(`c:\bat*.bat`);
 // Actually pass a pointer to this buffer
ofn.lpstrFile = SElib.pointer(fileSpec.data);

The main difference is that the string data is in a buffer when passed and
returned. To work with the returned string data, the buffer must be converted to a
string if you want to use string methods and functions with it.

Nombas ScriptEase ISDK/C 5.01 225

Boolean Object

Boolean object instance methods
Boolean()
SYNTAX: new Boolean(value)
WHERE: value - a value to be converted to a boolean.
RETURN: object - a Boolean object with the parameter value converted to a

boolean value.
DESCRIPTION: This function creates a Boolean object that has the parameter

value converted to a boolean value. If the function is called
without the new constructor, then the return is simply the
parameter value converted to a boolean.

SEE: Boolean toString()
EXAMPLE: var name = "Joe";

var b = new Boolean(name == "Joe");
// The Boolean object "b" is now true.

Boolean.toString()
SYNTAX: boolean.toString()
RETURN: string - "true" or "false" according to the value of the Boolean

object.
DESCRIPTION: This toString() method returns a string corresponding to the

value of a Boolean object or primitive data type.
SEE: Boolean toString(), boolean type
EXAMPLE: var name = "Joe";

var b = new Boolean(name === "Joe");
var bb = false;
Screen.writeln(b.toString()); // "true"
Screen.writeln(bb.toString()); // "false"

Nombas ScriptEase ISDK/C 5.01 227

Buffer Object
The Buffer object provides a way to manipulate data at a very basic level. It is
needed whenever the relative location of data in memory is important. Any type
of data may be stored in a Buffer object. A new Buffer object may be created
from scratch, from a string, another Buffer object, or from most any data type or
object (see global.ToBuffer()).

(See the helper file buffer.jsh for enhancements to the Buffer object.)

ScriptEase 5.00 introduced an important change in buffers. Prior to version 5.00
ScriptEase JavaScript had a buffer data type, as well as, a Buffer object.
Beginning with ScriptEase 5.00, buffer data types no longer exist, only the
Buffer object. The scripts distributed with ScriptEase Desktop have been updated
to reflect the changes, but users might have some personal scripts that need
changing. So, some key differences in working with buffers as objects only,
without a unique data type, are discussed now.

First, many (probably most) script statements, using buffers, do need to be
changed. All of the Buffer and Blob methods still work as they did before. The
primary difference is in the use of the Buffer() function without the new
constructor, the use of the data property in a Buffer object, and the use of the
length and size properties.

Previously, the Buffer() function returned a buffer data type and the new
Buffer() constructor returned a Buffer object. The data property of the Buffer
object could be used to access the actual buffer data in the object. The length
property could be used with a buffer data type to get the length of a buffer. Now
both Buffer() and new Buffer() return a Buffer object, and the data
property no longer exists. Plus, only the size property may be used to get the
size or length of a buffer. The following fragments illustrate these differences.

Prior to ScriptEase 5.00
var b1 = Buffer("abc"); // b1 is buffer data type
var b2 = new Buffer("abc"); // b2 is Buffer object
Screen.writeln(b1); // abc
Screen.writeln(b1.data); // abc
Screen.writeln(b1.length); // 3
Screen.writeln(b2.length); // 3
Screen.writeln(b2); // abc
Screen.writeln(b2.data); // abc
Screen.writeln(b1.size); // 3
Screen.writeln(b2.size); // 3

Starting with ScriptEase 5.00
var b1 = Buffer("abc"); // b1 is Buffer object
var b2 = new Buffer("abc"); // b2 is Buffer object
Screen.writeln(b1); // abc
Screen.writeln(b1.data); // undefined
Screen.writeln(b1.length); // undefined
Screen.writeln(b2.length); // undefined
Screen.writeln(b2); // abc
Screen.writeln(b2.data); // undefined
Screen.writeln(b1.size); // 3
Screen.writeln(b2.size); // 3

Nombas ScriptEase ISDK/C 5.01 228

Most ScriptEase functions and methods are now smart enough to handle Buffer
objects as they once did buffer data types, but small changes might be needed in
some places. For example, previously, some SElib.dynamicLink() calls required
a buffer data type. But now a Buffer object may be used. So if you have code
(prior to ScriptEase 5.00) like:
var buf = Buffer(256); // creates a buffer data type
SElib.dynamicLink("user32", "GetClassNameA", STDCALL,
 this.handle, buf, buf.length);
this.className = buf.getString();
return this.className;

With code starting after ScriptEase 5.00, the fragment above should work with
the one correction, length to size, as shown in bold.
var buf = Buffer(256); // creates a Buffer object
SElib.dynamicLink("user32", "GetClassNameA", STDCALL,
 this.handle, buf, buf.size);
this.className = buf.getString();
return this.className;

The example above is taken from the Window.prototype.getClassName()
instance method definition in winobj.jsh. To illustrate changes due to the use of
the data property, we take our example from the
Window.prototype.getClientRect() instance method defined in
winobj.jsh. Prior to ScriptEase 5.00 it was defined as:
var rtn;
var Rect = new Buffer(4+4+4+4); // hold 4 integers of 4 bytes

if (rtn = SElib.dynamicLink("user32", "GetClientRect", STDCALL,
 this.handle, Rect.data))
{
 this.client.left = Rect.getValue(4);
 this.client.top = Rect.getValue(4);
 this.client.right = Rect.getValue(4);
 this.client.bottom = Rect.getValue(4);
}

In ScriptEase 5.00 it needs to be corrected in one place: the removal of the data
property.
return rtn != NULL;

var rtn;
var Rect = new Buffer(4+4+4+4); // hold 4 integers of 4 bytes

if (rtn = SElib.dynamicLink("user32", "GetClientRect", STDCALL,
 this.handle, Rect))
{
 this.client.left = Rect.getValue(4);
 this.client.top = Rect.getValue(4);
 this.client.right = Rect.getValue(4);
 this.client.bottom = Rect.getValue(4);
}

return rtn != NULL;

Nombas ScriptEase ISDK/C 5.01 229

SEE: Blob object

Buffer object instance properties
Buffer bigEndian
SYNTAX: buffer.bigEndian
DESCRIPTION: This property is a boolean flag specifying whether to use

bigEndian byte ordering when calling Buffer getValue() and
Buffer putValue(). This value is set when a buffer is created, but
may be changed at any time. This property defaults to the state of
the underlying OS and processor.

SEE: Buffer unicode, Buffer()
EXAMPLE: /********************************

The default behavior for a Windows 2000
using an i386 type of processor results
in the following buffer or 6 bytes:
 65 00 66 00 67 00
********************************/
var i;
var b = new Buffer("ABC", true);

/********************************
With bigEndian set, as in the following,
the buffer is:
 00 65 00 66 00 67
********************************/
var i;
var b = new Buffer("ABC", true, true);

Buffer cursor
SYNTAX: buffer.cursor
DESCRIPTION: The current position within a buffer. This value is always

between 0 and .size. It can be assigned to as well. If a user
attempts to move the cursor beyond the end of a buffer, then the
buffer is extended to accommodate the new position, and filled
with NULL, "\0", bytes. If a user attempts to set the cursor to less
than 0, then it is set to the beginning of the buffer, to position 0.

SEE: Buffer bigEndian, Buffer size
EXAMPLE: var b = new Buffer("@ABCDE");

// now b.cursor == 0
b.cursor = 3;
Screen.writeln(b.getValue()); // 67 - ASCII for "C"

Buffer size
SYNTAX: buffer.size
DESCRIPTION: The size of the Buffer object. This property may be assigned

to, such as foo.size = 5. If a user changes the size of the
buffer to something larger, then it is filled with NULL bytes.
If the user sets the Buffer size to a value smaller than the

Nombas ScriptEase ISDK/C 5.01 230

current position of the Buffer cursor, then the cursor is
moved to the end of the new buffer.

SEE: Buffer cursor
EXAMPLE: var n = buffer.size;

Buffer unicode
SYNTAX: buffer.unicode
DESCRIPTION: This property is a boolean flag specifying whether to use unicode

strings when calling Buffer getString() and Buffer putString().
This value is set when the buffer is created, but may be changed
at any time. This property defaults to the unicode status of the
underlying ScriptEase engine.

When the Buffer toString() method is used with a Unicode
buffer, an ASCII based string, of type string, is returned.

The size of an Unicode buffer is usually twice the size of an
ASCII based, or byte based, buffer. For example,
var b1 = new Buffer("abc");
var b2 = new Buffer("abc", true);

Result in the following:
b1.size == 3
b2.size == 6;

SEE: Buffer bigEndian, Buffer()
EXAMPLE: var b1 = new Buffer("abc", true);

// b1.unicode == true;

Buffer[] Array
SYNTAX: buffer[offset]
RETURN: number - the value in a buffer at the index or offset specified.

If a value is being assigned to this position, the value assigned is
returned.

DESCRIPTION: This is an array- like version of the Buffer getValue() and
Buffer putValue() methods, which works only with bytes. A
user may either get or set these values, such as goo =
foo[5] or foo[5] = goo. Every get/put operation uses
byte types, that is, SWORD8. If offset is less than 0, then 0 is
used. If offset is beyond the end of a buffer, the size of the
buffer is extended with NULL bytes to accommodate it.

Every time an index value is used, the Buffer cursor property
for an object is set to the next index, as with Buffer putValue()
and Buffer getValue().

SEE: Buffer getValue(), Buffer putValue()
EXAMPLE: var b = new Buffer("ABC");

// b.cursor == 0
Screen.writeln(b[1]); // 66 - ASCII code for "B"

Nombas ScriptEase ISDK/C 5.01 231

// now b.cursor == 2
b[0] = 68; // "DBC"
// now b.cursor == 1

Buffer object instance methods
Buffer()
SYNTAX: new Buffer([size[, unicode[, bigEndian]]])

new Buffer(string[, unicode[, bigEndian]]])
new Buffer(buffer[, unicode[, bigEndian]]])
new Buffer(bufferObject)

WHERE: size - size of buffer to be created.

string - string of characters from which to create a buffer.

buffer - buffer of characters from which to create another buffer.

bufferObject - buffer to be duplicated.

unicode - boolean flag for the initial state of the Buffer unicode
property of this buffer.

bigEndian - numeric description of the initial state of the Buffer
bigEndian property of this buffer.

RETURN: object - the new Buffer object created.
DESCRIPTION: To create a Buffer object, use syntax as shown by the following:

new Buffer([size[, unicode[, bigEndian]]]);

A line of code following this syntax creates a new Buffer object.
If size is specified, then the new buffer is created with the
specified size, filled with null bytes. If no size is specified, then
the buffer is created with a size of 0, though it can be extended
dynamically later. The unicode parameter is an optional boolean
flag describing the initial state of the .unicode flag of the object.
Similarly, bigEndian describes the initial state of the bigEndian
parameter of the buffer. If unspecified, these parameters default
to the values described below.
new Buffer(string[, unicode[, bigEndian]]]);

A line of code following this syntax creates a new Buffer object
from the string provided. If string is a unicode string (unicode is
enabled within the application), then the buffer is created as a
unicode string. This behavior can be overridden by specifying
true or false with the optional boolean unicode parameter. If
this parameter is set to false, then the buffer is created as an
ASCII string, regardless of whether or not the original string was
in unicode or not. Similarly, specifying true will ensure that the
buffer is created as a unicode string. The size of the buffer is the
length of the string (twice the length if it is unicode). This
constructor does not add a terminating null byte at the end of
the string. The bigEndian flag behaves the same way as in the
first constructor.

Nombas ScriptEase ISDK/C 5.01 232

new Buffer(buffer[, unicode[, bigEndian]])

A line of code following this syntax creates a new Buffer object
from the buffer provided. The contents of the buffer are copied
as is into the new Buffer object. The unicode and bigEndian
parameters do not affect this conversion, though they do set the
relevant flags for future use.
new Buffer(bufferObject);

A line of code following this syntax creates a new Buffer object
from another Buffer object. Everything is duplicated exactly
from the other bufferObject, including the Buffer cursor location
and the Buffer size.

All of the Buffer construction calls above may be done without
the new constructor starting with ScriptEase 5.00.

SEE: Blob object

Buffer getString()
SYNTAX: buffer.getString([length])
WHERE: length - number of characters to get from the buffer.
RETURN: string - starting from the current cursor location and continuing

for length bytes. If no length is specified, then the method reads
until a NULL byte is encountered or the end of the buffer is
reached.

The Buffer cursor property is updated to the position after the
string returned.

DESCRIPTION: The string is read according to the value of the .unicode flag of
the buffer. A terminating NULL byte is not added, even if a length
parameter is not provided.

SEE: Buffer putString()
EXAMPLE: foo = new Buffer("abcd");

foo.cursor = 1;
goo = foo.getString(2);
//goo is now "bc"

Buffer compare()
SYNTAX: buffer.compare(buffer2)
WHERE: buffer2 - buffer to compare against.
RETURN: negative if buffer < buffer2,

zero if buffer == buffer2
positive if buffer > buffer2

DESCRIPTION: This function is identical to calling
Buffer.compare(buffer,buffer2).

SEE: Buffer(), Buffer.compare (), Buffer.equal (), Buffer equal()
EXAMPLE: // The following code:

var bufa = Buffer("ab");

Nombas ScriptEase ISDK/C 5.01 233

var bufb = new Buffer("ab\0");
var cmp = bufa.compare(bufb)
// will set the variable cmp to be < 0

Buffer equal()
SYNTAX: buffer.equal(buffer2)
WHERE: buffer2 - buffer to compare against.
RETURN: true if two buffers are equal, else false
DESCRIPTION: This function is identical to calling

Buffer.equal(buffer,buffer2).
SEE: Buffer(), Buffer equal(), Buffer.compare (), Buffer compare()
EXAMPLE: // The following code:

var bufa = Buffer("ab");
var bufb = new Buffer("ab\0");
var cmp = bufa.equal(bufb)
// will set the variable cmp to be false

Buffer getValue()
SYNTAX: buffer.getValue([valueSize[, valueType]])
WHERE: valueSize - a positive number describing the number of bytes to

be used and defaults to 1. The following are acceptable values: 1,
2, 3, 4, 8, and 10

valueType - One of the following types: "signed",
"unsigned", or "float". The default type is: "signed."

RETURN: number - from the position, specified by the cursor property, in
a Buffer object.

DESCRIPTION: This call is similar to the Buffer putValue() function, except that
it gets a value instead of puts a value.

SEE: Buffer putValue(), Buffer[] Array
EXAMPLE: /*

To explicitly put a value at a specific location
while preserving the cursor location,
do something similar to the following.
*/

 // Save the old cursor location
var oldCursor = foo.cursor;
 // Set to new location
foo.cursor = 20;
 // Get goo at offset 20
bar = foo.getValue(goo);
 // Restore cursor location
foo.cursor = oldCursor

//Please see Buffer.putValue
// for a more complete description.

Buffer putString()
SYNTAX: buffer.putString(string)
WHERE: string - Any string.

Nombas ScriptEase ISDK/C 5.01 234

RETURN: void.
DESCRIPTION: This method puts a string into the Buffer object at the current

cursor position. If the .unicode flag is set within the Buffer
object, then the string is put as a unicode string, otherwise it is
put as an ASCII string. The cursor is incremented by the length
of the string (or twice the length if it is put as a unicode string).
Note that terminating null byte is not added at end of the string.

EXAMPLE: // To put a null terminated string,
// the following can be done.

 // Put the string into the buffer
foo.putString("Hello");
 // Add terminating null byte
foo.putValue(0);

Buffer putValue()
SYNTAX: buffer.putValue(value[, valueSize[, valueType]])
WHERE: value - the value, a number, to be put into the buffer at the

position indicated by the cursor property.

valueSize - a positive number describing the number of bytes to
be used and defaults to 1. The following are acceptable values:
1,2,3,4,8, and 10

valueType - One of the following types: "signed",
"unsigned", or "float". The default type is: "signed."

RETURN: void

The value is put into buffer at the current cursor position, and
the cursor value is automatically incremented by the size of the
value to reflect this addition.

DESCRIPTION: This method puts the specified value into a buffer. The value
must be a number. The parameter valueSize or both
valueSize and valueType may be passed as additional
parameters. The parameter valueSize is a positive number
describing the number of bytes to be used and defaults to 1.
Acceptable values for valueSize are 1, 2, 3, 4, 8, and 10,
providing that it does not conflict with the optional valueType
flag. (See listing below.)

The parameter valueType must be one of the following:
"signed", "unsigned", or "float". It defaults to "signed."
The valueType parameter describes the type of data to be read.
Combined with valueSize, any type of data can be put. The
following list describes the acceptable combinations of
valueSize and valueType:
valueSize valueType
1 signed, unsigned
2 signed, unsigned
3 signed, unsigned
4 signed, unsigned, float
8 float

Nombas ScriptEase ISDK/C 5.01 235

10 float (Not supported on every system)

Any other combination will cause an error. The value is put into
buffer at the current cursor position, and the cursor value is
automatically incremented by the size of the value to reflect this
addition.

SEE: Buffer getValue(), Buffer[] Array
EXAMPLE: /*

To explicitly put a value at a specific location
while preserving the cursor location,
do something similar to the following.
*/

var oldCursor = foo.cursor;
 // Save the old cursor location
foo.cursor = 20;
 // Set to new location
foo.putValue(goo);
 // Put goo at offset 20
foo.cursor = oldCursor
// Restore cursor location

/*.
The value is put into the buffer with byte-ordering
according to the current setting of the .bigEndian
flag. Note that when putting float values as a
smaller size, such as 4, some significant figures
are lost. A value such as "1.4" will actually be
converted to something to the effect
of "1.39999974". This is sufficiently
insignificant to ignore, but note
that the following does not hold true.
.*/

foo.putValue(1.4,4,"float");
foo.cursor -= 4;
if(foo.getValue(4,"float") != 1.4)
 // This is not necessarily true due
 // to significant figure loss.

/*.
This situation can be prevented by using 8 or 10
as a valueSize instead of 4. A valueSize of 4
may still be used for floating point values,
but be aware that some loss of significant figures
may occur (though it may not be enough
to affect most calculations).
.*/

Buffer subBuffer()
SYNTAX: buffer.subBuffer(begin, end)
WHERE: begin - start of offset

end - end of offset (up to but not including this point)
RETURN: object - another Buffer object consisting of the data between the

positions specified by the parameters: begin and end.
DESCRIPTION: If the parameter begin is less than 0, then it is treated as 0, the

Nombas ScriptEase ISDK/C 5.01 236

start of the buffer. If the parameter end is beyond the end of the
buffer, then the new sub-buffer is extended with NULL bytes. The
original buffer is not altered.

SEE: String subString()
EXAMPLE: foo = new Buffer("abcd");

bar = foo.subBuffer(1,3);
// bar is now the string "bc"
// "a" was at position 0, "b" at position 1, etc.
// The parameter "3"
// or "nEnd" is the position to go up to,
// but NOT to be included in the string.

Buffer toString()
SYNTAX: buffer.toString()
RETURN: string - a string equivalent of the current state of the buffer, with

all characters, including "\0".
DESCRIPTION: Any conversion to or from unicode is done according to the

.unicode flag of the object.
SEE: Buffer getString()
EXAMPLE: foo = new Buffer("hello");

bar = foo.toString(void);
//bar is now the string "hello"

Buffer object static methods
Buffer.compare ()
SYNTAX: Buffer.compare(buffer1,buffer2)
WHERE: buffer1,buffer2 - Two buffer objects to be compared.
RETURN: negative if buffer1 < buffer2,

zero if buffer1 == buffer2
positive if buffer1 > buffer2

DESCRIPTION: There is no insensitive compare, Buffer.comparei(), since buffers
are not strings.To compare buffers as strings, use the toString()
or valueOf() methods and make string comparisons. By using
these methods, ASCII and Unicode buffers, holding string data,
may be compared.

SEE: Buffer(), Buffer compare(), Buffer.equal (), Buffer equal()
EXAMPLE: // The following code:

var bufa = Buffer("ab");
var bufb = new Buffer("ab\0");
var cmp = Buffer.compare(bufa,bufb)
// will set the variable cmp to be < 0

Buffer.equal ()
SYNTAX: Buffer.equal(buffer1,buffer2)
WHERE: buffer1,buffer2 - Two buffer objects to be compared.
RETURN: true if two buffers are equal, else false
DESCRIPTION: There is no insensitive compare, Buffer equali(), since buffers

are not strings. To compare buffers as strings, use the toString()

Nombas ScriptEase ISDK/C 5.01 237

or valueOf() methods and make string comparisons. By using
these methods, ASCII and Unicode buffers, holding string data,
may be compared.

SEE: Buffer(), Buffer equal(), Buffer.compare (), Buffer compare()
EXAMPLE: // The following code:

var bufa = Buffer("ab");
var bufb = new Buffer("ab\0");
var cmp = Buffer.equal(bufa,bufb)
// will set the variable cmp to be false

Nombas ScriptEase ISDK/C 5.01 239

Clib Object
platform: All operating systems; all versions of SE

The Clib object contains functions that are a part of the standard C library.
Methods to access files, strings, and characters are all part of the Clib object.

Some of the functions in the Clib Object overlap the methods in JavaScript. In
most cases, the newer JavaScript methods should be preferred over the older C
functions. However, there are times, such as when working with routines that
expect null terminated strings, that the Clib methods make more sense and are
more consistent in a section of a script.

Clib functions with equivalent methods in JavaScript are noted as such. Since
ScriptEase, JavaScript and the ECMAScript standard are developing and
growing, generally, a programmer should favor the JavaScript methods over
equivalent methods in the Clib object.

The methods in this section are preceded with the Object name Clib, since
individual instances of the Clib Object are not created. For example, Clib.exit() is
the syntax to use to exit a script.

Console I/O functions
Console I/0 functions are not available for ScriptEase WebServer Edition

Clib.printf()
SYNTAX: Clib.printf(formatString[, variables ...])
WHERE: formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
RETURN: number - characters written, or a negative number if there is an

error.
DESCRIPTION: This method writes output to the standard output device

according to the format string and returns a number equal to the
number of characters written, or a negative number if there is an
error. The format string can contain character combinations
indicating how following parameters are to be treated. Characters
are printed as read to standard output until a percent character,
%, is reached. % indicates that a value is to be printed from the
parameters following the format string. Each subsequent
parameter specification takes from the next parameter in the list
following format. A parameter specification has the following
form in which square brackets indicate optional fields and angled
brackets indicate required fields:

%[flags][width][.precision]<type>

flags may be:

• -
Left justification in the field with blank padding; else right
justifies with zero or blank padding

• +

Nombas ScriptEase ISDK/C 5.01 240

Force numbers to begin with a plus (+) or minus (-)
• blank

Negative values begin with a minus (-); positive values
begin with a blank

• #
Convert using the following alternate form, depending on
output data type:
• c, s, d, i, u

No effect
• o

0 (zero) is prepended to non- zero output
• x, X

0x, or 0X, are prepended to output
• f, e, E

Output includes decimal even if no digits follow decimal
• g, G

Same as e or E but trailing zeros are not removed

width may be:

• n
(n is a number e.g., 14) At least n characters are output,
padded with blanks

• 0n
At least n characters are output, padded on the left with zeros

• *
The next value in the argument list is an integer specifying
the output width

• .precision
If precision is specified, then it must begin with a period (.),
and may be as follows:

• 0
For floating point type, no decimal point is output

• n
n characters or n decimal places (floating point) are
output

• *
The next value in the argument list is an integer
specifying the precision width

type may be:

• d, i
signed integer

• u
unsigned integer

• o
octal integer x

• x

Nombas ScriptEase ISDK/C 5.01 241

hexadecimal integer with 0- 9 and a, b, c, d, e, f
• X

hexadecimal integer with 0- 9 and A, B, C, D, E, F
• f

floating point of the form [-]dddd.dddd
• e

floating point of the form [-]d.ddde+dd or [-]d.ddde- dd
• E

floating point of the form [-]d.dddE+dd or [-]d.dddE- dd
• g

floating point of f or e type, depending on precision
• G

floating point of For E type, depending on precision
• c

character (e.g. 'a', 'b', '8')
• s

string

To include the % character as a character in the format string, you
must use two % characters together, %%, to prevent the computer
from trying to interpret it as one of the above forms.

SEE: Clib.sprintf()
EXAMPLE: //Each of the following lines shows

// a printf example followed by what would show
// on the output in boldface:

Clib.printf("Hello world!")
// Hello world!
Clib.printf("I count: %d %d %d.",1,2,3)
// I count: 1 2 3
var a = 1;
var b = 2;
Clib.printf("%d %d %d", a, b, a +b)
// 1 2 3

Clib.getch()
SYNTAX: Clib.getch()
RETURN: number - character value of the key pressed.
DESCRIPTION: This method works exactly like getche(), but does not echo the

returned key to the screen. For example, the following code has
you enter a password; each time you enter a letter an asterisk is
written to the screen:

SEE: Clib.getchar()
EXAMPLE: var password;

for (var gg = 0; ;gg++)
{
var letter = Clib.getch();
if (letter == '\n') continue;
Clib.putc('*').
password[gg] = letter;
}

Nombas ScriptEase ISDK/C 5.01 242

Clib.getchar()
SYNTAX: Clib.getchar()
RETURN: number - character value of the key pressed.
DESCRIPTION: This method returns the next character from stdin. Usually, this

is the keyboard, but you may redefine it to something else. This
method will wait for <Enter> to be pressed after the key, and
will then return two values: the key pressed, and then the value
of the enter key.

SEE: Clib.getche()

Clib.getche()
SYNTAX: Clib.getche()
RETURN: number - character value of the key pressed.
DESCRIPTION: This method waits until a key is pressed and returns the character

value of that key. The character will be printed (echoed) to the
screen. Some key presses, such as extended keys and function
keys, may generate multiple Clib.getche() return values. If a
key was pressed before calling the function but never cleared
from the keyboard buffer, that value will be returned instead of
the next pressed key. This is not a common occurrence but can
happen. To see whether there are any key values pending in the
keyboard buffer, use Clib.kbhit().

SEE: Clib.getch()

Clib.gets()
SYNTAX: Clib.gets(str)
RETURN: str - buffer to hold the same string that is returned.
RETURN: string - an entire string from the keyboard, or null if there was

an error.
DESCRIPTION: This method reads an entire string from the keyboard and returns

it (or null if there was an error). The function will read all
characters up to a newline character or EOF. If a newline
character is read, it will not be included in the string.

SEE: Clib.getchar()
EXAMPLE: var s = Clib.gets()

Clib.kbhit()
SYNTAX: Clib.kbhit()
RETURN: boolean - true if there are any keystrokes waiting, false if not.
DESCRIPTION: This method checks to see whether there are any keystrokes

waiting to be processed, returning true if there are and false if
there are not.

Nombas ScriptEase ISDK/C 5.01 243

SEE: Clib.getche()

Clib.putchar()
SYNTAX: Clib.putchar(chr)
WHERE: chr - character to write to the stream stdout.
RETURN: number - character written on success, else EOF.
DESCRIPTION: This method writes chr to the stream defined by stdout (usually

the screen). If successful, it will return the character it just wrote;
if not, it will return EOF.

This method is identical to Clib.fputc(chr, stdout).
SEE: Clib.puts(), Clib.fputc()

Clib.puts()
SYNTAX: Clib.puts(str)
WHERE: str - string to write to the stream stdout.
RETURN: number - a positive number on success, else EOF.
DESCRIPTION: Writes a string to stdout, followed by a newline character. Will

not write the final null character of null terminated strings.
Returns EOF if there is an error writing the string; otherwise it
returns a positive number.

This method is the same as Clib.fputs(str, stdout)
except that a newline character is written after the string.

SEE: Clib.putchar(), Clib.puts()

Clib.scanf()
SYNTAX: Clib.scanf(formatString, variables[, ...])
WHERE: formatString - specifies how to read and store data in variables.

variables - list of variables to hold data input according to
formatString.

RETURN: number - input items assigned.
DESCRIPTION: This flexible method reads input from the screen, extracts data

from it by matching the string to a format string (as described
below), and stores the data in the variables which follow the
format string. It returns the number of input items assigned; this
number may be fewer than the number of parameters requested if
there was a matching failure. The format string contains
character combinations that specify the type of data expected.
The format string specifies the admissible input sequences, and
how the input is to be converted to be assigned to the variable
number of arguments passed to this function.

Characters are matched against the input as read and as it
matches a portion of the format string until a % character is

Nombas ScriptEase ISDK/C 5.01 244

reached. % indicates that a value is to be read and stored to
subsequent parameters following the format string. Each
subsequent parameter after the format string gets the next parsed
value takes from the next parameter in the list following format.
A parameter specification takes this form (square brackets
indicate optional fields, angled brackets indicate required fields):

%[*][width]<type>

*, width, and type may be:

• *
suppress assigning this value to any parameter

• width
maximum number of characters to read; fewer will be read if
white space or nonconvertible character

• type
may be one of the following:

• d, D, i, I
signed integer

• u, U
unsigned integer

• o, O
octal integer

• x, X
hexadecimal integer

• f, e, E, g, G
floating point number

• c
character; if width was specified then this will be an
array of characters of the specified length

• s
string

• [abc]
string consisting of all characters within brackets; where
A- Z represents range "A" to "Z"

• [^abc]
string consisting of all character NOT within brackets.

Modifies any number of parameters following the format string,
setting the parameters to data according to the specifications of
the format string.

SEE: Clib.vscanf()

Clib.vprintf()
SYNTAX: Clib.vprintf(formatString, valist)
WHERE: formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to

Nombas ScriptEase ISDK/C 5.01 245

formatString.
RETURN: number - number of characters written on success, else a

negative number.
DESCRIPTION: This method displays formatted output on the standard output

stream, screen, using a variable number of arguments. This
method is similar to Clib.printf() except that it takes a
variable argument list using valist.

See Clib.printf() and Clib.va_start() for more information. The
method Clib.vprintf() returns the number of characters written on
success, else a negative number on error.

The example function acts just like a Clib.printf() statement
except that it beeps, displays a message, beeps again, and waits a
second before returning. This method could be a wrapper for the
Clib.printf() method to display urgent messages.

SEE: Clib.printf(), Clib.va_start()
EXAMPLE: function UrgentPrintf(FormatString[arg1 ...])

{
 // create variable arg list
 Clib.va_start(valist, FormatString);
 Screen.write("\a"); // audible beep
 // printf original statement
 var ret = Clib.vprintf(FormatString, valist);
 Screen.write("\a"); // beep again
 SElib.suspend(1000); // wait before returning
 Clib.va_end(valist); // end using valist
 return(ret); // return as printf would }
}

Clib.vscanf()
SYNTAX: Clib.vscanf(formatString, valist)
WHERE: formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: number - input items assigned. This number may be fewer than
the number of parameters requested if there is a matching failure
during input.

DESCRIPTION: This method gets formatted input from the standard input stream,
the keyboard, using a variable number of arguments. This
method is similar to Clib.scanf() except that it takes a
variable argument list. See Clib.scanf() and Clib.va_start() for
more information.

The method Clib.vscanf() modifies any number of parameters
following formatString, setting the parameters to data according
to the specifications of the format string.

This method returns the number of input items assigned. This
number may be fewer than the number of parameters requested if
there is a matching failure during input.

Nombas ScriptEase ISDK/C 5.01 246

The example function behaves like Clib.scanf(), including
taking a variable number of input arguments, except that it beeps
and tries again if there are zero matches:

SEE: Clib.scanf()
EXAMPLE: function Must_scanf(FormatString[,arg1 ...)

{
 Clib.va_start(valist, FormatString);
 // creates variable arg list
 do
 { // mimic original scanf() call
 var count = Clib.vscanf(FormatString,
 valist);
 if (0 == count) // if no match, beep
 Screen.write("\a");
 } while(0 == count);
 // if not match, try again
 Clib.va_end(valist);
 // end using valist (optional)
 return(count);
 // return as scanf() would
}

Time functions
The Clib object (like the Date object) represents time in two distinct ways: as an
integral value (the number of seconds passed since January 1, 1970) and as a
Time object with properties for the day, month, year, etc. This Time object is
distinct from the standard JavaScript Date object. You cannot use Date object
properties with a Time object or vice versa.

In the methods below, timeObj represents a variable in the Time object format,
while timeInt represents an integral time value.

Clib.asctime()
SYNTAX: Clib.asctime(timeObj)
WHERE: timeObj - time variable in the Time object format.
RETURN: string - the date and time extracted from a Time object, as

returned by Clib.localtime().
DESCRIPTION: Returns a string representing the date and time extracted from a

Time object, as returned by Clib.localtime(). The string will have
this format:
Mon Jul 19 09:14:22 1993

Clib.clock()
SYNTAX: Clib.clock()
RETURN: number - the current processor tick count.
DESCRIPTION: Returns the current processor tick count. Clock value starts at 0

when ScriptEase program begins and is incremented
CLOCKS_PER_SEC times per second.

Nombas ScriptEase ISDK/C 5.01 247

Clib.ctime()
SYNTAX: Clib.ctime(timeInt)
WHERE: timeInt - an integer time value.
RETURN: string - the date and time extracted from a Time object, as

returned by Clib.localtime().
DESCRIPTION: This method is equivalent to: Clib.asctime(

Clib.localtime(time)), where timeInt is a date_time
value as returned by the Clib.time() function.

Clib.difftime()
SYNTAX: Clib.difftime(timeInt0, timeInt1)
WHERE: timeInt0 - an integer time value.

timeInt1 - an integer time value.
RETURN: number - difference between two times, in seconds.
DESCRIPTION: This method returns the difference in seconds between two

times. timeInt0 and timeInt1 are integral time values as returned
by the Clib.time() function.

Clib.gmtime()
SYNTAX: Clib.gmtime(timeInt)
WHERE: timeInt - an integer time value.
RETURN: object - a time object reflecting the value timeInt (as returned by

the Clib.time().
DESCRIPTION: Takes the integer timeInt (as returned by the Clib.time()

function) and converts it to a Time object representing the
current date and time expressed as Greenwich mean time. See
Clib.localtime() for a description of the returned object.

SEE: Clib.mktime(), Date Object, Date toGMTString()

Clib.localtime()
SYNTAX: Clib.localtime(timeInt)
WHERE: timeInt - an integer time value.
RETURN: object - a time object reflecting the value timeInt (as returned by

the Clib.time() function).
DESCRIPTION: This method returns the value timeInt (as returned by the time()

function) as a Time object. Note that the Time object differs
from the Date object, although they contain the same data. The
Time object is for use with the other date and time functions in
the Clib object. It has the following integer properties:

• .tm_sec
second after the minute (from 0)

• .tm_min

Nombas ScriptEase ISDK/C 5.01 248

minutes after the hour (from 0)
• .tm_hour

hour of the day (from 0)
• .tm_mday

day of the month (from 1)
• .tm_mon

month of the year (from 0)
• .tm_year

years since 1900 (from 0)
• .tm_wday

days since Sunday (from 0)
• .tm_yday

day of the year (from 0)
• .tm_isdst

daylight-savings-time flag

The following function prints the current date and time on the
screen and returns the day of the year, where Jan 1 is the 1st day
of the year.

SEE: Clib.mktime(), Date Object, Date toDateString(), Date
toLocaleDateString()

EXAMPLE: // Show today's date
// Return day of the year in USA format
ShowToday()
{
 // get current time structure
 var tm = Clib.localtime(Clib.time());
 // display the date in USA format
 Clib.printf("Date: %02d/%02d/%02d ",
 tm.tm_mon+1,
 tm.tm_mday, tm.tm_year % 100);
 // hour to run from 12 to 11, not 0 to 23
 var hour = tm.tm_hour % 12;
 if (hour == 0)
 hour = 12;
 // print current time
 Clib.printf("Time: % 2d:%02d:%02d\n", hour,
 tm.tm_min,
 tm.tm_sec);
 // return day of year, Jan. 1 is day 1
 return(tm.tm_yday + 1);
}

Clib.mktime()
SYNTAX: Clib.mktime(timeObj)
WHERE: timeObj - time variable in the Time object format.
RETURN: number - time integer, or -1 if time cannot be converted or

represented.
DESCRIPTION: This method converts timeObj (an object as returned by

Clib.localtime()) to the time format returned by Clib.time() (an
integer). All undefined elements of timeObj will be set to 0
before the conversion. It returns -1 if time cannot be converted or

Nombas ScriptEase ISDK/C 5.01 249

represented.

In other words, while Clib.localtime() converts from a time
integer to a Time object, Clib.mktime() converts from a Time
object to a time integer.

Clib.strftime()
SYNTAX: Clib.strftime(str, formatString, timeObj)
WHERE: str - a variable to receive the formatted time string.

formatString - string that specifies the final format.

timeObj - time variable in the Time object format.
RETURN: string - a string that describes the date and/or time and stores it in

the variable string.
DESCRIPTION: This method creates a string that describes the date and or time

and stores it in the variable str. The parameter formatString
describes what the string will look like, and timeObj is a time
object as returned by Clib.localtime().

These following conversion characters are used with
Clib.strftime() to indicate time and date output:

• %a
abbreviated weekday name (Sun)

• %A
full weekday name (Sunday)

• %b
abbreviated month name (Dec)

• %B
full month name (December)

• %c
date and time (Dec 2 06:55:15 1979)

• %d
two- digit day of the month (02)

• %H
two- digit hour of the 24- hour day (06)

• %I
two- digit hour of the 12- hour day (06)

• %j
three- digit day of the year from 001 (335)

• %m
two- digit month of the year from 01 (12)

• %M
two- digit minute of the hour (55)

• %p
AM or PM (AM)

• %S
two- digit seconds of the minute (15)

• %U

Nombas ScriptEase ISDK/C 5.01 250

two- digit week of year, Sunday is first day of week (48)
• %w

day of the week where Sunday is 0 (0)
• %W

two- digit week of year, Monday is first day of week (47)
• %x

the date (Dec 2 1979)
• %X

the time (06:55:15)
• %y

two- digit year of the century (79)
• %Y

the year (1979)
• %Z

name of the time zone, if known (EST)
• %%

the per cent character (%)

EXAMPLE: // displays the full day name and month name
// of the current day
Clib.strftime(TimeBuf,
 "Today is: %A, the month is: %B",
 Clib.localtime(time()));
Clib.puts(TimeBuf);

Clib.time()
SYNTAX: Clib.time([t])
WHERE: t - variable to receive the time returned.
RETURN: number - integer representation of the current time.
DESCRIPTION: Returns an integer representation of the current time. The format

of the time is not specifically defined except that it represents the
current time, to the system's best approximation, and can be used
in many other time related functions. If t is supplied then it will
be set to equal the returned value.

Script execution
Clib.abort()
SYNTAX: Clib.abort([AbortAll])
WHERE: AbortAll - boolean flag as to whether to abort all levels of

ScriptEase execution.
RETURN: number - EXIT_FAILURE to the operating system.
DESCRIPTION: This method terminates a program, usually when a specified

error occurs. This method causes abnormal program termination
and should only be called on a fatal error. This method exits,
without returning to the caller, and returns EXIT_FAILURE to
the operating system.

Nombas ScriptEase ISDK/C 5.01 251

If the boolean AbortAll is true, this method aborts through all
levels of ScriptEase interpretation. If you are in multiple levels
of SElib.interpret(), .abort() aborts through all
SElib.interpret() levels.

SEE: Clib.assert()

Clib.assert()
SYNTAX: Clib.assert(test)
WHERE: test - boolean flag to determine if the current file name and line

number will be displayed and if the script will abort.
RETURN: void.
DESCRIPTION: If boolean evaluates to false this function will print the file

name and line number to stderr and abort. If the assertion
evaluates to true then the program continues. Clib.assert()
is typically used as a debugging technique to test assumptions
before executing code based on those assumptions. Unlike C, the
ScriptEase implementation of assert does not depend upon
NDEBUG being defined or undefined; it is always active.

SEE: Clib.abort()
EXAMPLE: // The Inverse() function below returns

// the inverse of the input number (1/x):
function Inverse(x)
{
 assert(0 != x);
 return 1 / x;
}

Clib.atexit()
SYNTAX: Clib.atexit(function)
WHERE: function - a function to be called when a script is exited. Use the

actual function name or ID and not a string.
RETURN: void.
DESCRIPTION: This method registers a function to be called when the script

ends. The variable string passed to this function is the name of a
function to be called.

SEE: Clib.exit()
EXAMPLE: Screen.writeln("Starting the script");

Clib.atexit(Finished);
/*
 Not:
 Clib.atexit("Finished");
*/

function Finished()
{
 Screen.writeln("Exiting the script");
} // Finished

Nombas ScriptEase ISDK/C 5.01 252

Clib.exit()
SYNTAX: Clib.exit(code)
WHERE: code - status number to return to the operating system.
RETURN: number - the status code of the exit is returned to the operating

system from which a script was called.
DESCRIPTION: This method causes normal program termination. It calls all

functions registered with Clib.atexit(), flushes and closes
all open file streams, updates environment variables if applicable
to this version of ScriptEase, and returns control to the OS
environment with the return code of status.

SEE: Clib.atexit()

Clib.system()
SYNTAX: Clib.system([P_SWAP,] commandString)
WHERE: P_SWAP - in DOS version, determines whether the ScriptEase

interpreter is swapped out of normal memory.

commandString - the command string to be executed, a
command as would be entered at a command prompt.

RETURN: value - the value returned by a command processor.
DESCRIPTION: Passes commandString to the command processor and returns

whatever value was returned by the command processor.
commandString may be a formatted string followed by variables
according to the rules defined in Clib.sprintf().

• DOS
In the DOS version of ScriptEase, if the special argument
P_SWAP is used then SeDos.exe is swapped to
EMS/XMS/INT15 memory or disk while the system
command is executed. This leaves almost all available
memory for executing the command. See SElib.spawn() for a
discussion of P_SWAP.

• DOS32
The 32 bit protected mode version of DOS ignores the first
parameter if it is not a string; in other words, P_SWAP is
ignored.

SEE: SElib.spawn()

Error
Clib.errno
SYNTAX: Clib.errno
DESCRIPTION: The property errno stores diagnostic message information when

a function fails to execute correctly. Many functions in the Clib
and SElib objects set errno to non-zero in case of error to provide
information about the error that is more specific. ScriptEase

Nombas ScriptEase ISDK/C 5.01 253

implements errno as a macro to the internal function _errno().
This property can be accessed with Clib.perror() or
Clib.strerror().

SEE: Clib.perror()

Clib.clearerr()
SYNTAX: Clib.clearerr(filePointer)
WHERE: filePointer - pointer to file for which error information is to be

cleared.
RETURN: void.
DESCRIPTION: This method clears the error status and resents the end-of-file

flags for the file associated with filePointer. There is no return
value.

SEE: Clib.ferror()

Clib.ferror()
SYNTAX: Clib.ferror(filePointer)
WHERE: filePointer - pointer to file for which error information is to be

retrieved.
RETURN: number - 0 on no file error, else the current error value

associated with a file operation.
DESCRIPTION: The parameter filePointer is a file pointer as returned by

Clib.fopen(). This method tests and returns the error indicator for
stream file. Returns 0 if no error, otherwise returns the error
value.

SEE: Clib.clearerr()

Clib.perror()
SYNTAX: Clib.perror([errmsg])
WHERE: errmsg - a message to describe an error condition.
RETURN: string - error message that describes the error indicated by

Clib.errno.
DESCRIPTION: Prints and returns an error message that describes the error

defined by Clib.errno. This method is identical to calling
Clib.strerror(Clib.errno). If a string variable is supplied
it will be set to the string returned.

SEE: Clib.ferror()

Clib.strerror()
SYNTAX: Clib.strerror(errno)
WHERE: errno - an error number to convert to a descriptive string.

Nombas ScriptEase ISDK/C 5.01 254

RETURN: string - an error number converted to a descriptive string.
DESCRIPTION: When some functions fail to execute properly, they store a

number in the .errno property. The number corresponds to the
type of error encountered. This method converts the error
number to a descriptive string and returns it.

SEE: Clib.perror()
EXAMPLE: // Opens a file for reading, and if it cannot

// open the file then it prints a descriptive
// message and exits the program.

function MustOpen(filename)
{
 var fh = fopen(filename, "r");
 if (fh == null)
 {
 Clib.printf("Error:%s\n",
 Clib.strerror(errno));
 Clib.exit(EXIT_FAILURE);
 }
 return(fh);
}

File I/O
Clib.fopen()
SYNTAX: Clib.fopen(filename, mode)
WHERE: filename - a string with a filename to open.

mode - how or for what operations the file will be opened.
RETURN: number - a file pointer to the file opened, null in case of failure.
DESCRIPTION: This method opens the file specified by filename for file

operations specified by mode, returning a file pointer to the file
opened. null is returned in case of failure.

The parameter filename is a string. It may be any valid file name,
excluding wildcard characters.

The parameter mode is a string composed of one or more of the
following characters. For example, "r" or "rt"

• r
open file for reading; file must already exist

• w
open file for writing; create if doesn't exist; if file exists then
truncate to zero length

• a
open file for append; create if doesn't exist; set for writing at
end- of- file

• b
binary mode; if b is not specified then open file in text mode
(end- of- line translation)

• t

Nombas ScriptEase ISDK/C 5.01 255

text mode
• +

open for update (reading and writing)

When a file is successfully opened, its error status is cleared and
a buffer is initialized for automatic buffering of reads and writes
to the file.

SEE: Clib.fclose(), Clib.flock()
EXAMPLE: // Open the text file "ReadMe"

// for text mode reading, and
// display each line in the file.

var fp = Clib.fopen("ReadMe", "r");
if (fp == null)
 Clib.printf(
 "\aError opening file for reading.\n")
else
 while (null != (line=Clib.fgets(fp)))
 {
 Clib.fputs(line, stdout)
 }
Clib.fclose(fp);

Clib.fclose()
SYNTAX: Clib.fclose(filePointer)
WHERE: filePointer - pointer to file to close.
RETURN: number - 0 on success, else EOF.
DESCRIPTION: The parameter filePointer is a file pointer as returned by

Clib.fopen(). This method flushes the file buffers of a stream and
closes the file. The file pointer ceases to be valid after this call.
Returns zero if successful, otherwise returns EOF.

SEE: Clib.fopen(), Clib.flock()

Clib.feof()
SYNTAX: Clib.feof(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: number - 0 if at end of file, else a non-zero number.
DESCRIPTION: The parameter filePointer is a file pointer as returned by

Clib.fopen(). This method returns an integer which is non-zero if
the file cursor is at the end of the file, and 0 if it is NOT at the
end of the file.

SEE: Clib.fopen()

Clib.fflush()
SYNTAX: Clib.fflush(filePointer)
WHERE: filePointer - pointer to file to use.

Nombas ScriptEase ISDK/C 5.01 256

RETURN: number - 0 on success, else EOF.
DESCRIPTION: Causes any unwritten buffered data to be written to filePointer. If

filePointer is null then flushes buffers in all open files. Returns
zero if successful; otherwise EOF.

SEE: Clib.fclose()

Clib.fgetc()
SYNTAX: Clib.fgetc(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: number - EOF if there is a read error or the file cursor is at the

end of the file. If there is a read error then Clib.ferror() will
indicate the error condition.

DESCRIPTION: This method returns the next character in the file stream
indicated by filePointer as a byte converted to an integer.

SEE: Clib.gets()

Clib.fgetpos()
SYNTAX: Clib.fgetpos(filePointer, pos)
WHERE: filePointer - pointer to file to use.

pos - variable to hold the current file position.
RETURN: number - 0 on success, else non-zero and stores an error value in

Clib.errno.
DESCRIPTION: This method stores the current position of the file stream

filePointer for future restoration using Clib.fsetpos(). The file
position will be stored in the variable pos; use it with
Clib.fsetpos() to restore the cursor to its position.

SEE: Clib.fsetpos()

Clib.fgets()
SYNTAX: Clib.fgets([length,] filePointer)
WHERE: length - maximum length of string.

filePointer - pointer to file to use.
RETURN: string - the characters in a file from the current file cursor to the

next newline character on success, else null.
DESCRIPTION: This method returns a string consisting of the characters in a file

from the current file cursor to the next newline character. The
newline will be returned as part of the string. If there is an error
or the end of the file is reached, null will be returned.

A second syntax of this function takes a number as its first
parameter. This number is the maximum length of the string to
be returned if no newline character was encountered.

Nombas ScriptEase ISDK/C 5.01 257

SEE: Clib.fgetc()

Clib.fprintf()
SYNTAX: Clib.fprintf(filePointer, formatString[,

variables ...])
WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
RETURN: number - characters written on success, else a negative number.
DESCRIPTION: This flexible function writes a formatted string to the file

associated with filePointer. The second parameter, formatString,
is a string of the same pattern as Clib.sprintf() and Clib.rsprintf().

SEE: Clib.printf()

Clib.fputc()
SYNTAX: Clib.fputc(chr, filePointer)
WHERE: chr - character to write to file.

filePointer - pointer to file to use.
RETURN: number - character written on success, else EOF.
DESCRIPTION: If chr is a string, the first character of the string will be written to

the file indicated by filePointer. If chr is a number, the character
corresponding to its unicode value will be added.

SEE: Clib.fputs()

Clib.fputs()
SYNTAX: Clib.fputs(str, filePointer)
WHERE: str - string to write to file.

filePointer - pointer to file to use.
RETURN: number - non-negative number on success, else EOF.
DESCRIPTION: This method writes the value of str to the file indicated by

filePointer. Returns EOF if write error, else returns a non-
negative value.

SEE: Clib.fputc()

Clib.fread()
SYNTAX: Clib.fread(dstVar, varDescription, filePointer)
WHERE: dstVar - variable to hold data read from file.

varDescription - description of the data to read, that is, how and
how much.

Nombas ScriptEase ISDK/C 5.01 258

filePointer - pointer to file to use.
RETURN: number - elements read on success, 0 on failure.
DESCRIPTION: This method reads data from an open file and stores it in dstVar.

If it does not yet exist, dstVar will be created. varDescription is a
variable that describes the how and how much data is to be read:
if dstVar is a buffer, it will be the length of the buffer; if dstVar
is an object, varDescription must be an object descriptor; and if
dstVar is to hold a single datum then varDescription must be one
of the following.

• UWORD8
Stored as a byte in dstVar

• SWORD8
Stored as an integer in dstVar

• UWORD16
Stored as an integer in dstVar

• SWORD16
Stored as an integer in dstVar

• UWORD24
Stored as an integer in dstVar

• SWORD24
Stored as an integer in dstVar

• UWORD32
Stored as an integer in dstVar

• SWORD32
Stored as an integer in dstVar

• FLOAT32
Stored as a float in dstVar

• FLOAT64
Stored as a float in dstVar

• FLOAT80
Stored as a float in dstVar (not available in Win32)

In all cases, this function returns the number of elements read.
For dstVar being a buffer, this would be the number of bytes
read, up to length specified in varDescription. For dstVar being
an object, this method returns 1 if the data is read or 0 if read
error or end- of- file is encountered.

For example, the definition of an object might be:
ClientDef.Sex = UWORD8;
ClientDef.MaritalStatus = UWORD8;
ClientDef._Unused1 = UWORD16;
ClientDef.FirstName = 30; ClientDef.LastName = 40;
ClientDef.Initial = UWORD8;

The ScriptEase version of Clib.fread() differs from the
standard C version in that the standard C library is set up for
reading arrays of numeric values or structures into consecutive
bytes in memory. In JavaScript, this is not necessarily the case.

Nombas ScriptEase ISDK/C 5.01 259

Data types will be read from the file in a byte- order described by
the current value of the _BigEndianMode global variable.

SEE: Clib.fopen(), Clib.fwrite()
EXAMPLE: // To read the 16�bit integer "i",

// the 32�bit float "f", and
// then 10 byte buffer "buf"
// from the open file "fp"
// use code like the following.

if (!Clib.fread(i,SWORD16,fp) ||
 !Clib.fread(f,FLOAT32,fp) ||
 (10 != Clib.fread(buf,10,fp)))
{
 Clib.printf("Error reading from file.\n");
 Clib.abort();
}

Clib.freopen()
SYNTAX: Clib.freopen(filename, mode, filePointer)
WHERE: filename - a string with a filename to open.

mode - how or for what operations the file will be opened.

filePointer - pointer to file to use.
RETURN: number - file pointer on success, else null.
DESCRIPTION: This method closes the file associated with filePointer, ignoring

any close errors, opens filename according to mode, as with
Clib.fopen(), and reassociates filePointer with the new file
specification. This method is commonly used to redirect one of
the pre-defined file handles (stdout, stderr, or stdin) to or
from a file.

The method returns a copy of the modified filePointer, or null
if it fails.

The example code calls ScriptEase for DOS with no parameters,
which causes a help screen to be printed, and redirects stdout
to a file cenvi.out so that cenvi.out will contain the text of the
ScriptEase help screens.

SEE: Clib.fopen()
EXAMPLE: if (null == Clib.freopen("cenvi.out", "w", stdout))

 Clib.printf("Error redirecting stdout\a\n")
else
 Clib.system("SEDOS");

Clib.fscanf()
SYNTAX: Clib.fscanf(filePointer, formatString[,

variables ...])
WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.

Nombas ScriptEase ISDK/C 5.01 260

RETURN: number - input items assigned on success, else EOF.
DESCRIPTION: This flexible function reads input from the file indicated by

filePointer and stores in parameters following formatString
according the character combinations in the format string, which
indicate how the file data is to be read and stored. The file must
be open, with read access. It returns the number of input items
assigned. This number may be fewer than the number of
parameters requested if there was a matching failure. If there is
an input failure, before the conversion occurs, this function
returns EOF.

See Clib.scanf() for a description of this format string. The
parameters following the format string will be set to data
according to the specifications of the format string.

SEE: Clib.scanf()
EXAMPLE: // Given the following text file, weight.dat:

// Crow, Barney 180
// Claus, Santa 306
// Mouse, Mickey 2
// the following code:

var fp = Clib.fopen("weight.dat", "r");
var FormatString = "%[,] %*c %s %d\n";
while (3 == Clib.fscanf(fp, FormatString,
 LastName, Firstame, weight))
 Clib.printf("%s %s weighs %d pounds.\n",
 FirstName, LastName, weight);
Clib.fclose(fp);

// results in the following output:
// Barney Crow weighs 180 pounds.
// Santa Claus weighs 306 pounds.
// Mickey Mouse weighs 2 pounds.

Clib.fseek()
SYNTAX: Clib.fseek(filePointer, offset[, mode])
WHERE: filePointer - pointer to file to use.

offset - number of bytes past or offset from the point indicated
by mode.

mode - file position to use as a starting point. Default is
SEEK_SET and may be one of the following:

• SEEK_CUR
seek is relative to the current position of the file

• SEEK_END
position is relative from the end of the file

• SEEK_SET
position is relative to the beginning of the file

RETURN: number - 0 on success, else non-zero.
DESCRIPTION: Set the position of the file pointer of the open file stream

filePointer. The parameter offset is a number indicating how

Nombas ScriptEase ISDK/C 5.01 261

many bytes the new position will be past the starting point
indicated by mode.

If mode is not supplied then absolute offset from the beginning
of file, SEEK_SET, is assumed. For text files, not opened in
binary mode, the file position may not correspond exactly to the
byte offset in the file.

SEE: Clib.fsetpos(), Clib.ftell()

Clib.fsetpos()
SYNTAX: Clib.fsetpos(filePointer, pos)
WHERE: filePointer - pointer to file to use.

pos - position in file to set.
RETURN: number - zero on success, otherwise returns non-zero and stores

an error value in Clib.errno.
DESCRIPTION: This method sets the current file stream pointer to the value

defined by pos, which must be a value obtained from a previous
call to Clib.fgetpos() on the same open file. Returns zero for
success, otherwise returns non- zero and stores an error value in
Clib.errno.

SEE: Clib.fseek()

Clib.ftell()
SYNTAX: Clib.ftell(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: number - current value of the file position indicator, or -1 if there

is an error, in which case an error value will be stored in
Clib.errno.

DESCRIPTION: This method sets the position offset of the file pointer of an open
file stream from the beginning of the file. For text files, not
opened in binary mode, the file position may not correspond
exactly to the byte offset in the file. Returns the current value of
the file position indicator, or -1 if there is an error, in which case
an error value will be stored in Clib.errno.

SEE: Clib.fseek()

Clib.fwrite()
SYNTAX: Clib.fwrite(srcVar, varDescription, filePointer)
WHERE: srcVar - variable to hold data to write to file.

varDescription - description of the data to write, that is, how and
how much.

filePointer - pointer to file to use.
RETURN: number - elements written on success, else 0 if a write error

Nombas ScriptEase ISDK/C 5.01 262

occurs.
DESCRIPTION: This method writes the data in srcVar to the file indicated by

filePointer and returns the number of elements written. 0 will be
returned if a write error occurs. Use Clib.ferror() to get more
information about the error. varDescription is a variable that
describes the how and how much data is to be read. If srcVar is a
buffer, it will be the length of the buffer. If srcVar is an object,
varDescription must be an object descriptor. If srcVar is to hold
a single datum then varDescription must be one of the values
listed in the description for Clib.fread().

The ScriptEase version of Clib.fwrite() differs from the
standard C version in that the standard C library is set up for
writing arrays of numeric values or structures from consecutive
bytes in memory. This is not necessarily the case in JavaScript.

SEE: Clib.fread()
EXAMPLE: // To write the 16_bit integer "i",

// the 32_bit float "f", and
// then 10_byte buffer "buf" into open file "fp",
// use the following code.

if (!Clib.fwrite(i, SWORD16, fp) ||
 !Clib.fwrite(f, FLOAT32, fp) ||
 (10 != fwrite(buf, 10, fp)))
{
 Clib.printf("Error writing to file.\n");
 Clib.abort();
}

Clib.getc()
SYNTAX: Clib.getc(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: number - on success, the next character, as an unsigned byte

converted to an integer, in a file. Else EOF if a read error or at the
end of file.

DESCRIPTION: This method is identical to Clib.fgetc(). It returns the next
character in a file as an unsigned byte converted to an integer.
Returns EOF if there is a read error or if at the end of the file. If
there is a read error then Clib.ferror() will indicate the error
condition.

SEE: Clib.gets()

Clib.putc()
SYNTAX: Clib.putc(chr, filePointer)
WHERE: chr - character to write to file.

filePointer - pointer to file to use.
RETURN: number - character written on success, else EOF on write error.
DESCRIPTION: This method writes the character chr, converted to a byte, to an

Nombas ScriptEase ISDK/C 5.01 263

output file stream. This method is identical to Clib.fputc(). It
returns chr on success and EOF on a write error.

SEE: Clib.fputc()

Clib.remove()
SYNTAX: Clib.remove(filename)
WHERE: filename - the name of the file to delete from a disk.
RETURN: number - 0 on success, else non-zero.
DESCRIPTION: Delete a file with the filename provided.
SEE: Clib.rename(), Clib.fopen()

Clib.rename()
SYNTAX: Clib.rename(oldFilename, newFilename)
WHERE: oldFilename - current name of file on disk to be renamed.

newFilename - new name for file on disk.
RETURN: number - 0 on success, else non-zero.
DESCRIPTION: This method renames oldFilename to newFilename. Both

oldFilename and newFilename are strings. Returns zero if
successful and non-zero for failure.

SEE: Clib.remove()

Clib.rewind()
SYNTAX: Clib.rewind(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: void.
DESCRIPTION: This method sets the file cursor to the beginning of file. This call

is the same as Clib.fseek(filePointer, 0, SEEK_SET)
except that it also clears the error indicator for this stream.

SEE: Clib.fseek()

Clib.tmpfile()
SYNTAX: Clib.tmpfile()
RETURN: number - on success, a file pointer to a temporary binary file that

will automatically be removed when it is closed or when the
program exits, else null on failure.

DESCRIPTION: This method returns the file pointer of a temporary binary file
that will automatically be removed when it is closed or when the
program exits. Returns null if the function fails.

SEE: Clib.tmpnam()

Nombas ScriptEase ISDK/C 5.01 264

Clib.tmpnam()
SYNTAX: Clib.tmpnam([str])
WHERE: str - a variable to hold the name of a temporary file.
RETURN: string - a valid and unique filename.
DESCRIPTION: This method creates a string that is a valid file name that is not

the same as the name of any existing file and not the same as any
filename returned by this function during execution of this
program. If str is supplied it will be set to the string returned by
this function.

SEE: Clib.tmpfile()

Clib.ungetc()
SYNTAX: Clib.ungetc(chr, filePointer)
WHERE: chr - character to write to file.

filePointer - pointer to file to use.
RETURN: number - on success, the character put back into a file stream,

else EOF.
DESCRIPTION: This method pushes character chr back into an input stream.

When chr is put back, it is converted to a byte and is again in an
input stream for subsequent retrieval. Only one character is
guaranteed to be pushed back. The method returns chr on
success, else EOF on failure.

SEE: Clib.getc()

Directory
Clib.chdir()
SYNTAX: Clib.chdir(dirpath)
WHERE: dirpath - directory specification to which to change.
RETURN: number - 0 on success, else -1.
DESCRIPTION: This method changes the directory for a script from its current

directory to the directory specified in the parameter dirpath. The
specified directory may be an absolute or relative path
specification.

SEE: Clib.getcwd()

Clib.getcwd()
SYNTAX: Clib.getcwd()
RETURN: string - complete path of the current working directory for a

script.
DESCRIPTION: This method returns the complete path of the current working

directory for a script.

Nombas ScriptEase ISDK/C 5.01 265

SEE: Clib.chdir()

Clib.flock()
SYNTAX: Clib.flock(filePointer, lockFlag)
WHERE: filePointer - pointer to file to use.

lockFlag - determines which locking operation to perform on a
file. The flags are:

• LOCK_EX
File lock exclusive (equivalent to LOCK_SH in Windows)

• LOCK_SH
File lock share (equivalent to LOCK_EX in Windows)

• LOCK_NB
File lock non-blocking (bitwise or with LOCK_EX or
LOCK_SH)

• LOCK_UN
File unlock

RETURN: number - 0 on success, else -1 on failure.
DESCRIPTION: This method allows a file to be locked or unlocked, which is a

capability that is often important in a multi-tasking operating
system.

The ability to lock and unlock access to a file varies among
operating systems. For normal usage on most systems, the
operating system handles all necessary locking and
administration of sharing privileges for files. However, if a
scripter needs extra control over files, ScriptEase provides the
ability. For example, a script might use files to hold data while it
is running but does not need to keep the files open during all
phases of script execution. By locking and unlocking such files,
a scripter ensures that these files are not altered while a script is
running.

SEE: Clib.fopen(), Clib.fclose()
EXAMPLE: // The following fragment opens a file and

// then locks it for exclusive use without blocking
// further execution of the script.

var fp = Clib.fopen("myfile", "r");
Clib.flock(fp, LOCK_EX | LOCK_NB);
 // Use the file
Clib.flock(fp, LOCK_UN);
Clib.fclose(fp);

Clib.mkdir()
SYNTAX: Clib.mkdir(dirpath)
WHERE: dirpath - directory specification to make.
RETURN: number - 0 on success, else -1.
DESCRIPTION: This method creates the directory specified in the parameter

Nombas ScriptEase ISDK/C 5.01 266

dirpath. The specified directory may be an absolute or relative
path specification.

SEE: Clib.rmdir(), Clib.chdir()

Clib.rmdir()
SYNTAX: Clib.rmdir(dirpath)
WHERE: dirpath - directory specification to delete.
RETURN: number - 0 on success, else -1.
DESCRIPTION: This method deletes the directory specified by the parameter

dirpath.
SEE: Clib.mkdir(), Clib.remove()

Sorting
Clib.bsearch()
SYNTAX: Clib.bsearch(key, array[, elementCount],

 compareFunction)
WHERE: key - value for which to search.

array - beginning of array to search.

elementCount - number of elements to search. Default is the
entire array.

compareFunction - function used to compare key with each
element searched in the array.

RETURN: value - the element in an array if found, else null if not found.
DESCRIPTION: This method looks for an array variable that matches the key,

returning it if found and null if not. It will only search through
positive array members (array members with negative indices
will be ignored). The compareFunction must receive the key
variable as its first argument and a variable from the array as its
second argument. If elementCount is not supplied then it will
search the entire array. The elementCount is limited to 64K for
16-bit version of ScriptEase.

SEE: Clib.qsort()
EXAMPLE: // This example creates a two dimensional array

// that pairs a name with a favorite food.
// A name is searched for. The name and paired
// food is displayed.

var Found;
var Key;
var list;

 // create array of names and favorite food
var list =
{
 {"Marge", "salad"},

Nombas ScriptEase ISDK/C 5.01 267

 {"Lisa", "tofu"},
 {"Homer", "sugar"},
 {"Bart", "anything"},
 {"Itchy", "cats"},
 {"Scratchy", "anything from the garbage"}
};
 // sort the list
Clib.qsort(list, ListCompareFunction);

Key[0] = "marge";
 // search for the name Marge in the list
Found = Clib.bsearch(Key, list, ListCompareFunction);
 // display name, or not found

if (Found != null)
 Clib.printf("%s's favorite food is %s\n",
 Found[0], Found[1])
else
 Clib.puts("Could not find name in list.");

 // This compare function is used to sort
 // the array and to find a name.
 // The sort and search are case insensitive.
function ListCompareFunction(Item1, Item2)
{
 return Clib.strcmpi(Item1[0], Item2[0]);
}

Clib.qsort()
SYNTAX: Clib.qsort(array[, elementCount],

 compareFunction)
WHERE: array - array to sort.

elementCount - number of elements to sort. Default is the entire
array.

compareFunction - function used to compare key with each
element searched in the array.

RETURN: void.
DESCRIPTION: This method sorts elements in an array, starting from index 0 to

elementCount- 1. If elementCount is not supplied, then it will
sort the entire array. This method differs from the Array sort()
method in that it can sort automatically created arrays, whereas
Array sort() only works with arrays explicitly created with a
new Array() statement.

The value of elementCount is limited to 64K
SEE: Clib.bsearch(), Array()
EXAMPLE: // Create a list of color names,

// sort the list in reverse alphabetical order,
// case insensitive, and display the list.

 // initialize an array of colors
var colors = {"yellow", "Blue", "GREEN", "purple",
 "RED", "BLACK", "white", "orange"};

 // sort the list ReverseColorSorter function

Nombas ScriptEase ISDK/C 5.01 268

Clib.qsort(colors, ReverseColorSorter);

 // display the sorted colors
for (var i = 0; i < getArrayLength(colors); i++)
 Clib.puts(colors[i]);

function ReverseColorSorter(color1,color2)
 // do a simple case insensitive string
 // comparison, and reverse the results too
{
 var CompareResult = Clib.stricmp(color1,color2)
 return -CompareResult;
}

// The output is:
// yellow
// white
// RED
// purple
// orange
// GREEN
// Blue
// BLACK

Environment variables
Clib.getenv()
SYNTAX: Clib.getenv([variableName])
WHERE: variableName - the name of an environment variable.
RETURN: string - a string representation of the value of an environment

variable on success. If no variableName is passed, an array of all
environment variable names. On failure, returns null.

DESCRIPTION: If the parameter variableName is supplied, this method returns
the value of a similarly named environment variable as a string,
if the variable exists, and null if VariableName does not exist.
If no name is supplied. then it returns an array of all environment
variable names, ending with a null element.

SEE: Clib.putenv()
EXAMPLE: // Print the existing environment variables,

// in "EVAR=Value" format,
// sorted alphabetically.

 // get array of all environment variable names
var EnvList = Clib.getenv();
 // sort array alphabetically
Clib.qsort(EnvList, getArrayLength(EnvList),
 Clib.stricmp);
 // display each element in ENV=VALUE format
for (var lIdx = 0; EnvList[lIdx]; lIdx++)
 Clib.printf("%s=%s\n", EnvList[lIdx],
 Clib.getenv(EnvList[lIdx]));

Clib.putenv()
SYNTAX: Clib.putenv(variableName, stringValue)

Nombas ScriptEase ISDK/C 5.01 269

WHERE: variableName - the name of an environment variable.

stringValue - new value for environment variable variableName.
RETURN: number - 0 on success, else -1.
DESCRIPTION: This method sets the environment variable variableName to the

value of stringValue. If stringValue is null then variableName
is removed from the environment. For those operating systems in
which ScriptEase can alter the parent environment (DOS or OS/2
when invoked with SD.bat or SEset.cmd) the variable setting will
still be valid when ScriptEase exits; otherwise, the variable
change applies only to the ScriptEase code and to child processes
of the ScriptEase program. Returns - 1 if there is an error, else 0.

SEE: Clib.getenv()

Character classification
JavaScript does not have a true character type. For the character classification
routines, a chr is actually a single character string. Thus, actual programming
usage is very much like C. For example, in the following fragment both
Clib.isalnum() statements work properly.
var t = Clib.isalnum('a');
Screen.writeln(t);

var s = 'a';
var t = Clib.isalnum(s);
Screen.writeln(t);

This fragment displays the following.
true
true

In the following fragment, both Clib.isalnum() statements cause errors since the
arguments to them are strings with more than one character.
var t = Clib.isalnum('ab');
Screen.writeln(t);

var s = 'ab';
var t = Clib.isalnum(s);
Screen.writeln(t);

All character classification methods return booleans: true or false.

Clib.isalnum()
SYNTAX: Clib.isalnum(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: A-Z, a-z, or 0-9. Else false.
DESCRIPTION: Returns true if chr is a character in one of the following sets:

A-Z, a-z, or 0-9.

Nombas ScriptEase ISDK/C 5.01 270

Clib.isalpha()
SYNTAX: Clib.isalpha(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: A-Z or a-z. Else false.
DESCRIPTION: Returns true if chr is an alphabetic character in one of the

following sets of characters: A-Z or a-z.

Clib.isascii()
SYNTAX: Clib.isascii(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in ASCII: 0-127.
DESCRIPTION: Returns true if chr is an ASCII character in the following set of

codes: 0-127.

Clib.iscntrl()
SYNTAX: Clib.iscntrl(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in ASCII: 0-31 or 127.
DESCRIPTION: Returns true if chr is a control character in the set of ASCII

characters. Control characters are in one of the following sets of
codes: 0-31 or 127.

Clib.isdigit()
SYNTAX: Clib.isdigit(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: 0-9.
DESCRIPTION: Returns true if chr is a decimal digit in the following set of

characters: 0-9.

Clib.isgraph()
SYNTAX: Clib.isgraph(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is a printable character.
DESCRIPTION: Returns true if chr is a printable character excluding the space

character " ", code 32.

Clib.islower()
SYNTAX: Clib.islower(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: a-z.

Nombas ScriptEase ISDK/C 5.01 271

DESCRIPTION: Returns true if chr is a lowercase character in the following set
of characters: a- z

Clib.isprint()
SYNTAX: Clib.isprint(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr a printable ASCII code in: 32-126.
DESCRIPTION: Returns true if chr is a printable character in the following set

of codes: 32-126.

Clib.ispunct()
SYNTAX: Clib.ispunct(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - if chr is a punctuation character code in: 32-47, 58-63,

91-96, or 123-126.
DESCRIPTION: Returns true if chr is a punctuation character in one of the

following sets of codes: 32-47, 58-63, 91-96, or 123-126.

Clib.isspace()
SYNTAX: Clib.isspace(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is a white space in ASCII: 9, 10, 11, 12,

13, or 32.
DESCRIPTION: Returns true if chr is a white space character, that is, one of the

following codes: 9, 10, 11, 12, 13, or 32 (horizontal tab, new
line, vertical tab, form feed, carriage return, or space).

Clib.isupper()
SYNTAX: Clib.isupper(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: A-Z.
DESCRIPTION: Returns true if chr is an uppercase character in the following

set of characters: A- Z.

Clib.isxdigit()
SYNTAX: Clib.isxdigit(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: 0-9, A-F, or a-f.
DESCRIPTION: Returns true if chr is a hexadecimal digit in one of the

following sets of characters: 0-9, A-F, or a-f.

Nombas ScriptEase ISDK/C 5.01 272

String manipulation
Clib.rsprintf()
SYNTAX: Clib.rsprintf(formatString[, variables ...])
WHERE: formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
RETURN: string - formatted according to formatString using any variables

passed.
DESCRIPTION: This method returns a formatted string. It is similar to

Clib.printf(), except that a string is returned instead of printed.
SEE: Clib.printf()
EXAMPLE: // If in a script you had a line:

Clib.printf("%s has seen %s %d times.\n", name,
 movie, timesSeen);

// and you wanted to pass the resulting string
// as a parameter to a function, you could do it
// as follows.

func(Clib.rsprintf("%s has seen %s %d times.\n",
 name, movie, timesSeen));

// The following lines of code achieve
// the same result, that is, create
// a string variable named word that contains
// the string "Who is #1?".

var word
word = Clib.rsprintf("Who is #%d?", 3-2);
Clib.sprintf(word, "Who is #%d?", 3-2);

Clib.rvsprintf()
SYNTAX: Clib.rvsprintf(formatString, valist)
WHERE: formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: string - specified by formatString on success, else EOF on error.
DESCRIPTION: This method returns formatted output using the variable

argument list represented by the parameter valist, a Blob. This
method is similar to Clib.sprintf() except that it takes a
variable argu ment list and returns a formatted string based on
the arguments, rather than storing it in a string buffer. See
Clib.sprintf() and Clib.va_start() for more information. The
method Clib.rvsprintf() returns a string specified by formatString
on success, else EOF on error.

SEE: Clib.sprintf(), Clib.vprintf()

Nombas ScriptEase ISDK/C 5.01 273

Clib.sscanf()
SYNTAX: Clib.sscanf(str, formatString[, variables ...])
WHERE: str - string holding the data to read into variables according to

formatString.

formatString - specifies how to read and store data in variables.

variables - list of variables to hold data input according to
formatString.

RETURN: number - input items assigned. May be lower than the number of
items requested if there is a matching failure.

DESCRIPTION: This flexible method reads data from a string and stores it in
variables passed as parameters following formatString. The
parameter formatString specifies how data is read and stored in
variables. See Clib.scanf() for details about formatString.

Clib.scanf() reads data from the standard input stream,
whereas this method, Clib.sscanf() reads data from a string.

SEE: Clib.scanf(), Clib.fscanf(), Clib.vscanf()

Clib.sprintf()
SYNTAX: Clib.sprintf(str, formatString[, variables ...])
WHERE: str - to hold the formatted output.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
RETURN: number - characters written to string on success, else EOF on

failure.
DESCRIPTION: This method writes output to the string variable specified by str

according to formatString, and returns the number of characters
written or EOF if there was an error. The parameter formatString
may contain character combinations indicating how following
parameters are to be written. The parameter str need not be
previously defined. It will be created large enough to hold the
result.

The format string may contain character combinations indicating
how following parameters are to be treated. Characters are
handled normally until a percent character, %, is reached. The
percent % indicates that a value is to be written from the variables
following the format string. See Clib.printf() for a complete
description of formatString.

SEE: Clib.printf()
EXAMPLE: // Each of the following lines shows

// a sprintf example followed
// by the resulting string.

Clib.sprintf(testString, "I count: %d %d %d.",1,2,3)

// "I count: 1 2 3"

Nombas ScriptEase ISDK/C 5.01 274

var a = 1;
var b = 2;
Clib.sprintf(testString, "%d %d %d", a, b, a+b)

// "1 2 3"

Clib.strcat()
SYNTAX: Clib.strcat(dstStr, srcStr)
WHERE: dstStr - destination string to which to add srcStr and to hold the

final result.

srcStr - source string to append to dstStr.
RETURN: string - the resulting string from concatenating dstStr and srcStr.
DESCRIPTION: This method appends srcStr string onto the end of dstStr string.

The dstStr string is made big enough to hold srcStr, and a
terminating null byte. In ScriptEase, a string copy is safe, so
that you can copy from one part of a string to another part of
itself.

The return is the value of dstStr, that is, a variable pointing to the
dstStr array starting at dstStr[0].

SEE: Clib.strcpy(), Clib.memcpy()
EXAMPLE: // The result of the following code is:

// Giant == "Fee Fie Foe Fum"

var Giant = "Fee";
 // add Fie
Clib.strcat(Giant, " Fie");
 // add Foe
Clib.strcat(Giant, " Foe");
 // add Fum
Clib.strcat(Giant, " Fum");

Clib.strchr()
SYNTAX: Clib.strchr(str, chr)
WHERE: str - string to search for a character.

chr - character to search for.
RETURN: string - beginning at the point in string where chr is found, else

null if is not found..
DESCRIPTION: This method searches the parameter str for the character chr. It

returns a variable indicating the first occurrence of chr in str, else
it returns null if chr is not found in str.

SEE: Clib.strstr(), String indexOf()
EXAMPLE: // The following code fragment:

var str = "I can't stand soggy cereal."
var substr = Clib.strchr(str, 's');
Clib.printf("str = %s\n", str);
Screen.writeln("substr = " + substr);

Nombas ScriptEase ISDK/C 5.01 275

// results in the following output.
// str = I can't stand soggy cereal.
// substr = stand soggy cereal.

Clib.strcmp()
SYNTAX: Clib.strcmp(str1, str2)
WHERE: str1 - first string to compare.

str2 - second string to compare
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- sensitive comparison of the characters
of str1 with str2 until there is a mismatch or a terminating null
byte is reached.

SEE: Clib.strcmpi(), Clib.stricmp(), ==, ===

Clib.strcmpi()
SYNTAX: Clib.strcmpi(str1, str2)
WHERE: str1 - first string to compare.

str2 - second string to compare
RETURN: • < 0 if str1 is less than str2

• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- insensitive comparison of the
characters of str1 with str2 until there is a mismatch or a
terminating null byte is reached.

SEE: Clib.strcmp(), Clib.stricmp(), ==, ===

Clib.strcpy()
SYNTAX: Clib.strcpy(dstStr, srcStr)
WHERE: dstStr - destination string to which the source string will be

copied.

srcStr - source string to copy to destination string.
RETURN: string - the value of dstStr after the copy process.
DESCRIPTION: This method copies bytes from srcStr to dstStr, up to and

including the terminat ing null character. If dstStr is not already
defined, then it is defined as a string. It is safe to copy from one
part of a string to another part of the same string.

The return is the value of dstStr, that is, a variable pointing to the
dstStr array starting at dstStr[0].

Nombas ScriptEase ISDK/C 5.01 276

SEE: Clib.strncpy(), =

Clib.strcspn()
SYNTAX: Clib.strcspn(str, chrSet)
WHERE: str - string to be searched.

chrSet - set of characters to search for.
RETURN: number - offset into str to a found character on success, else the

length of str.
DESCRIPTION: This method searches the parameter string for any of the

characters in the string chrSet and returns the offset of that
character. If no matching characters are found, it returns the
length of the string. This method is similar to Clib.strpbrk(),
except that Clib.strcspn() returns the offset number, or
index, for the first character found, while Clib.strpbrk.()
returns the string beginning at that character.

SEE: Clib.strpbrk()
EXAMPLE: // The following fragment demonstrates

// the difference between Clib.strcspn() and
// Clib.strpbrk().

var string =
 "There's more than one way to skin a cat.";
var rStrpbrk = Clib.strpbrk(string, "dxb8w9k!");
var rStrcspn = Clib.strcspn(string, "dxb8w9k!");
Clib.printf("The string is: %s\n", string);
Clib.printf("\nstrpbrk returns a string: %s\n",
 rStrpbrk);
Clib.printf("\nstrcspn returns an integer: %d\n",
 rStrcspn);
Clib.printf("string +strcspn = %s\n", string +
 rStrcspn); Clib.getch();

// And results in the following output:
// The string is:
// There's more than one way to skin a cat.
// strpbrk returns a string: way to skin a cat.
// strcspn returns an integer: 22
// string +strcspn = way to skin a cat

Clib.stricmp()
SYNTAX: Clib.stricmp(str1, str2)
WHERE: str1 - first string to compare.

str2 - second string to compare
RETURN: • < 0 if str1 is less than str2

• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- insensitive comparison of the
characters of str1 with str2 until there is a mismatch or a
terminating null byte is reached.

Nombas ScriptEase ISDK/C 5.01 277

SEE: Clib.strcmp(), Clib.strcmpi(), ==, ===

Clib.strlen()
SYNTAX: Clib.strlen(str)
WHERE: str - string to find length of.
RETURN: number - the number of characters in str, not including the

terminating null character.
DESCRIPTION: This method returns the length of parameter str. The length

property of JavaScript strings is similar. The difference between
Clib.strlen(str) and String length is that length counts
null characters as part of a string, whereas Clib.strlen()
considers them markers indicating the end of the string and does
not include them or any characters which follow them as part of
a string.

The return is the number of characters, bytes, in str, starting from
the character at str[0] and ending before the terminating null
byte.

SEE: String length

Clib.strlwr()
SYNTAX: Clib.strlwr(str)
WHERE: str - string in which to change case of characters to lowercase.
RETURN: string - the value of str after conversion of case.
DESCRIPTION: This method converts all uppercase letters in str to lowercase,

starting at str[0] and ending before the terminating null byte.
The return is the value of str, that is, a variable pointing to the
start of str at str[0].

SEE: Clib.strupr(), String toLowerCase()

Clib.strncat()
SYNTAX: Clib.strncat(dstStr, srcStr, maxLen)
WHERE: dstStr - destination string to which to add srcStr and to hold the

final result.

srcStr - source string to append to dstStr.

maxLen - maximum number of characters to append from srcStr.
RETURN: string - the value of the destination string after the source string

characters have been appended.
DESCRIPTION: This method appends up to maxLen bytes of srcStr onto the end

of dstStr. Characters following a null byte in srcStr are not
copied. The dstStr array is made big enough to hold:
Clib.min(Clib.strlen(srcStr),maxLen)

Nombas ScriptEase ISDK/C 5.01 278

characters and a terminating null character. The final value of
dstStr is returned.

SEE: Clib.strcat()

Clib.strncmp()
SYNTAX: Clib.strncmp(str1, str2, maxLen)
WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or the terminating null byte is reached.
The comparison is case-sensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

SEE: Clib.strncmpi(), Clib.strnicmp(), ==, ===

Clib.strncmpi()
SYNTAX: Clib.strncmpi(str1, str2, maxLen)
WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or the terminating null byte is reached.
The comparison is case-insensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

SEE: Clib.strncmp(), Clib.strnicmp(), ==, ===

Clib.strncpy()
SYNTAX: Clib.strncpy(dstStr, srcStr, maxLen)
WHERE: dstStr - destination string to which the source string will be

Nombas ScriptEase ISDK/C 5.01 279

copied.

srcStr - source string to copy to destination string.

maxLen - maximum number of characters to copy.
RETURN: string - the value of dstStr after the copy process.
DESCRIPTION: This method copies:

Clib.min(Clib.strlen(srcStr)+1, MaxLen)

characters from srcStr to dstStr. If dstStr is not already defined
then this method defines it as a string. The destination string is
padded with null characters, if maxLen is greater than the
length of srcStr, and a null character is appended to dstStr if
maxLen characters are copied. It is safe to copy from one part of
a string to another part of the same string. Returns the value of
dstStr; that is, a variable into the destination array based at
dstStr[0].

SEE: Clib.strcpy()

Clib.strnicmp()
SYNTAX: Clib.strnicmp(str1, str2, maxLen)
WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or the terminating null byte is reached.
The comparison is case-insensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

SEE: Clib.strncmp(), Clib.strncmpi(), ==, ===

Clib.strpbrk()
SYNTAX: Clib.strpbrk(str, chrSet)
WHERE: str - string to be searched.

chrSet - set of characters to search for.
RETURN: string - beginning with the character in chrSet that was found,

else null.
DESCRIPTION: This method searches str for any of the characters in chrSet, and

returns the string based at the found character. Returns null if

Nombas ScriptEase ISDK/C 5.01 280

no character from chrSet is found.

Clib.strcspn() returns a number and Clib.strpbrk() returns a
string.

SEE: Clib.strcspn()
EXAMPLE: // See Clib.strcspn() for an example

// using this function.

Clib.strrchr()
SYNTAX: Clib.strrchr(str, chr)
WHERE: str - string to search.

chr - character to search for.
RETURN: string - beginning with the first character found from the right,

else null.
DESCRIPTION: This method searches a string for the last occurrence of chr. The

search is in the reverse direction, from the right, for chr in a
string. The method returns a variable indicating the last
occurrence of chr in a string, else it returns null if chr is not
found in str.

SEE: Clib.strchr()
EXAMPLE: // The following code:

var str = "I can't stand soggy cereal."
var substr = Clib.strrchr(str, 's');
Clib.printf("str = %s\n", str);
Screen.writeln("substr = " + substr);

// Results in the following output.
// str = I can't stand soggy cereal.
// substr = soggy cereal.

Clib.strspn()
SYNTAX: Clib.strspn(str, chrSet)
WHERE: str - string to be searched.

chrSet - set of characters to search for.
RETURN: number - the offset or index into str of the first character that is

not in chrSet.
DESCRIPTION: This method searches a string for any characters that are not in

chrSet, and returns the offset of the first instance of such a
character. If all characters in str are also in chrSet, the return is
the length of string.

SEE: Clib.strcspn()

Clib.strstr()
SYNTAX: Clib.strstr(srcStr, findStr)
WHERE: srcStr - a string to search.

Nombas ScriptEase ISDK/C 5.01 281

findStr - a string to find.
RETURN: string - beginning in srcStr with the first character in findStr that

was found, else null.
DESCRIPTION: This method searches srcStr, starting at srcStr[0], for the first

occurrence of findStr. The search is case-sensitive. The method
returns a variable indicating the beginning of the first occurrence
of findStr in srcStr, else it returns null if findStr is not found in
srcStr.

SEE: Clib.strchr(), Clib.strstri()
EXAMPLE: // The following code fragment:

function main()
{
 var Phrase = CString("To be or not to be? beep!";
 do
 {
 Screen.writeln(Phrase);
 Phrase = Clib.strstr(Phrase + 1, "be");
 } while (Phrase != null);
}
// results in the following output.
// To be or not to be? beep!
// be or not to be? beep!
// be? beep!
// beep!

Clib.strstri()
SYNTAX: Clib.strstri(srcStr, findStr)
WHERE: srcStr - a string to search.

findStr - a string to find.
RETURN: string - beginning in srcStr with the first character in findStr that

was found, else null.
DESCRIPTION: This method searches srcStr, starting at srcStr[0], for the first

occurrence of findStr. The search is case-insensitive. The method
returns a variable indicating the beginning of the first occurrence
of findStr in srcStr, else it returns null if findStr is not found in
srcStr.

SEE: Clib.strstr()

Clib.strtod()
SYNTAX: Clib.strtod(str[, endStr])
WHERE: str - string to be converted to a number.

endStr - the part of str after the characters that were actually
parsed.

RETURN: number - the first part of str converted to a double precision
number.

DESCRIPTION: This method converts the string str into a number and optionally

Nombas ScriptEase ISDK/C 5.01 282

returns a partial string that begins beyond the characters parsed
by this method. White space characters are skipped at the start of
str, and the string characters are converted to a float as long as
they match the following format.

 [sign][digits][.][digits][format[sign]digits]

The parameter endStr is not compared against null, as it is in
standard C implementations, and is optional. If the parameter
endStr is supplied, then endStr is set to a string beginning at the
first character that was not used in converting.

The return is the first part of str, converted to a floating-point
num ber.

SEE: Clib.strtok()
EXAMPLE: // The following strings, are examples

// that can be converted.
// "1"
// "1.8"
// "-400.456e-20"
// ".67e50"
// "2.5E+50"

Clib.strtok()
SYNTAX: Clib.strtok(srcStr, delimiterStr)
WHERE: srcStr - source string consisting of delimited tokens.

delimiterStr - string of delimiter characters that separate tokens.
RETURN: string - a token, a substring, in srcStr, else null if there is not a

token or if there are no more tokens.
DESCRIPTION: This method is unusual. The parameter srcStr is a string that

consists of text tokens, substrings, separated by delimiter
characters found in delimiterStr. The parameter srcStr may be
altered during the first and subsequent calls to Clib.strtok().

On the first call to Clib.strtok(), srcStr points to the string
to tokenize and delimiterStr is a set of characters which are used
to separate tokens in the source string. The first call, such as:
token = Clib.strtok(srcStr, delimiterStr)

returns a variable pointing to the srcStr array and based at the
first character of the first token in srcStr. On subsequent calls,
such as
token = Clib.strtok(null, delimiterStr)

the first argument is null and Clib.strtok() will continue
through srcStr returning subsequent tokens.

The initial variable receiving tokens must remain valid
throughout following calls that use null. If the variable is
changed in any way, a subsequent use of Clib.strtok() must
first use the syntax form in which the new string, not null, is

Nombas ScriptEase ISDK/C 5.01 283

passed as a first parameter.

This method returns null if there are no more tokens; otherwise
returns srcStr array variable based at the next token in srcStr.

SEE: Clib.strstr()
EXAMPLE: // The following code:

var source =
 " Little John,,,Eats ?? crackers;;;! ";
var token = Clib.strtok(source,", ");
while(null != token)
{
 Clib.puts(token);
 token = Clib.strtok(null,";?, ");
}

// produces the following list of tokens.
// Little
// John
// Eats
// crackers
// !

Clib.strtol()
SYNTAX: Clib.strtol(str[, endStr[, radix]])
WHERE: str - string to be converted to a number.

endStr - the part of str after the characters that were actually
parsed.

radix - the number base for the conversion.
RETURN: number - the first part of str converted to a long integer number.
DESCRIPTION: This method converts the string str into a number and optionally

returns a string starting beyond the characters parsed in the
method. White space characters are skipped at the start of str,
and the string characters are converted to an integer as long as
they match the following format.

 [sign][0][x][digits]

The parameter endStr is not compared against null, as it is in
standard C implementations and is optional. The parameter radix
specifies the base for conversion. For example, base 10 would
use decimal digits zero through nine, 0 - 9, and base 16 would
use hexadecimal digits zero through nine, 0 - 9, uppercase letters
"A" through "F", A - F, or lowercase letters "a" through "f", a - f.
If radix is zero or is not supplied, then the radix is automatically
determined based on the first characters of str.

If the parameter endStr is supplied, then endStr is set to a string
beginning at the first character that was not used in converting.
The return is the first part of str, converted to a floating-point
number.

Nombas ScriptEase ISDK/C 5.01 284

SEE: Clib.strtod()
EXAMPLE: // As examples, the following strings//

/ can be converted.
// "1"
// "12"
// "-400"
// "0xFACE"

Clib.strupr()
SYNTAX: Clib.strupr(str)
WHERE: str - string in which to change case of characters to uppercase.
RETURN: string - the value of str after conversion of case.
DESCRIPTION: This method converts all lowercase letters in str to uppercase,

starting at str[0] and ending before the terminating null byte.
The return is the value of str, that is, a variable pointing to the
start of str at str[0].

SEE: Clib.strlwr(), String toUpperCase()

Clib.toascii()
SYNTAX: Clib.toascii(chr)
WHERE: chr - character to be converted.
RETURN:
DESCRIPTION: This method translates chr to ASCII format, to seven bits. The

translation is done by clearing all but the lowest 7 bits. The
return is chr converted to ASCII. Remember that JavaScript has
no true character type, thus, this method considers a single
character string to be a chr.

SEE: Clib.toascii(), Clib.tolower(), Clib.toupper(), String
toLowerCase(), String toLowerCase(), String invertCase()

Clib.tolower()
SYNTAX: Clib.tolower(chr)
WHERE: chr - character to be converted.
RETURN:
DESCRIPTION: If chr is an uppercase alphabetic character, then this method

returns chr converted to lowercase alphabetic, otherwise it
returns chr unaltered. Remember that JavaScript has no true
character type, thus, this method considers a single character
string to be a chr.

SEE: Clib.toascii(), Clib.tolower(), Clib.toupper(), String
toLowerCase(), String toLowerCase(), String invertCase()

Clib.toupper()
SYNTAX: Clib.toupper(chr)

Nombas ScriptEase ISDK/C 5.01 285

WHERE: chr - character to be converted.
RETURN:
DESCRIPTION: If chr is a lowercase alphabetic character, then this method

returns chr converted to uppercase alphabetic, otherwise it
returns chr unaltered. Remember that JavaScript has no true
character type, thus, this method considers a single character
string to be a chr.

SEE: Clib.toascii(), Clib.tolower(), Clib.toupper(), String
toLowerCase(), String toLowerCase(), String invertCase()

Clib.vsprintf()
SYNTAX: Clib.vsprintf(str, formatString, valist)
WHERE: str - to hold the formatted output.

formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: number - characters written to str, not including the terminating
null character, on success, else EOF on error.

DESCRIPTION: This method puts formatted output into str, a string, using a
variable number of arguments, specified by valist. The parameter
formatString specifies the format of the data put into the string.
This method is similar to Clib.sprintf() except that it takes a
variable argu ment list.

The method returns the number of characters written to buffer,
not including the terminating null byte, on success, else EOF on
error.

SEE: Clib.sprintf(), Clib.va_start()

Memory manipulation
Clib.memchr()
SYNTAX: Clib.memchr(buf, chr[, maxLen])
WHERE: buf - buffer or byte array to search.

chr - character to search for.

maxLen - maximum number of bytes to search.
RETURN: buffer - beginning in array with the character found, else null if

not found.
DESCRIPTION: This method searches a buffer, a byte array, or a Blob, and

returns a variable indicating or beginning with the first
occurrence of chr. If the parameter maxLen is not specified, the
method searches the entire array from element zero.

SEE: Clib.strchr()

Nombas ScriptEase ISDK/C 5.01 286

Clib.memcmp()
SYNTAX: Clib.memcmp(buf1, buf2[, maxLen])
WHERE: buf1 - first buffer or byte array to use in comparison.

buf2 - second buffer or byte array to use in comparison.

maxLen - maximum number of characters to compare.
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares the first maxLen bytes of buf1 and buf2.
If the parameter maxLen is not specified, then maxLen is the
smaller of the lengths of buf1 and buf2. If maxLen is specified
and one of the arrays is shorter than the specified length, then
ScriptEase treats length of the shorter array as being maxLen.

The example function checks to see if the shorter string is the
same as the beginning of the longer string. This method differs
from Clib.strcmp() in that this function returns true if passed
the strings "foo" and "foobar", since it only compares characters
up to the end of the shorter string.

SEE: Clib.strcmp()
EXAMPLE: function MyStrCmp(string1, string2)

{
 var len = Clib.min(string1.length,
 string2.length);
 return(Clib.memcmp(string1, string2, len) == 0);
}

Clib.memcpy()
SYNTAX: Clib.memcpy(dstBuf, srcBuf[, maxLen])
WHERE: dstBuf - destination buffer to which the source buffer will be

copied.

srcBuf - source buffer to copy to destination buffer.

maxLen - maximum number of characters to copy.
RETURN: buffer - the final destination buffer.
DESCRIPTION: This method copies the number of bytes specified by maxLen

from srcBuf to dstBuf. If dstBuf is not already defined, then it is
defined as a buffer. If the parameter maxLen is not supplied, then
all of the bytes in srcBuf are copied to dstBuf.

ScriptEase insures protection from data overwrite, so in
ScriptEase the Clib.memcpy() method is the same as
Clib.memmove().

SEE: Clib.strncpy(), Clib.memmove()

Nombas ScriptEase ISDK/C 5.01 287

Clib.memmove()
SYNTAX: Clib.memmove(dstBuf, srcBuf[, maxLen])
WHERE: dstBuf - destination buffer to which the source buffer will be

copied.

srcBuf - source buffer to copy to destination buffer.

maxLen - maximum number of characters to copy.
RETURN: buffer - the final destination buffer.
DESCRIPTION: This method copies the number of bytes specified by maxLen

from srcBuf to dstBuf. If dstBuf is not already defined, then it is
defined as a buffer. If the parameter maxLen is not supplied, then
all of the bytes in srcBuf are copied to dstBuf.

ScriptEase insures protection from data overwrite, so in
ScriptEase the Clib.memcpy() method is the same as
Clib.memmove().

SEE: Clib.strncpy(), Clib.memcpy()

Clib.memset()
SYNTAX: Clib.memset(buf, chr[, maxLen])
WHERE: buf - a byte array or buffer.

chr - character to set in buf.

maxLen - number of bytes in buf to set to chr.
RETURN: buffer - buf with the appropriate number of bytes set to chr.
DESCRIPTION: This method sets the first number, as specified by maxLen, of

bytes of buf to character chr. If buf is not already defined, then it
is defined as a buffer of size maxLen. If the length of buf is less
than the number of bytes specified by maxLen, then buf is grown
to be big enough for maxLen bytes. If the parameter maxLen is
not supplied, then maxLen is the size of buf, starting at index 0.

SEE: Clib.memchr()

Math
Clib.abs()
SYNTAX: Clib.abs(x)
WHERE: x - number to work with.
RETURN: number - absolute value of x.
DESCRIPTION: This method returns the absolute, non-negative, value of x.
SEE: Clib.labs(), Clib.fabs()

Clib.acos()

Nombas ScriptEase ISDK/C 5.01 288

SYNTAX: Clib.acos(x)
WHERE: x - number to work with.
RETURN: number - arc cosine of x.
DESCRIPTION: This method returns the arc cosine of x in the range of 0 to pi

radians.
SEE: Clib.cos()

Clib.asin()
SYNTAX: Clib.asin(x)
WHERE: x - number to work with.
RETURN: number - arc sine of x.
DESCRIPTION: This method returns the arc sine of x in the range of -pi/2 to pi/2

radians.
SEE: Clib.sin()

Clib.atan()
SYNTAX: Clib.atan(x)
WHERE: x - number to work with.
RETURN: number - arc tangent of x.
DESCRIPTION: This method returns the arc tangent of x in the range of -pi/2 to

pi/2 radians.
SEE: Clib.tan()

Clib.atan2()
SYNTAX: Clib.atan2(x, y)
WHERE: x - number to work with, numerator.

y - number to work with, denominator.
RETURN: number - arc tangent of x/y.
DESCRIPTION: This method returns the arc tangent of x/y, in the range of -pi to

+pi radians.
SEE: Clib.atan()

Clib.atof()
SYNTAX: Clib.atof(str)
WHERE: str - string to convert to a number.
RETURN: number - str converted.
DESCRIPTION: This method converts the ASCII string str to a floating-point

value, if str can be converted.
SEE: Clib.atol()

Nombas ScriptEase ISDK/C 5.01 289

Clib.atoi()
SYNTAX: Clib.atoi(str)
WHERE: str - string to convert to a number.
RETURN: number - str converted.
DESCRIPTION: This method converts the ASCII string str to an integer, if str can

be converted.
SEE: Clib.atol()

Clib.atol()
SYNTAX: Clib.atol(str)
WHERE: str - string to convert to a number.
RETURN: number - str converted.
DESCRIPTION: This method converts the ASCII string str to a long integer, if str

can be converted. This method is the same as the Clib.atoi()
method, since longs and integers are the same in ScriptEase.

SEE: Clib.atoi()

Clib.ceil()
SYNTAX: Clib.ceil(x)
WHERE: x - number to work with.
RETURN: number - smallest integer greater than x.
DESCRIPTION: This method returns the smallest integer value not less than x.
SEE: Clib.floor()

Clib.cos()
SYNTAX: Clib.cos(x)
WHERE: x - number to work with.
RETURN: number - cosine of x.
DESCRIPTION: This method returns the cosine of x in radians.
SEE: Clib.acos(), Clib.cosh()

Clib.cosh()
SYNTAX: Clib.cosh(x)
WHERE: x - number to work with.
RETURN: number - hyperbolic cosine of x.
DESCRIPTION: This method returns the hyperbolic cosine of x.
SEE: Clib.cos()

Nombas ScriptEase ISDK/C 5.01 290

Clib.div()
SYNTAX: Clib.div(x, y)
WHERE: x - number to work with, numerator.

y - number to work with, denominator.
RETURN: object - a structure with the results of division in the following

two properties:
.quot quotient
.rem remainder

DESCRIPTION: This method performs integer division and returns a quotient and

remainder in an object, a structure. Since integers and long
integers are the same in ScriptEase, Clib.div() is the same as
Clib.ldiv(). The value returned is a structure with two elements
or properties.

SEE: Clib.ldiv()

Clib.exp()
SYNTAX: Clib.exp(x)
WHERE: x - number to work with.
RETURN: x - exponential value of x.
DESCRIPTION: This method returns the exponential value of x.
SEE: Clib.frexp(), Clib.ldexp(), Clib.pow()

Clib.fabs()
SYNTAX: Clib.fabs(x)
WHERE: x - number to work with.
RETURN: number - absolute value of x, a float.
DESCRIPTION: This method returns the absolute, non-negative, value of a float

x.
SEE: Clib.abs()

Clib.floor()
SYNTAX: Clib.floor(x)
WHERE: x - number to work with.
RETURN: number - largest integer not greater than x.
DESCRIPTION: This method returns the largest integer value not greater than x.
SEE: Clib.ceil()

Clib.fmod()
SYNTAX: Clib.fmod(x, y)
WHERE: x - number to work with, numerator.

Nombas ScriptEase ISDK/C 5.01 291

y - number to work with, denominator.
RETURN: This method returns the remainder of x/y.
DESCRIPTION: This method returns the remainder of x/y, that is, the modulus of

two floats..
SEE: Clib.modf(), Clib.div()
EXAMPLE:

Clib.frexp()
SYNTAX: Clib.frexp(x, exp)
WHERE: x - number to work with.

exp - exponent used with a mantissa.
RETURN: number - mantissa with and absolute value between 0.5 and 1.0.

If x is 0, return 0.
DESCRIPTION: This method breaks x into a normalized mantissa between 0.5

and 1.0 and calculates an integer exponent of 2 such that x ==
mantissa * 2 ^ exponent. The return is normalized
mantissa between 0.5 and 1.0, or 0. The exponent used is in x.
See Clib.ldexp().

SEE: Clib.exp(), Clib.ldexp(), Clib.pow()

Clib.labs()
SYNTAX: Clib.labs(x)
WHERE: x - number to work with.
RETURN: number - absolute value of a long integer.
DESCRIPTION: This method returns the absolute, non-negative, value of an

integer.

Since integers and long integers are the same in ScriptEase,
Clib.labs() is the same as Clib.abs().

SEE: Clib.abs(), Clib.fabs()

Clib.ldexp()
SYNTAX: Clib.ldexp(mantissa, exp)
WHERE: mantissa - mantissa to work with

exp - exponent used with a mantissa.
RETURN: number - mantissa * 2 ^ exp.
DESCRIPTION: This method is the inverse of Clib.frexp() and calculates a

floating point number using the following equation:

mantissa * 2 raised to the power of exp.
SEE: Clib.frexp(), Clib.exp()

Nombas ScriptEase ISDK/C 5.01 292

Clib.ldiv()
SYNTAX: Clib.ldiv(x, y)
WHERE: x - number to work with, numerator.

y - number to work with, denominator.
RETURN: object - a structure with the results of division in the following

two properties:
.quot quotient
.rem remainder

DESCRIPTION: This method performs integer division and returns a quotient and
remainder in an object, a structure. Since integers and long
integers are the same in ScriptEase, Clib.div() is the same as
Clib.ldiv(). The value returned is a structure with two
elements or properties.

SEE: Clib.div()

Clib.log()
SYNTAX: Clib.log(x)
WHERE: x - number to work with.
RETURN: number - natural logarithm of x.
DESCRIPTION: This method returns the natural logarithm of x.
SEE: Clib.exp(), Clib.log10(), Clib.pow()

Clib.log10()
SYNTAX: Clib.log10(x)
WHERE: x - number to work with.
RETURN: number - base ten logarithm of x.
DESCRIPTION: This method returns the base ten logarithm of x.
SEE: Clib.log()

Clib.max()
SYNTAX: Clib.max(x[, ...])
WHERE: x - number or list of numbers to work with.
RETURN: number - maximum number passed.
DESCRIPTION: This method is similar to the standard C macro, max(), with the

differences that only one variable must be supplied and any
number of other variables may be supplied for the comparison.

SEE: Clib.min()

Clib.min()
SYNTAX: Clib.min(x[, ...])
WHERE: x - number or list of numbers to work with.

Nombas ScriptEase ISDK/C 5.01 293

RETURN: number - minimum number passed.
DESCRIPTION: This method is similar to the standard C macro, min(), with the

differences that only one variable must be supplied and any
number of other vari ables may be supplied for comparison.

SEE: Clib.max()

Clib.modf()
SYNTAX: Clib.modf(x, i)
WHERE: x - float to work with.

i - variable to receive the integral part of x.
RETURN: number - signed fractional part of x.
DESCRIPTION: This method splits a floating point number x into integer and

fractional parts, where the integer and frac tion both have the
same sign as x. The method sets the parameter i to the integer
part of x and returns the fractional part of x.

SEE: Clib.fmod(), Clib.ldiv()

Clib.pow()
SYNTAX: Clib.pow(x, exp)
WHERE: x - number to raise to a power.

exp - exponent of x, power to which to raise x.
RETURN: number - x ^ exp.
DESCRIPTION: This method returns x to the power of y.
SEE: Clib.exp()

Clib.rand()
SYNTAX: Clib.rand()
RETURN: number - random number between 0 and RAND_MAX, inclusive.
DESCRIPTION: This method returns pseudo-random number between 0 and

RAND_MAX, inclusive. The sequence of pseudo-random numbers
is affected by the initial generator seed and by earlier calls to
Clib.rand(). See Clib.srand() for information about the initial
generator seed.

SEE: Clib.srand(), RAND_MAX

Clib.sin()
SYNTAX: Clib.sin(x)
WHERE: x - number to work with.
RETURN: number - sine of x.
DESCRIPTION: This method returns the sine of x in radians.

Nombas ScriptEase ISDK/C 5.01 294

SEE: Clib.asin(), Clib.sinh()

Clib.sinh()
SYNTAX: Clib.sinh(x)
WHERE: x - number to work with.
RETURN: number - hyperbolic sine of x.
DESCRIPTION: This method returns the hyperbolic sine of the float x.
SEE: Clib.sin()

Clib.sqrt()
SYNTAX: Clib.sqrt(x)
WHERE: x - number to work with.
RETURN: number - square root of x.
DESCRIPTION: This method returns the square root of x.
SEE: Clib.exp(), Clib.pow()

Clib.srand()
SYNTAX: Clib.srand(seed)
WHERE: seed - number with which to seed a random number generator.
RETURN: void.
DESCRIPTION: This method initializes a random number generator using the

parameter seed. If seed is not supplied, then a random seed is
generated in a manner that is specific to different operating
systems. Use this method first when generating a sequence of
random numbers.

SEE: Clib.rand()

Clib.tan()
SYNTAX: Clib.tan(x)
WHERE: x - number to work with.
RETURN: number - tangent of x.
DESCRIPTION: This method returns the tangent of x in radians.
SEE: Clib.atan(), Clib.tanh()

Clib.tanh()
SYNTAX: Clib.tanh(x)
WHERE: x - number to work with.
RETURN: number - hyperbolic tangent of x.
DESCRIPTION: This method calculates and returns the hyperbolic tangent of the

Nombas ScriptEase ISDK/C 5.01 295

parameter x, a float.
SEE: Clib.tan()

Variable argument lists
Clib.va_arg()
SYNTAX: Clib.va_arg([valist[, offset])

Clib.va_arg(offset)
Clib.va_arg()

WHERE: valist - a variable list of arguments passed to a function.

offset - index of a particular argument.
RETURN: value - parameter being retrieved. If no parameters, the number

of parameters.
DESCRIPTION: The method Clib.va_arg() provides an alternate way to

retrieve a function's parameters. It's most often used when the
number of parameters passed to the function is not constant.
This method covers the same territory as the Function property
arguments[] and is provided for those who prefer C functions for
handling variable arguments.

When called with no parameters, it returns the number of
parameters passed to the current function. If an offset is supplied,
it returns the input variable at index: offset. Clib.va_arg(0) is
the first parameter passed, Clib.va_arg(1) the second, etc. It
is a fatal error to retrieve an argument offset beyond the number
of parameters in the function or the valist.

The valist form, with an optional offset, uses a valist variable
that has been previously initialized with Clib.va_start(). Each
call to Clib.va_arg(valist) returns the next parameter
passed to a function. If an offset is passed in the variable at that
offset from the original starting place of the valist will be
returned.

SEE: Clib.va_start(), Clib.va_end(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

EXAMPLE: // The following script:

function main()
{
 lips(0, 1, 2, 3, 4)
}

lips()
{
 Clib.va_start(valist)
 Clib.printf("va_arg(0) = %d\n", va_arg(0));
 Clib.printf("va_arg(1) = %d\n", va_arg(1));
 Clib.printf("va_arg(valist) = %d\n",
 va_arg(valist));
 Clib.printf("va_arg(valist, 2) = %d\n",
 va_arg(valist, 2));
 Clib.printf("va_arg(valist, 2) = %d\n",

Nombas ScriptEase ISDK/C 5.01 296

 va_arg(valist, 2));
 Clib.printf("va_arg(valist) = %d\n",
 va_arg(valist));
 Clib.getch()
}

// produces the following output:
// va_arg(0) = 0
// va_arg(1) = 1
// va_arg(valist) = 0
// va_arg(valist, 2) = 3
// va_arg(valist, 2) = 3
// va_arg(valist) = 1

Clib.va_end()
SYNTAX: Clib.va_end(valist)
WHERE: valist - a variable list of arguments passed to a function.
RETURN: void.
DESCRIPTION: Terminates a variable arguments list. This method makes valist

invalid. Many implementations of C require the calling of this
function. ScriptEase does not. But, since people may expect it,
ScriptEase provides it.

SEE: Clib.va_arg(), Clib.va_start(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

Clib.va_start()
SYNTAX: Clib.va_start(valist[, inputVar])
WHERE: valist - a variable list of arguments passed to a function.
RETURN: number - calls to Clib.va_arg(), that is, the number of variables

in valist.

inputVar - an optional initial parameter for the variable
parameter list.

DESCRIPTION: This method initializes valist for a function with a variable
number of arguments. After the first call to this function,
subsequent calls to Clib.va_arg() may be used to get the rest of
the parameters in sequence.

The parameter inputVar must be one of the parameters defined
on the function line of a function. The first argument returned by
the first call to Clib.va_arg() will be the variable passed after
inputVar. If inputVar is not provided, then the first parameter
passed to a function will be the first one returned by
Clib.va_arg(valist).

SEE: Clib.va_end(), Clib.va_start(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

EXAMPLE: // The following example uses and accepts
// a variable number of strings and
// concatenates them all together.

Nombas ScriptEase ISDK/C 5.01 297

function MultiStrcat(Result, InitialString);
 // Append any number of strings to InitialString.
 // e.g., MultiStrcat(Result,
 // "C:\\","FOO",".","CMD")
{
 Clib.strcpy(Result,""); // initialize result;
 var Count = Clib.va_start(ArgList, InitialString);
 for (var i = 0; i < Count; i++)
 Result, va_arg(ArgList));
}

Clib.vfprintf()
SYNTAX: Clib.vfprintf(filePointer, formatString[,

 valist])
WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

valist - a variable list of arguments to be formatted according to
formatString.

RETURN: number - characters written, else a negative number on error.
DESCRIPTION: This method formats a string with a variable number of

arguments and prints it to the file specified by filePointer. It
returns the number of characters written, or a negative number if
there was an output error.

SEE: Clib.fprintf(), Clib.sprintf()

Clib.vfscanf()
SYNTAX: Clib.vfscanf(filePointer, formatString[,

 valist])
WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

valist - a variable list of variables to hold data input according to
formatString.

RETURN: number - input fields successfully scanned, converted, and
stored, else EOF.

DESCRIPTION: This method is similar to Clib.fscanf() except that it takes a
variable argument list. See Clib.fscanf() for more details.

SEE: Clib.va_arg(), Clib.fscanf()

Clib.vsscanf()
SYNTAX: Clib.vsscanf(str, formatString, valist)
WHERE: str - string holding the data to read into variables according to

formatString.

formatString - specifies how to read and store data in variables.

valist - a variable list of variables to hold data according to

Nombas ScriptEase ISDK/C 5.01 298

formatString.
RETURN: number - input fields successfully scanned, converted, and

stored, else EOF.
DESCRIPTION: This method is similar to Clib.sscanf() except that it takes a

variable argument list. The parameters following the format
string will be assigned values according to the specifications of
the format string.

The function returns the number of input items assigned. This
number may be fewer than the number of parameters requested if
there was a matching failure.

SEE: Clib.va_arg(), Clib.sscanf()

Nombas ScriptEase ISDK/C 5.01 299

Date Object
ScriptEase shines in its ability to work with dates and provides two
different systems for working with them. One is the standard Date object
of JavaScript and the other is part of the Clib object which implements
powerful routines from C. Two methods, Date.fromSystem() and Date
toSystem(), convert dates in the format of one system to the format of the
other. The standard JavaScript Date object is described in this section.

To create a Date object which is set to the current date and time, use the
new operator, as you would with any object.
var currentDate = new Date();

There are several ways to create a Date object which is set to a date and time.
The following lines all demonstrate ways to get and set dates and times. See
Date() for a summary.
var aDate = new Date(milliseconds);
var bDate = new Date(datestring);
var cDate = new Date(year, month, day);
var dDate = new Date(year, month, day, hour, minute, second,
millisecond);

The first syntax returns a date and time represented by the number of
milliseconds since midnight, January 1, 1970. This representation in milliseconds
is a standard way of representing dates and times that makes it easy to calculate
the amount of time between one date and another. Generally, you do not create
dates in this way. Instead, you convert them to milliseconds format before doing
calculations.

The second syntax accepts a string representing a date and optional time. The
format of such a datestring is:
month day, year hours:minutes:seconds

For example, the following string:
"Friday 13, 1995 13:13:15"

specifies the date, Friday 13, 1995, and the time, one thirteen and 15 seconds
p.m., which, expressed in 24 hour time, is 13:13 hours and 15 seconds. The time
specification is optional and if included, the seconds specification is optional.

The third and fourth syntaxes are self- explanatory. All parameters passed to
them are integers.

• year
If a year is in the twentieth century, the 1900s, you need only supply the final
two digits. Otherwise four digits must be supplied.

• month
A month is specified as a number from 0 to 11. January is 0, and December
is 11.

• day
A day of the month is specified as a number from 1 to 31. The first day of a
month is 1 and the last is 28, 29, 30, or 31.

Nombas ScriptEase ISDK/C 5.01 300

• hour
An hour is specified as a number from 0 to 23. Midnight is 0, and 11 p.m. is
23.

• minute
A minute is specified as a number from 0 to 59. The first minute of an hour is
0, and the last is 59.

• second
A second is specified as a number from 0 to 59. The first second of a minute
is 0, and the last is 59.

For example, the following line of code:
var aDate = new Date(1492, 9, 12)

creates a Date object containing the date, October 12, 1492.

ScriptEase has a rich and full set of methods to work with dates and times. A
programmer has a very complete set of tools to use when including date and time
routines in a script. The Clib object also has methods for working with date and
times that extend the power of ScriptEase beyond standard JavaScript.

The following list of methods has brief descriptions of the methods of the Date
object. Instance methods are shown with a period, ".", in the SYNTAX: line. A
specific instance of a variable should be put in front of the period to call a
method. For example, the Date object aDate was created above, and, to call the
Date getDate() method, the call would be: aDate.getDate(). Static methods
have "Date." at their beginnings since these methods are called with literal calls,
such as Date.parse(). These methods are part of the Date object itself instead
of instances of the Date object.

Date object instance methods
Date()
SYNTAX: new Date()

new Date(milliseconds)
new Date(string)
new Date(year, month[, day[, hour[,
 minute[, second[, millisecond]]]]])

WHERE: milliseconds - number of milliseconds since midnight January 1,
1970 GMT, as returned by Date.parse().

string - a string with date information. The string should be in the
following format: Friday, October 31, 1998 15:30:00
GMT, or a substring of this format. The string accepted by
Date() is the same as for Date.parse().

year - four digit year, see Date setYear(). If year is passed
alone, it is recognized as milliseconds.

month - number, 0 - 11, month of year, see Date setMonth().

day - number, 1 - 31, day of month, see Date setDate().

hour - number, 0 - 24, hour of day, see Date setHours().

minute - number, 0 - 59, minute of hour, see Date setMinutes().

Nombas ScriptEase ISDK/C 5.01 301

second - number, 0 - 59, second of minute, see Date
setSeconds().

millisecond - number, 0 - 999, millisecond of second, see Date
setMilliseconds().

RETURN: object - a Date object set according to the arguments passed. If
no arguments are passed, then the current date and time are set.

DESCRIPTION: ScriptEase JavaScript has a rich set of methods for working with
dates and times. The JavaScript Date object is a variable type
that is different from the Clib date and time methods. The
Date.fromSystem() and Date toSystem() methods allow
conversion from and to the C style methods. See the Date Object
for a complete description of the Date() function.

If the new operator is used, for example, new Date(1999, 2),
then a Date object is created using any parameters passed to the
Date() constructor. However, if the new operator is not used,
then all parameters are ignored and Date() returns a string
representation of the current date and time, for example, "Wed
Sep 4 11:54:16 2002".

SEE: Date Object, Date toSystem(), Date.fromSystem(), Date object
instance methods, Date object static methods, Clib.time(),
Clib.gmtime(), Clib.localtime(), Clib.mktime()

EXAMPLE: var d = new Date() // date in a Date object
// d == Mon Aug 20 16:29:53 2001 // ie, current
// typeof(d) == object
// d._class == Date
var d = Date() // date as a String
// d == Mon Aug 20 16:29:53 2001 // ie, current
// typeof(d) == string
// d._class == String
var d = new Date().getDay()
// d == 1 // which is Monday

Date getDate()
SYNTAX: date.getDate()
RETURN: number - a day of a month.
DESCRIPTION: This method returns the day of the month, as a number from 1 to

31, of a Date object. The first day of a month is 1, and the last is
28, 29, 30, or 31.

Date getDay()
SYNTAX: date.getDay()
RETURN: number - a day in a week.
DESCRIPTION: This method returns the day of the week, as a number from 0 to

6, of a Date object. Sunday is 0, and Saturday is 6.

Date getFullYear()

Nombas ScriptEase ISDK/C 5.01 302

SYNTAX: date.getFullYear()
RETURN: number - four digit year.
DESCRIPTION: This method returns the year, as a number with four digits, of a

Date object.

Date getHours()
SYNTAX: date.getHours()
RETURN: number - an hour in a day.
DESCRIPTION: This method returns the hour, as a number from 0 to 23, of a

Date object. Midnight is 0, and 11 p.m. is 23.

Date getMilliseconds()
SYNTAX: date.getMilliseconds()
RETURN: number - a millisecond in a second.
DESCRIPTION: This method returns the millisecond, as a number from 0 to 999,

of a Date object. The first millisecond in a second is 0, and the
last is 999.

Date getMinutes()
SYNTAX: date.getMinutes()
RETURN: number - a minute in an hour.
DESCRIPTION: This method returns the minute, as a number from 0 to 59, of a

Date object. The first minute of an hour is 0, and the last is 59.

Date getMonth()
SYNTAX: date.getMonth()
RETURN: number - of a month in a year.
DESCRIPTION: This method returns the month, as a number from 0 to 11, of a

Date object. January is 0, and December is 11.

Date getSeconds()
SYNTAX: date.getSeconds()
RETURN: number - a second in a minute.
DESCRIPTION: This method returns the second, as number from 0 to 59, of a

Date object. The first second of a minute is 0, and the last is 59.

Date getTime()
SYNTAX: date.getTime()
RETURN: number - the milliseconds representation of a Date object.
DESCRIPTION: Gets time information in the form of an integer representing the

number of milliseconds from midnight on January 1, 1970,

Nombas ScriptEase ISDK/C 5.01 303

GMT, to the date and time specified by a Date object.

Date getTimezoneOffset()
SYNTAX: date.getTimezoneOffset()
RETURN: number - minutes.
DESCRIPTION: This method returns the difference, in minutes, between

Greenwich Mean Time (GMT) and local time.

Date getUTCDate()
SYNTAX: date.getUTCDate()
RETURN: number - a day of a month.
DESCRIPTION: This method returns the UTC day of the month, as a number

from 1 to 31, of a Date object. The first day of a month is 1, and
the last is 28, 29, 30, or 31.

Date getUTCDay()
SYNTAX: date.getUTCDay()
RETURN: number - a day in a week.
DESCRIPTION: This method returns the day of the week, as a number from 0 to

6, of a Date object. Sunday is 0, and Saturday is 6.

Date getUTCFullYear()
SYNTAX: date.getUTCFullYear()
RETURN: number - four digit year.
DESCRIPTION: This method returns the UTC year, as a number with four digits,

of a Date object.

Date getUTCHours()
SYNTAX: date.getUTCHours()
RETURN: number - an hour in a day.
DESCRIPTION: This method returns the UTC hour, as a number from 0 to 23, of

a Date object. Midnight is 0, and 11 p.m. is 23.

Date getUTCMilliseconds()
SYNTAX: date.getUTCMilliseconds()
RETURN: number - a millisecond in a second.
DESCRIPTION: This method returns the UTC millisecond, as a number from 0 to

999, of a Date object. The first millisecond in a second is 0, and
the last is 999.

Date getUTCMinutes()

Nombas ScriptEase ISDK/C 5.01 304

SYNTAX: date.getUTCMinutes()
RETURN: number - a minute in an hour.
DESCRIPTION: This method returns the UTC minute, as a number from 0 to 59,

of a Date object. The first minute of an hour is 0, and the last is
59.

Date getUTCMonth()
SYNTAX: date.getUTCMonth()
RETURN: number - of a month in a year.
DESCRIPTION: number - of a month in a year.

Date getUTCSeconds()
SYNTAX: date.getUTCSeconds()
RETURN: number - a second in a minute.
DESCRIPTION: This method returns the UTC second, as number from 0 to 59, of

a Date object. The first second of a minute is 0, and the last is 59.

Date getYear()
SYNTAX: date.getYear()
RETURN: number - two digit year.
DESCRIPTION: This method returns the year, as a number with two digits, of a

Date object.

Date setDate()
SYNTAX: date.setDate(day)
WHERE: day - a day in a month.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the day, as a number from 1 to 31, of a Date

object to the parameter day. The first day of a month is 1, and the
last is 28, 29, 30, or 31.

Date setFullYear()
SYNTAX: date.setFullYear(year[, month[, date]])
WHERE: year - a four digit year.

month - a month in a year.

day - a day in a month.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the year of a Date object to the parameter year.

The parameter year is expressed with four digits.

The parameter month is the same as for Date setMonth().

Nombas ScriptEase ISDK/C 5.01 305

The parameter day is the same as for Date setDate().

Date setHours()
SYNTAX: Date.setHours(hour[, minute[, second[,

 millisecond]]])
WHERE: hour - an hour in a day.

minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the hour, as a number from 0 to 23, of a Date

object to the parameter hours. Midnight is 0, and 11 p.m. is 23.

The parameter minute is the same as for Date setMinutes().

The parameter second is the same as for Date setSeconds().

The parameter milliseconds is the same as for Date
setMilliseconds().

Date setMilliseconds()
SYNTAX: date.setMilliseconds(millisecond)
WHERE: millisecond - a millisecond in a minute.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the millisecond, as a number from 0 to 59, of a

Date object to the parameter millisecond. The first millisecond in
a second is 0, and the last is 999.

Date setMinutes()
SYNTAX: date.setMinutes(minute[, second[, millisecond]])
WHERE: minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the minute, as a number from 0 to 59, of a Date

object to the parameter minute. The first minute of an hour is 0,
and the last is 59.

The parameter second is the same as for Date setSeconds().

The parameter milliseconds is the same as for Date
setMilliseconds().

Date setMonth()
SYNTAX: Date.setMonth(month[, day])

Nombas ScriptEase ISDK/C 5.01 306

WHERE: month - a month in a year.

day - a day in a month.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the month, as a number from 0 to 11, of a Date

object to the parameter month. January is 0, and December is 11.

The parameter day is the same as for Date setDate().

Date setSeconds()
SYNTAX: date.setSeconds(second[, millisecond])
WHERE: second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the second, as a number from 0 to 59, of a Date

object to the parameter second. The first second of a minute is 0,
and the last is 59.

The parameter milliseconds is the same as for Date
setMilliseconds().

Date setTime()
SYNTAX: date.setTime(millisecond)
WHERE: millisecond - the time in milliseconds.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets a Date object to the date and time specified by

the parameter milliseconds which is the number of milliseconds
from midnight on January 1, 1970, GMT.

Date setUTCDate()
SYNTAX: date.setUTCDate(day)
WHERE: day - a day in a month.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the UTC day, as a number from 1 to 31, of a

Date object to the parameter day. The first day of a month is 1,
and the last is 28, 29, 30, or 31.

Date setUTCFullYear()
SYNTAX: date.setUTCFullYear(year[, month[, date]])
WHERE: year - a four digit year.

month - a month in a year.

day - a day in a month.

Nombas ScriptEase ISDK/C 5.01 307

RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the UTC year of a Date object to the parameter

year. The parameter year is expressed with four digits.

The parameter month is the same as for Date setUTCMonth().

The parameter day is the same as for Date setUTCDate().

Date setUTCHours()
SYNTAX: Date.setUTCHours(hour[, minute[, second[,

 millisecond]]])
WHERE: hour - an hour in a day.

minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the UTC hour, as a number from 0 to 23, of a

Date object to the parameter hours. Midnight is 0, and 11 p.m. is
23.

The parameter minute is the same as for Date setUTCMinutes().

The parameter second is the same as for Date setUTCSeconds().

The parameter milliseconds is the same as for Date
setUTCMilliseconds().

Date setUTCMilliseconds()
SYNTAX: date.setUTCMilliseconds(millisecond)
WHERE: millisecond - a millisecond in a minute.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the UTC millisecond, as a number from 0 to

59, of a Date object to the parameter millisecond. The first
millisecond in a second is 0, and the last is 999.

Date setUTCMinutes()
SYNTAX: date.setUTCMinutes(minute[, second[,

 millisecond]])
WHERE: minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the UTC minute, as a number from 0 to 59, of a

Date object to the parameter minute. The first minute of an hour
is 0, and the last is 59.

Nombas ScriptEase ISDK/C 5.01 308

The parameter second is the same as for Date setUTCSeconds().

The parameter milliseconds is the same as for Date
setUTCMilliseconds().

Date setUTCMonth()
SYNTAX: Date.setUTCMonth(month[, day])
WHERE: month - a month in a year.

day - a day in a month.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the UTC month, as a number from 0 to 11, of a

Date object to the parameter month. January is 0, and December
is 11.

The parameter day is the same as for Date setUTCDate().

Date setUTCSeconds()
SYNTAX: date.setUTCSeconds(second[, millisecond])
WHERE: second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the UTC second, as a number from 0 to 59, of a

Date object to the parameter second. The first second of a minute
is 0, and the last is 59.

The parameter milliseconds is the same as for Date
setUTCMilliseconds().

Date setYear()
SYNTAX: date.setYear(year)
WHERE: year - four digit year, unless in the 1900s in which case it may be

a two digit year.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the year of a Date object to the parameter year.

The parameter year may be expressed with two digits for a year
in the twentieth century, the 1900s. Four digits are necessary for
any other century.

Date toDateString()
SYNTAX: date.toDateString()
RETURN: string - representation of the date portion of the current object.
DESCRIPTION: Returns the Date portion of the current date as a string. This

string is formatted to read "Month Day, Year", for example,
"May 1, 2000". This method uses the local time, not UTC time.

Nombas ScriptEase ISDK/C 5.01 309

SEE: Date toString(), Date toTimeString(), Date toLocaleDateString()
EXAMPLE: var d = new Date();

var s = d.toDateString();

Date toGMTString()
SYNTAX: date.toGMTString()
RETURN: string - string representation of the GMT date and time.
DESCRIPTION: This method converts a Date object to a string, based on

Greenwich Mean Time.
EXAMPLE: var d = new Date();

Screen.writeln(d.toGMTString());

// The fragment above would produce something like:
// Mon May 1 15:48:38 2000 GMT

Date toLocaleDateString()
SYNTAX: date.toLocaleDateString()
RETURN: string - locale-sensitive string representation of the date portion

of the current date.
DESCRIPTION: This function behaves in exactly the same manner as Date

toDateString(). This function is designed to take in the current
locale when formatting the string. Locale reflects the time zone
of a user.

SEE: Date toString(), Date toLocaleTimeString(), Date
toLocaleString()

EXAMPLE: var d = new Date();
var s = d.toLocaleDateString();

Date toLocaleString()
SYNTAX: date.toLocaleString()
RETURN: string - locale-sensitive string representation of the current date.
DESCRIPTION: This function behaves in exactly the same manner as Date

toString(). This function is designed to take in the current locale
when formatting the string, though this functionality is currently
unimplemented. Locale reflects the time zone of a user.

SEE: Date toString(), Date toLocaleTimeString(), Date
toLocaleDateString()

EXAMPLE: var d = new Date();
var s = d.toLocaleString();

Date toLocaleTimeString()
SYNTAX: date.toLocaleTimeString()
RETURN: string - locale-sensitive string representation of the time portion

of the current date.
DESCRIPTION: This function behaves in exactly the same manner as Date

toTimeString(). This function is designed to take in the current

Nombas ScriptEase ISDK/C 5.01 310

locale when formatting the string. Locale reflects the time zone
of a user.

Date toString()
SYNTAX: date.toString()
RETURN: string - representation of the date and time data in a Date object.
DESCRIPTION: Converts the date and time information in a Date object to a

string in a form such as: "Mon May 1 09:24:38 2000"
SEE: Date toDateString(), Date toLocaleString(), Date toTimeString()
EXAMPLE: var d = new Date();

var s = d.toString();

Date toSystem()
SYNTAX: date.toSystem()
RETURN: number - the Date object date and time value converted to the

system date and time.
DESCRIPTION: This method converts a Date object to a system time format

which is the same as that returned by the Clib.time() method. To
create a Date object from a variable in system time format, see
the Date.fromSystem() method.

Date toTimeString()
SYNTAX: date.toTimeString()
RETURN: string - representation of the Time portion of the current object.
DESCRIPTION: This function returns the time portion of the current date as a

string. This string is formatted to read "Hours:Minutes:Seconds",
as in "16:43:23". This function uses the local time, rather than
the UTC time.

SEE: Date toString(), Date toDateString(), Date toLocaleDateString()
EXAMPLE: var d = new Date();

var s = d.toTimeString();

Date toUTCString()
SYNTAX: date.toUTCString()
RETURN: string - representation of the UTC date and time data in a Date

object.
DESCRIPTION: Converts the UTC date and time information in a Date object to

a string in a form such as: "Mon May 1 09:24:38 2000"
SEE: Date toDateString(), Date toLocaleString(), Date toTimeString()
EXAMPLE: var d = new Date();

var s = d.toString();

Date valueOf()
SYNTAX: date.valueOf()

Nombas ScriptEase ISDK/C 5.01 311

RETURN: number - the value of the date and time information in a Date
object.

DESCRIPTION: The numeric representation of a Date object.
SEE: Date toString()

Date object static methods
The Date object has three special methods that are called from the object
itself, rather than from an instance of it: Date.fromSystem(), Date.parse(),
and Date.UTC().

Date.fromSystem()
SYNTAX: Date.fromSystem(time)
WHERE: time - time in system data format, the same format as returned by

Clib.time()
RETURN: object - Date object with the time passed.
DESCRIPTION: This method converts the parameter time, which is in the same

format as returned by the Clib.time(), to a standard
JavaScript Date object.

EXAMPLE: // To create a Date object
// from date information obtained using
// Clib, use code similar to:

var SysDate = Clib.time();
var ObjDate = Date.fromSystem(SysDate);

// To convert a Date object to system format
// that can be used by
// the methods of the Clib object,
// use code similar to:

var SysDate = ObjDate.toSystem();

Date.parse()
SYNTAX: Date.parse(datestring)
WHERE: datestring - A string representing the date and time to be passed
RETURN: number - milliseconds between the datestring and midnight ,

January 1, 1970 GMT.
DESCRIPTION: This method converts the string datestring to a Date object. The

string should be in the following format: Friday, October
31, 1998 15:30:00, or a substring of this format. The full
format is returned by the Date toGMTString() method, by email
and by Internet applications. The day of the week, time zone,
time specification or seconds field may be omitted.

SEE: Date object, Date setTime(), Date toGMTString(), Date.UTC
EXAMPLE: //The following code sets the date to March 2, 1992

var theDate = Date.parse("March 2, 1992")
//Note:
var theDate = Date.parse(datestring);

Nombas ScriptEase ISDK/C 5.01 312

//is equivalent to:
var theDate = new Date(datestring);
// The following are valid, but not exhaustive
var ms;
ms = Date.parse(new Date().toGMTString());
ms = Date.parse("Mon Aug 20 14:41:01 2001 GMT");
ms = Date.parse("Mon Aug 20 14:41:01 2001");
ms = Date.parse("Mon Aug 20 14:41:01 2001");
ms = Date.parse("August 20 09:35:50 2001");
ms = Date.parse("Aug 20 09:35:50 2001");
ms = Date.parse("August 20, 2001");
ms = Date.parse("August 20 2001");
ms = Date.parse("Aug 20, 2001");
ms = Date.parse("Aug 20 2001");

Date.UTC()
SYNTAX: Date.UTC(year, month, day[, hours[, minutes[,

 seconds[, milliseconds]]]])
WHERE: year - A year, represented in four or two-digit format after 1900.

NOTE: For year 2000 compliance, this year MUST be
represented in four-digit format

month - A number between 0 (January) and 11 (December)
representing the month

day - A number between 1 and 31 representing the day of the
month. Note that Month uses 1 as its lowest value whereas many
other arguments use 0

hours - A number between 0 (midnight) and 23 (11 PM)
representing the hours

minutes - A number between 0 (one minute) and 59 (59 minutes)
representing the minutes. This is an optional argument which
may be omitted if Seconds and Minutes are omitted as well.

seconds - A number between 0 and 59 representing the seconds.
This parameter is optional.

milliseconds - A number between 0 and 999 which represents the
milliseconds. This is an optional parameter.

RETURN: number - milliseconds from midnight, January 1, 1970, to the
date and time specified.

DESCRIPTION: The method interprets its parameters as a date. The parameters
are interpreted as referring to Greenwich Mean Time (GMT).

SEE: Date object, Date.parse(), Date setTime()
EXAMPLE: // The following code creates a Date object

// using UTC time:
foo = new Date(Date.UTC(1998, 3, 9, 1, 0, 0, 8))

Nombas ScriptEase ISDK/C 5.01 313

Dos Object
platform: DOS, Win16

The methods in this section are specific to the DOS or WIN16 versions of
ScriptEase. Most of these routines allow a programmer to have more power than
is generally acknowledged as safe under the scripting guidelines of general
ScriptEase. Be cautious when you use these commands. They allow much
latitude in what may be done at a very low programming level with little or no
built-in protections.

The methods in this section are preceded with the Object name Dos, since
individual instances of the Dos Object are not created. In other words, the Dos
object has only static methods. For example, Dos.inport(portid) is the
syntax to use to read a byte from a hardware port. Remember to prepend "Dos."
to the method names as shown in this section.

Dos object static methods
Dos.address()
SYNTAX: Dos.address(segment, offset)
WHERE: segment - segment portion of memory address.

offset - offset portion of memory address.
RETURN: number - memory address, a segment:offset address suitable for

use in calls such as SElib.peek() and SElib.poke().
DESCRIPTION: Convert segment:offset pointer into memory address.
SEE: Dos.offset(), Dos.segment()

Dos.asm()
SYNTAX: Dos.asm(buf[, ax[, bx[, cx[, dx[, si[, di[,

 ds[, es]]]]]]]])
WHERE: buf - a byte buffer.

ax, bx, cx, dx, si, di, ds, es - registers.
RETURN: number - long value for whatever is in DX:AX when buf returns.
DESCRIPTION: Make a far call to the routine that you have coded into buf. ax,

bx, cx, dx, si, di, ds, and es are optional; if some or all are
supplied, then the ax, bx, cx, etc... will be set to these values
when the code at buf is called. The code in buf will be executed
with a far call to that address, and is responsible for returning via
retf or other means. The ScriptEase calling code will restore
ALL registers except ss, sp, ax, bx, cx, and dx. If es or ds are
supplied, then they must be valid values or 0, if 0 then the
current value will be used.

EXAMPLE: // The following example uses 80x86 assembly code
// to rotate memory bits:

 // return value of byte b rotate count byte

Nombas ScriptEase ISDK/C 5.01 314

function RotateByteRight(b, count)
{
 assert(0 <= b && b <= 0xFF);
 assert(0 <= count && count <= 8)
 return asm(`\xD2\xC8\xCB',b,0,count,0);

 // assembly code for would look as follows:
 // ror al, cl D2C8
 // retf CB
}

Dos.inport()
SYNTAX: Dos.inport(portid)
WHERE: portid - port from which to read.
RETURN: number - byte of data from a hardware port.
DESCRIPTION: Read byte from a hardware port: portid.
SEE: Dos.inportw()

Dos.inportw()
SYNTAX: Dos.inportw(portid)
WHERE: portid - port from which to read.
RETURN: number - 16 bit word of data from a hardware port.
DESCRIPTION: Read a word (16 bit) from hardware port: portid. Value read is

unsigned (not negative).
SEE: Dos.inport()

Dos.interrupt()
SYNTAX: Dos.interrupt(interrupt, regIn[, regOut])
WHERE: interrupt - DOS interrupt number.

regIn - an object/structure with properties/elements that
correspond to the registers of an 8086 processor. The registers
will be set to these values when the method is called.

regOut - an object/structure with properties/elements that will be
set to the corresponding registers of the processor when the
function is exited.

RETURN: boolean - since many interrupts set the carry flag for error, this
function returns false if the carry flag is set, else true.

DESCRIPTION: Executes an 8086 interrupt. Set registers, call 8086 interrupt
function, and then get the return values of the registers. The
parameters regIn and regOut are structures containing the
elements corresponding to the registers on an 8086. On input,
those structure members that are defined will be set, and those
that are not defined will be set to zero, with the exception of the
segment registers (es and ds) which retain their current values if
not explicitly specified. The possible defined input values are ax,

Nombas ScriptEase ISDK/C 5.01 315

ah, al, bx, bh, bl, cx, ch, cl, dx, dh, dl, bp, si, di, ds, and es. All
Fields of the output reg structure are the same, with the addition
of the FLAGS member, and all are set before returning. If regOut
is not supplied, then the return registers and FLAGS register will
be set for regIn on return from the interrupt call.

The parameter regOut is set to the register values upon return
from Interrupt. If regOut is not supplied then regIn is set to
contain the register values upon return from Interrupt.

EXAMPLE: // The following example calls the DOS interrupt
// service 0x2C to read the clock:

 // display DOS time as accurately as it is read
PrintDOStime()
{
 reg.ah = 0x2C;
 interrupt(0x21,reg);
 printf("%2d:%02d:%02d",reg.ch,reg.cl,reg.dh);
}

Dos.offset()
SYNTAX: Dos.offset(buf)

Dos.offset(address)
WHERE: buf - a byte buffer.

address - address in memory.
RETURN: number - offset of buffer such that 8086 would recognize the

address segment::buffer as pointing to the first byte of buf.
DESCRIPTION: Dos.segment() and Dos.offset() return the segment and

offset of the data at index 0 of buf, which must be a byte array.
The buffer must be big enough for whatever purpose it is used,
and no changes may be made to the size of buf after these values
are determined since changing the size of buf might change its
absolute address. If the address versions are used, then address is
assumed to be a far pointer to data, and segment will be the high
word while address will be the low word. See Dos.address() for
converting segment and offset into a single address.

SEE: Dos.offset(), Dos.address()

Dos.outport()
SYNTAX: Dos.outport(portid, value)
WHERE: portid - port to which to send value.

value - a byte of data to send to the port identified by portid.
RETURN: void.
DESCRIPTION: Write a byte value to hardware port: portid.

Dos.outportw()
SYNTAX: Dos.outportw(portid, value)

Nombas ScriptEase ISDK/C 5.01 316

WHERE: portid - port to which to send value.

value - a 16-bit word of data to send to the port identified by
portid.

RETURN: void.
DESCRIPTION: Write a 16-bit word value to hardware port: portid.

Dos.segment()
SYNTAX: Dos.segment(buf)

Dos.segment(address)
WHERE: buf - a byte buffer.

address - address in memory.
RETURN: number - segment of buffer such that 8086 would recognize the

address segment::buffer as pointing to the first byte of buf.
DESCRIPTION: Dos.segment() and Dos.offset() return the segment and offset

of the data at index 0 of buf, which must be a byte array. The
buffer must be big enough for whatever purpose it is used, and
no changes may be made to the size of buf after these values are
determined since changing the size of buf might change its
absolute address. If the address versions are used, then address is
assumed to be a far pointer to data, and segment will be the high
word while address will be the low word. See Dos.address() for
converting segment and offset into a single address.

SEE: Dos.offset(), Dos.address()

Nombas ScriptEase ISDK/C 5.01 317

Function Object
The Function object is one of three ways to define and use objects in ScriptEase.
The three ways to work with objects are:

• Use the function keyword and define a function in a normal way:
function myFunc(x) {return x + 4;}

• Construct a new Function object:
var myFunc = new Function("x", "return x + 4;");

• Define and assign a function literal:
var myFunc = function(x) {return x + 4;}

All three of three of these ways of defining and using functions produce the same
result, x + 4. The differences are in definition and use of functions. Each way has
a strength that is very powerful in some circumstances, power that allows
elegance in programming. The methods and discussion in this segment on the
Function object deal with the second way shown above, the construction of a new
Function object.

Function object instance methods
Function()
SYNTAX: new Function(params[, ...], body)
WHERE: params - one or a list of parameters for the function.

body - the body of the function as a string.
RETURN: object - a new function object with the specified parameters and

body that can later be executed just like any other function.
DESCRIPTION: The parameters passed to the function can be in one of two

formats. All parameters are strings representing parameter
names, although multiple parameter names can be grouped
together with commas. These two options can be combined as
well. For example, new Function("a", "b", "c",
"return") is the same as new Function("a, b", "c",
"return"). The body of the function is parsed just as any other
function would be. If there is an error parsing either the
parameter list or the function body, a runtime error is generated.
If this function is later called as a constructor, then a new object
is created whose internal _prototype property is equal to the
prototype property of the new function object. Note that this
function can also be called directly, without the new operator.

EXAMPLE: // The following will create a new Function object
// and provide some properties
// through the prototype property.

var myFunction = new Function("a", "b",
 "this.value = a + b");
var printFunction = new Function
 ("Screen.writeln(this.value)");
myFunction.prototype.print = printFunction;

Nombas ScriptEase ISDK/C 5.01 318

var foo = new myFunction(4, 5);
foo.print();

// This code will print out the value "9",
// which was the value stored in foo when it was
// created with the myFunction constructor.

Function apply()
SYNTAX: function.apply([thisObj[, arguments])
WHERE: thisObj - object that will be used as the "this" variable while

calling this function. If this is not supplied, then the global
object is used instead.

arguments - array of arguments to pass to the function as an
Array object or a list in the form of [arg1, arg2[, ...]]. The
brackets "[]" around a list of arguments are required. Note that
the similar method Function call() can receive the same
arguments as a list. Compare the following ways of passing
arguments:
 // Uses an Array object
function.apply(this, argArray)
 // Uses brackets
function.apply(this,[arg1,arg2])
 // Uses argument list
function.call(this,arg1,arg2)

RETURN: variable - the result of calling the function object with the
specified "this" variable and arguments.

DESCRIPTION: This method is similar to calling the function directly, only the
user is able to pass a variable to use as the "this" variable, and
the arguments to the function are passed as an array. If
arguments is not supplied, then no arguments are passed to the
function. If the arguments parameter is not a valid Array
object or list of arguments inside of brackets "[]", then a runtime
error is generated.

SEE: Function(), Function call()
EXAMPLE: var myFunction = new Function("a,b","return a + b");

var args = new Array(4,5);
myFunction.apply(global, args);
 //or
myFunction.apply(global, [4,5]);

// This code sample will return 9, which is
// the result of calling myFunction with
// the arguments 4 and 5, from the args array.

Function call()
SYNTAX: function.call([thisObj[, arguments[, ...]]])
WHERE: thisObj - An object that will be used as the "this" variable while

calling this function. If this is not supplied, then the global
object is used instead.

arguments - list of arguments to pass to the function. Note that

Nombas ScriptEase ISDK/C 5.01 319

the similar method Function apply() can receive the same
arguments as an array. Compare the following ways of passing
arguments:
 // Uses an Array object
function.apply(this, argArray)
 // Uses brackets
function.apply(this,[arg1,arg2])
 // Uses argument list
function.call(this,arg1,arg2)

RETURN: variable - the result of calling the function object with the
specified "this" variable and arguments.

DESCRIPTION: This method is almost identical to calling the function directly,
only the user is able to supply the "this" variable that the function
will use. Otherwise, it is the same.

SEE: Function(), Function.apply()
EXAMPLE: // The following code:

var myFunction = new Function("arg",
 "return this.a + arg");
var obj = { a:4 };
myFunction.call(obj, 5);

// This code fragment returns the value 9,
// which is the result of fetching this.a
// from the current object (which is obj) and
// adding the first parameter passed, which is 5.

Function toString()
SYNTAX: function.toString()
RETURN: string - a representation of the function.
DESCRIPTION: This method attempts to generate the same code that built the

function. Any spacing, semicolons, newlines, etc., are
implementation-dependent. This method tries to make the output
as human-readable as possible. Note that the function name is
always "anonymous", because the function itself is unnamed,
even though the function object has a name. Also, note that this
function is very rarely called directly, rather it is called implicitly
through conversions such as global.ToString().

EXAMPLE: var myFunction = new Function("a", "b",
 "this.value = a + b");
Screen.writeln(myFunction);

// This fragment will print the following
// to the screen:

 function anonymous(a, b)
 {
 this .value = a + b
 }

Nombas ScriptEase ISDK/C 5.01 321

Math Object
The Math object in ScriptEase has a full and powerful set of methods and
properties for mathematical operations. A programmer has a rich set of
mathematical tools for the task of doing mathematical calculations in a
script.

The methods in this section are preceded with the Object name Math,
since individual instances of the Math Object are not created. For
example, Math.abs() is the syntax to use to get the absolute value of a
number.

Math object static properties
Math.E
SYNTAX: Math.E
DESCRIPTION: The number value for e, the base of natural logarithms. This

value is represented internally as approximately
2.7182818284590452354.

EXAMPLE: var n = Math.E;

Math.LN10
SYNTAX: Math.LN10
DESCRIPTION: The number value for the natural logarithm of 10. This value is

represented internally as approximately 2.302585092994046.
EXAMPLE: var n = Math.LN10;

Math.LN2
SYNTAX: Math.LN2
DESCRIPTION: The number value for the natural logarithm of 2. This value is

represented internally as approximately 0.6931471805599453.
EXAMPLE: var n = Math.LN2;

Math.LOG2E
SYNTAX: Math.LOG2E
DESCRIPTION: The number value for the base 2 logarithm of e, the base of the

natural logarithms. This value is represented internally as
approximately 1.4426950408889634. The value of Math.LOG2E
is approximately the reciprocal of the value of Math.LN2.

EXAMPLE: var n = Math.LOG2E;

Math.LOG10E
SYNTAX: Math.LOG10E
DESCRIPTION: The number value for the base 10 logarithm of e, the base of the

natural logarithms. This value is represented internally as
approximately 0.4342944819032518. The value of
Math.LOG10E is approximately the reciprocal of the value of

Nombas ScriptEase ISDK/C 5.01 322

Math.LN10
EXAMPLE: var n = Math.LOG10E

Math.PI
SYNTAX: Math.PI
DESCRIPTION: The number value for pi, the ratio of the circumference of a

circle to its diameter. This value is represented internally as
approximately 3.14159265358979323846.

EXAMPLE: var n = Math.PI;

Math.SQRT1_2
SYNTAX: Math.SQRT1_2
DESCRIPTION: The number value for the square root of 2, which is represented

internally as approximately 0.7071067811865476. The value of
Math.SQRT1_2 is approximately the reciprocal of the value of
Math.SQRT2.

EXAMPLE: var n = Math.SQRT1_2;

Math.SQRT2
SYNTAX: Math.SQRT2
DESCRIPTION: The number value for the square root of 2, which is represented

internally as approximately 1.4142135623730951.
EXAMPLE: var n = Math.SQRT2;

Math object static methods
Math.abs()
SYNTAX: Math.abs(x)
WHERE: x - a number.
RETURN: number - the absolute value of x. Returns NaN if x cannot be

converted to a number.
DESCRIPTION: Computes the absolute value of a number.
EXAMPLE: //The function returns the absolute value

// of the number -2 (i.e.
//the return value is 2):
var n = Math.abs(-2);

Math.acos()
SYNTAX: Math.acos(x)
WHERE: x - a number between 1 and -1.
RETURN: number - the arc cosine of x.
DESCRIPTION: The return value is expressed in radians and ranges from 0 to pi.

Returns NaN if x cannot be converted to a number, is greater than
1, or is less than -1.

EXAMPLE: function compute_acos(x)

Nombas ScriptEase ISDK/C 5.01 323

{
 return Math.acos(x)
}

// If you pass -1 to the function compute_acos(),
// the return is the
// value of pi (approximately 3.1415...),
// if you pass 3 the
// return is NaN since 3 is out
// of the range of Math.acos.

Math.asin()
SYNTAX: Math.asin(x)
WHERE: x - a number between 1.0 and -1.0
RETURN: number - implementation-dependent approximation of the arc

sine of the argument.
DESCRIPTION: The return value is expressed in radians and ranges from -pi/2

to +pi/2. Returns NaN if x cannot be converted to a number, is
greater than 1, or less than -1.

EXAMPLE: function compute_asin(x)
{
 return Math.asin(x)
}
//If you pass -1 to the function compute_acos(),
//the return is the
//value of -pi/2 , if you pass 3 the return is
//NaN since 3 is out of Math.acos's range.

Math.atan()
SYNTAX: Math.atan(x)
WHERE: x - any number.
RETURN: number - an implementation-dependent approximation of the

arctangent of the argument.
DESCRIPTION: The return value is expressed in radians and ranges from -pi/2

to +pi/2.
EXAMPLE: //The arctangent of x is returned

//in the following function:
function compute_arctangent(x)
{
 return Math.arctangent(x)
}

Math.atan2()
SYNTAX: Math.atan2(x, y)
WHERE: x - x coordinate of the point.

x - y coordinate of the point.
RETURN: number - an implementation-dependent approximation to the arc

tangent of the quotient, y/x, of the arguments y and x, where the
signs of the arguments are used to determine the quadrant of the

Nombas ScriptEase ISDK/C 5.01 324

result.
DESCRIPTION: It is intentional and traditional for the two-argument arc tangent

function that the argument named y be first and the argument
named x be second. The return value is expressed in radians and
ranges from -pi to +pi.

EXAMPLE: //The arctangent of the quotient y/x
//is returned in the
//following function:
function compute_arctangent_of_quotient(x, y)
{
 return Math.arctangent2(x, y)
}

Math.ceil()
SYNTAX: Math.ceil(x)
WHERE: x - any number or numeric expression.
RETURN: number - the smallest number that is not less than the argument

and is equal to a mathematical integer.
DESCRIPTION: If the argument is already an integer, the result is the argument

itself. Returns NaN if x cannot be converted to a number.
EXAMPLE: //The smallest number that is

//not less than the argument and is
//equal to a mathematical integer is returned
//in the following function:
function compute_small_arg_eq_to_int(x)
{
 return Math.ceil(x)
}

Math.cos()
SYNTAX: Math.cos()
WHERE: x - an angle, measured in radians.
RETURN: number - an implementation-dependent approximation of the

cosine of the argument
DESCRIPTION: The argument is expressed in radians. Returns NaN if x cannot be

converted to a number. In order to convert degrees to radians you
must multiply by 2pi/360.

EXAMPLE: //The cosine of x is returned
//in the following function:
function compute_cos(x)
{
 return Math.cos(x)
}

Math.exp()
SYNTAX: Math.exp(x)
WHERE: x - either a number or a numeric expression to be used as an

exponent
RETURN: number - an implementation-dependent approximation of the

Nombas ScriptEase ISDK/C 5.01 325

exponential function of the argument.
DESCRIPTION: For example returns e raised to the power of the x, where e is the

base of the natural logarithms. Returns NaN if x cannot be
converted to a number.

EXAMPLE: //The exponent of x is returned
//in the following function:
function compute_exp(x)
{
 return Math.exp(x)
}

Math.floor()
SYNTAX: Math.floor(x)
WHERE: x - a number.
RETURN: number - the greatest number value that is not greater than the

argument and is equal to a mathematical integer.
DESCRIPTION: If the argument is already an integer, the return value is the

argument itself.
EXAMPLE: //The floor of x is returned

//in the following function:
function compute_floor(x)
{
 return Math.floor(x)
}
//If 6.78 is passed to compute_floor,
//7 will be returned. If 89.1
//is passed, 90 will be returned.

Math.log()
SYNTAX: Math.log(x)
WHERE: x - a number.greater than zero.
RETURN: number - an implementation-dependent approximation of the

natural logarithm of x.
DESCRIPTION: If a negative number is passed to Math.log(), the return is NaN
EXAMPLE: //The natural log of x is returned

//in the following function:
function compute_log(x)
{
 return Math.log(x)
}
//If the argument is less than 0 or NaN,
//the result is NaN
//If the argument is +0 or -0,
//the result is -infinity
//If the argument is 1, the result is +0
//If the argument is +infinity,
//the result is +infinity

Math.max()
SYNTAX: Math.max(x, y)

Nombas ScriptEase ISDK/C 5.01 326

WHERE: x - a number.

y - a number.
RETURN: number - the larger of x and y.
DESCRIPTION: Returns NaN if either argument cannot be converted to a number.
EXAMPLE: //The larger of x and y is returned

//in the following function:
function compute_max(x, y)
{
 return Math.max(x, y)
}
//If x = a and y = 4 the return is NaN
//If x > y the return is x
//If y > x the return is y

Math.min()
SYNTAX: Math.min(x, y)
WHERE: x - a number.

y - a number.
RETURN: number - the smaller of x and y. Returns NaN if either argument

cannot be converted to a number.
DESCRIPTION: Returns NaN if either argument cannot be converted to a number.
EXAMPLE: //The smaller of x and y is returned

//in the following function:
function compute_min(x, y)
{
 return Math.min(x, y)
}
//If x = a and y = 4 the return is NaN
//If x > y the return is y
//If y > x the return is x

Math.pow()
SYNTAX: Math.pow(x, y)
WHERE: x - The number which will be raised to the power of Y

y - The number which X will be raised to
RETURN: number - the value of x to the power of y.
DESCRIPTION: If the result of Math.pow() is an imaginary or complex number,

NaN will be returned. Please note that if Math.pow()
unexpectedly returns infinity, it may be because the floating-
point value has experienced overflow.

EXAMPLE: //x to the power of y is returned
//in the following function:
function compute_x_to_power_of_y(x, y)
{
 return Math.pow(x, y)
}
//If the result of Math.pow is
//an imaginary or complex number,
//the return is NaN

Nombas ScriptEase ISDK/C 5.01 327

//If y is NaN, the result is NaN
//If y is +0 or -0, the result is 1,
//even if x is NaN
//If x = 2 and y = 3 the return value is 8

Math.random()
SYNTAX: Math.random()
RETURN: number - a number which is positive and pseudo-random and

which is greater than or equal to 0 but less than 1.
DESCRIPTION: Calling this method numerous times will result in an established

pattern (the sequence of numbers will be the same each time).
This method takes no arguments. Seeding is not yet possible.

SEE: Clib.rand()
EXAMPLE: //Return a random number:

function compute_rand_numb()
{
 return Math.rand()
}

Math.round()
SYNTAX: Math.round(x)
WHERE: x - a number.
RETURN: number - value that is closest to the argument and is equal to a

mathematical integer. X is rounded up if its fractional part is
equal to or greater than 0.5 and is rounded down if less than 0.5.

DESCRIPTION: The value of Math.round(x) is the same as the value of
Math.floor(x+0.5), except when x is *0 or is less than 0 but
greater than or equal to -0.5; for these cases Math.round(x)
returns *0, but Math.floor(x+0.5) returns +0.

SEE: Math.floor()
EXAMPLE: //Return a mathematical integer:

function compute_int(x)
{
 return Math.round(x)
}
//If the argument is NaN, the result is NaN
//If the argument is already an integer
//such as any of the
//following values: -0, +0, 4, 9, 8;
//then the result is the
//argument itself.
//If the argument is .2, then the result is 0.
//If the argument is 3.5, then the result is 4
//Note: Math.round(3.5) returns 4,
//but Math.round(-3.5) returns -3.

Math.sin()
SYNTAX: Math.sin(x)
WHERE: x - an angle in radians.

Nombas ScriptEase ISDK/C 5.01 328

RETURN: number - the sine of x, expressed in radians.
DESCRIPTION: Returns NaN if x cannot be converted to a number. In order to

convert degrees to radians you must multiply by 2pi/360.
EXAMPLE: //Return the sine of x:

function compute_sin(x)
{
 return Math.sin(x)
}
//If the argument is NaN, the result is NaN
//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity or -infinity,
//the result is NaN

Math.sqrt()
SYNTAX: Math.sqrt(x)
WHERE: x - a number or numeric expression greater than or equal to zero.
RETURN: number - the square root of x.
DESCRIPTION: Returns NaN if x is a negative number or cannot be converted to

a number.
SEE: Math.exp()
EXAMPLE: //Return the square root of x:

function compute_square_root(x)
{
 return Math.sqrt(x)
}
//If the argument is NaN, the result is NaN
//If the argument is less than 0,
//the result is NaN
//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity,
//the result is +infinity

Math.tan()
SYNTAX: Math.tan(x)
WHERE: x - an angle measured in radians.
RETURN: number - the tangent of x, expressed in radians.
DESCRIPTION: Returns NaN if x cannot be converted to a number. In order to

convert degrees to radians you must multiply by 2pi/360.
EXAMPLE: //Return the tangent of x:

function compute_tan(x)
{
 return Math.tan(x)
}
//If the argument is NaN, the result is NaN
//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity or -infinity,
//the result is NaN

Nombas ScriptEase ISDK/C 5.01 329

Number Object
platform: All OS, All version of SE

Number object instance methods
Number toExponential()
SYNTAX: number.toExponential(fractionDigits)
WHERE: fractionDigits - the digits after the significand's decimal point.
RETURN: string - A string representation of this number in exponential

notation.
DESCRIPTION: This method returns a string containing the number represented

in exponential notation with one digit before the significand's
decimal point and fractionDigits digits after the significand's
decimal point.

Number toFixed()
SYNTAX: number.toFixed(fractionDigits)
WHERE: fractionDigits - the digits after the decimal point.
RETURN: string - A string representation of this number in fixed-point

notation.
DESCRIPTION: This method returns a string containing the number represented

in fixed-point notation with fractionDigits digits after the
decimal point.

Number toLocaleString()
SYNTAX: number.toLocaleString()
RETURN: string - a string representation of this number.
DESCRIPTION: This method behaves like Number toString() and converts a

number to a string in a manner specific to the current locale.
Such things as placement of decimals and comma separators are
affected.

SEE: Number toString()
EXAMPLE: var n = 8.9;

var s = n.toLocaleString();

Number toPrecision()
SYNTAX: number.toPrecision(precision)
WHERE: precision - significant digits in fixed notation, or digits after the

significand's decimal point in exponential notation.
RETURN: string - A string representation of this number in either

exponential notation or in fixed notation.
DESCRIPTION: This method returns a string containing the number represented

in either in exponential notation with one digit before the

Nombas ScriptEase ISDK/C 5.01 330

significand's decimal point and precision-1 digits after the
significand's decimal point or in fixed notation with precision
significant digits.

Number toString()
SYNTAX: number.toString([radix])
WHERE: radix - an optional radix, base number, determining the string

representation of this number.
RETURN: string - a string representation of this number.
DESCRIPTION: This method behaves similarly to Number toLocaleString() and

converts a number to a string using a standard format for
numbers. If the radix is specified, the string will have digits
representing that number base.

SEE: Number toLocaleString()
EXAMPLE: var n = 8.9;

var s = n.toString(); // "8.9"

var a = 16;
Screen.writeln(a.toString()); //"16"
Screen.writeln(a.toString(10)); //"16"
Screen.writeln(a.toString(16)); //"10"
Screen.writeln(a.toString(15)); //"11"
Screen.writeln(a.toString(8)); //"20"
Screen.writeln(a.toString(2)); //"10000"

Nombas ScriptEase ISDK/C 5.01 331

Object Object
platform: All OS, All version of SE

Object object instance methods
Object()
SYNTAX: new Object([value])
WHERE: value - a value or variable, usually a primitive, to convert to an

object.
RETURN: object - a new top level object.
DESCRIPTION: Create a new top level object. I a value is passed, convert the

value to an object, else create a new object. The examples
below illustrate several ways to use Object() and how to
accomplish similar things using different strategies.

If Object() is invoked as a function instead of as a constructor
(that is, without new), it performs a type conversion on value.
That is, it returns value as data type Object.

SEE: Internal objects
EXAMPLE: /***************************************

First we create var s as a string data type.
Then we will convert s to an object data type,
namely, to a String object.
***************************************/
// Create s as data type string
var s = 'my string';
// Display the data type 'string'
Screen.writeln(typeof s);
// Display 'my string'
Screen.writeln(s);

// Convert s to data type object (String object)
var o = new Object(s);
// Display the data type 'object'
Screen.writeln(typeof o);
// Display 'my string'
Screen.writeln(o);

/***************************************
Next we create var so as a String object --
in one statement.
***************************************/
// Create so as a String object in one statement
var so = new String('my string');
// Display the data type 'object'
Screen.writeln(typeof so);
// Display 'my string'
Screen.writeln(so);

/***************************************
Next we create var o as an Object object data type.
We add the property o.mystring.
Note that the property may be accessed as:
 o.mystring

Nombas ScriptEase ISDK/C 5.01 332

 or
 o['mystring']
***************************************/
// Create a new top level object
var o = new Object();
// Add the property mystring
o.mystring = 'my string';
// Display the data type 'object'
Screen.writeln(typeof o);
// Display 'my string'
Screen.writeln(o.mystring);
// Display 'my string'
Screen.writeln(o['mystring']);

Object hasOwnProperty()
SYNTAX: object.hasOwnProperty(propertyName)
WHERE: property - a string with the name of the property about which to

query.
RETURN: boolean - indicating whether or not the current object has a

property of the specified name.
DESCRIPTION: This method determines if the object has a property with the

name propertyName. To return true, the property must be an
instance property created for this instance of an object and may
not be an inheritable or prototype property. This is almost the
same as testing defined(object[propertyName]), except
that undefined values are different from non-existent values,
and the internal _hasProperty() method of the object may be
called.

EXAMPLE: function Atest()
{
 this.name = "";
} // Test

Atest.prototype.city = "Fort Worth";

var t = new Atest();

Screen.writeln(t.city); // Fort
Worth

Screen.writeln(t.hasOwnProperty("name")); // true
Screen.writeln(t.hasOwnProperty("city")); // false

Object isPrototypeOf()
SYNTAX: object.isPrototypeOf(variable)
WHERE: variable - the object to test.
RETURN: boolean - true if variable is an object and the current object is

present in the prototype chain of the object, otherwise it returns
false.

DESCRIPTION: If variable is not an object, then this method immediately returns
false. Otherwise, the method recursively searches the internal
_prototype property of the object and if at any point the

Nombas ScriptEase ISDK/C 5.01 333

current object is equal to one of these prototype properties, then
the method returns true.

Object propertyIsEnumerable()
SYNTAX: object.propertyIsEnumerable(propertyName)
WHERE: property - name of the property about which to query.
RETURN: boolean - true if the current object has an enumerable property

of the specified name, otherwise false.
DESCRIPTION: If the current object has no property of the specified name, then

false is immediately returned. If the property has the
DontEnum attribute set, then false is returned. Otherwise,
true is returned.

EXAMPLE: function Atest()
{
 this.name = "";
} // Test

Atest.prototype.city = "Fort Worth";

var t = new Atest();

// Fort Worth
Screen.writeln(t.city);

// true
Screen.writeln(t.propertyIsEnumerable("name"));
// true
Screen.writeln(t.propertyIsEnumerable("city"));

Object toLocaleString()
SYNTAX: object.toLocaleString()
RETURN: string - a string representation of this object.
DESCRIPTION: This method is intended to provide a default

toLocaleString() method for all objects. It behaves exactly
as if toString() had been called on the original object.

SEE: Object toString()

Object toSource()
SYNTAX: object.toSource()
RETURN: string - a string representation of this object, which can be

evaluated or interpreted.
DESCRIPTION: An object may be represented by a string comprised of

JavaScript statements which, when evaluated or interpreted,
reproduce the object. The source string may be evaluated by
global.eval() or by SElib.interpret(). It is sometimes convenient
or powerful to use source strings, for example, in the Data object
the DSP object.

Though the source string may be read by humans, it is daunting.

Nombas ScriptEase ISDK/C 5.01 334

Remember, toSource() is designed for interpretation by the
ScriptEase interpreters, not by users.

The example below compares source strings created by the
Object toSource() method and the global.ToSource()
function. In these examples, the source strings are identical,
which is not guaranteed always to be so. But, no matter which
one is used, the source strings can be evaluated or interpreted.

SEE: Global.ToSource(), global.eval(), SElib.interpret()
EXAMPLE: // An Array

var a = [1, '2', 3];

Screen.writeln(a.toSource());
Screen.writeln();
Screen.writeln(ToSource(a));
Screen.writeln();
/********************************
Displays:

((new Function("var tmp1 = [1,\"2\",3]; tmp1[\"0\"] =
1;
tmp1[\"1\"] = \"2\"; tmp1[\"2\"] = 3; return
tmp1;"))())

((new Function("var tmp1 = [1,\"2\",3]; tmp1[\"0\"] =
1;
tmp1[\"1\"] = \"2\"; tmp1[\"2\"] = 3; return
tmp1;"))())
********************************/

// An Object
var o = {one:1, two:'2', three:3};

Screen.writeln(o.toSource());
Screen.writeln();
Screen.writeln(ToSource(o));
Screen.writeln();
/********************************
Displays:

((new Function("var tmp1 = new Object();
tmp1[\"three\"] = 3;
tmp1[\"one\"] = 1; tmp1[\"two\"] = \"2\"; return
tmp1;"))())

((new Function("var tmp1 = new Object();
tmp1[\"three\"] = 3;
tmp1[\"one\"] = 1; tmp1[\"two\"] = \"2\"; return
tmp1;"))())
********************************/

Object toString()
SYNTAX: object.toString()
RETURN: string - a string representation of this object.
DESCRIPTION: When this method is called, the internal class property, _class,

is retrieved from the current object. A string is then constructed
whose contents are "[object classname]", where classname is the

Nombas ScriptEase ISDK/C 5.01 335

value of the property from the current object. Note that this
function is rarely called directly, rather it is called implicitly
through such functions as global.ToString().

SEE: Object toLocaleString()

Object valueOf()
SYNTAX: object.valueOf()
RETURN: object - the value of this object
DESCRIPTION: Generally, this method returns the object itself. However, if

object is a wrapper for a host object, the host object may be
returned. Such wrappers for host objects may be created with the
Object constructor.

SEE: Object toSource(), Object()

Nombas ScriptEase ISDK/C 5.01 337

RegExp Object
Regular expressions do not seem very regular to average people. Regular
expressions are used to search text and strings, searches that are very powerful if
a person makes the effort to learn how to use them. Simple searches may be done
like the following:
var str = "one two three";
str.indexOf("two"); // == 4

The String indexOf() method searches str for "two" and returns the beginning
position of "two", which is 4. What if you wanted to find "t" and "o" with or
without any characters in between, an "o" only at the beginning of a string, or an
"e" only at the end of a string? Before answering, lets consider wildcards.

Most computer users are familiar with wildcards in searching, especially since
they may be used in finding files. For example, the DOS command:
dir t*o.bat

will list all files that begin with "t" and end "o" in the filename and that have an
extension of "bat". JavaScript does not use wildcards to extend search capability.
Instead, ECMAScript, the standard for JavaScript, has implemented regular
expression searches that do everything that wildcards do and much, much more.
Regular expressions follow the PERL standard, though the syntax has been made
easier to read. Anyone who can use regular expressions in PERL already knows
how to use JavaScript regular expressions. For advanced information on regular
expressions, there are many books in the PERL community, in addition to
JavaScript books, that explain regular expressions.

Now lets answer the question about how to find the three cases mentioned above.
var str = "one two three";
var pat = /t.*o/;
str.search(pat); // == 4

This fragment illustrates one way to use regular expressions to find "t" followed
by "o" with any number of characters between them. Two things are different.
One the variable pat which is assigned /t.*o/. The slashes indicate the
beginning and end of a regular expression pattern, similar to how quotation
marks indicate a string. The String search() method is a method of the String
object that uses a regular expression pattern to search a string, similar to the
String indexOf() method. In fact, they both return 4, the start position of "two",
in these examples.

The String object has three methods for searching using regular expression
patterns. The three methods are:
String match()
String replace()
String search()

The methods in the RegExp object, for using regular expressions, are explained
below in this section. Before we move on to the cases of an "o" at the start or an
"e" at the end of a string, consider the current example a little further. What do
the slashes "/ . . . /" do? First, they define a regular expression pattern. Second,

Nombas ScriptEase ISDK/C 5.01 338

they create a RegExp object. In our example, the quotes cause str to be a String
object, and the slashes cause pat to be a RegExp object. Thus, pat may be used
with RegExp methods and with the three String methods that use regular
expression patterns.
var str = "one two three";
var pat = /t.*o/;
pat.test(str); // == true

By using a method, such as test(), of the RegExp object, the string to be
searched becomes the argument rather than the pattern to search for, as with the
string methods. The RegExp test() method simply returns true or false
indicating whether the pattern is found in the string.
var str = "one two three";
var pat = /t.*o/;
str.match(pat); // == an Array with pertinent info
pat.exec(str); // == an Array with pertinent info

The String match() and RegExp exec() methods return very similar, often the
same, results in an Array. The return may vary depending on exactly which
attributes, discussed later, are set for a regular expression.

To find an "o" only at the start of a string, use something like:
var str = "one two three";
var pat = /^o/;
str.search(pat); // == 0

The caret "^" has a special meaning, namely, the start of a string or line. It
anchors the characters that follow to the start of a string or line and is one of the
special anchor characters.

To find an "e" only at the end of a string, use something like:
var str = "one two three";
var pat = /e$/;
str.search(pat); // == 12

The dollar sign "$" has a special meaning, namely, the end of a string or line. It
anchors the characters that follow to the end of a string or line and is one of the
special anchor characters.

Note that there is a very important distinction between searching for pattern
matches using the String methods and using the RegExp methods. The RegExp
methods execute much faster, but the String methods are often quicker to
program. So, if you need to do intensive searching in which a single regular
expression pattern is used many times in a loop, use the RegExp methods. If you
just need to do a few searches, use the String methods. Every time a RegExp
object is constructed using new, the pattern is compiled into a form that can be
executed very quickly. Every time a new pattern is compiled using the RegExp
compile() method, a pattern executes much faster. Other than the difference in
speed and script writing time, the choice of which methods to use depends on
personal preferences and the particular tasks at hand.

In general, the RegExp object allows the use of regular expression patterns in
searches of strings or text. The syntax follows the ECMAScript standard, which
may be thought of as a large and powerful subset of PERL regular expressions.

Nombas ScriptEase ISDK/C 5.01 339

Regular expression syntax
The general form for defining a regular expression pattern is:
/characters/attributes

Assume that we are searching the string "THEY, the three men, left". The
following are valid regular expression patterns followed by a description of what
they find:
/the three/ // "the three"
/THE THREE/ig // "the three"
/th/ // "th" in "the"
/th/igm // "th" in "THEY", "the", and "three"

The slashes delimit the characters that define a regular expression. Everything
between the slashes is part of a regular expression, just as everything between
quotation marks is part of a string. Three letters may occur after the second slash
that are not part of the regular expression. Instead, they define attributes of the
regular expression. Any one, two, or three of the letters may be used, that is, any
one or more of the attributes may be defined. Thus, a regular expression has three
elements: literals, characters, and attributes.

Regular expression literals
Regular expression literals delimit a regular expression pattern. The literals are a
slash "/" at the beginning of some characters and a slash "/" at the end of the
characters. These regular expression literals operate in the same way as quotation
marks do for string literals. The following two lines of code accomplish the same
thing, namely, they define and create an instance of a RegExp object:
var re = /^THEY/;
var re = new RegExp("^THEY");

and so do the following two lines:
var re = /^THEY/i;
var re = new RegExp("^THEY", "i");

Regular expression characters
Each character or special character in a regular expression represents one
character. Though some special characters, such as, the range of lowercase
characters represented by [a-z], may have multiple matches, only one at a time
is matched. Thus, [a-z] will only find one of these 26 characters at one position
in a string being searched. Just as strings have special characters, namely, escape
sequences, regular expression patterns have various kinds of special characters
and metacharacters that are explained below.

Regular expression attributes
The following table lists allowable attribute characters and their effects on a
regular expression. No other characters are allowed as attributes.

Character Attribute meaning
g Do a global match. Allow the finding of all matches in a string

using the RegExp and String methods and properties that allow
global operations. The instance property global is set to true.

Example: /pattern/g

Nombas ScriptEase ISDK/C 5.01 340

i Do case insensitive matches. The instance property ignoreCase is
set to true.

Example: /pattern/i
m Work with multiple lines in a string. When working with multiple

lines the "^" and "$" anchor characters will match the start and end
of a string and the start and end of lines within the string. The
newline character "\n" in a string indicates the end of a line and
hence lines in a string. The instance property multiline is set to
true.

Example: /pattern/m

Attributes are the characters allowed after the end slash "/" in a regular
expression pattern. The following regular expressions illustrate the use of
attributes.
var pat = /^The/i; // any form of "the" at start of a string
var pat = /the/g; // all occurrences of "the" may be found
var pat = /test$/m; // first "test" at the end of any line
var pat = /test$/igm; // all forms of "test" at end of all lines
 // The following four examples do the same as the first four
var pat = new RegExp("^The", "i");
var pat = new RegExp("the", "g");
var pat = new RegExp("test$", "m");
var pat = new RegExp("test$", "igm");

Regular expression special characters
Regular expressions have many special characters, which are also known as
metacharacters, with special meanings in a regular expression pattern. Some are
simple escape sequences, such as, a newline "\n", with the same meaning as the
same escape sequence in strings. But, regular expressions have many more
special characters that add much power to working with strings and text, much
more power than is initially recognized by people being introduced to regular
expressions. For anyone who works with strings and text, the effort to become
proficient with regular expression parsing is more than worthwhile.

Regular expression summary
Search pattern
? zero or one of previous, {0,1} be?t
* zero or more of previous, maximal, {0,} b.*t
? zero or more of previous, minimal, {0,}? b.?t
+ one or more of previous, maximal, {1,} b.+t
+? one or more of previous, minimal, {1,}? b.+?t
{n} n times of previous be{n}t
{n,} n or more times of previous, maximal b.{n,}t
{n,}? n or more times of previous, minimal b.{n,}?t
{n,m} n to m times of previous be{1,2}t
. any character b.t
[] any one character in a class [a-m]
[^] any one not in a character class [^a-m]
[\b] one backspace character my[\b]word

Nombas ScriptEase ISDK/C 5.01 341

\d any one digit, [0-9] file\d
\D any one not digit, [^0-9] file\D
\s any one white space character, [\t\n\r\f\v] my\sword
\S any one not white space character, [^ \t\n\r\f\v] my \sord
\w any one word character, [a-zA-Z0-9_] my big\w
\W any one not word character, [^a-zA-Z0-9_] my\Wbig
^ anchor to start of string ^string
$ anchor to end of string string$
\b anchor to word boundary \bbig
\B anchor to not word boundary \Bbig
| or (bat)|(bet)
\n group n (bat)a\1
() group my(.?)fil
(?:) group without capture my(?:.?)fil
(?=) group without capture with positive look ahead my(?=.?)fil
(?!) group without capture with negative look ahead my(?!.?)fil
\f form feed character string\f
\n newline string\n
\r carriage return character string\r
\t horizontal tab character one\tfour
\v vertical tab character one\vtwo
\/ / character \/fil
\\ \ character \\fil
\. . character fil\.bak
* * character one*two
\+ + character \+fil
\? ? character when\?
\| | character one\|two
\((character \(fil\)
\)) character \(fil\)
\[[character \[fil\]
\]] character \[fil\]
\{ { character \{fil\}
\} } character \{fil\}
\C a character itself. Seldom used. b\at
\cC a control character one\cIfour
\x## character by hexadecimal code \x41
\### character by octal code \101

Replace pattern
$n group n in search pattern, $1, $2, . . . $9 big$1
$+ last group in search pattern big$+
$` text before matched pattern big$`
$' text after matched pattern big$'
$& text of matched pattern big$&
\$ $ character big\$

Regular expression repetition characters

Nombas ScriptEase ISDK/C 5.01 342

Notice that the character "?" pulls double duty. When used as the only repetition
specifier, "?" means to match zero or more occurrences of the previous character.
For example, /a?/ matches one or more "a" characters in sequence. When used
as the second character of a repetition specifier, as in "*?", "+?", and "{n,}?", a
question mark "?" indicates a minimal match. What is meant by a minimal
match?

Well obviously, it is the counterpart to a maximal match, which is the default for
JavaScript and PERL regular expressions. A maximal match will include the
maximum number of characters in a text that will qualify to match a regular
expression pattern. For example, in the string "one two three", the pattern
/o.*e/ will match the text "one two three". Why? The pattern says to
match text that begins with the character "o" followed by zero or more of any
characters up to the character "e". Since the default is a maximal match, the
whole string is matched since it begins with "o" and ends with "e". Often, this
maximal match behavior is not what is expected or desired.

Now consider a similar match using the minimal character. The string is still
"one two three", but the pattern becomes /o.*?e/. Notice that the only
difference is the addition of a question mark "?" as the second repetition
character after the "*". The text matched this time is "one", which is the
minimal number of characters that match the conditions of the regular expression
pattern.

So, it might be a good habit to begin reading regular expression patterns with a
maximal and minimal vocabulary. As an example, lets spell out how we could
read the two patterns in the current example.

• "o.*e" - match text that begin with "o" and has the maximum number of
characters possible until the last "e" is encountered.

• "o.*?e" - match text that begins with "o" and has the minimum number of
characters possible until the first "e" is encountered.

Sometimes a maximal match is called a greedy match and a minimal match is
called a non-greedy match.

Repetition How many characters matched
? Match zero or one occurrence of the previous character or sub

pattern. Same as {0,1}
* Match zero or more occurrences of the previous character or sub

pattern. A maximal match, that is, match as many characters as will
fulfill the regular expression. Same as {0,}

*? Match zero or more occurrences of the previous character or sub
pattern. A minimal match, that is, match as few characters as will
fulfill the regular expression. Same as {0,}?

+ Match one or more occurrences of the previous character or sub
pattern. A maximal match, that is, match as many characters as will
fulfill the regular expression. Same as {1,}

+? Match one or more occurrences of the previous character or sub
pattern. A minimal match, that is, match as few characters as will

Nombas ScriptEase ISDK/C 5.01 343

fulfill the regular expression. Same as {1,}?
{n} Match n occurrences of the previous character or sub pattern.
{n,} Match n or more occurrences of the previous character or sub

pattern. A maximal match, that is, match as many characters as will
fulfill the regular expression.

{n,}? Match n or more occurrences of the previous character or sub
pattern. A minimal match, that is, match as few characters as will
fulfill the regular expression.

{n, m} Match the previous character or sub pattern at least n times but not
more than m times.

Regular expression character classes
Class Character matched
. Any character except newline, [^\n]
[...] Any one of the characters between the brackets
[^...] Any one character not one of the characters between the brackets
[\b] A backspace character (special syntax because of the \b boundary)
\d Any digit, [0-9]
\D Any character not a digit, [^0-9]
\s Any white space character, [\t\n\r\f\v]
\S Any non-white space character, [^ \t\n\r\f\v]
\w Any word character, [a-zA-Z0-9_]
\W Any non-word character, [^a-zA-Z0-9_]

Regular expression anchor characters
Anchor characters indicate that the following or preceding characters must be
next to a special position in a string. The characters next to anchor characters are
included in a match, not the anchor characters themselves. For example, in the
string "The big cat and the small cat", the regular expression /cat$/ will match
the "cat" at the end of the string, and the match will include only the three
characters "cat". The "$" is an anchor character indicating the end of a string (or
line if a multiline search is being done).

The following table lists the anchor characters, metacharacters, and their
meanings.

Character Anchor meaning
^ The beginning of a string (or line if doing a multiline search). (See

\A below.)

Example: /^The/
$ The end of a string (or line if doing a multiline search). (See \Z

below.)

Nombas ScriptEase ISDK/C 5.01 344

Example: /cat$/
\A Matches the beginning of a string only. (See $ above.)
\b A word boundary. Match any character that is not considered to be

a valid character for a word in programming. The character class
"\W", not a word character, is similar. There are two differences.
One, "\b" also matches a backspace. Two, "\W" is included in a
match, since it is regular expression character, but "\b" is not
included in a match.

Example: /\bthe\b/
\B Not a word boundary. The character class "\w" is similar. The most

notable difference is that "\w" is included in a match, and "\B" is
not.

Example: /l\B/
\Z Matches the end of a string only. (See ^ above.)

Regular expression reference characters
Character Meaning
| Or. Match the character or sub pattern on the left or the character

or sub pattern on the right.
\n Reference to group. Match the same characters, not the regular

expression itself, matched by group n. Groups are sub patterns that
are contained in parentheses. Groups may be nested. Groups are
numbered according to the order in which the left parenthesis of a
group appears in a regular expression.

(...) Group with capture. Characters inside of parentheses are handled
as a single unit or sub pattern in specified ways, such as with the
first two explanations, | and \n, in this table. The characters that
are actually matched are captured and may be used later in an
expression (as with \n) or in a replacement expression (as with
$n). For example, if the string "one two three two one" and the
pattern /(o.e).+(w.+?e)/ are used, then the back references $1
or \1 use the text "one".

(?:...) Group without capture. Matches the same text as (...), but the
text matched is not captured or saved and is not available for later
use using \n or $n. The overhead of not capturing matched text
becomes important in faster execution time for searches involving
loops and many iterations. Also, some expressions and
replacements can be easier to read and use with fewer numbered
back references with which to keep up. For example, if the string
"one two three two one" and the pattern /(?:o.e).+(w.+?e)/
are used, then the back references $1 or \1 use the text "wo thre".

(?=...) Positive look ahead group without capture. The position of the
match is at the beginning of the text that matches the sub pattern.
For example, /ScriptEase (?=Desktop|ISDK)/ matches
"ScriptEase " in "ScriptEase Desktop" or "ScriptEase ISDK", but

Nombas ScriptEase ISDK/C 5.01 345

not "ScriptEase " in "ScriptEase Web Server". When a search
continues, it begins after "ScriptEase ", not after "Desktop" or
"ISDK". That is, the search continues after the last text matched,
not after the text that matches the look ahead sub pattern.

(?!...) Negative look ahead group without capture. The position of the
match is at the beginning of the text not matching the sub pattern.
For example, /ScriptEase (?!Desktop|ISDK)/ matches
"ScriptEase " in "ScriptEase Web Server", but not "ScriptEase " in
"ScriptEase Desktop" or "ScriptEase ISDK". When a search
continues, it begins after "ScriptEase ", not after "Desktop" or
"ISDK". That is, the search continues after the last text matched,
not after the text that matches the look ahead sub pattern.

Regular expression escape sequences
Sequence Character represented
\f Form feed, \cL, \x0C, \014
\n Line feed, newline, \cJ, \x0A, \012
\r Carriage return, \cM, \x0D, \015
\t Horizontal tab, \cI, \x09, \011
\v Vertical tab, \cK, \x0B, \013
\/ The character: /
\\ The character: \
\. The character: .
* The character: *
\+ The character: +
\? The character: ?
\| The character: |
\(The character: (
\) The character:)
\[The character: [
\] The character:]
\{ The character: {
\} The character: }
\C A character itself, if not one of the above. Seldom, if ever, used.
\cC A control character. For example, \cL is a form feed (^L or Ctrl-

L), same as \f.
\x## A character represented by its code in hexadecimal. For example,

\x0A is a newline, same as \n, and \x41 is "A".
\### A character represented by its code in octal. For example, \012 is a

Nombas ScriptEase ISDK/C 5.01 346

newline, same as \n, and \101 is "A".

Regular expression replacement characters
All of the special characters that have been discussed so far pertain to regular
expression patterns, that is, to finding and matching strings and patterns in a
target string. If all you want to do is find text, then you do not need to know
about regular expression replacement characters. However, most people not only
want to do powerful searches, but they also want to make powerful replacements
of found text. This section describes special characters that are used in
replacement strings and that are related to special characters used in search
patterns.

Expression Meaning
$1, $2 ... $9 The text that is matched by sub patterns inside of

parentheses. For example, $1 substitutes the text matched in
the first parenthesized group in a regular expression pattern.
See the groups, (...), (?:...), (?=...), and (?!...),
under regular expression reference characters.

$+ The text matched by the last group, that is, parenthesized sub
pattern.

$` The text before, to the left of, the text matched by a pattern.
$' The text after, to the right of, the text matched by a pattern
$& The text matched by a pattern
\$ A literal dollar sign, $.

Regular expression precedence
The patterns, characters, and metacharacters of regular expressions comprise a
sub language for working with strings. Some of the metacharacters can be
understood as operators, and, like operators in all programming languages, there
is an order of precedence. The following tables list regular expression operators
in the order of their precedence.

Operator Descriptions
\ Escape

(), (?:), (?=), (?!), [] Groups and sets

*, +, ?, {n}, {n,}, {n,m} Repetition

^, $, \metacharacter Anchors and metacharacters
| Alternation

RegExp object instance properties
RegExp global
SYNTAX: regexp.global
DESCRIPTION: A read-only property of an instance of a RegExp object. It is

true if "g" is an attribute in the regular expression pattern being

Nombas ScriptEase ISDK/C 5.01 347

used.

Read-only property. Use RegExp compile() to change.
SEE: Regular expression attributes
EXAMPLE: var pat = /^Begin/g;

//or
var pat = new RegExp("^Begin", "g");

RegExp ignoreCase
SYNTAX: regexp.ignoreCase
DESCRIPTION: A read-only property of an instance of a RegExp object. It is

true if "i" is an attribute in the regular expression pattern being
used.

Read-only property. Use RegExp compile() to change.
SEE: Regular expression attributes
EXAMPLE: var pat = /^Begin/i;

//or
var pat = new RegExp("^Begin", "i");

RegExp lastIndex
SYNTAX: regexp.lastIndex
DESCRIPTION: The character position after the last pattern match and which is

the basis for subsequent matches when finding multiple matches
in a string. That is, in the next search, lastIndex is the starting
position. This property is used only in global mode after being
set by using the "g" attribute when defining or compiling a
search pattern. RegExp exec() and RegExp test() use and set the
lastIndex property. If a match is not found by one of them,
then lastIndex is set to 0. Since the property is read/write, you
may set the property at any time to any position.

Read/write property.
SEE: RegExp exec(), String match()
EXAMPLE: var str = "one tao three tio one";

var pat = /t.o/g;
pat.exec(str);
 // pat.lastIndex == 7

RegExp multiline
SYNTAX: regexp.multiline
DESCRIPTION: A read-only property of an instance of a RegExp object. It is

true if "m" is an attribute in the regular expression pattern being
used. There is no static (or global) RegExp multiline property
in ScriptEase JavaScript since the presence of one is based on
old technology and is confusing now that an instance property
exists.

This property determines whether a pattern search is done in a
multiline mode. When a pattern is defined, the multiline

Nombas ScriptEase ISDK/C 5.01 348

attribute may be set, for example, /^t/m. A pattern definition
such as this one, sets the instance property regexp.multiline
to true.

Read-only property. Use RegExp compile() to change.
SEE: Regular expression attributes
EXAMPLE: // In all these examples, pat.multiline is set

// to true. If there were no "m" in the attributes,
// then pat.multiline would be set to false.
var pat = /^Begin/m;
//or
var pat = new RegExp("^Begin", "igm");
//or
var pat = /^Begin/m;
//or
var pat = new RegExp("^Begin", "igm");

RegExp source
SYNTAX: regexp.source
DESCRIPTION: The regular expression pattern being used to find matches in a

string, not including the attributes.

Read-only property. Use RegExp compile() to change.
SEE: Regular expression syntax
EXAMPLE: var str = "one tao three tio one";

var pat = /t.o/g;
pat.exec(str);
 // pat.source == "t.o"

RegExp returned array properties
Some methods, String match() and RegExp exec() return arrays in which various
elements and properties are set that provide more information about the last
regular expression search. The properties that might be set are described in this
section, not the contents of the array elements.

index (RegExp)
SYNTAX: returnedArray.index
DESCRIPTION: When String match() is called and the "g" is not used in the

regular expression, String match() returns an array with two
extra properties, index and input. The property index has the
start position of the match in the target string.

SEE: input (RegExp), RegExp exec(), String match()
EXAMPLE: var str = "one tao three tio one";

var pat = /(t.o)\s(t.r)/g;
var rtn = pat.exec(str);
 // rtn[0] == "tao thr"
 // rtn[1] == "tao"
 // rtn[2] == "thr"
 // rtn.index == 4
 // rtn.input == "one tao three tio one"

Nombas ScriptEase ISDK/C 5.01 349

input (RegExp)
SYNTAX: returnedArray.input
DESCRIPTION: When String match()is called and the "g" is not used in the

regular expression, String match() returns an array with two
extra properties, index and input. The property input has a
copy of the target string.

SEE: index (RegExp), RegExp exec(), String match()
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)\s(t.r)/g;
var rtn = pat.exec(str);
 // rtn[0] == "two thr"
 // rtn[1] == "two"
 // rtn[2] == "thr"
 // rtn.index == 4
 // rtn.input == "one two three two one"

RegExp object instance methods
RegExp()
SYNTAX: new RegExp([pattern[, attributes]])
WHERE: pattern - a string containing a regular expression pattern to use

with this RegExp object.

attributes - a string with the attributes for this RegExp object.
RETURN: object - a new regular expression object, or null on error.
DESCRIPTION: Creates a new regular expression object using the search pattern

and options if they are specified.

If the attributes string is passed, it must contain one or more of
the following characters or be an empty string "":

i - sets the ignoreCase property to true
g - sets the global property to true
m - set the multiline property to true

SEE: Regular expression syntax, String match(), String replace(),
String search()

EXAMPLE: // no options
var regobj = new RegExp("r*t", "");
// ignore case
var regobj = new RegExp("r*t", "i");
// global search
var regobj = new RegExp("r*t", "g");
// set both to be true
var regobj = new RegExp("r*t", "ig");

RegExp compile()
SYNTAX: regexp.compile(pattern[, attributes])
WHERE: pattern - a string with a new regular expression pattern to use

with this RegExp object.

attributes - a string with the new attributes for this RegExp

Nombas ScriptEase ISDK/C 5.01 350

object.
RETURN: void.
DESCRIPTION: This method changes the pattern and attributes to use with the

current instance of a RegExp object. An instance of a RegExp
object may be used repeatedly by changing it with this method.

If the attributes string is supplied, it must contain one or more of
the following characters or be an empty string "":

i - sets the ignoreCase property to true
g - sets the global property to true
m - set the multiline property to true

SEE: RegExp(), Regular expression syntax
EXAMPLE: var regobj = new RegExp("now");

// use this RegExp object
regobj.compile("r*t");
// use it some more
regobj.compile("t.+o", "ig");
// use it some more

RegExp exec()
SYNTAX: regexp.exec([str])
WHERE: str - a string on which to perform a regular expression match.

Default is RegExp.input.
RETURN: array - an array with various elements and properties set

depending on the attributes of a regular expression. Returns
null if no match is found.

DESCRIPTION: This method, of all the RegExp and String methods, is both the
most powerful and most complex. For many, probably most,
searches, other methods are quicker and easier to use. A string,
the target, to be searched is passed to exec() as a parameter. If
no string is passed, then RegExp.input, which is a read/write
property, is used as the target string.

When executed without the global attribute, "g", being set, if a
match is found, element 0 of the returned array is the text
matched, element 1 is the text matched by the first sub pattern in
parentheses, element 2 the text matched by the second sub
pattern in parentheses, and so forth. These elements and their
numbers correspond to groups in regular expression patterns and
replacement expressions. The length property indicates how
many text matches are in the returned array. In addition, the
returned array has the index and input properties. The index
property has the start position of the first text matched, and the
input property has the target string that was searched. These
two properties are the same as those that are part of the returned
array from String match() when used without its global attribute
being set.

When executed with the global attribute being set, the same

Nombas ScriptEase ISDK/C 5.01 351

results as above are returned, but the behavior is more complex
which allows further operations. This method exec() begins
searching at the position, in the target string, specified by
this.lastIndex. After a match, this.lastIndex is set to
the position after the last character in the text matched. Thus, you
can easily loop through a string and find all matches of a pattern
in it. The property this.lastIndex is read/write and may be
set at anytime. When no more matches are found,
this.lastIndex is reset to 0.

Since RegExp exec() always includes all information about a
match in its returned array, it is the best, perhaps only, way to get
all information about all matches in a string.

As with String match(), if any matches are made, appropriate
RegExp object static properties, such as RegExp.leftContext,
RegExp.rightContext, RegExp.$n, and so forth are set, providing
more information about the matches.

SEE: String match(), RegExp object static properties
EXAMPLE: var str = "one two three tio one";

var pat = new RegExp("t.o", "g");

while ((rtn = pat.exec(str)) != null)
 Screen.writeln("Text = " + rtn[0] +
 " Pos = " + rtn.index +
 " End = " + pat.lastIndex);
// Display is:
// Text = two Pos = 4 End = 7
// Text = tio Pos = 14 End = 17

RegExp test()
SYNTAX: regexp.test([str])
WHERE: str - a string on which to perform a regular expression match.

Default is RegExp.input.
RETURN: boolean - true if there is a match, else false.
DESCRIPTION: Tests a string to see if there is a match for a regular expression

pattern.

This method is equivalent to regexp.exec(string)!=null.

If there is a match, appropriate RegExp object static properties,
such as RegExp.leftContext, RegExp.rightContext, RegExp.$n,
and so forth, are set, providing more information about the
matches.

Though it is unusual, test() may be used in a special way
when the global attribute, "g", is set for a regular expression
pattern. Like with RegExp exec(), when a match is found, the
lastIndex property is set to the character position after the text
match. Thus, test() may be used repeatedly on a string, though
there are few reasons to do so. One reason would be if you only
wanted to know if a string had more than one match.

Nombas ScriptEase ISDK/C 5.01 352

SEE: RegExp exec(), String match(), String search()
EXAMPLE: var rtn;

var str = "one two three tio one";
var pat = /t.o/;
 // rtn == true
rtn = pat.test(str);

RegExp object static properties
RegExp.$n
SYNTAX: RegExp.$n
DESCRIPTION: The text matched by the nth group, that is, the nth sub pattern in

parenthesis. The numbering corresponds to \n, back references
in patterns, and $n, substitutions in replacement patterns.

Read-only property.
SEE: Regular expression reference characters, regular expression

replacement characters
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)\s/
str.match(pat)
 // RegExp.$1 == "two"

RegExp.input
SYNTAX: RegExp.input
DESCRIPTION: If no string is passed to RegExp exec() or to RegExp test(), then

RegExp.input is used as the target string. To be used as the
target string, it must be assigned a value. RegExp.input is
equivalent to RegExp.$_, for compatibility with PERL.

Read/write property.
SEE: RegExp exec(), RegExp test()
EXAMPLE: var pat = /(t.o/;

RegExp.input = "one two three two one";
pat.exec();
 // "two" is matched

RegExp.lastMatch
SYNTAX: RegExp.lastMatch
DESCRIPTION: This property has the text matched by the last pattern search. It is

the same text as in element 0 of the array returned by some
methods. RegExp.lastMatch is equivalent to RegExp["$&"],
for compatibility with PERL.

Read-only property.
SEE: RegExp exec(), String match(), RegExp returned array properties
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)/
pat.exec(str);
 // RegExp.lastMatch == "two"

Nombas ScriptEase ISDK/C 5.01 353

RegExp.lastParen
SYNTAX: RegExp.lastParen
DESCRIPTION: This property has the text matched by the last group,

parenthesized sub pattern, in the last pattern search.
RegExp.lastParen is equivalent to RegExp["$+"], for
compatibility with PERL.

Read-only property.
SEE: RegExp.$n
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)+\s(t.r)/
pat.exec(str);
 // RegExp.lastParen == "thr"

RegExp.leftContext
SYNTAX: RegExp.leftContext
DESCRIPTION: This property has the text before, that is, to the left of, the text

matched by the last pattern search. RegExp.leftContext is
equivalent to RegExp["$`"], for compatibility with PERL.

Read-only property.
SEE: RegExp.lastMatch, RegExp.rightContext
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)/
pat.exec(str);
 // RegExp.leftContext == "one "

RegExp.rightContext
SYNTAX: RegExp.rightContext
DESCRIPTION: This property has the text after, that is, to the right of, the text

matched by the last pattern search. RegExp.leftContext is
equivalent to RegExp["$'"], for compatibility with PERL.

Read-only property.
SEE: RegExp.lastMatch, RegExp.leftContext
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)/
pat.exec(str);
 // RegExp.leftContext == " three two one"

Nombas ScriptEase ISDK/C 5.01 355

SElib Object
The methods in the SElib object extend the functionality of JavaScript. Whereas
the Clib object extends the power of JavaScript by providing functions from the
standard C library, the SElib extends power by allowing programmers to work
with such things as directories, files, memory, windows, messages, system
operations, and script execution. The methods in the SElib object are more like
the C functions in the Clib object than JavaScript functions.

When using the methods in this section, they are preceded with the Object name
SElib, since individual instances of the SElib object are not created. For example,
SElib.directory() is the syntax to use to get directory information in a
script.

SElib object static methods
SElib.baseWindowFunction()
SYNTAX: SElib.baseWindowFunction(hWnd, message, param1,

 param2)
WHERE: hWnd - a number, a handle of the window receiving the

message.

message - a number, a Windows message ID.

param1 - the first parameter of the message ID.

param2 - the second parameter of the message ID.
RETURN: value - the value returned by the base window function. If the

parameter handle is not a window with a windowFunction
created with SElib.makeWindow() or is not a window
subclassed with SElib.subclassWindow(), then the return is
0.

DESCRIPTION: Calls the base procedure of a window created with a
windowFunction in SElib.makeWindow() or subclassed with
SElib.subclassWindow(). This method is normally used within a
ScriptEase window function to pass the window parameter to the
base procedure before handling it in your own code. Remember
that if your window function returns no value, ScriptEase will
call the base procedure automatically, which is the preferred
method.

SEE: SElib.makeWindow(), SElib.subclassWindow(), Window object
in winobj.jsh

SElib.bound()
SYNTAX: SElib.bound()
RETURN: boolean - true if the currently running script is bound using the

/bind command line option, else false.
DESCRIPTION: ScriptEase scripts may be compiled to standalone executable,

exe, files using the bind command line option. Sometimes it is

Nombas ScriptEase ISDK/C 5.01 356

important to know if a script is being interpreted or being run as
a standalone executable. Binding a script is a step more than
compiling a script to be interpreted by a ScriptEase interpreter.
(See SElib.compileScript())

SEE: SElib.compileScript(), SElib.version(), Using Library Files
EXAMPLE: if (SElib.bound())

{
 Screen.writeln('Running a bound script');
 // Do this
}
else
{
 Screen.writeln('Running an unbound script');
 // Do that
}

SElib.breakWindow()
SYNTAX: SElib.breakWindow(hWnd)
WHERE: hWnd - a number, the handle of the window being released or

destroyed.
RETURN: boolean - true on success and the window is successfully

destroyed, released, or subclassed, else false on failure.
DESCRIPTION: For Win32 and Win16

Releases control of a window controlled by
SElib.subclassWindow() or destroys a window previously
created with SElib.makeWindow(). No other windows are
affected. If hWnd is not a valid window handle, no action is
taken and true is returned.

When a window is destroyed all appropriate DestroyWindow()
functions, internal to the Windows API, are called. Any child
windows of a main window are destroyed before the main
window.

If hWnd is a window controlled by SElib.subclassWindow(),
then this method removes the WindowFunction for a window
from the message function loop.

If hWnd is not supplied, then all windows created with
SElib.makeWindow() are destroyed and all subclassing ends.

SEE: SElib.makeWindow()

SElib.compileScript()
SYNTAX: SElib.compileScript(codeToCompile[, isFile])
WHERE: codeToCompile - a string with ScriptEase statements or a

filename of a script file.

isFile - a boolean telling whether or not codeToCompile is a
filename or a string with statements. The default is false
indicating that codeToCompile is a string consisting of

Nombas ScriptEase ISDK/C 5.01 357

ScriptEase statements.
RETURN: buffer - the compiled code in a ScriptEase buffer. Normally, this

buffer of compiled code is saved to a file.
DESCRIPTION: Compiles a ScriptEase script into executable code which is

normally written to a file with an extension of ".jsb" and referred
to as a ScriptEase binary file. This compiled code is the same
code that is created when the /bind option is used with the Pro
version of ScriptEase Desktop and the code is bound in an
executable ".exe" file.

Compiled code may be executed in two ways. First, the compiled
code may be passed to the SElib.interpret() method as the Code
parameter. The SElib.interpret() method executes
compiled code in the same way that it does text script. Second, a
ScriptEase binary file may be executed by a ScriptEase
interpreter, such as sewin32.exe. This second way is the most
common way to execute compiled code. There are three basic
ways that a ScriptEase script file may be run:

• A text script, as typed by a programmer, may be called using
an interpreter program, such as sewin32.exe. The interpreter
reads the text and performs all the statements in it. Running a
script in this way results in the slowest overall execution
speed since the interpreter must preprocess, tokenize, and
run the file.

• A text script may be compiled using the
SElib.compileScript() method and written to a
ScriptEase binary file. A ScriptEase binary file may also be
called by an interpreter program, such as sewin32.exe. But
overall execution time is faster since the first two steps,
preprocessing and tokenizing, are already done by
SElib.compileScript(). The compiled code of a script
is the same as the compiled code of an executable file
produced using the /bind option of the Pro version.

• A text script can be compiled using the /bind option of the
Pro version. The script is compiled, into the same form as
when using SElib.compileScript() but is physically
attached to the pertinent executable part of an interpreter,
such as sewin32.exe. The compiled file is an executable file
with an extension of ".exe" and can be run as a stand-alone
program.

See the section on running a script in the manual or help file for
more information on executing ScriptEase scripts.

ScriptEase binary files are called in the same way as text scripts,
either ".jse" or ".jsh" files. Assume that a file named testobj.jse
has been compiled with SElib.compileScript() to
testobj.jsb. The invocations of either file by an interpreter do the
same thing. For example, both lines below accomplish the same

Nombas ScriptEase ISDK/C 5.01 358

thing when run as a command line.
sewin32.exe testobj.jse sewin32.exe testobj.jsb

The second line using ".jsb" executes faster, in overall time, that
is, it begins executing more quickly.

In a like manner, assume that a file named testinc.jsh has been
compiled with SElib.compileScript() to testinc.jsb. Either
file may be included in a script using the preprocessor directive
#include. Both lines of script below accomplish the same
thing.
#include "testinc.jsh" #include "testinc.jsb"

The second line executes faster since the code in that file is
precompiled. This include example points to another difference
between the /bind option and the SElib.compileScript()
method. The /bind option results in a stand-alone executable file.
The SElib.compileScript() method allows the flexibility of
precompiling sections of code that may be used in other scripts
or of having a complete precompiled program. Complete
programs compiled by either method execute at the same speed,
at actual run time.

A compiled ScriptEase binary file may also be run from a script
by using the SElib.interpret() method, using the
INTERP_COMPILED_SCRIPT flag.

A ScriptEase binary file has 4 bits that identify it as a compiled
script and 16 bytes for a checksum to make sure that the file has
not been altered. Compiled scripts are implemented at a very low
level which allows ScriptEase binary files to be included in a
script, as already described. But, there is another benefit. A
programmer may use file extensions other than the default ".jsb".

ScriptEase comes with a script, compile.jse, which automates the
process of compiling a text script to a ScriptEase binary file.

SEE: SElib.interpret(), SElib.interpretInNewThread(), SElib.bound(),
sebind.jse, compile.jse

EXAMPLE: // Compile the script file, myscript.jse,
 // to the ScriptEase
 // binary file, myscript.jsb.
function main(argc, argv)
{
 // Filename of the script to compile
 var infile = "Myscript.jse";
 // Filename for the compiled code
 var outfile = "Myscript.jsb";

 // Compile the script file
 // into compiled code.
 // Argument true indicates that infile is a
filename
 var compiledScript = SElib.compileScript(infile,
true);

Nombas ScriptEase ISDK/C 5.01 359

 // If the returned buffer has code in it,
 // save it to a file.
 if(compiledScript != null)
 {
 var outfp = Clib.fopen(outfile, "w");
 if(outfp == null)
 {
 Clib.fprintf(stderr,
 "Could not open file \"%s\"\n",
 outfile);
 Clib.fclose(outfp);
 }
 else
 {
 Clib.fwrite(compiledScript,
 getArrayLength(compiledScript), outfp);
 Clib.fclose(outfp);
 }
 }
}

SElib.directory()
SYNTAX: SElib.directory([filespec[, subdirs[,

 includeAttr[, requireAttr]]]])
WHERE: filespec - string specification for files to find. The specification

must be consistent with the operating system being used and may
include wildcard characters. A file specification may include
path specifications, both full and partial.

subdirs - a boolean as to whether or not to include subdirectories
in file search. The default is false, which limits the search for
filespec to the current directory.

includeAttr - specify the file attributes to include in the file
search. Only files with one of the attributes specified will be
included in the array of file names and information retrieved.
Attribute flags that do not apply to an operating system are
ignored. If includeAttr is 0, only files with no attributes are
included. The default value is:
FATTR_RDONLY|FATTR_SUBDIR|
FATTR_ARCHIVE|FATTR_NORMAL

File attributes are set using the following values:
FATTR_RDONLY Read-only file
FATTR_HIDDEN Hidden file
FATTR_SYSTEM System file
FATTR_SUBDIR Directory
FATTR_ARCHIVE Archive file

More than one file attribute can be specified by using the bitwise
or operator, "|". For example, to find files with the hidden or
system attributes set, use the following expression:
FATTR_HIDDEN | FATTR_SYSTEM

A file attribute may be excluded from array of files returned by
using the bitwise not operator, "~". For example, to exclude

Nombas ScriptEase ISDK/C 5.01 360

subdirectories, use the following expression:
~FATTR_SUBDIR

requireAttr - specify attributes that files are required to have to
be included in the array of file names and information retrieved.
Files must have at least these attributes. The difference between
the two file attributes specifications is that files must have at
least one of the attributes specified by includeAttr but must have
all the attributes specified by requireAttr. The default value is 0.

RETURN: array - an array of objects with information about the file names
retrieved. If no files or directories match the specifications of the
parameters, a null is returned. Each element of the array has the
following properties:
.name Full file name, including filespec path.
.attrib File flags, as defined in IncAttr, number.
.size Size of file, number in bytes, number.
.access Date and time of last file access, number.
.write Date and time of last write, number.
.create Date and time of file creation, number.

For example, if you use the following line of code:
var FileList = SElib.directory("*.*");

The information for the first file retrieved is accessed using:
FileList[0].name
FileList[0].attrib
FileList[0].size
FileList[0].access
FileList[0].write
FileList[0].create

The information for the second file is accessed using:
FileList[1].name
...

DESCRIPTION: Find files in a directory

 or subtree that match path and file specifications and have
specified file attributes set. Remember the directory names are
treated like file names and have the FATTR_SUBDIR attribute set.
Matching files and information about them are retrieved and
returned in an array of objects. These objects are also structures.

This method may be used in many ways. One way, besides the
obvious way of getting information about files, is to test for the
existence of a file or file specification. If the file specified does
not exist, the return is null.

SEE: SElib.fullpath(), SElib.splitFilename(), File object in fileobj.jsh
EXAMPLE: // The following routine lists

 // all files matching FileSpec,
 // except subdirectory entries,
 // in the current directory of a script.
function ListDirectory(FileSpec)

Nombas ScriptEase ISDK/C 5.01 361

{
 var FileList = SElib.directory(FileSpec, False,
 ~FATTR_SUBDIR)
 if (null == FileList)
 Clib.printf(
 "No files found for search spec \"%s\".\n",
 FileSpec)
 else
 {
 var FileCount = getArrayLength(FileList);
 for (var i = 0; i < FileCount; i++)
 Clib.printf(
 "%s\tsize = %d\tCreate date/time = %s\n",
 FileList[i].name, FileList[i].size,
 Clib.ctime(FileList[i].Create));
 }
}

SElib.doWindows()
SYNTAX: SElib.doWindows(immediateReturn)
WHERE: immediateReturn - if true return immediately, regardless of

messages. Default is false.
RETURN: boolean - true if any of the windows created with

SElib.makeWindow() or subclassed with
SElib.subclassWindow() are still open, that is, have not
received a WM_NCDESTROY message. Returns false if there
are no valid windows registered with the ScriptEase Window
Manager.

DESCRIPTION: For Win32 and Win16

Starts the ScriptEase Window Manager to activate whatever
windows have been created or subclassed with
SElib.makeWindow() or SElib.subclassWindow(). All such
windows are registered with the Window Manager. The Window
Manager controls the messages sent to the windows in its
registry and routes them to their respective window functions.

There should not be more than one copy of the Window Manager
running at a time. Generally, SElib.doWindows() is called
only once with a succession of windows. All windows created or
subclassed after a call to SElib.doWindows() are
automatically registered with the Window Manager.

The flags that define window messages are kept in the library
file, message.jsh.

If the optional parameter immediateReturn is true, the method
returns immediately, regardless of whether there are messages
for this application or not. Otherwise this method yields control
to other applications until a message has been processed, subject
to filtering by SElib.messageFilter(), for this application or for
any window subclassed by this application.

The example below displays a standard Windows window. If
you click anywhere in the window, the string "You clicked me!"

Nombas ScriptEase ISDK/C 5.01 362

is displayed briefly in the middle of the window. When the
window is closed, the script terminates.

SEE: SElib.makeWindow(), SElib.subclassWindow(), Window object
in winobj.jsh

EXAMPLE: #include <message.jsh>
#include <window.jsh>
function main()
{
 var hWnd = SElib.makeWindow(null, null,
 WindowFunction, "Display Windows' messages",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT,
 500, 350, null, 0);
 SElib.messageFilter(hWnd, WM_LBUTTONDOWN);
 while(SElib.doWindows()) ;
}

function WindowFunction(hWnd, msg, param1,
 param2, counter)
{
 if (msg == WM_LBUTTONDOWN)
 {
 var msgHwnd = SElib.makeWindow(hWnd,
 "static", null, "You clicked me!",
 WS_CHILD | WS_VISIBLE,
 200, 150, 100, 50, null, 0);
 SElib.suspend(1000);
 SElib.breakWindow(msgHwnd);
 }
}

SElib.fullpath()
SYNTAX: SElib.fullpath(pathspec)
WHERE: pathspec - a partial path specification.
RETURN: string - the pathspec filled out to its full path specification or

null if the path specification is invalid.
DESCRIPTION: Converts pathspec to a full and absolute path specification. The

file name part of the path specification is not affected and may
have wildcards. The drive and directory part of the path
specification is converted or fleshed out to a full and absolute
path.

The exact behavior of SElib.fullpath() depends on the
underlying operating system. Some results can vary when using
system specific path specifications.

SEE: SElib.directory(), SElib.splitFilename(), File object in fileobj.jsh
EXAMPLE: // The following returns the full spec

 // of current dir
function CurDir()
{
 return SElib.fullpath(".")
}
 // The following returns the full spec
 // of a parent dir
function CurDir()

Nombas ScriptEase ISDK/C 5.01 363

{
 return SElib.fullpath("..\")
}
 // The following works in DOS or OS/2
 // to test whether a drive
 // letter is valid
function ValidDrive(DriveLetter)
{
 Clib.sprintf(CurdirSpec, "%c:.", DriveLetter)
 return (null != SElib.fullpath(CurdirSpec))
}

SElib.getObjectProperties()
SYNTAX: SElib.getObjectProperties(object[,

 includeUndefined])
WHERE: object - an object from which to get its properties.

includeUndefined - a boolean, determines whether or not to
include properties with undefined values. The default is
false, that is, do not include properties with undefined
values.

RETURN: object - an array of strings which are the names of the properties
of the object. The array is terminated with a null, that is, the
last element is always null.

DESCRIPTION: Get the names of the properties of an object in an array of strings
in which each element is a property name and the last element is
null.

The parameter includeUndefined must be true to return
properties that are not defined. If includeUndefined is false,
then only properties that have defined data are included. The
default for includeUndefined is false.

The final member of the returned array returned is always null.
If the parameter object is not defined or contains no properties,
then the return is an array with a single element set to null.

SElib.getObjectProperties() is similar to the
ECMAScript for/in loop. The important difference is that a for/in
loop does not enumerate properties that have DONT_ENUM as part
of their attributes (global.setAttributes()), whereas
SElib.getObjectProperties() includes them in the array
that it returns.

SEE: for/in, Object propertyIsEnumerable()
EXAMPLE: var Point;

Point.row = 5;
Point.col = 8;
Point.height;
DisplayAllStructureMembers(Point);

function DisplayAllStructureMembers(ObjectVar)
{
 Screen.writeln("Object Properties:");
 var MemberList =

Nombas ScriptEase ISDK/C 5.01 364

SElib.getObjectProperties(ObjectVar);
 for (var i = 0; MemberList[i]; i++)
 Clib.printf(" %s\n", MemberList[i]);
}

// This fragment produces the following output.
// Object Properties:
// row
// col

SElib.inSecurity()
SYNTAX: SElib.inSecurity(infoVar)
WHERE: infoVar - variable to be passed to the ScriptEase security filter.

Your application and its security filter may use it however you
choose.

RETURN: boolean - true if there is a security filter, else false.
DESCRIPTION: Calls the security manager's initialization routine and is the only

way your application can directly interact with the security filter.
It is provided so you can reinitialize the security system,
probably to change the security level of a script.

Typically, you use this method when executing a particularly
insecure piece of code, such as a script received over a network,
to downgrade the security level, restoring it when the script
completes.

SElib.instance()
SYNTAX: SElib.instance()
RETURN: number - instance handle of the current ScriptEase session, that

is, for the current script.
DESCRIPTION: For Win32

Get the instance handle of the currently executing script. This
handle may be used with Windows API functions that use an
instance handle.

SEE: Screen.handle(), SElib.makeWindow(), icon.jsh, pickfile.jsh,
dropper.jse, iconmany.jse

EXAMPLE: var hScript = SElib.instance()

SElib.interpret()
SYNTAX: SElib.interpret(codeToInterpret[,

 howToInterpret[, security]])
WHERE: codeToInterpret - a string with ScriptEase code statements to be

interpreted as script statements or the file specification, path and
file name, of a script file. If the interpreted code receives
arguments, they are put at the end of the codeToInterpret string--
somewhat like a command line string.

howToInterpret - tells how to handle the interpreted code. The
following flag values may be combined using the bitwise or

Nombas ScriptEase ISDK/C 5.01 365

operator, "|". The value must be 0 or one of the following
choices:

• INTERP_FILE
CodeToInterpret is the file name of a script, followed by any
arguments.

• INTERP_TEXT
CodeToInterpret is a string of source code with no
arguments attached.

• INTERP_LOAD
Load code into same function and variable space as the script
that is calling SElib.interpret(). All functions, and
variables are supplied to the code being called, which can
modify and use them. If the code being called has similarly
named functions or variables as the calling code, functions in
the called code replace those in the calling code.

• INTERP_NOINHERIT_LOCAL
Local variables are not inherited by the interpreted code.

• INTERP_NOINHERIT_GLOBAL
Global variables are not inherited by the interpreted code as
globals.

• INTERP_COMPILED_SCRIPT
Run a script compiled with SElib.compileScript().
This flag only works with the INTERP_TEXT flag.

INTERP_FILE and INTERP_TEXT are mutually exclusive. If
neither is supplied the interpreter decides whether
codeToInterpret is a file or string of code.

These flags tell the computer how to interpret the parameter
codeToInterpret. If one is not supplied, the computer parses the
string and determines the most appropriate way to interpret it.

security – the filename of the security script to run this
interpreted script using. This is exactly like the security script
passed to SEdesk using the "/secure="option, except it applies
only to the script you are about to interpret. Remember that
security is additive; any existing security is still in effect for the
interpreted script as well.

RETURN: value - the return of the interpreted code.
DESCRIPTION: Interprets a string as if it were script. More flexible than the

JavaScript global.eval() function since it interprets a file as well
as a string and allows more control over how interpreted code
inherits variables from the script that calls
SElib.interpret(). By default, all variables in a script are
inherited as global variables.

There is no specific return for an error. To trap an error use the
try/catch error trapping statements.

The SElib.interpret() method may not be used with scripts

Nombas ScriptEase ISDK/C 5.01 366

that have been compiled into executable files using the /bind
option of the Pro version of ScriptEase Desktop.

SEE: SElib.interpretInNewThread(), SElib.spawn()
EXAMPLE: // The following interpreted code displays "Hello

world"
SElib.interpret('Screen.writeln("Hello world")',
INTERP_TEXT);
 // The following interprets
 // the file jseedit.jse with
 // autoexec.bat as an argument to the script
SElib.interpret("jseedit.jse c:\\autoexec.bat",
 INTERP_FILE);

SElib.interpretInNewThread()
SYNTAX: SElib.interpretInNewThread(filename,

 codeToInterpret)
WHERE: filename - the name of a script file with ScriptEase code. Use

null if not interpreting a file.

codeToInterpret - a string variable with one or more ScriptEase
statements to interpret, if not using a file. If a file is being
interpreted, the string is used as command line arguments for the
script file being interpreted.

RETURN: number - the ID of the thread containing the new instance of
ScriptEase. Depending on the operating system, returns 0 or -1
on an error.

DESCRIPTION: For Win32 and OS/2, that is, for operating systems that support
multithreading. Not supported for operating systems that do not
support multithreading, such as DOS and 16-bit Windows.

This method creates a new thread within the current ScriptEase
process and interprets a script within that new thread. The new
script runs independently of the currently executing thread. This
method differs from SElib.interpret() in that the calling thread
does not wait for the interpretation to finish and differs from
SElib.spawn() in that the new thread runs in the same memory
and process space as the currently running thread.

A script writer must ensure any synchronization among threads.
ScriptEase data and globals are on a per-thread basis.

If the parameter filename is not null, then it is the name of a
file to interpret, and the parameters, filename and
codeToInterpret are parsed as if being command line parameters
to a main() function.

If the parameter filename is null, then codeToInterpret is
treated as JavaScript code, a string with ScriptEase statements,
and is interpreted directly.

SEE: SElib.interpret(), SElib.spawn()
EXAMPLE: // See usage in threads.jse and httpd.jse

Nombas ScriptEase ISDK/C 5.01 367

SElib.makeWindow()
SYNTAX: SElib.makeWindow(parent, class, windowFunction,

 text, style, col, row,
 width, height,
 createParam, utilityVar)

WHERE: parent - window handle of the parent window of this window,
which would mean that this window is a subwindow. Pass null
if this window is being created on the desktop, without a specific
window being its parent. If null, the desktop is the parent.

class - a string or an object. If this parameter is a string, it must
be one of the pre-existing Windows classes:
button
combobox
edit
listbox
scrollbar
static

If this parameter is an object or structure it may have the
following properties:
.style Windows class style
.icon icon bitmap for minimized window
.cursor appearance when over this window
.background window background color

Properties that are not assigned values receive default values. In
general, the class defines the behavior of a window.

windowFunction - an identifier, the function that is called
whenever Windows sends a message to this window. Use null
if no function is to be called to intercept windows messages. In
the case of null, default functions for Windows are called. If
specified, the windowFunction should return a number or
nothing. Use the actual identifier of the function and not a string
with its name. For example, use MyWinFunction instead of
"MyWinFunction". The windowFunction is described in
greater detail in the description section.

text - the window title or caption that appears in the title bar. Use
null or "" if the window has no title.

style - the style of the window. Windows has many predefined
styles that may be joined into one style by using the bitwise or
operator, "|". Windows styles are defined with "WS_" at the
beginning. For example, WS_MAXIMIZEBOX |
WS_THICKFRAME would define a window that has a thick frame
and a maximize box. The "WS_" windows styles are standard
definitions used in Windows programming and may be found in
winobj.jsh or window.jsh.

col - the left most column of the window, expressed in pixels.

row - the top most row of the window, expressed in pixels.
Together, col and row define the top left corner of the window.

Nombas ScriptEase ISDK/C 5.01 368

Use CW_USEDEFAULT for col and row to let Windows set the
position.

width - the total width of the window, expressed in pixels.

height - the total height of the window, expressed in pixels. By
using col, row, width, and height, a window can be place
precisely on a screen.

createParam - normally set to null. If used, it may be a number
or object that is passed with the Windows WM_CREATE message
when creating a window.

utilityVar - any variable that a scripter chooses. This variable is
passed to the windowFunction when it receives a Windows
message. The windowFunction may alter the utilityVar. An
object or structure may be used, in which case many values may
be passed and altered as properties of the object. One practice is
to use an object to keep up with the properties of a window,
sometimes including its subwindows. This object is a good
vehicle for passing information.

RETURN: number - the handle of the window created on success, else
null.

DESCRIPTION: For Win32 and Win16

This method is the basic function for creating windows that will
be opened and managed by ScriptEase. This function provides
the basis for normal windows operations when windows created
by it are opened. This function registers the created window with
ScriptEase, so that when the .doWindows() method is executed,
this window will be properly managed.

If the class of the Window is unknown, it is registered as a new
class.

The windowFunction, a parameter of SElib.makeWindow(), is a
function that is specified to intercept and handle all Windows
messages that are posted to this window, the window just created
by SElib.makeWindow(). The windowFunction will intercept
all messages sent its associated window which slows execution
of a script. Use SElib.messageFilter() to limit the messages that
are actually intercepted by the windowFunction. If the
windowFunction has a return value, it must be a number, which
seems limiting. But remember, that you may use utilityVar as a
variable for receiving information and for passing information.

The definition of a windowFunction must follow the following
format:
function MyWinFunction(hWnd, Message, Param1,
 Param2 [, utilityVar])
{
// Body of the window function
}

Nombas ScriptEase ISDK/C 5.01 369

hWnd - a number, Window handle for the window that receives
these Windows messages. It is the handle of the window created
by SElib.makeWindow() that specified this function to receive
messages.

Message - a number, a message ID. Windows defines message
IDs and posts them to windows.

Param1 - a parameter that may accompany a message.

Param2 - a second parameter that may accompany a message.

utilityVar - an optional variable that is specified in the
SElib.makeWindow() call that created this window. This
variable is often an object/structure with several pieces of
information which may be altered. If it is, the changes are
available to other functions that may use the variable while
SElib.doWindows() is active and is showing and managing the
windows under its control.

SEE: SElib.doWindows()
EXAMPLE: var InfoStruct;

InfoStruct.width = 400;
InfoStruct.height = 300;

var hWnd = SElib.makeWindow
 (
 0, null, MyWinFunction,
 "My Window", WS_MAXIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT,
 InfoStruct.width, InfoStruct.height,
 null, InfoStruct
);

function MyWinFunction(hWnd, Msg, Param1,
 Param2, UtilVar)
{
 // Body of function to process messages.
 // Notice that UtilVar receives InfoStruct
}

SElib.messageFilter()
SYNTAX: SElib.messageFilter(hWnd[, message[, ...]])
WHERE: hWnd - a number, the handle of a window created by

SElib.makeWindow() or subclassed with
SElib.subclassWindow().

message - one or more messages to be processed by the window
to which hWnd points.

RETURN: object - an array of messages being filtered prior to this call to
SElib.messageFilter(). Returns null if no messages are in
the filter, that is, all messages are passed through to ScriptEase
functions or if hWnd is not a handle for a window processed by
SElib.makeWindow() or SElib.subclassWindow().

DESCRIPTION: For Win32 and Win16

Nombas ScriptEase ISDK/C 5.01 370

Restricts the messages being processed by windows created with
SElib.makeWindow() or subclassed with
SElib.subclassWindow(). Scripts run much faster if
windows only process the messages that they act on, that is, just
the messages that they need. Initially, there are no message
filters so all messages are processed.

Calling this method with no parameters removes all message
filtering.

SEE: SElib.makeWindow(), SElib.subclassWindow()

SElib.multiTask()
SYNTAX: SElib.multiTask(on)
WHERE: on - a boolean determining whether multitasking is on or off.

Default is true.
RETURN: void.
DESCRIPTION: For Win16

Turns multitasking of programs on or off. Normally,
multitasking is enabled and should be turned off only for very
brief and critical sections of code. No messages are received by
the current program or any other program while multitasking is
off.

SElib.multiTask() is additive, meaning that if you call
SElib.multiTask(false) twice, then you must call
SElib.multiTask(true) twice before multitasking is
resumed.

The example below empties the clipboard. Multitasking is turned
off during this brief interval to ensure that no other program tries
to open the clipboard while this program is accessing it.

SEE: SElib.suspend()
EXAMPLE: SElib.multiTask(false);

SElib.dynamicLink("USER", "OPENCLIPBOARD", SWORD16,
 PASCAL, Screen.handle());
SElib.dynamicLink("USER", "EMPTYCLIPBOARD", SWORD16,
PASCAL);
SElib.dynamicLink("USER", "CLOSECLIPBOARD", SWORD16,
PASCAL);
SElib.multiTask(true);

SElib.peek()
SYNTAX: SElib.peek(address[, dataType])
WHERE: address - the address in memory from which to get data, that is, a

pointer to data in memory.

dataType - the type of data to get, or thought of in another way,
the number of bytes of data to get. UWORD8 is the default.

RETURN: value - returns the data specified by dataType

Nombas ScriptEase ISDK/C 5.01 371

DESCRIPTION: Reads or gets data from the position in memory to which the
parameter address points. The parameter dataType may have the
following values:
UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

These values specify the number of bytes to be read and
returned.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SEE: SElib.poke(), Blob get(), Clib.memchr(), Clib.fread()
EXAMPLE: var v = "Now";

 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"
Screen.writeln(v);

// See usage in clipbrd.jsh, com.jsh,
// dde.jsh, ddesrv.jsh, and winsock.jsh

SElib.pointer()
SYNTAX: SElib.pointer(varName)
WHERE: varName - the name or identifier of a variable
RETURN: number - the address of, a pointer to, the variable identified by

varName.
DESCRIPTION: Gets the address in memory of a variable. The pointer points to

the first byte of data in a variable. The variable may be a
primitive data type: byte, integer, or float, or it may be a single
dimension array of bytes, integers, or floats, which includes a
string. If the variable is an array, then the address returned points
to the first byte of the first element of the array. The parameter
varName may also identify a Blob variable since Blobs are
actually byte arrays. Other types of data are not allowed.

For computer architectures that distinguish between near and far
memory addresses, the value returned by SElib.pointer() is
a far address or pointer.

ScriptEase data is guaranteed to remain fixed at its memory
location only as long as that memory is not modified by a script.
Thus, a pointer is valid only until a script modifies the variable
identified by varName or until the variable goes out of scope in a

Nombas ScriptEase ISDK/C 5.01 372

script. Putting data in the memory occupied by varName after
such a change is dangerous. When data is put into the memory
occupied by varName, be careful not to put more data than will
fit in the memory that the variable actually occupies.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SEE: SElib.peek(), SElib.poke(), Clib.memchr(), Blob object
EXAMPLE: var v = "Now";

 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"
Screen.writeln(v);

// See usage in fileobj.jsh, batch.jsh,
// memsrch.jsh, touch.jsh, and pickfile.jsh

SElib.poke()
SYNTAX: SElib.poke(address, data[, dataType])
WHERE: address - the address in memory in which to put data, that is, a

pointer to data in memory.

data - data to write directly to memory. The data should match
the dataType.

dataType - the type of data to get, or thought of in another way,
the number of bytes of data to get. UWORD8 is the default.

RETURN: number - the address of the byte after the data just written to
memory.

DESCRIPTION: Writes data to the position in memory to which the parameter
address points. The data to be written must match the dataType.
The parameter dataType may have the following values:
UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

These values specify the number of bytes to be written to
memory.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this

Nombas ScriptEase ISDK/C 5.01 373

routine.
SEE: SElib.peek(), Blob put(), Clib.memchr(), Clib.fread()
EXAMPLE: var v = "Now";

 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"
Screen.writeln(v);

// See usage in bmp.jsh, clipbrd.jsh,
// dde.jsh, ddecli.jsh, and dropsrc.jsh

SElib.ShellFilterCharacter()
SYNTAX: SElib.ShellFilterCharacter(functionFilterCharacter,

 allKeys)
WHERE: functionFilterCharacter - identifier, the name of a ScriptEase

function to use to filter characters.

allKeys - boolean, specifies whether the functionFilterCharacter is
called for every keystroke or just for keys that are not ordinary
printable characters, such as function keys. The return of the method
Clib.isprint() corresponds to the difference in keys that allKeys
affects.

RETURN: void.
DESCRIPTION: Adds a character filter function to a ScriptEase shell. When

ScriptEase is running as a command shell, that is, when a ScriptEase
interpreter is executed with no arguments, this method allows the
installation of a function to be called when keystrokes are pressed.
For example, the autoload.jse script that ships with ScriptEase uses
this method to implement command line history and filename
completion.

The function, functionFilterCharacter, must conform to the
following:
function functionFilterCharacter(command,
 position, key, extended, alphaNumeric)

command - string, the current string on the shell command line. This
string is read/write and may be changed by this function.

position - number, the current cursor position within the command
string. This position may be altered by this function.

key - number, the key being pressed. This parameter may be altered
by the function. Set key to zero, 0, to ignore keyboard input.

extended - boolean, true if the current keystroke is an extended
keyboard character, that is, a function key, a keyboard combination,

Nombas ScriptEase ISDK/C 5.01 374

and so forth.

alphaNumeric - true if the current keystroke is an alphabetic or
numeric key. The return of the method Clib.isalnum() corresponds to
alphaNumeric.

return - boolean, true if the command line must be redrawn or the
cursor position moved, based on the actions in this function.

SEE: SElib.ShellFilterCommand(), Clib.isalnum(), autoload.jse

SElib.ShellFilterCommand()
SYNTAX: SElib.ShellFilterCommand(functionFilterCommand)
WHERE: functionFilterCommand - identifier, the name of a function to

use to filter commands to a ScriptEase shell.
RETURN: void.
DESCRIPTION: Adds a command filter function to a ScriptEase shell. When

ScriptEase is running as a command shell, that is, when a
ScriptEase interpreter is executed with no arguments, this
method allows a function to be installed which is called when
commands are entered in a shell. For example, the autoload.jse
script that ships with ScriptEase uses this method to implement
commands, such as CD and TYPE.

The function, functionFilterCommand, must conform to the
following:
function functionFilterCommand(command)

command - a string, the current string on a shell command line.
This string is read/write and may be changed by the function. A
ScriptEase shell executes the command after returning from this
function. To prevent ScriptEase from executing any command
set command to a zero-length string, for example,
command[0]='\0', but not command="".

Before passing a command line to a filter function, ScriptEase
strips leading white space from the beginning and end of the
command string. Also, any redirection on a command line is not
seen by this function, since redirection is handled internally by
ScriptEase. For example, if a command line string is
"dir>dir.txt", then this function only sees the string "dir".

SEE: SElib.ShellFilterCommand(), autoload.jse

SElib.spawn()
SYNTAX: SElib.spawn(mode, execSpec[, arg[, ...]])
WHERE: mode - a number indicating how to spawn or execute the file

named by execSpec. The parameter mode may be one of the
following values though not all values are valid on all operating
systems:

Nombas ScriptEase ISDK/C 5.01 375

• P_WAIT Wait for a child program to complete before
continuing. (All platforms)

• P_NOWAIT A script continues to run while a child program
runs. In windows, a successful call with mode P_NOWAIT
returns the window handle of the spawned process.
(Windows and OS/2)

• P_SWAP Like P_WAIT, but swap out ScriptEase to create
more room for the child process. P_SWAP will free up as
much memory as possible by swapping ScriptEase to
EMS/XMS/INT15 memory or to disk (in TMP or TEMP or else
current directory) before executing the child process (thanks
to Ralf Brown for his excellent spawn library). (DOS only)

• P_OVERLAY The script exits and the child program is
executed in its place. (DOS 16-bit)

execSpec - a string with the path and filename of an executable
file or a ScriptEase script.

arg - one or more values to be passed as parameters to the file to
be executed.

RETURN: void - if the mode is P_OVERLAY.

number - if the mode is P_WAIT, the return is the exit code of the
child process, else it is -1.

number - if the mode is P_NOWAIT or P_SWAP, the return is the
identifier of the child process, else it is -1.

DESCRIPTION: Launches another application. The parameter mode determines
the behavior of the script after the spawn call, while execSpec is
the name of the process being spawned. Any arguments to the
spawned process follow execSpec.

The parameter execSpec may be the path and filename of an
executable file or the name of a ScriptEase script. If it is a script,
the spawned script runs from the same instance of ScriptEase as
the calling script. A spawned script does not cause another
instance of the interpreter to be launched. A script that has been
bound with the ScriptEase /bind function cannot be spawned
from the same instance as the calling script.

The parameter execSpec is automatically passed as argument 0.
ScriptEase implicitly converts all arguments to strings before
passing them to the child process.

SElib.spawn() searches for execSpec in the current directory
and then in the directories of the PATH environment variable. If
there is no extension in execSpec, SElib.spawn() searches for
file extensions in the following order: com, exe, bat, and cmd.

If a batch file is being spawned in 16-bit DOS and the
environment variable COMSPEC_ENV_SIZE exists, the command
processor is provided the amount of memory as indicated by

Nombas ScriptEase ISDK/C 5.01 376

COMSPEC_ENV_SIZE. If COMSPEC_ENV_SIZE does not exist,
the command processor receives only enough memory for
existing environment variables.

A return value of -1 results when Clib.errno is set to identify why
the function failed.

SEE: SElib.interpret(), SElib.interpretInNewThread(), winexec.jsh
EXAMPLE: // The following fragment

 // calls a mortgage program,
 // mortgage.exe, which takes
 // three parameters, initial debt,
 // rate, and monthly payment, and
 // returns, in its exit code,
 // the number of months needed to pay the debt.
var months = SElib.spawn(P_WAIT,
 "MORTGAGE.EXE 300000 10.5 1000");
if (months < 0)
 Screen.writeln("Error spawning MORTGAGE");
else
 Clib.printf(
 "It takes %d months to pay off the mortgage\n",
 months);

 // The arguments could also
 // be passed to mortgage.exe as
 // separate variables, as in the following.
var months = SElib.spawn(P_WAIT,
 "MORTGAGE.EXE",300000,10.5,1000);

 // The arguments could be passed
 // to mortgage.exe in a
 // variable array, provided that
 // they are all of the same
 // data type, in this case strings.
var MortgageData;
MortgageData[0] = "300000";
MortgageData[1] = "10.5";
MortgageData[2] = "1000";
var ths = spawn(P_WAIT,
 "MORTGAGE.EXE", MortgageData);

SElib.splitFilename()
SYNTAX: SElib.splitFilename(filespec)
WHERE: filespec - string specification for a file. May be a full or partial

path specification.
RETURN: object - structure containing the drive and directory, file, and

extension information contained in filespec. The structure
returned has the following properties:
.dir directory name including leading drive
 spec and trailing slash (d:\dir1\dir2\)
.name root name of file only (filename)
.ext file extension with leading period (.ext)

The three properties returned are guaranteed not to be null.

The actual characters used, such as the slash, depend on the

Nombas ScriptEase ISDK/C 5.01 377

operating system.
DESCRIPTION: Break up a file specification, full or partial path specification,

into its component parts: drive and directory, filename, and
extension. The filespec does not have to actually exist. This
method merely divides up the filespec, as passed, according to
the conventions of the operating system without checking to see
if a drive, directory, or filename actually exists.

SEE: SElib.fullpath(), File splitName(), File object in fileobj.jsh
EXAMPLE: // After splitting a filespec,

 // the following statement will
 // reconstruct it
var parts = SElib.splitFilename(MySpec);
var FileSpec = MySpec.dir + MySpec.name + MySpec.ext;

SElib.subclassWindow()
SYNTAX: SElib.subclassWindow(hWnd, windowFunction,

 utilityVar)
WHERE: hWnd - a number, the handle of an existing window to subclass.

windowFunction - an identifier, the function that is called
whenever Windows sends a message to this window. The
parameter windowFunction is the same as for
SElib.makeWindow().

utilityVar - any variable that a scripter chooses. This variable is
passed to the windowFunction when it receives a Windows
message. The parameter utilityVar is the same as for
SElib.makeWindow().

RETURN: boolean - true on success, else false if hWnd is invalid, was
created with SElib.makeWindow(), or is already subclassed.

DESCRIPTION: For Win32 and Win16

This method hooks the specified windowFunction into the
message loop for a window such that the function is called
before the window's default or previously-defined function.

The parameter hWnd is the window handle of an already existing
window to subclass.

The parameter windowFunction is the same as in the
SElib.makeWindow() method. Note that, as in the
SElib.makeWindow() method, if this method returns a value,
then the default or subclassed function is not called. If this
method returns no value, the call is passed on to the previous
function. This method may be used to subclass any Window that
is not already being managed by a windowFunction for this
ScriptEase instance. If a window was created with
SElib.makeWindow() or is already subclassed then this
method fails.

Note that this method may be used only once, with the window
handle returned by Screen.handle(). If you want to subclass the

Nombas ScriptEase ISDK/C 5.01 378

main ScriptEase window, it is best to open another instance of
ScriptEase and subclass it rather than to subclass the instance
that is powering your script. Although it is possible to subclass
that window, if you try to do anything with it, you will likely get
caught in an infinite loop and hang. To undo the window
subclassing or remove a WindowFunction from the message
loop, use SElib.breakWindow().

A WindowFunction may modify UtilityVar.

In your function that handles messages for another process,
certain limits are set as to what you can do with system
resources. For example, an open file handle is invalid while
processing a message for another program, because Windows
maps file handles into a table for programs. To work around this
problem, you may send a message to one of your ScriptEase
windows to handle the processing. This action switches
Windows' tables to your program while handling that
SendMessage.

SEE: SElib.makeWindow(), Window object in winobj.jsh

SElib.suspend()
SYNTAX: SElib.suspend(milliSeconds)
WHERE: milliSeconds - a number, the time in thousandths of a second to

suspend program execution.
RETURN: void.
DESCRIPTION: Suspends script or program execution for the time interval

specified in milliSeconds. The next statement in a script will
execute at the end of the delay.

True accuracy to the exact millisecond is not guaranteed and is
only closely approximated according to the accuracy provided by
the underlying operating system. This method allows a computer
to devote more time to other processes and can be used to give
the processor time to complete other tasks before calling the next
line in a script.

The example below spawns a copy of Windows Notepad, puts
the date and time into the document by simulating the selection
of Time/Date from the Edit menu, and then displays the line
"You asked for the time?". The SElib.suspend() method
gives the processor time to finish completing the menu command
before entering the text into Notepad. If Keystroke() were called
immediately after the call to MenuCommand(), the text would be
sent to Notepad while the menu item was still being selected and
would be garbled.

SEE: SElib.spawn(), Clib.ctime(), Date object
EXAMPLE: #include <menuctrl.jsh>

#include <keypush.jsh>
var hWnd = SElib.spawn(P_NOWAIT, "notepad.exe");

Nombas ScriptEase ISDK/C 5.01 379

MenuCommand(hWnd, "Edit|Time");
SElib.suspend(300);
KeyStroke("\nYou asked for the time?");

SElib.version()
SYNTAX: SElib.version()
RETURN: object - an object with properties that provide information about

the version and operating system of the currently executing
ScriptEase interpreter. The object returned as the following
properties:
.os - string, identifying operating system
.se.engineVersion - number, major minor version
.se.versionString - string, sub minor version
.buildTime - string, date/time of build
.bindable - boolean, can bind to executable
.security - boolean, uses security features

DESCRIPTION: This method provides a variety of useful information about the
version of the currently executing ScriptEase interpreter.

The .os string will be something like:
DOS
DOS32
MAC
NWNLM
OS2
WINDOWS
WIN32.NTCON
WIN32.NTWIN
WIN32.95CON
WIN32.95WIN
UNIX

SEE: getSEver(), getSEversion(), predefined constants and values
VERSION_MAJOR, VERSION_MINOR, VERSION_STRING

EXAMPLE: var ver;
ver = SElib.version();
Screen.writeln(ver.os);
Screen.writeln(ver.se.engineVersion);
Screen.writeln(ver.se.versionString);
Screen.writeln(ver.buildTime);
// Displays something like:
// WIN32.95CON
// 440
// B
// Apr 26 2001 16:06:49

SElib.windowList()
SYNTAX: SElib.windowList(hWnd)
WHERE: hWnd - a number, the handle of the window for which to find its

child windows.
RETURN: object - an array of window handles for all the child windows of

hWnd.
DESCRIPTION: For Win32 and Win16

Nombas ScriptEase ISDK/C 5.01 380

Get the handles of all child windows of the window designated
by hWnd. If hWnd is not passed, then get the handles of the
windows on the desktop which amount to all the parent
windows.

SEE: SElib.makeWindow(), Window object in winobj.jsh

SElib.dynamicLink()
Dynamic links for Win32, Win16, and OS/2

The dynamic link method, which varies in usage among the three platforms that
support it, allows flexibility when making calls to dynamic link libraries, DLLs,
and allows access to operating-system functions, API calls, not explicitly
provided by ScriptEase. If you know the proper conventions for a call, then you
can make an SElib.dynamicLink() call in a ScriptEase function to be used
for making a system call. Such a function is referred to as a wrapper, a function
in which a system call becomes available as a function call.

There are three versions of SElib.dynamicLink(): Win32, Win16, and OS/2.
These three versions differ slightly in the way they are called. So, if you wish to
use one function in a script that will be run on different platforms, you must
create an operating system filter using preprocessor directives: #if, #ifdef,
#elif, #else, and #endif.

Since these versions are different in the way that they call
SElib.dynamicLink(), they will be treated separately.

See Win32 structure definitions.

SElib.dynamicLink() - for Win32
SYNTAX: SElib.dynamicLink(library, procedure,

 convention[, [desc,] param …])
WHERE: library - a string, the name of the dynamic link library, DLL,

being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

convention - the calling convention to use when invoking or
using the procedure being called.
CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

desc - a blobDescriptor that describes the following param if
param is a structure. (See blobDescriptor example.) A
blobDescriptor is only used in front of params that are structures
and is required for such params. A Blob (Binary Large Object)
and a Buffer are very similar in ScriptEase. The Blob is the type
that was used, in the early days of ScriptEase, to work with data
in sections of memory. The Buffer is the newer type. Structure
types may be created in Blobs or Buffers and blobDescriptors

Nombas ScriptEase ISDK/C 5.01 381

may be used to describe the data in either type. So, in ScriptEase,
you will sometimes see blobDescriptor before a param of type
Blob or a param of type buffer. In either case, the blobDescriptor
is describing how data is stored in the param, even if the data is a
string.

param - a variable for a section of memory that holds data in the
form of a structure of elements or a buffer a string.

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

DESCRIPTION: For Win32

Calls a routine in a dynamic link library, DLL. The most
common use is to use various functions in the Windows API.

All values are passed as 32-bit values. If a parameter is
undefined when dynamicLink() is called, then it is assumed
that the parameter is a 32-bit value to be filled in, that is, the
address of a 32-bit data element is passed to the function, and
that function will set the value.

If a parameter is a structure, then it must be a structure that
defines the binary data types in memory to represent the
following variable. Before calling the DLL function, the
structure is copied to a binary buffer as described in Blob.put()
and Clib.fwrite(). When calling the DLL function, a descriptor
argument must precede the structured parameter, and this
descriptor argument is in addition to the parameter list for the
procedure being called. After calling the DLL function, the
binary data will be converted back into the data structure
according to the rules defined in Blob.get() and Clib.fread().
Data conversion is performed according to the current
_BigEndianMode setting.

SEE: Blob object, blobDescriptor example, Win32 structure
definitions, Clib.fread()

EXAMPLE: // The following calls
 // the Windows MessageBeep() function:
#define MESSAGE_BEEP_ORDINAL 104
SElib.dynamicLink("USER.EXE", MESSAGE_BEEP_ORDINAL,
 SWORD16, PASCAL,0);

 // The following displays a simple message box
 // and waits for user to press <Enter>.
#define MESSAGE_BOX_ORDINAL 1
#define MB_OK 0x0000
// Message box contains one push button: OK.
#define MB_TASKMODAL 0x2000
// Must respond to this message
SElib.dynamicLink("USER.EXE", MESSAGE_BOX_ORDINAL,
 SWORD16, PASCAL, null,
 "This is a simple message box",
 "Title of box", MB_OK | MB_TASKMODAL);

 // The following accomplishes
 // the same thing as above.

Nombas ScriptEase ISDK/C 5.01 382

#define MB_OK 0x0000
// Message box contains one push button: OK.
#define MB_TASKMODAL 0x2000
// Must respond to message
SElib.dynamicLink("USER", "MESSAGEBOX", SWORD16,
 PASCAL, null,
 "This is a simple message box",
 "Title of box", MB_OK | MB_TASKMODAL);

SElib.dynamicLink() - for Win16
SYNTAX: SElib.dynamicLink(library, procedure,

 returnType, convention[,
 [desc,] param …])

WHERE: library - a string, the name of the dynamic link library, DLL,
being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

returnType - a number, which tells ScriptEase what type of,
value the procedure returns, so that it can be properly converted
into an integer. The be one of the following:
UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

convention - the calling convention to use when invoking or
using the procedure being called.
CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

desc - a blobDescriptor that describes the following param if
param is a structure. (See blobDescriptor example.) A
blobDescriptor is only used in front of params that are structures
and is required for such params. A Blob (Binary Large Object)
and a Buffer are very similar in ScriptEase. The Blob is the type
that was used, in the early days of ScriptEase, to work with data
in sections of memory. The Buffer is the newer type. Structure
types may be created in Blobs or Buffers and blobDescriptors
may be used to describe the data in either type. So, in ScriptEase,
you will sometimes see blobDescriptor before a param of type
Blob or a param of type buffer. In either case, the blobDescriptor
is describing how data is stored in the param, even if the data is a
string.

param - a variable for a section of memory that holds data in the
form of a structure of elements or a buffer a string.

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

DESCRIPTION: For Win16

Nombas ScriptEase ISDK/C 5.01 383

Calls a routine in a dynamic link library, DLL. The most
common use is to use various functions in the Windows API.

If a parameter is a Blob, a byte-array, or an undefined value, it
is passed as a far pointer. All other numeric values are passed as
16-bit values. If 32 bits are needed, the parameter must be passed
in parts, with the low word first and the high word second for
CDECL calls but the high word first and low word second for
PASCAL calls.

If a parameter is undefined when SElib.dynamicLink() is
called, then it is assumed that the parameter is a far pointer to be
filled in, that is, that the far address of a data element is passed to
the function and that function will set the value. If any parameter
is a structure, then it must be a structure that defines the binary
data types in memory to represent the following variable. Before
calling the DLL function, the structure will be copied to a binary
buffer as described in Blob.put() and Clib.fwrite(). After calling
the DLL function, the binary data is converted back into the data
structure according to the rules defined in Blob.get() and
Clib.fread(). Data conversion is performed according to the
current _BigEndianMode setting.

SEE: Blob object, blobDescriptor example, Win32 structure
definitions, Clib.fread()

SElib.dynamicLink() - for OS/2
SYNTAX: SElib.dynamicLink(library, procedure, bitSize,

 convention[, [desc,] param …])
WHERE: library - a string, the name of the dynamic link library, DLL,

being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

bitSize - indicates whether this call is 16-bit or 32-bit and may be
either of two defined values: BIT16 or BIT32.

convention - the calling convention to use when invoking or
using the procedure being called.
CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

desc - a blobDescriptor that describes the following param if
param is a structure. (See blobDescriptor example.) A
blobDescriptor is only used in front of params that are structures
and is required for such params. A Blob (Binary Large Object)
and a Buffer are very similar in ScriptEase. The Blob is the type
that was used, in the early days of ScriptEase, to work with data
in sections of memory. The Buffer is the newer type. Structure

Nombas ScriptEase ISDK/C 5.01 384

types may be created in Blobs or Buffers and blobDescriptors
may be used to describe the data in either type. So, in ScriptEase,
you will sometimes see blobDescriptor before a param of type
Blob or a param of type buffer. In either case, the blobDescriptor
is describing how data is stored in the param, even if the data is a
string.

param - a variable for a section of memory that holds data in the
form of a structure of elements or a buffer a string.

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

DESCRIPTION: For OS/2

Calls a routine in a dynamic link library, DLL.

Any parameters required by a dynamically linked function
should be passed at the end of the parameters listed above, as
indicated by the ellipsis at the end of the parameter list. These
variables are interpreted as follows, depending on the operating
system.

For 32-bit functions, all values are passed as 32-bit values. For
16-bit functions, if the parameter is a Blob, a byte-array, or an
undefined value, then it is passed as a 16:16 segment:offset
pointer, otherwise all numeric values are passed as 16-bit values,
so if 32-bits are needed they must be passed in parts, with the
low word first and the high word second.

If a parameter is undefined when SElib.dynamicLink() is
called, then it is assumed that parameter is a 32-bit value to be
filled in, that is, that the address of a 32-bit data element is
passed to the function and that function will set the value. If any
parameter is a structure then it must be a structure that defines
the binary data types in memory to represent the following
variable. Before calling the DLL function, the structure is copied
to a binary buffer as described in Blob.put() and Clib.fwrite().
After calling the DLL function, the binary data is converted back
into the data structure according to the rules defined in Blob.get()
and Clib.fread(). Data conversion is performed according to the
current _BigEndianMode setting.

An alternative syntax:

The OS/2 processor also allows you to call a function via a call
gate with the following syntax:
SElib.dynamicLink(callGate, bitSize, convention,
 ...)

Where callGate is the gate selector for a routine referenced
through a call gate.

SEE: Blob object, blobDescriptor example, Clib.fread()

Nombas ScriptEase ISDK/C 5.01 385

String Object
The String object is a data type and is a hybrid that shares characteristics of
primitive data types and of composite data types. The String is presented in this
section under two main headings in which the first describes its characteristics as
a primitive data type and the second describes its characteristics as an object.

String as data type
A string is an ordered series of characters. The most common use for strings is to
represent text. To indicate that text is a string, it is enclosed in quotation marks.
For example, the first statement below puts the string "hello" into the variable
hello. The second sets the variable word to have the same value as a previous
variable hello:
var hello = "hello";
var word = hello;

Escape sequences for characters
Some characters, such as a quotation mark, have special meaning to the
interpreter and must be indicated with special character combinations when used
in strings. This allows the interpreter to distinguish between a quotation mark
that is part of a string and a quotation mark that indicates the end of the string.
The table below lists the characters indicated by escape sequences:

\a Audible bell
\b Backspace
\f Formfeed
\n NewlineError! Reference source not found.
\r Carriage return
\t Horizontal Tab
\v Vertical tab
\' Single quote
\" Double quote
\\ Backslash character
\0 Null character (e.g., "\0"is the null character)
\### Octal number (0-7) (e.g., "033"is the escape character)
\x## Hex number (0-F) (e.g., "x1B"is the escape character)
\u#### Unicode number (0-F) (e.g., "u001B"is escape character)

Note that these escape sequences cannot be used within strings enclosed by back
quotes, which are explained below.

Single quote
You can declare a string with single quotes instead of double quotes. There is no
difference between the two in JavaScript, except that double quote strings are
used less commonly by many scripters.

Back quote
ScriptEase provides the back quote "`", also known as the back-tick or grave
accent, as an alternative quote character to indicate that escape sequences are not

Nombas ScriptEase ISDK/C 5.01 386

to be translated. Any special characters represented with a backslash followed by
a letter, such as "\n", cannot be used in back tick strings.

For example, the following lines show different ways to describe a single file
name:
"c:\\autoexec.bat" // traditional C method
'c:\\autoexec.bat' // traditional C method
`c:\autoexec.bat` // alternative ScriptEase method

Back quote strings are not supported in most versions of JavaScript. So if you are
planning to port your script to some other JavaScript interpreter, you should not
use them.

String as object
Strictly speaking, the String object is not truly an object. It is a hybrid of a
primitive data type and of an object. As an example of its hybrid nature, when
strings are assigned using the assignment operator, the equal sign, the assignment
is by value, that is, a copy of a string is actually transferred to a variable. Further,
when strings are passed as arguments to the parameters of functions, they are
passed by value. Objects, on the other hand, are assigned to variables and passed
to parameters by reference, that is, a variable or parameter points to or references
the original object.

Strings have both properties and methods which are listed in this section. These
properties and methods are discussed as if strings were pure objects. Strings have
instance properties and methods and are shown with a period, ".", at their
beginnings. A specific instance of a variable should be put in front of a period to
use a property or call a method. The exception to this usage is a static method
which actually uses the identifier String, instead of a variable created as an
instance of String. The following code fragment shows how to access the .length
property, as an example for calling a String property or method:
var TestStr = "123";
var TestLen = TestStr.length;

String properties

String object instance properties
String length
SYNTAX: string.length
DESCRIPTION: The length of a string, that is, the number of characters in a

string. JavaScript strings may contain the "\0" character.
SEE: String lastIndexOf()
EXAMPLE: var s = "a string";

var n = s.length;

String object instance methods
String()
SYNTAX: new String([value])

Nombas ScriptEase ISDK/C 5.01 387

WHERE: value - value to be converted to a string as this string object.
RETURN: This method returns a new string object whose value is the

supplied value.
DESCRIPTION: If value is not supplied, then the empty string "" is used instead.

Otherwise, the value ToString(value) is used. Note that if
this function is called directly, without the new operator, then the
same construction is done, but the returned variable is converted
to a string, rather than being returned as an object.

SEE: RegExp()
EXAMPLE: var s = new String(123);

String charAt()
SYNTAX: string.charAt(position)
WHERE: position - offset within a string.
RETURN: string - character at position
DESCRIPTION: This method gets the character at the specified position. If no

character exists at location position, or if position is less
than 0, then NaN is returned.

SEE: String charCodeAt()
EXAMPLE: // To get the first character in a string,

// use as follows:

var string = "a string";
string.charAt(0);

// To get the last character in a string, use:
string.charAt(string.length - 1);

String charCodeAt()
SYNTAX: string.charCodeAt(index)
WHERE: position - index of the character the encoding of which is to be

returned.
RETURN: number - representing the unicode value of the character at

position index of a string. Returns NaN if there is no character at
the position.

SEE: String charAt(), String.fromCharCode()
DESCRIPTION: This method gets the nth character code from a string.

String concat()
SYNTAX: string.concat([string1, ...])
WHERE: stringN - A list of strings to append to the end of the current

object.
RETURN: This method returns a string value (not a string object) consisting

of the current object and any subsequent arguments appended to

Nombas ScriptEase ISDK/C 5.01 388

it.
DESCRIPTION: This method creates a new string whose contents are equal to the

current object. Each argument is then converted to a string using
global.ToString() and appended to the newly created string. This
value is then returned. Note that the original object remains
unaltered. The '+' operator performs the same function.

SEE: Array concat()
EXAMPLE: // The following line:

var proverb = "A rolling stone " + "gathers no moss."

// creates the variable proverb and
// assigns it the string
// "A rolling stone gathers no moss."
// If you try to concatenate a string with a number,
// the number is converted to a string.

 var newstring = 4 + "get it";

// This bit of code creates newstring as a string
// variable and assigns it the string
// "4get it".

// The use of the + operator is the standard way of
// creating long strings in JavaScript.
// In ScriptEase, the + operator is optional.
// For example, the following:

var badJoke = "I was in front of an Italian "
 "restaurant waiting to get in when this guy "
 "came up and asked me, \"Why did the "
 "Italians lose the war?\" I told him I had "
 "no idea. \"Because they ordered ziti"
 "instead of shells,\" he replied."

// creates a long string containing
// the entire bad joke.

String indexOf()
SYNTAX: string.indexOf(substring[, offset])
WHERE: substring - substring to search for within string.

offset - optional integer argument which specifies the position
within string at which the search is to start. Default is 0.

RETURN: number - index of the first appearance of a substring in a string,
else -1, if substring not found.

DESCRIPTION: String indexOf() searches the string for the string specified in
substring. The search begins at offset if offset is
specified; otherwise the search begins at the beginning of the
string. If substring is found, String indexOf() returns the
position of its first occurrence. Character positions within the
string are numbered in increments of one beginning with zero.

SEE: String charAt(), String lastIndexOf(), String substring()

Nombas ScriptEase ISDK/C 5.01 389

EXAMPLE: var string = "what a string";
string.indexOf("a")

// returns the position, which is 2 in this example,
// of the first "a" appearing in the string.
// The method indexOf()may take an optional second
// parameter which is an integer indicating the index
// into a string where the method starts searching
// the string. For example:

var magicWord = "abracadabra";
var secondA = magicWord.indexOf("a", 1);

// returns 3, index of the first "a" to be found in
// the string when starting from the second letter of
// the string.
// Since the index of the first character is 0, the
// index of second character is 1.

String lastIndexOf()
SYNTAX: string.lastIndexOf(substring[, offset])
WHERE: substring - The substring that is to be searched for within string

offset - An optional integer argument which specifies the
position within string at which the search is to start. Default is 0.

RETURN: number - index of the last appearance of a substring in a string,
else -1, if substring not found.

SEE: String indexOf()
DESCRIPTION: This method is similar to String indexOf(), except that it finds

the last occurrence of a character in a string instead of the first.

String localeCompare()
SYNTAX: string.localeCompare(compareStr)
WHERE: compareStr - a string with which to compare an instance string.
RETURN: number - indicating the relationship of two strings.

• < 0 if string is less than compareStr
• = 0 if string is the same as compareStr
• > 0 if string is greater than compareStr

DESCRIPTION: This method returns a number that represents the result of a
locale-sensitive string comparison of this object with that object.
The result is intended to order strings in the sort order specified
by the system default locale, and will be negative, zero, or
positive, depending on whether string comes before compareStr
in the sort order, the strings are equal, or string comes after
compareStr.

SEE: Clib.strcmpi(), Clib.stricmp()
EXAMPLE:

String match()

Nombas ScriptEase ISDK/C 5.01 390

SYNTAX: string.match(pattern)
WHERE: pattern - a regular expression pattern to find or match in string.

May be a regular expression or a value, such as, a string, that
may be converted into a regular expression using the RegExp()
constructor. For example, both of the following are equivalent:
var rtn = "one two three".match(/two/);
var rtn = "one two three".match("two");

RETURN: array - an array with various elements and properties set
depending on the attributes of a regular expression. Returns
null if no match is found.

DESCRIPTION: This method behaves differently depending on whether pattern
has the "g" attribute, that is, on whether the match is global.

If the match is not global, string is searched for the first match to
pattern. A null is returned if no match is found. If a match is
found, the return is an array with information about the match.
Element 0 has the text matched. Elements 1 and following have
the text matched by sub patterns in parentheses. The element
numbers correspond to group numbers in regular expression
reference characters and regular expression replacement
characters. The array has two extra properties: index and input.
The property index has the position of the first character of the
text matched, and input has the target string.

If the match is global, string is searched for all matches to
pattern. A null is returned if no match is found. If one or more
matches are found, the return is an array in which each element
has the text matched for each find. There are no index and
input properties. The length property of the array indicates
how many matches there were in the target string.

If any matches are made, appropriate RegExp object static
properties, such as RegExp.leftContext, RegExp.rightContext,
RegExp.$n, and so forth are set, providing more information
about the matches.

SEE: RegExp exec(), String replace(), String search(), Regular
expression replacement characters, RegExp object static
properties

EXAMPLE: // not global
var pat = /(t(.)o)/;
var str = "one two three tio one";
 // rtn == "two"
 // rtn[0] == "two"
 // rtn[1] == "two"
 // rtn[2] == "w"
 // rtn.index == 4
 // rtn.input == "one two three two one"
rtn = str.match(pat);

 // global
var pat = /(t(.)o)/g;
var str = "one two three tio one";
 // rtn[0] == "two"

Nombas ScriptEase ISDK/C 5.01 391

 // rtn[1] == "tio"
 // rtn.length == 2
rtn = str.match(pat);

String replace()
SYNTAX: string.replace(pattern, replexp)
WHERE: pattern - a regular expression pattern to find or match in string.

replexp - a replacement expression which may be a string, a
string with regular expression elements, or a function.

RETURN: string - the original string with replacements in it made
according to pattern and replexp.

DESCRIPTION: This string is searched using the regular expression pattern
defined by pattern. If a match is found, it is replaced by the
substring defined by replexp. The parameter replexp may be a:

• a simple string
• a string with special regular expression replacement

elements in it
• a function that returns a value that may be converted into

a string

If any replacements are done, appropriate RegExp object static
properties, such as RegExp.leftContext, RegExp.rightContext,
RegExp.$n, and so forth are set, providing more information
about the replacements.

The special characters that may be in a replacement expression
are (see regular expression replacement characters):

• $1, $2 ... $9
The text that is matched by regular expression patterns
inside of parentheses. For example, $1 will put the text
matched in the first parenthesized group in a regular
expression pattern. See (...) under regular expression
reference characters.

• $+
The text that is matched by the last regular expression
pattern inside of the last parentheses, that is, the last
group.

• $&
The text that is matched by a regular expression pattern.

• $`
The text to the left of the text matched by a regular
expression pattern.

• $'
The text to the right of the text matched by a regular
expression pattern.

• \$
The dollar sign character.

Nombas ScriptEase ISDK/C 5.01 392

SEE: String match(), String search(), Regular expression replacement
characters, RegExp object static properties

EXAMPLE: var rtn;
var str = "one two three two one";
var pat = /(two)/g;

 // rtn == "one zzz three zzz one"
rtn = str.replace(pat, "zzz");
 // rtn == "one twozzz three twozzz one";
rtn = str.replace(pat, "$1zzz");
 // rtn == "one 5 three 5 one"
rtn = str.replace(pat, five());
 // rtn == "one twotwo three twotwo one";
rtn = str.replace(pat, "$&$&);

function five()
{
 return 5;
}

String search()
SYNTAX: string.search(pattern)
WHERE: pattern - a regular expression pattern to find or match in string.
RETURN: number - the starting position of the first matched portion or

substring of the target string. Returns -1 if there is no match.
DESCRIPTION: This method returns a number indicating the offset within the

string where the pattern matched or -1 if there was no match. The
return is the same character position as returned by the simple
search using String indexOf(). Both search() and indexOf()
return the same character position of a match or find. The
difference is that indexOf() is simple and search() is
powerful.

The search() method ignores a "g" attribute if it is part of the
regular expression pattern to be matched or found. That is,
search() cannot be used for global searches in a string.

After a search is done, the appropriate RegExp object static
properties are set.

SEE: String match(), String replace(), RegExp exec(), Regular
expression syntax, RegExp Object, RegExp object static
properties

EXAMPLE: var str = "one two three four five";
var pat = /th/;
str.search(pat); // == 8, start of th in three
str.search(/t/); // == 4, start of t in two
str.search(/Four/i); // == 14, start of four

String slice()
SYNTAX: string.slice(start[, end])
WHERE: start - index from which to start.

end - index at which to end.

Nombas ScriptEase ISDK/C 5.01 393

RETURN: string - a substring (not a String object) consisting of the
characters.

SEE: String substring()
DESCRIPTION: This method is very similar to String substring(), in that it returns

a substring from one index to another. The only difference is
that if either start or end is negative, then it is treated as
length + start or length + end. If either exceeds the
bounds of the string, then either 0 or the length of the string is
used instead.

String split()
SYNTAX: string.split([delimiterString])
WHERE: delimiterString - character, string or regular expression where the

string is split. If substring is not specified, an array will be
returned with the name of the string specified. Essentially this
will mean that the string is split character by character.

RETURN: object - if no delimiters are specified, returns an array with one
element which is the original string.

DESCRIPTION: This method splits a string into an array of strings based on the
delimiters in the parameter delimiterString. The parameter
delimiterString is optional and if supplied, determines where the
string is split.

SEE: Array join()
EXAMPLE: /*

For example, to create an array of all
of the words in a sentence, use code similar
to the following fragment:
*/

var sentence = "I am not a crook";
var wordArray = sentence.split(' ');

String substr()
SYNTAX: string.substr(start, length)
WHERE: start - integer specifying the position within the string to begin

the desired substring. If start is positive, the position is relative to
the beginning of the string. If start is negative, the position is
relative to the end of the string.

length - the length, in characters, of the substring to extract.
RETURN: string - a substring starting at position start and including the

next number of characters specified by length.
DESCRIPTION: This method gets a section of a string. The start parameter is the

first character in the new string. The length parameter determines
how many characters to include in the new substring.

This method, substr() differs from String substring() in two
basic ways. One, in substring() the start position cannot be

Nombas ScriptEase ISDK/C 5.01 394

negative, that is, it must be 0 or greater. Two, the second
parameter in substring() indicates a position to go to, not the
length of the new substring.

SEE: String substring()
EXAMPLE: var str = ("0123456789");

str.substr(0, 5) // == "01234"
str.substr(2, 5) // == "23456"
str.substr(-4, 2) // == "56"

String substring()
SYNTAX: string.substring(start, end)
WHERE: start - integer specifying the position within the string to begin

the desired substring.

end - integer specifying the position within the string to end the
desired substring.

RETURN: string - a substring starting at position start and going to but not
including position end.

DESCRIPTION: This method retrieves a section of a string. The start parameter is
the index or position of the first character to include. The end
parameter marks the end of the string. The end position is the
index or position after the last character to be included. The
length of the substring retrieved is defined by end minus start.
Another way to think about the start and end positions is that end
equals start plus the length of the substring desired.

SEE: String charAt(), String indexOf(), String lastIndexOf(), String
slice(), String substr()

EXAMPLE: // For example, to get the first nine characters
// in string, use a Start position
// of 0 and add 9 to it, that is,
// "0 + 9", to get the End position
// which is 9. The following fragment illustrates.

var str = "0123456789";
str.substring(0, 5) // == "01234"
str.substring(2, 5) // == "234"
str.substring(0, 10) // == "0123456789"

String toLocaleLowerCase()
SYNTAX: string.toLocaleLowerCase()
RETURN: string - a copy of a string with each character converted to lower

case.
DESCRIPTION: This method behaves exactly the same as String toLowerCase().

It is designed to convert the string to lower case in a locale
sensitive manner, though this functionality is currently
unavailable. Once it is implemented, this function may behave
differently for some locales (such as Turkish), though for the
majority it will be identical to toLowerCase().

Nombas ScriptEase ISDK/C 5.01 395

SEE: String toLowerCase(), String toLocaleUpperCase()

String toLocaleUpperCase()
SYNTAX: string.toLocaleUpperCase()
RETURN: string - a copy of a string with each character converted to upper

case.
DESCRIPTION: This method behaves exactly the same as String toUpperCase().

It is designed to convert the string to upper case in a locale
sensitive manner, though this functionality is currently
unavailable. Once it is implemented, this function may behave
differently for some locales (such as Turkish), though for the
majority it will be identical to toUpperCase().

SEE: String toUpperCase(), String toLocaleLowerCase()

String toLowerCase()
SYNTAX: string.toLowerCase()
RETURN: string - copy of a string with all of the letters changed to lower

case.
DESCRIPTION: This method changes the case of a string.
SEE: String toUpperCase(), String toLocaleLowerCase()
EXAMPLE: var string = new String("Hello, World!");

string.toLowerCase()

// This will return the string "hello, world!".

String toUpperCase()
SYNTAX: string.toUpperCase()
RETURN: string - a copy of a string with all of the letters changed to upper

case.
DESCRIPTION: This method changes the case of a string.
SEE: String toLowerCase(), String toLocaleUpperCase()
EXAMPLE: var string = new String("Hello, World!");

string.toUpperCase()

// This will return the string
// "HELLO, WORLD!".

String object static methods
String.fromCharCode()
SYNTAX: String.fromCharCode(chrCode[, ...])
WHERE: chrCode - character code, or list of codes, to be converted.
RETURN: string - string created from the character codes that are passed to

it as parameters.
DESCRIPTION: The identifier String is used with this static method, instead of a

variable name as with instance methods. The arguments passed

Nombas ScriptEase ISDK/C 5.01 396

to this method are assumed to be unicode characters.
SEE: String(), String charCodeAt()
EXAMPLE: // The following code:

var string = String.fromCharCode(0x0041,0x0042)
// will set the variable string to be "AB".

Nombas ScriptEase ISDK/C 5.01 397

Unix Object
platform: Unix OS, all versions of SE

Unix object static methods
Unix.fork()
SYNTAX: Unix.fork()
RETURN: number - 0 or a child process id. 0 is returned to the child

process, the id of the child process is returned to the parent.
DESCRIPTION: A call to this function creates two duplicate processes. The

processes are exact copies of the currently running process, so
both pick up execution from the next statement. Because these
processes are duplicates, they share identical all resources the
original one had at the time of fork()ing, but not any allocated
later. For instance, any open file handles or sockets are shared. If
both processes write to them, the output will be intermixed since
each write from either process advances the file pointer for both.
Unix.wait() allows you to wait for completion of a Child. Using
Unix.wait() or Unix.waitpid() is important to prevent
annoying zombie processes from building up.

SEE: Unix.kill(), Unix.wait(), Unix.waitpid()
EXAMPLE: // Here is a simple example:

function main()
{
 var id = Unix.fork();

 if(id==0)
 {
 Clib.printf("Child here!\n");
 Clib.exit(0);
 }
 else
 {
 Clib.printf("started child process %d\n", id);
 }
}

Unix.kill()
SYNTAX: Unix.kill(pid, signal)
WHERE: pid - process to kill.

signal - the signal to send the process.
RETURN: number - 0 for success, -1 for error.
DESCRIPTION: This is simply a direct wrapper for the Unix kill command. To

get documentation on it for your particular Unix system, just
type 'man 2 kill'

SEE: Unix.fork()
EXAMPLE: // Typically you would use this to kill a child,

Nombas ScriptEase ISDK/C 5.01 398

// for instance:

if(var id = Unix.fork())
{
 while(1)
 Clib.printf("I am an annoying child.\n");
}
else
{
 // child would be too annoying, so kill it
 Unix.kill(id,9); //9 is SIGKILL
 Unix.wait(var status); //wait until child is dead
 Clib.printf(
 "I hope DSS doesn't here about this...\n");
}

Unix.setgid()
SYNTAX: Unix.setgid(id)
WHERE: id - group id to set.
RETURN: number - 0 for success, -1 for error.
DESCRIPTION: Changes the group ID to the given ID, if allowed.
SEE: Unix.setuid()

Unix.setsid()
SYNTAX: Unix.setsid()
RETURN: number - 0 for success, -1 for error.
DESCRIPTION: Creates a new session with no terminal, most useful for having

commands that, when run, immediately have the terminal prompt
reappear, but continue to run in the background.

SEE: Unix.fork()
EXAMPLE: // A typical daemon program has a line like this:

#if defined(_UNIX_)
 Unix.setsid(); if(Unix.fork()) Clib.exit(0);
#endif

// which detaches the program from the terminal and
// continues. Notice, this for line means that
// only the child is running. Because the parent
// has exited and the child does not have the
// original file handles, the shell thinks
// the program is done and goes back to the prompt.

Unix.setuid()
SYNTAX: Unix.setuid(id)
WHERE: id - user id to set.
RETURN: number - 0 for success, -1 for error.
DESCRIPTION: Changes the user ID to the given ID, if allowed.
SEE: Unix.setgid()

Nombas ScriptEase ISDK/C 5.01 399

Unix.wait()
SYNTAX: Unix.wait(status)
WHERE: status - status of the process.
RETURN: number - process id of the exiting child, else -1 for error.
DESCRIPTION: A call to Unix.wait() will suspend execution until a child

process terminates, then return the id of the particular child that
exited. The status parameter is filled in with the status code for
the process (this is the raw data exactly as returned by the
underlying C wait() call provided for Unix gurus who find this
information useful.) Any resources used by the Child are cleaned
up.

SEE: Unix.kill(), Unix.waitpid()
EXAMPLE: // Here is a simple example:

function main()
{
 var id = Unix.fork();

 if(id==0)
 {
 Clib.printf("Child here!\n");
 Clib.exit(0);
 }
 else
 {
 Clib.printf("started child process %d\n", id);
 Clib.assert(Unix.wait(var dontcare)==id);
 Clib.printf("child process is dead meat.\n");
 }
}

Unix.waitpid()
SYNTAX: Unix.waitpid(pid, status, flags)
WHERE: pid - child process interested in or -1 for any.

status - status of the process.

flags - WNOHANG or 0.
RETURN: number - process id of the exiting child, else -1 for error.
DESCRIPTION: Very similar to Unix.wait(), except you can specify which child

process you care about as well as some flags. The only flag
currently given a name is WNOHANG, which means that if no
child is ready to exit, the call returns immediately. Unix gurus
who need the full functionality can put the other possible flag
values here.

SEE: Unix.kill(), Unix.waitpid()
EXAMPLE: // This function is most useful in the main loop

// of a server daemon
// (see inn.jse, unix/daemon.jse samples.)
// By calling it each time through the loop such as:

Nombas ScriptEase ISDK/C 5.01 400

Unix.waitpid(-1,var status, WNOHANG);

// Child processes will get cleaned up and
// zombie processes will not stick around
// wasting resources.

Nombas ScriptEase ISDK/C 5.01 401

Link Libraries
Link libraries are dynamic link library files (.dll files) developed specifically to
work with ScriptEase. ScriptEase can use any DLL, but the calling conventions
needed to call routines in a DLL are necessarily more cumbersome than calling
internal routines. ScriptEase extends the power and ease of using its link libraries
by tying them to the internal data structures of ScriptEase. In this way, the data
and routines in a link library are available with the same calling conventions of
internal routines. Consider the two following code fragment:
 // Using dynamicLink
var v1 = SElib.dynamicLink("YourDll.dll", "FunctionOne", STDCALL,
args ...);
var v2 = SElib.dynamicLink("YourDll.dll", "FunctionTwo", STDCALL,
args ...);

 // Using a link library
#link <SElink.dll>
var v1 = FunctionOne(args ...);
var v2 = FunctionTwo(args ...);

As you can see in the first three lines, every time you want to call a routine from
a general DLL, you must use the more cumbersome SElib.dynamicLink()
method and its cumbersome calling conventions. Cumbersome calling
conventions exist in any language that allows general DLL files to be called. But,
notice the difference after a ScriptEase link DLL is linked into a script, as
illustrated by the line, #link <SElink.dll>. The routines and data in the DLL
are accessible in the same way as internal routines such as Screen.writeln().

Script libraries, scripts that end with jsh, can be used to define objects, methods,
properties, functions, and data. The advantage of script libraries is that you may
develop them quickly and alter them at any time. An advantage of link libraries is
that they execute faster since they compiled executables.

The following sections explain various link libraries. To use these link libraries,
they must be included in a script with the #link <> preprocessor directive.
Most link libraries have a corresponding script library, jsh file, that simplifies
their use even more.

See:

• Com Object Link Library
• DSP Link Library
• GD Link Library
• MD5 Checksum Link Library
• SEDBC Link Library
• Socket Link Library
• UUCode Link Library

Nombas ScriptEase ISDK/C 5.01 403

COM Object Link Library
The ScriptEase COM object consists of three functions: COMCreateObject() to
create a COM object link, COMGetObject() to create a COM object link, and
COMCreateObject() to force the COM object to be released early.

COM object
 title: COM object link library
platform: WINDOWS; All versions except WMLScriptEase
 source: #link <comobj>

The Component Object Model, COM, allows communication among the
software of various applications, at least applications that support COM. The
COM object library provides the ability to use COM objects from within scripts.
COM is underneath a number of technologies, such as, ActiveX Automation,
ActiveX controls, and ActiveX documents.

In general, the technique that allows one application to use objects in another is
known as Automation, which some people may remember by an older phrase,
OLE Automation. An application may be an Automation server or an Automation
client (also known as an Automation controller). The ScriptEase function
COMCreateObject() allows a script to be an Automation client but not an
Automation server.

A full description of COM objects is beyond the scope of this reference manual.
Since each Automation server exposes its own objects with unique names, a
scripter must have the documentation for the objects of the applications to be
used. ScriptEase only provides the ability to connect to and use COM objects.

COMCreateObject()
SYNTAX: COMCreateObject(COMObject)
WHERE: COMObject - the name of a COM object. Refer to the

documentation for particular applications to get the names that
may be used.

RETURN: object - an instance of the specified COM object.
DESCRIPTION: Create an instance of a COM object to be used in a script. When

this function is used, an Automation server is started, and an
instance of a COM object is established. COMCreateObject()
does not get or connect to an existing instance of a COM object
in another application. Rather, it starts a new instance of an
object in another application.

SEE: #link <comobj>, COM object, COMGetObject,
COMReleaseObject

EXAMPLE: /*
 This example script was tested with Word 2000
 but should work with Word 97. Word does not
 need to be running, just installed.
 */

#link "comobj"

var text =

Nombas ScriptEase ISDK/C 5.01 404

 "Nombas, Inc.\n"
 "\n"
 "To All ScriptEase users:\n"
 "\n"
 "The Component Object Model is very powerful "
 "and might be worth the time to learn how "
 "to use. By using Automation, "
 "you may automate and control many applications "
 "from ScriptEase scripts, as is being "
 "illustrated by this simple example "
 "of automating Word.\n";

 /*
 These next few lines connect to a new
 instance of a COM object in Word. Both of the
 succeeding illustrations rely on these
 initial lines but show how to do the same
 thing using different approaches. Either
 approach is acceptable.
 */
var wd;
wd = COMCreateObject("Word.Application");
wd.visible = true;

 /*
 This first illustration of putting text into
 a Word document uses the properties of
 the Word.Application object and does not
 define any new ScriptEase variables.

 Since we start a new instance of word, when
 we add a document, it is document 1.
 */
wd.documents.add;
wd.documents(1).content = text;

 /*
 This second illustration defines a new
 variable to point to a property of the
 Word.Application object and uses that
 variable.

 When we add another document, we define the
 variable doc to point to it. Thus, we do not
 have to worry about the document number.
 */
var doc;
doc = wd.documents.add;
doc.content = text;

COMGetObject()
SYNTAX: COMGetObject(file,COMObject)
WHERE: file - the file hosting the COM object.

COMObject - the name of a COM object. Refer to the
documentation for particular applications to get the names that
may be used.

RETURN: object - an instance of the specified COM object.
DESCRIPTION: Create an instance of a COM object to be used in a script.

Nombas ScriptEase ISDK/C 5.01 405

Unlinke COMCreateObject(), COMGetObject does get or
connect to an existing instance of a COM object in another
application.

SEE: #link <comobj>, COM object, COMCreateObject,
COMReleaseObject

COMReleaseObject()
SYNTAX: COMReleaseObject(COMObject)
WHERE: COMObject - An object returned with COMCreateObject() or

COMGetObject().
RETURN: none
DESCRIPTION: Release all internal locks on a COM object created with

COMCreateObject() or COMGetObject().

In most cases a lock is held on a COMObject until the script is
no longer using the object and the internal script-engine garbage
collector has run and freed the object. Sometimes you will want
the COM object to be releases earlier, such as if the COM object
can only work with a limited number of clients--in this case
calling COMReleaseObject will force all locks on the COM
object to be released. After COMReleaseObject and calls using
the COMObject will throw an exception.

SEE: #link <comobj>, COM object, COMCreateObject,
COMGetObject

EXAMPLE: /*
 This is similar to the example shown above
 for COMCreateObject. In this case the
 object will be released..
 */

#link "comobj"

var wd;
wd = COMCreateObject("Word.Application");
wd.visible = true;

COMReleaseObject(wd);

try {
 wd.visible = false; // this will fail because
 // the object is released
}
catch(e)
{
 // this will be caught because the wd object
 // was used after it was released
}

Nombas ScriptEase ISDK/C 5.01 407

DSP Link Library
Distributed Scripting Protocol is implemented by the ScriptEase DSP link library
as the DSP object.

DSP Object
platform: All platforms except Dos; All versions of SE
 source: #link <sedsp>

The DSP object provides a framework for implementing distributed scripting
across a variety of computers and networks.

Creating a DSP object
The Distributed Scripting Protocol provides no internal method for managing a
connection or transporting packets. It is simply a framework, with the physical
transport method being supplied by the user. As such, it is impossible to simply
create a DSP object, because it is incapable of doing anything by itself. The user
must supply a set of functions to manage the connection with the server. To
create a DSP object, you call new DSP(myOpenFunction, myParameters).
The function that you supply must open the connection and return a reference to
it. It is possible in some instances that you do not need to open anything special,
and so you can ignore this parameter. Here is an example of an open function for
a DSP connection, using internet sockets:
function idspOpen(host, port)
{
 return new Socket(host, port);
}

We will see this function passed to the DSP constructor in a moment. First, to
accomplish sending/receiving packets, the user needs to define two functions,
dspSend and dspReceive. These functions must be inherited through the
prototype chain, because otherwise when DSP objects are copied implicitly
through reference construction (see below), the functions will not get passed.
Because we want to keep the DSP functions (such as dspService), we need to
preserve the original DSP prototype, and a constructor looks like the following:
function iDSP(host, port)
{
 var ret = new DSP(idspOpen, host, port);
 // Now we override the ._prototype to insert our functions
 if(ret != null)
 ret._prototype = iDSP.prototype;
 return ret;
}
// Here we set up the iDSP.prototype to keep the DSP functions
// in the chain
iDSP.prototype._prototype = DSP.prototype;

Once this constructor is called, we have a valid DSP object, assuming we add the
transport functions. To do this, we must add dspSend and dspReceive to the
prototype. The actual syntax of these functions is similar to Clib.fread() and
Clib.fwrite(), and a description can be found in the function reference. For our
iDSP example, they would look something like this:

Nombas ScriptEase ISDK/C 5.01 408

function iDSP.prototype.dspSend(conn, buffer, timeout)
{ // Ignore timeout
 return conn.write(buffer);
}
function iDSP.prototype.dspReceive(conn, &buffer, length,
timeout)
{
 return conn.read(buffer, length);
}

Note that both these functions ignore the timeout parameter and do not correctly
handle errors. A full-featured version of these functions can be found in the file
idsp.jsh. The final function that we must provide is the dspCloseConnection
function, which is responsible for closing the connection. This function looks like
the following:
function iDSP.prototype.dspCloseConnection(conn)
{
 conn.close();
}

Once all of these transport functions have been defined, new iDSP objects can be
instantiated with a call to new iDSP and used as any other DSP object. Because
the transport level of DSP is separate from the core library, DSP can be adapted
to communicate between any servers in any way. In addition, communication
can be done during the call to the open function. This allows for password
authentication or any other information to be shared.

Using a DSP object
Once a DSP object is created using the method described above, every DSP
object behaves in exactly the same way. Once the functions are set up, the
transport layer of the protocol is hidden.

The basic idea is that all DSP objects are in fact references to objects on the
remote side, and they will remain so except under certain circumstances
(described below). When a connection is first established, it is a reference to the
global object. Members of the remote global object can be accessed as members
of the connection. But they remain references, so var print =
connection.Clib.printf will not actually make a remote call to the server.
At the appropriate time, print will be resolved into Clib.printf() and sent to the
server in the appropriate manner. The circumstances which can trigger a de-
referencing and remote call are:

Calling functions - When a DSP reference is called as a function, it gets
resolved into the appropriate path and the function is called on the remote server.
All parameters are converted to source with ToSource() and passed to the server,
and set back afterwards (in case any were passed by reference). The client waits
for the return value from the server and returns that as the result of the function
call. This makes calling functions transparent to the client, so
connection.Screen.writeln("hi") will actually call Screen.writeln
on the server and print out "hi".

Setting a value - When a value is put to a DSP reference, such as
connection.globalCount = 5, a remote call to the server is generated, and

Nombas ScriptEase ISDK/C 5.01 409

the remote value is updated. The above case acts just as if globalCount = 5
was executed on the server.

Implicitly - When a DSP reference is converted to a primitive, then it gets de-
referenced. This implicit conversion happens mostly in operator expressions, in
which both values are converted to primitives first. So var myCount =
connection.globalCount + 1 will get the value of globalCount from the
server and add one to it. This can also be accomplished explicitly with
ToPrimitive(), but the method below is more straightforward and
understandable. The explicit use of ToPrimitive() on DSP references is
discouraged.

Explicitly - Any DSP reference can be explicitly de-referenced with a call
to.dspGetValue. Once an object has been de-referenced this way, any
subsequent accesses will not cause a remote call, and changes will only affect the
local copy. Note that calling a function in this way will result in the function
being called on the local client, not the server.

DSP object instance methods
DSP()
SYNTAX: new DSP([openFunction[, param1[, ...]]])
WHERE: openFunction - The function to call to initialize the connection.

paramN - Additional parameters to pass to the open function
RETURN: object - A new DSP object, or null on error. This is the object

that will be passed as the first parameter to all for most of the
DSP methods (dspReceive, dspSend). Those methods should
use the first passed parameter, and not the "this" variable, for any
connection-specific properties or methods--because the dsp
object is acting as a proxy to another system to use the "this"
variable would instead be acting on the remote system.

DESCRIPTION: This function creates a new DSP object, or returns null on
error. Note that calling this function itself accomplishes very
little unless you build up an appropriate DSP object by adding
open, close, and transport functions. A new DSP object can be
created with just new DSP(), but it will be unusable without
transport functions. See the introduction, under creating a DSP
object, for more information about setting up a proper DSP
object. The first optional parameter is the open function to use.
Once the object has been created, this function is called with any
additional parameters passed to DSP(). The result of this call is
set the dspConnection member of the newly created object,
and is only used to pass as the first parameters to the dspSend,
dspReceive, and dspCloseConnection methods. If
openFunction is supplied and returns null, then it is
considered an error and the DSP construction fails.

SEE: #link <sedsp>
EXAMPLE: function fileOpen(filename)

Nombas ScriptEase ISDK/C 5.01 410

{
 return Clib.fopen(filename, "wb");
}
var connection = new DSP(fileOpen, "c:\tempfile.dat"

);
// This will call fileOpen and assign the result to
// connection.dspConnection. If it was null,
// then the DSP connection will fail

DSP dspCloseConnection()
SYNTAX: dsp.closeConnection(connection)
WHERE: connection - The original connection that was created with the

openFunction passed to new DSP()
RETURN: void.
DESCRIPTION: This function is responsible for terminating the connection that

was opened at the time the DSP object was created. This is an
optional function, and if not supplied then nothing will be done
with the connection. See the introduction, under creating a DSP
object, for an example of how to implement this function.

SEE: #link <sedsp>, DSP()

DSP dspReceive()
SYNTAX: dsp.dspReceive(connection, buffer, bufferLength,

 timeout)
WHERE: connection - The original connection that was returned from the

openFunction passed to new DSP()

buffer - A buffer which is to be filled with data. This variable
must be passed by reference (with the & operator).

bufferLength - The maximum amount of data to read

timeout - The maximum amount of time to wait (in milliseconds)
for data to be ready for reading on the connection

RETURN: number - The number of bytes read, or -1 on error
DESCRIPTION: This function is responsible for getting data from the connection.

This function should wait up to timeout milliseconds for data
to be available on the connection. If there is no data available,
then this function should return 0. Otherwise, the function should
read up to bufferLength bytes from the connection and put the
data into buffer. Note that this means that buffer must be
passed by reference. If there is some sort of error, then this
function should either throw an error, or return -1. See
introduction, under creating a DSP object, for an example of how
to implement this function. Note that the function need not wait
for the entire buffer to be filled, it should read only as much data
as is available to be read.

SEE: #link <sedsp>, DSP dspSend()

Nombas ScriptEase ISDK/C 5.01 411

DSP dspSend()
SYNTAX: dsp.dspSend(connection, buffer, timeout)
WHERE: connection - The original connection that was returned from the

openFunction passed to new DSP()

buffer - The buffer to send

timeout - The maximum amount of time to wait (in milliseconds)
for data to be ready for writing on the connection

RETURN: number - The number of bytes written, or -1 on error
DESCRIPTION: This function is responsible for sending data across the

connection (the one returned by the openFunction passed to the
DSP constructor). Its behavior is similar to that of dspReceive().
It should wait up until timeout for data to be ready, and then
send as much as possible along the connection (up to the length
of buffer). If the timeout expires, the function should return 0.
If there was some sort of error, then an error should be thrown,
or -1 returned. Otherwise, the number of bytes written should be
returned. Throwing an error is often more descriptive than the
generic failure message. See introduction, under creating a DSP
object, for an example of how to implement this function.

SEE: #link <sedsp>, DSP dspReceive()

DSP dspLoad()
SYNTAX: dsp.dspLoad(code)
WHERE: code - String of code to load on the remote server
RETURN: void.
DESCRIPTION: This function loads the specified code into the global context on

the remote server. Any code that you execute will remain on the
remote server. This function is designed to load functions on the
remote server so that they may be called by the client. This
function does not wait for a return value from the host. As a
consequence, remote errors will not be immediately reported.
They will be reported next time a client routine (calling a
function, getting/putting a value) queries the server. Note that if
you wish to execute remote code and get a return value, the
global eval() method for the server should be used, although the
changes will not be permanent.

SEE: #link <sedsp>
EXAMPLE: function foo() { Screen.writeln("Hello!"); }

// This code will make "foo = new Function(...)"
// to set up the function on the remote server.
connection.dspLoad("foo = " + ToSource(foo));
connection.foo();
// foo is now a global function on the server

DSP dspService()
SYNTAX: dsp.dspService()

Nombas ScriptEase ISDK/C 5.01 412

RETURN: boolean - A value indicating whether the connection is still open.
DESCRIPTION: This is the main server-side function. Although it can be used by

any DSP object, it is intended to be the server side of the client-
server model. When called, it will wait until an incoming packet
is received and then service that packet appropriately. The
method will return false if the packet received was a close
command, in which case the connection has been closed, and an
explicit call to dspClose is not necessary. It is designed to be
called repeatedly until the connection is closed.

SEE: #link <sedsp>
EXAMPLE: // Assume 'connection' is a valid connection

while(connection.dspService())
 ;
// At this point, the connection has been
// successfully closed

DSP dspClose()
SYNTAX: dsp.dspClose()
RETURN: void.
DESCRIPTION: This function closes the DSP connection. First, it sends a close

command to the remote host, signaling that the connection is
closing. It then calls the dspCloseConnection method if it
exists, passing the original connection variable returned by the
open function when this connection was created.

SEE: #link <sedsp>
EXAMPLE: connection.dspClose();

DSP dspGetValue()
SYNTAX: dsp.dspGetValue()
RETURN: variable - remote value of the current DSP reference.
DESCRIPTION: This function provides an explicit way to convert a DSP

reference into a value. Such conversion is done automatically
when the reference is converted to a primitive, or a value is
assigned to a reference. See the introduction, under creating a
DSP object, for more information on DSP references and getting
remote values.

SEE: #link <sedsp>
EXAMPLE: var reference = connection.globalValue;

var value = connection.globalValue.dspGetValue();
reference = 5; // This will change the remote value
value = 6;
// This will change the local copy, not the remote

DSP dspSecurityInit()
SYNTAX: dsp.dspSecurityInit(secureVar)
WHERE: secureVar - private storage for the DSP security. The member

'dsp' is preset to the DSP object. Remember, the DSP object can

Nombas ScriptEase ISDK/C 5.01 413

be seen by the running script, but not the secure variable itself.
RETURN: void.
DESCRIPTION: The dspSecurityInit function turns on security for a DSP object.

This means when the remote client tries to run a script on your
machine using DSP, it will be run with your security manager in
effect. In the case of DSP, each security function
(jseSecurityInit, jseSecurityTerm, and jseSecurityGuard) has an
exactly corresponding function, i.e., dspSecurityInit,
dspSecurityTerm, and dspSecurityGuard. In the security
initialization function, you'll typically select some functions to
be allowed, and let all others be vetoed.

SEE: #link <sedsp>, DSP dspSecurityTerm(), DSP
dspSecurityGuard()

EXAMPLE: function iDSP.dspSecurityGuard(conn)
{
 myfunc.setSecurity(jseSecureAllow);
 myotherfunc.setSecurity(jseSecureGuard);
}

DSP dspSecurityTerm()
SYNTAX: dsp.dspSecurityTerm(secureVar)
WHERE: secureVar - private storage for the DSP security.
RETURN: void.
DESCRIPTION: This function is typically not needed, but you can use it to

cleanup anything you initialized in the DSP security initialization
function.

SEE: #link <sedsp>, DSP dspSecurityInit(), DSP
dspSecurityGuard()

DSP dspSecurityGuard()
SYNTAX: dsp.dspSecurityGuard(secureVar, function,

 params)
WHERE: function - the function being called

secureVar - private storage for the DSP security.

params - whatever parameters are passed to the function
RETURN: void.
DESCRIPTION: If a DSP object is given a dspSecurityGuard function (exactly

like any of the other DSP callback functions), when it tries to call
any function not part of the script (i.e. one of your functions or a
wrapper function), the security guard is called for approval. You
must provide a dspSecurityInit for security to be activated. Only
those functions the security initialization function marks as
guarded will use this function.

SEE: #link <sedsp>, DSP dspSecurityInit(), DSP

Nombas ScriptEase ISDK/C 5.01 414

dspSecurityTerm()

DSP object static properties
DSP.remote
SYNTAX: DSP.remote
DESCRIPTION: This global property of the DSP object is used to make calls back

to the remote client from within a function. When the first DSP
object in a script is created, this gets assigned to that value.
From then on, whenever a packet needs to be serviced, this value
is set (and later restored) to the object representing the incoming
connection. This allows for multiple connections, and lets the
function easily call back the appropriate client. Note that within
a dspLoad call, the client does not wait for a response, and so
trying to call on the client will yield no result until the server is
queried again.

SEE: #link <sedsp>
EXAMPLE: // Assume the client calls this:

serverConn.printRemote("hi");
// And the server side looks like this:
function printRemote(string)
{
 DSP.remote.Screen.write(string);
}
// This will print out "hi" on the client machine

Nombas ScriptEase ISDK/C 5.01 415

GD Link Library
GD Object
 title: GD Object
platform: All OS except Dos; All versions of SE
 source: #link <gd>

The GD object provides a set of routines for manipulating GIF images.

Point specifications
A number of GD routines expect a Point Specification as one of the parameters.
This is a pseudo-type that can take one of several forms. It is either an object
with two members, 'x' and 'y', representing the two coordinates of the point, or an
array with two members, element 0 being the x coordinate and element 1 being
the y coordinate. All of the following are equivalent:
var point1 = {x:1, y:2};
var point2 = [1, 2];

Note also that every routine can also have the x and y coordinates passed as
separate parameters, so these are equivalent:
gd.getPixel(1, 2);
gd.getPixel([1,2]);

As such, the Point object is really just a matter of convenience to help distinguish
points as a unit.

Font specifications
The character drawing routines expect a font parameter which describes the font
to use. The font selection, though limited, should be enough for the basic
purposes for which this library is used. Valid font types are the strings "tiny",
"small", "mediumBold", "large", or "giant". Each one is a different size. fontTiny
is 5x8, fontSmall is 6x12, fontMediumBold is 7x13, fontLarge is 8x16, and
fontGiant is 9x15.

Color styles
In addition to simple color indexes, all drawing routines can also take a color
stype, which is a special string value that allows for more complex fills and
shapes. The valid types are:

"styled" - Use the style specified with GD setStyle(). A style is a sequence of
colors to be used when drawing lines. It is only valid for line-drawing routines,
and is used to make dashed lines.

"brushed" - Use the brush specified with GD setBrush(). A brush is another GD
image which is drawn instead of a regular pixel. Using transparent colors, it is
possible to create a brush of any size.

"styledBrushed" - A combination of both "styled" and "brushed". The brush is
used, but is only drawn when non-transparent pixels are encountered in the style.

"tiled" - Use the tile specified with GD setTile(). This style can only be used
with fill routines. It uses the current tile, which can be any GD image, and fills
the region with that tile, laying the images side-by-side sequentially.

Nombas ScriptEase ISDK/C 5.01 416

GD object instance methods
GD()
SYNTAX: new GD(x, y)
WHERE: x - Horizontal size, in pixels.

y - Vertical size, in pixels.
RETURN: object - a new GD object of the specified size.
DESCRIPTION: The x and y parameters determine the horizontal and vertical

size of the image, respectively. The object returned is a GD
object.

SEE: #link <gd>

GD arc()
SYNTAX: gd.arc(centerX, centerY, width, height,

 startDegree, endDegree, color)
gd.arc(centerPoint, width, height, startDegree,
 endDegree, color)

WHERE: centerX - horizontal position of center.

centerY - vertical position of center.

centerPoint - center point specification.

height - height of arc.

startDegree - degree value of starting position in standard
coordinate plane. Values greater than 360 are interpreted as
modulo 360.

endDegree - degree value of ending position in standard
coordinate plane. Values greater than 360 are interpreted as
modulo 360.

color - color index to use for arc, or one of the strings "styled",
"brushed", "styledBrushed".

RETURN: void.
DESCRIPTION: This method draws an arc in the specified format. The center

position is specified, along with the width and the height. The
arc is then draw between the two given degree values. A full
ellipse can be drawn from degree 0 to degree 360, and a circle
can be drawn in the same manner while setting width and
height to be the same. If there is an out-of-bounds error or
some other error, then the arc is not drawn at all.

SEE: #link <gd>
EXAMPLE: // Draw a circle with a diameter of 16 pixels

// in the middle of the image
var gd = new GD(65, 65);
gd.arc([32,32], 16, 16, 0, 360, 0);

GD blue()

Nombas ScriptEase ISDK/C 5.01 417

SYNTAX: gd.blue(index)
WHERE: index - color index to look up.
RETURN: number - blue component of the specified color index.
DESCRIPTION: This method looks up the color indicated by index and returns

the blue component of that color.
SEE: #link <gd>, GD red(), GD green()
EXAMPLE: var index = gd.colorAllocate(0,100,200);

gd.blue(index); // This will return 200

GD boundsSafe(
SYNTAX: gd.boundsSafe(x, y)

gd.boundsSafe(point)
WHERE: x - horizontal pixel location.

y - vertical pixel location.

point - Point specification. See GD getPixel() for a description.
RETURN: boolean - whether the specified coordinates are within bounds.
DESCRIPTION: This method sees if the specified pixel location is within the

bounds of the image. If so, then true is returned, false
otherwise.

SEE: #link <gd>
EXAMPLE: var gd = new GD(5,5);

gd.boundsSafe(4, 3); // True
gd.boundsSafe([4,5]); // False
gd.boundsSafe({x:6,y:2}) // False

GD drawChar()
SYNTAX: gd.drawChar(font, x, y, char, color)

gd.drawChar(font, point, char, color)
WHERE: font - Font specification

x - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - Point specification.

char - The specified character to draw

color - color index or style to use
RETURN: void.
DESCRIPTION: This method draws a character in the image at the specified

location in the appropriate font. If the coordinates are out of
bounds, then no drawing is done. The reason that it is named
'drawChar' and not simply 'char' is that 'char' is a reserved
keyword and an invalid variable name.

SEE: #link <gd>, GD charUp(), GD string()
EXAMPLE: // Write "hi" at the starting position

var gd = new GD(50,50);

Nombas ScriptEase ISDK/C 5.01 418

gd.drawChar(GD.fontSmall, 5, 5, "h", 0);
gd.drawChar(GD.fontSmall, [11,5], "i", 0);
// This is the equivalent of GD.string()
// with the string "hi"

GD charUp()
SYNTAX: gd.charUp(font, x, y, char, color)

gd.charUp(font, point, char, color)
WHERE: font - Font specification

x - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - point specification. See GD getPixel() for a description.

char - specified character to draw

color - color index or style to use
RETURN: void.
DESCRIPTION: This method is exactly the same as GD drawChar(), except that

the character is drawn vertically, pointing upwards.
SEE: #link <gd>, GD drawChar(), GD stringUp()

GD colorAllocate()
SYNTAX: gd.colorAllocate(red, green, blue)
WHERE: red - Red value, from 0 to 255

green - Green value, from 0 to 255

blue - Blue value, from 0 to 255
RETURN: number - Color index of allocated color, or -1 if none available.
DESCRIPTION: This method searches through the color table for the next

available color index, and sets it to be the supplied RGB color.
If no color indexes are available, then -1 is returned. If the
supplied RGB colors are invalid, a runtime error is generated.
When creating a new image, the first time you call this function,
you set the background color for the image.

SEE: #link <gd>, GD colorExact(), GD colorClosest(), GD
colorDeallocate()

EXAMPLE: var gd = new GD(10,10);
var index = gd.colorAllocate(255,255,255);
// index now points to white, and the background
// of the image is also white

GD colorClosest()
SYNTAX: gd.colorClosest(red, green, blue)
WHERE: red - Red value, from 0 to 255

green - Green value, from 0 to 255

Nombas ScriptEase ISDK/C 5.01 419

blue - Blue value, from 0 to 255
RETURN: number - index of the closest color to the one supplied.
DESCRIPTION: This method searches through the color table and finds the

closest color to the one supplied. The algorithm uses Euclidian
distance to calculate closeness. This function is most useful
when unable to allocate a new color, and the closest must be
used instead.

SEE: #link <gd>, GD colorAllocate()
EXAMPLE: /* Attempt to allocate a specific color,

 * but if unable to (the image
 * has the maximum number of colors),
 * then attempt to find the closest
 * color as a suitable replacement
 */
var gd = GD.fromGif("test.gif");
var index;
if(-1 == (index = gd.colorAllocate(234,12,107)))
 index = gd.colorClosest(234,12,107);

GD colorDeallocate()
SYNTAX: gd.colorDeallocate(color)
WHERE: color - color index to deallocate.
RETURN: void.
DESCRIPTION: This method frees up the color at index color for later use. The

color index will remain the same, but it may be re-allocated at
any point and changed. Note that this function simply marks the
color for reuse, so that the total colors allocated in the image still
remains the same. If a call to colorAllocate() immediately
follows this call, then the old index will be re-used for the new
color, and all pixels within the image with that index will be
altered as well.

SEE: #link <gd>, GD colorAllocate()

GD colorExact()
SYNTAX: gd.colorExact(red, green, blue)
WHERE: red - Red value, from 0 to 255

green - Green value, from 0 to 255

blue - Blue value, from 0 to 255
RETURN: number - The first index matching the supplied color, or -1 if it

doesn't exist.
DESCRIPTION: This method searches through the color table and tries to find the

first index whose red, green, and blue values are exactly equal to
the supplied values. If no index is found, then -1 is returned.

SEE: #link <gd>, GD colorClosest(), GD colorAllocate()
EXAMPLE: // Attempt to get the color,

Nombas ScriptEase ISDK/C 5.01 420

// and create it if it does not exist
var gd = GD.fromGif("test.gif");
var index;
if(-1 == (index = gd.colorExact(1,1,1)))
 index = gd.colorAllocate(1,1,1);

GD colorsTotal()
SYNTAX: gd.colorsTotal()
RETURN: void.
DESCRIPTION: This method returns the total number of colors allocated in the

current GD image. Note that colors deallocated with
colorDeallocate() are still considered 'allocated', because they
have simply been marked for reuse.

SEE: #link <gd>

GD colorTransparent()
SYNTAX: gd.colorTransparent(color)
WHERE: color - color index to make transparent.
RETURN: void.
DESCRIPTION: This method sets the specified color index to be the transparent

index. To indicate that there is to be no transparent color, the
value -1 should be passed as the color index.

SEE: #link <gd>
EXAMPLE: var gd = new GD(64,64);

var index = gd.colorAllocate(0,0,0);
gd.colorTransparent(index);
// The background (and all black pixels)
// is transparent

GD copy()
SYNTAX: gd.copy(source, dstX, dstY, srcX, srcY, width,

 height)
gd.copy(source, dstPoint, srcPoint, width,
 height)

WHERE: source - A gd object to copy from

dstX - Horizontal destination pixel in current object

dstY - Vertical destination pixel in current object

dstPoint - Destination pixel in current object.

srcX - Horizontal source pixel in source object

srcY - Vertical source pixel in source object

srcPoint - Source pixel in source object.

width - Width of section to copy

height - Height of section to copy
RETURN: void.

Nombas ScriptEase ISDK/C 5.01 421

DESCRIPTION: This method copies a section from one GD image to another.
The portion of source, starting at the specified point (which is
the upper-left corner of the region) and extending width and
height in either direction. This region is then copied to the
current GD object at the specified location (which is again the
upper-left corner of the region). In copying the region, this
method attempts to preserve the colors of the original source as
best as possible. The method first tries calling colorExact() on
the current image, and if that doesn't work then colorAllocate(),
and finally if that fails, then colorClosest(). If you specify the
same source image as the current image, then the method will
work appropriately as long as the regions to not overlap. If they
do, then the result is undefined.

SEE: #link <gd>, GD copyResized()
EXAMPLE: // Copy top-left 16x16 from "test.gif"

// while attempting to preserve
// necessary colors.
var source = GD.fromGif("test.gif");
var dest = new GD(16, 16);
dest.copy(source, [0,0], [0,0], 16, 16);

GD copyResized()
SYNTAX: gd.copyResized(source, dstX, dstY, srcX, srcY,

 dstW, dstH, srcW, srcH)
gd.copyResized(source, dstPoint, srcPoint, dstW,
 dstH, srcW, srcH)

WHERE: source - A gd object to copy from

dstX - Horizontal destination pixel in current object

dstY - Vertical destination pixel in current object

dstPoint - Destination pixel in current object.

srcX - Horizontal source pixel in source object

srcY - Vertical source pixel in source object

srcPoint - Source pixel in source object.

dstW - Width of region in current object

dstH - Height of region in current object

srcW - Width of region in source object

srcH - Height of region in source object
RETURN: void.
DESCRIPTION: This method is very similar to GD copy(), except that it has the

additional option of resizing the image in the process of copying.
This method will stretch or shrink the region as appropriate in
order to fit in the destination area. Specifying the same
destination and source sizes is the equivalent of calling GD
copy(). See GD copy() for more description.

Nombas ScriptEase ISDK/C 5.01 422

SEE: #link <gd>, GD copy()
EXAMPLE: // Copy top-left 4x4 square from "test.gif"

// and magnify it four times
// to a size of 16x16 in the destination image
var source = GD.fromGif("test.gif");
var dest = new GD(16, 16);
dest.copyResized(source, [0,0], [0,0], 16, 16, 4, 4);

GD dashedLine()
SYNTAX: gd.dashedLine(x1, y1, x2, y2, color)

gd.dashedLine(point1, point2, color)
WHERE: x1 - horizontal pixel location of starting point

y1 - vertical pixel location of starting point

x2 - horizontal pixel location of ending point

y2 - vertical pixel location of ending point

point1 - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line
RETURN: void.
DESCRIPTION: This method is exactly the same as GD line(), except that a

dashed line is drawn. This function is only for backwards
compatibility, as much greater control is achieved by using the
combination of GD setStyle() and GD line().

SEE: #link <gd>, GD line(), GD setStyle()
EXAMPLE: var gd = new GD(10,10);

gd.dashedLine([2,3], [9,7], 0);

// The above code has been replaced by the following
var gd = new GD(10,10);
// Four pixel wide dash
gd.setStyle([0, 0, 0, 0, -1, -1, -1, -1);
gd.line([2,3], [9,6], "styled");

GD destroy()
SYNTAX: gd.destroy()
RETURN: void.
DESCRIPTION: This method cleans up all the memory associated with this GD

object. Once it has been called, the object is no longer valid.
SEE: #link <gd>

GD fill()
SYNTAX: gd.fill(x, y, color)

gd.fill(point, color)
WHERE: x - Horizontal position of starting pixel

y - Vertical position of starting pixel

Nombas ScriptEase ISDK/C 5.01 423

point - Point of starting pixel. See GD getPixel() for a
description

color - Fill color index or style
RETURN: void.
DESCRIPTION: This method is very similar to GD fillToBorder(), except that

instead of filling until another color is hit, this method fills all
pixels that are the same color as the original, until it hits any
other color pixel. The pixels are changed to the color indicated
by color.

SEE: #link <gd>, GD fillToBorder()
EXAMPLE: /* Draw a circle with color index 1 and

 * a smaller one with color
 * index 3. The call to GD.fill() will fill
 * the inner circle with color
 * index 2. The fill will stop at first circle,
 * since it is not the
 * same color as the starting pixel.
 */
var gd = new GD(65, 65);
gd.arc([32,32], 16, 16, 0, 360, 1);
gd.arc([32,32], 14, 14, 0, 360, 3); // will be
erased
gd.fill([33,34], 2);

GD filledPolygon()
SYNTAX: gd.filledPolygon(point1[, x2, y2[, ...], color)
WHERE: pointN - Point specification for Nth point

xN - x coordinate of Nth point

yN - y coordinate of Nth point

color - color index or style to use for fill
RETURN: void.
DESCRIPTION: This method is exactly the same as GD polygon(), except that it

fills in the polygon, managing intersections in the process.
SEE: #link <gd>, GD polygon()

GD filledRectangle()
SYNTAX: gd.filledRectangle(x1, y1, x2, y2, color)

gd.filledRectangle(point1, point2, color)
WHERE: x1 - horizontal pixel location of first corner

y1 - vertical pixel location of first corner

x2 - horizontal pixel location of second corner

y2 - horizontal pixel location of second corner

point1 - First point specification.

point2 - Second point specification.

Nombas ScriptEase ISDK/C 5.01 424

color - color index or style to use for fill
RETURN: void.
DESCRIPTION: This method is exactly the same as GD rectangle(), except that it

fills the rectangle, instead of drawing an outline. As with GD
rectangle(), if either point is out of bounds, then no drawing is
done.

SEE: #link <gd>, GD rectangle(), GD filledPolygon()

GD fillToBorder()
SYNTAX: gd.fillToBorder(x, y, border, color)

gd.fillToBorder(point, border, color)
WHERE: x - Horizontal position of starting pixel

y - Vertical position of starting pixel

point - Point specification of starting pixel.

border - Index border color to stop at

color - Fill color or style index
RETURN: void.
DESCRIPTION: This method fills the image with the selected color, until it hits a

border with the color specified by border. border must be a
color index, not one of the styled colors. color can be anything.

SEE: #link <gd>, GD fill()
EXAMPLE: /* Will draw a circle with color index 1,

 * and then fill it with color
 * index 2. The fill will stop
 * at the specified border, which means that
 * the second circle drawn, using color index 3,
 * will be erased as the
 * outer circle is filled.
 */
var gd = new GD(65, 65);
gd.arc([32,32], 16, 16, 0, 360, 1);
gd.arc([32,32], 14, 14, 0, 360, 3);
 // will be erased
gd.fillToBorder([33,34], 1, 2);

GD getInterlaced()
SYNTAX: gd.getInterlaced()
RETURN: boolean - Whether this image is interlaced.
DESCRIPTION: If the current image has the interlace flag set, then this method

returns true. Otherwise, it returns false.
SEE: #link <gd>, GD interlace()

GD getPixel()
SYNTAX: gd.getPixel(x, y)

gd.getPixel(point)

Nombas ScriptEase ISDK/C 5.01 425

WHERE: x - horizontal position of pixel, measured from left

y - vertical position of pixel, measured from top

point - A point specification.
RETURN: number - a color index indicating the color at the selected pixel.
DESCRIPTION: This method accesses the pixel at position (x, y), and returns the

color of that pixel. If the pixel coordinates are out of bounds,
then zero is returned.

SEE: #link <gd>, GD SetPixel()
EXAMPLE: var gd = GD.fromGif("test.gif");

gd.getPixel(0,0);
gd.getPixel([0,0]);
gd.getPixel({x:0,y:0});

GD getTransparent()
SYNTAX: gd.getTransparent()
RETURN: number - The color index of the current transparent color for this

image.
DESCRIPTION: This method looks up the transparent color that was set by GD

transparent() or read from the file originally.
SEE: #link <gd>, GD transparent()

GD green()
SYNTAX: gd.green(index)
WHERE: index - The color index to look up
RETURN: number - The green component of the specified color index
DESCRIPTION: This method looks up the color indicated by index and returns

the green component of that color.
SEE: #link <gd>, GD blue(), GD red()

GD height()
SYNTAX: gd.height()
RETURN: number - The height of the image
DESCRIPTION: This method returns the height of the current GD image
SEE: #link <gd>

GD interlace()
SYNTAX: gd.interlace(flag)
WHERE: flag - A boolean value indicating whether this image is interlaced

or not
RETURN: void.
DESCRIPTION: This method sets the interlace flag for the current image. If the

Nombas ScriptEase ISDK/C 5.01 426

flag parameter is true, then the image is interlaced, otherwise
it is not. Interlaced GIF images allow views to gradually fade in
the image, rather than having to read in the whole file and then
display it. This flag only affects the image once it is saved as a
GIF file. It has no affect on any other methods. Viewers which
don't support interlacing will still be able to display the image, it
will just appear all at once like any other image.

SEE: #link <gd>, GD getInterlaced()

GD line()
SYNTAX: gd.line(x1, y1, x2, y2, color)

gd.line(point1, point2, color)
WHERE: x1 - horizontal pixel location of starting point

y1 - vertical pixel location of starting point

x2 - horizontal pixel location of ending point

y2 - vertical pixel location of ending point

point1 - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line
RETURN: void.
DESCRIPTION: This method draws a line using color index color, starting from

position (x1, y1) and going to position (x2, y2). Alternatively,
the line is drawn from point1 to point2, if the coordinates are
given in this manner. If either coordinate is out of bounds, then
no drawing is done.

SEE: #link <gd>, GD dashedLine()

GD polygon()
SYNTAX: gd.polygon(point1[, x2, y2, ...], color)
WHERE: pointN - Point specification for Nth point

xN - x coordinate of Nth point

yN - y coordinate of Nth point

color - color index or style to use for line
RETURN: void.
DESCRIPTION: This method draws a polygon by connecting sequential points

with lines. The parameters are either a pair of parameters
indicating the two coordinates of the point, or a point
specification type. A point type can either be an array with two
elements, element 0 being the x coordinate and element 1 being
the y coordinate, or an object with members 'x' and 'y',
representing the x and y coordinates.

Nombas ScriptEase ISDK/C 5.01 427

SEE: #link <gd>, GD filledPolygon()
EXAMPLE: // Draw a rectangle

function myRectangle(gd,x1,y1,x2,y2,color)
{
 gd.polygon([x1,y1], x1, y2, {x:x2,y:y2}, [x2,y1],
 [x1,y1], color);
}

GD rectangle()
SYNTAX: gd.rectangle(x1, y1, x2, y2, color)

gd.rectangle(point1, point2, color)
WHERE: x1 - horizontal pixel location of first corner

y1 - vertical pixel location of first corner

x2 - horizontal pixel location of second corner

y2 - horizontal pixel location of second corner

point1 - First point specification.

point2 - Second point specification.

color - color index or style to use for drawing line
RETURN: void.
DESCRIPTION: This method draws a rectangle with one corner located at

position (x1, y1) and the other at position (x2, y2). The color
used is specified by the color parameter. Alternatively, the
coordinates can be specified with the point format. If either
corner is out of bounds, then no drawing is done. Note that this
is a shorthand function, as this can be accomplished in several
other ways.

SEE: #link <gd>, GD filledRectangle(), GD polygon()
EXAMPLE: var gd = new GD(10,10);

gd.rectangle(4, 5, 8, 9, 0);

// is equivalent to:
var gd = new GD(10,10);
gd.line([4,5], [8,5], 0);
gd.line([4,9], [8,9], 0);
gd.line([4,5], [4,9], 0);
gd.line([8,5], [8,9], 0);

// which is also equivalent to:
var gd = new GD(10,10);
gd.polygon([[4,5], [8,5], [4,9], [8,9]], 0);

GD red()
SYNTAX: gd.red(index)
WHERE: index - The color index to look up
RETURN: number - The red component of the specified color index
DESCRIPTION: This method looks up the color indicated by index and returns

the red component of that color.

Nombas ScriptEase ISDK/C 5.01 428

SEE: #link <gd>, GD blue(), GD green()

GD setBrush()
SYNTAX: gd.setBrush(brush)
WHERE: brush - A GD image to use as the current brush in this image
RETURN: void.
DESCRIPTION: This method sets the current brush for this image to be the image

specified by brush. This image is then used for drawing when
the "brushed" string is used as a color parameter to a drawing
function. This method attempts to preserve the colors of the
brush in the current image, including the transparent color.
Transparent pixels are not draw when using the brush, allowing
for brushes of any shape. The original brush must remain a valid
image. Once destroy() has been called on the supplied brush, the
style "brushed" can no longer be used until another brush is set.
Note that because this can allocate colors in the image, do not set
the brush if you won't be using it, because the color table could
fill up quickly.

SEE: #link <gd>, GD setTile()
EXAMPLE: var brush = GD.fromGif("brush.gif");

var gd = new GD(64,64);
gd.setBrush(brush);
gd.line([16,3], [52,45], "brushed");
brush.destroy();

GD setPixel()
SYNTAX: gd.setPixel(x, y, color)

gd.setPixel(point, color)
WHERE: x - horizontal position of pixel, measured from left

y - vertical position of pixel, measured from top

point - A point specification.

color - index into color table
RETURN: void.
DESCRIPTION: This method sets the designated pixel to the appropriate color. If

either x or y is out of bounds, or if color is not a valid color
index, then nothing is done.

SEE: #link <gd>, GD getPixel(), GD colorAllocate()
EXAMPLE: var gd = new GD(4,4);

var black = gd.colorAllocate(0,0,0);
gd.setPixel(0,0,black);

GD setStyle()
SYNTAX: gd.setStyle(style)
WHERE: style - style to set for current image.

Nombas ScriptEase ISDK/C 5.01 429

RETURN: void.
DESCRIPTION: This method sets the current style for this image, which is used

whenever the string "styled" is passed as a color index parameter
to a drawing function. The parameters to the method is a list of
pixels, which are color indexes or the special value -1, which
indicates a transparent pixel. When drawing lines or a series of
pixels, the drawing methods cycle through the sequence defined
in the current style and applies the color to each successive pixel.
If the value of -1 is used, then no color is applied and the
background remains.

SEE: #link <gd>, GD setBrush(), GD setTile()
EXAMPLE: /* Create a Red, Green, Blue,

 * dashed line from the upper left
 * corner of the image to the lower right corner.
 * Each dash will be 3
 * pixels wide, and there will be 3 pixels
 * of space in between.
 */

var gd = new GD(64,64);
var red = gd.colorAllocate(255, 0, 0);
var green = gd.colorAllocate(0, 255, 0);
var blue = gd.colorAllocate(0, 0, 255);
gd.setStyle(red, red, red,
 -1, -1, -1,
 green, green, green,
 -1, -1, -1,
 blue, blue, blue,
 -1, -1, -1);
gd.line([0,0], [63,63], "styled");

GD setTile()
SYNTAX: gd.setTile(tile)
WHERE: tile - A GD image to use as the repeating tile for this image
RETURN: void.
DESCRIPTION: This method sets the current tile for this image in a manner

similar to GD setBrush(). This tile image is then used whenever
the style "tiled" is used as a color parameter in a function. The
"tiled" style only works when calling a filling function, such as
GD fill() or GD filledPolygon(). This method attempts to
preserve the colors of the original tile, by finding exact colors,
allocating new colors, or finding the closest color if necessary.
Transparent pixels in the image allow the underlying image to
shown through. Once the tile is set with setTile(), the original
tile must be retained as long as the image is being used.
Otherwise, the result is undefined.

SEE: #link <gd>, GD setBrush()
EXAMPLE: var tile = GD.fromGif("tile.gif");

var gd = new GD(64,64);
gd.setTile(tile);
gd.filledRectangle([0,0], [63,63], "tiled");

Nombas ScriptEase ISDK/C 5.01 430

tile.destroy();

GD string()
SYNTAX: gd.string(font, x, y, char, color)

gd.string(font, point, char, color)
WHERE: font - Font specification to use

x - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - Point specification. See GD getPixel() for a description.

string - The string to draw.

color - color index or style to use for string
RETURN: void.
DESCRIPTION: This method draws a string on the current image, at the specified

location and in the appropriate color. If the coordinates are out
of bounds, then no drawing is done.

SEE: #link <gd>, GD drawChar(), GD stringUp()

GD stringUp()
SYNTAX: gd.stringUp(font, x, y, char, color)

gd.stringUp(font, point, char, color)
WHERE: font - Font specification to use

x - horizontal position of upper-left corner of character

y - vertical position of upper-left corner of character

point - Point specification. See GD getPixel() for a description.

string - The string to draw.

color - color index or style to use for string
RETURN: void.
DESCRIPTION: This method is exactly the same as GD string(), except that this

method draws the string vertically, facing upwards.
SEE: #link <gd>, GD charUp(), GD string()

GD toGd()
SYNTAX: gd.toGd(filename)
WHERE: filename - Name of file to output to
RETURN: boolean - Whether the operation was successful
DESCRIPTION: This method outputs the gd object to the file in the native format

of the library, which is unreadable by any other program, but can
be read and written quickly. It is mostly used to store a
commonly used base-image in native format, which can then be
worked with from there.

Nombas ScriptEase ISDK/C 5.01 431

SEE: #link <gd>, GD.fromGif()

GD toGif()
SYNTAX: gd.toGif(filename)
WHERE: filename - Name of file to output to
RETURN: boolean - Whether the operation was successful.
DESCRIPTION: This method compresses the GIF data in the appropriate manner,

and outputs the contents of the image to the specified file in GIF
form.

SEE: #link <gd>, GD toGd(), GD.fromGif()

GD width()
SYNTAX: gd.width()
RETURN: number - The width of the image
DESCRIPTION: This method returns the width of the current GD image
SEE: #link <gd>, GD height()

GD object static methods
GD.fromGd()
SYNTAX: GD.fromGd(filename)
WHERE: filename - name of GD file to open.
RETURN: object - new GD object with the contents of the specified file, or

null if there was an error.
DESCRIPTION: This method attempts to open the specified GD file, and then

reads in the data. A GD file is one created with the toGd()
method, and is written in the library's native format. If there is
an error opening the file or reading the data, then null is
returned.

SEE: #link <gd>, GD.fromGif(), GD toGd()

GD.fromGif()
SYNTAX: GD.fromGif(filename)
WHERE: filename - name of GIF file to open.
RETURN: object - new GD object with the contents of the file, or null if

there was an error.
DESCRIPTION: This method attempts to open the specified file, and then

attempts to read in the GIF data. If there is an error opening the
file or reading the data, then null is returned. Otherwise, the
method constructs a new GIF object whose content is the GIF
read from the file.

Nombas ScriptEase ISDK/C 5.01 432

SEE: #link <gd>, GD.fromGd(), GD toGif()

GD.fromXbm()
SYNTAX: GD.fromXbm(filename)
WHERE: filename - name of XBm file to open.
RETURN: object - new GD object with the contents of the specified file, or

null if there was an error.
DESCRIPTION: This method attempts to open the specified XBM file, and then

reads in the data. If there is an error opening the file or reading
the data, then null is returned.

SEE: #link <gd>, GD.fromGif()

Nombas ScriptEase ISDK/C 5.01 433

MD5 Checksum Link Library

The md5 object provides a simple means of calculating checksums based on the
md5 algorithm, a well-known and accepted method.

md5 Object
platform: Mac, OS2, Windows, all versions of SE
 source: #link <md5>

md5 object instance methods
md5()
SYNTAX: new md5()
RETURN: object - a new md5 checksum object.
DESCRIPTION: This method creates a new object, and initializes it to be used for

md5 sum computation. MD5 is an old, well-established
checksum calculation formula that is still used for File download
verification. The checksum verifies the integrity of the data,
because if any bit is changes in the source, then the checksum
will be drastically different.

SEE: #link <md5>

term()
SYNTAX: md5.term()
RETURN: buffer - The computed checksum for this md5 object
DESCRIPTION: This method MUST be called in order to correctly dispose of the

md5 object. It returns a buffer, 16 bytes long, representing the
md5 checksum for this object. It also frees up any memory
being used by the object.

SEE: #link <md5>

EXAMPLE: var md5sum = new md5();
md5.update("hi");
var digest = md5.term();
// digest is now equal to the checksum of "hi"

update()
SYNTAX: md5.update(buffer[, length])
WHERE: buffer - A string or buffer of data to add into this checksum

length - Length of data to be added. If not supplied, then the
length of buffer is used.

RETURN: void.
DESCRIPTION: This method adds the supplied buffer into the running md5

checksum. If length is greater than the length of buffer, then
the buffer is expanded as if filled with null bytes.

Nombas ScriptEase ISDK/C 5.01 434

SEE: #link <md5>

EXAMPLE: var md5sum = new md5();
md5sum.update("hello");
md5sum.update(", world!",4);
md5sum.term(); // Return the checksum of "hello, wo"

Nombas ScriptEase ISDK/C 5.01 435

SEDBC Link Library
The link library, sedbc, has methods and properties for working with a database
in ScriptEase. These methods and properties provide a high-level interface for
working with ODBC databases. The Database object allows the user to create a
connection to a database which can then be queried, manipulated, and so forth
through direct SQL statements or by the Cursor object. SQL statements stored
inside the database are known as stored procedures and can be called using the
Stproc object, allowing for the use of complex database-specific procedures from
a script. Finally, true ease of use is provided by the SimpleDataset object, which
is a combination of a Database object and a Cursor object. As a package, sedbc
allows a script to have detailed, low-level control of an ODBC database through
SQL statements and easy to use, high-level routines at the same time.

Cursor object
platform: Win32; all versions of SE
 source: #link <sedbc>

A Cursor object represents a database cursor for a specified SQL SELECT
statement or specified database table.

A Cursor is a structure, created from a database table, which represents a subset
of that table. When performing a query on a database, the results of the query are
returned as a Cursor.

A Cursor object can be used to perform the following operations:

• Modify data in a database table.
• Navigate in a database table.
• Customize the display of the virtual table returned by a database query.

A Cursor object can be constructed in the following manners:

• The cursor method of a database object.
• The table method of a database object.
• The cursor method of an Stproc object.

There is no need to call a Cursor constructor.

A Cursor object has the notion of a "current" row. When operations are
performed on a Cursor, they usually affect this row. The current row can be
moved forward and backward through a Cursor using the next and previous
methods, respectively. Similarly, the first and last methods set the current
row to the first or last row in the cursor. Each of these methods will return
false if the desired row does not exist within the Cursor. Thus, if the Cursor
does not have any rows in it (perhaps because the SELECT statement used to
create the cursor did not return any results), each of these methods will return
false. Don't forget to check for this condition!

Important - A Cursor does not guarantee the order or positioning of its rows.
For example, if a row is added to a Cursor, there is no way of knowing where
that row will actually appear within in the cursor. Thus, do not make any
assumptions about the ordering of rows within the Cursor. When finished with a

Nombas ScriptEase ISDK/C 5.01 436

Cursor object, use the close method to close it and release the memory it uses.
If a database connection that has an open Cursor is released, the runtime engine
waits until that Cursor is closed before actually releasing the connection to the
database, so it is important to remember to close Cursors. If a Cursor has not
been not explicitly closed using the close method by the time the associated
Database or DbPool object goes out of scope, the runtime engine will try to close
it. This may tie up system resources unnecessarily and/or lead to unpredictable
results. Use the prototype property of the Cursor class to add a property to all
Cursor instances. The addition applies to all Cursor instances running in all
applications on the server, not just the application that made the change. This
allows the capabilities of the object to be expanded for the entire server.

Cursor Instance Properties
The properties of Cursor objects vary from instance to instance. Each Cursor
object has a property for each named column in the Cursor. Thus, when a Cursor
is created, it acquires a property for each column in the virtual table, as
determined by the SELECT statement.

Note - Unlike other properties in JavaScript, cursor properties corresponding to
column names are not case sensitive, because SQL is not case sensitive and some
databases are not case sensitive.

Properties of a Cursor object can be referred to as elements of an array. The 0-
index array element corresponds to the first column, the 1-index array element
corresponds to the second column, and so on.

SELECT statements can retrieve values that are not columns in the database,
such as aggregate values and SQL expressions. Display these values by using the
Cursor's property array index for the value.

Cursor filter
SYNTAX: cursor.filter
DESCRIPTION: A property containing a conditional expression that determines

which subset of rows is retrieved by a cursor. This expression is
a string containing the WHERE clause of an SQL statement
describing the rows to be included. The string does not include
the reserved word WHERE, however. Initially, the filter
property value is set to the empty string, indicating that all of the
Cursor rows are to be retrieved. Call reload after changing the
filter to update the contents of the Cursor.

SEE: #link <sedbc>, Cursor reload()
EXAMPLE: // assume 'database' is a valid Database object

var curs = database.table("customer")

// Set cursor filter so that the Cursor
// only retrieves objects
// whose 'City' field is set to 'Berlin'
curs.filter = "City = 'Berlin'";

// Reload the cursor
err = curs.reload();

Cursor sort

Nombas ScriptEase ISDK/C 5.01 437

SYNTAX: cursor.sort
DESCRIPTION: A property containing the sort order of a cursor. The Cursor sort

order will determine the order that the rows are returned in when
iterating the Cursor. The sort property is a string that contains
the ORDER BY clause of an SQL statement. It does not include
the reserved word ORDER BY, however. Initially, the sort
property is set to the empty string, and, therefore, no item sort
order is guaranteed. Call reload after changing the sort order
to update the contents of the Cursor.

SEE: #link <sedbc>, Cursor reload()
EXAMPLE: // assume 'database' is a valid Database object

var curs = database.table("customer")

// Set sort order so that the Cursor is sorted
// first by the
// 'city' field, and, for records
// with the same 'city' value,
// descending by the field 'name'.
curs.sort = "city, name DESC";

// Reload the cursor
err = curs.reload();

Cursor Instance Methods
Cursor close()
SYNTAX: cursor.close()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: The close method closes a cursor or result set and releases the
memory it uses. If a cursor is not explicitly closed using the
close method, it will automatically be closed by the runtime
engine when the corresponding client object goes out of scope.

SEE: #link <sedbc>, Database majorErrorCode(), Database
minorErrorCode()

EXAMPLE: err = curs.close()

Cursor columnName()
SYNTAX: cursor.columnName(n)
WHERE: n - zero-based integer corresponding to the column in the query.

The first column in the result set is 0, the second is 1, and so on.
RETURN: string - the name of column number n in the cursor.
DESCRIPTION: Given a column number, columnName() returns the name of

the column.

When using SELECT statements with wildcards (*) to select all

Nombas ScriptEase ISDK/C 5.01 438

the columns in a table, the columnName method does not
guarantee the order in which it assigns numbers to the columns.
Thus, use columnName to find which name corresponds to
which column number.

SEE: #link <sedbc>, Cursor columns()
EXAMPLE: // assume 'database' is a valid, open Database object

var curs = database.cursor(SELECT * FROM customer);

// get the name of the first column in the cursor
header = customerSet.columnName(0);

Cursor columns()
SYNTAX: cursor.columns()
RETURN: number - columns in a Cursor object.
DESCRIPTION: This function returns the number of named and unnamed

columns that are present in the given Cursor.
SEE: #link <sedbc>, Cursor columnName()
EXAMPLE: numCols = curs.columns();

Cursor deleteRow()
SYNTAX: cursor.deleteRow()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This function, only available on up datable cursors, deletes the
current row from the Database object.

SEE: #link <sedbc>, Database commitTransaction(), Database
rollbackTransaction()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer");

// delete all rows from the Database
// where City is "Malden"
while (curs.next())
{
 if(curs.City == "Malden")
 err = curs.deleteRow();
}
database.commitTransaction();

Cursor first()
SYNTAX: cursor.first()
RETURN: boolean - false if the cursor is empty or if cursor is forward-

only cursor and the current row is not the first row, otherwise
true.

DESCRIPTION: This method moves the current row to the first row in the Cursor

Nombas ScriptEase ISDK/C 5.01 439

and returns true so long as there is a first row. Note that if the
cursor is empty, this method always returns false. Also note
that, if the cursor does not allow backwards movement of the
current row, false will be returned.

SEE: #link <sedbc>, Cursor next(), Cursor previous(), Cursor last()
EXAMPLE: // assume 'database' is a valid Database object

var curs = database.table("customer");

// set the current row to the first row in the Cursor
curs.first();

Cursor insertRow()
SYNTAX: cursor.insertRow()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This function, only available on undatable cursors, inserts a row
into the associated database table. The location of the inserted
row may vary depending on the database vendor's
implementation, and thus row ordering is not guaranteed. There
are several ways to specify values for the row being inserted:

Explicitly assigning values to each column in the cursor and then
calling insertRow.

Choosing to a row using the next or previous methods,
changing the values of some of the columns and then calling
insertRow. Columns that were not explicitly assigned values
will receive values from that initially chosen row.

Do not choose a row with next or previous and call
insertRow. Since there is no current row in this case, all of the
columns for the new row will be null.

Any columns in the cursor that contain unassigned values when
insertRow is called will be null in the new row.

SEE: #link <sedbc>, Cursor next(), Cursor previous(), Database
commitTransaction(), Database rollbackTransaction()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer");

// choose the first row to act as a "template"
// for the new row
curs.next();

// plug in some values for the new row
curs.Name = "Fred Flintstone";
curs.City = "Bedrock";

// add the row to the database
err = curs.insertRow();

Nombas ScriptEase ISDK/C 5.01 440

database.commitTransaction();

Cursor last()
SYNTAX: cursor.last()
RETURN: boolean - false if the cursor is empty; otherwise true.
DESCRIPTION: This method moves the current row to the last row in the Cursor

and returns true so long as there is a last row. Note that if the
cursor is empty, this method always returns false.

SEE: #link <sedbc>, Cursor next(), Cursor previous, Cursor first()
EXAMPLE: // assume 'database' is a valid Database object

var curs = database.table("customer");

// set the current row to the last row in the Cursor
curs.last();

Cursor next()
SYNTAX: cursor.next()
RETURN: boolean - false if the current row is the last row; otherwise

true.
DESCRIPTION: The current row of a Cursor is initially positioned "before" the

first row. Using the next method, the current row can be moved
forwards through the records in the Cursor. The next method
moves the pointer and returns true as long as there is another
row available. When the current row has reached the last row of
the Cursor, next returns false. Note that, in the event of an
empty Cursor, this method will always return false.

SEE: #link <sedbc>, Cursor previous(), Cursor first(), Cursor last()
EXAMPLE: // assume 'database' is a valid Database object

var curs = database.cursor("select * from customer",
 true);

// visit each object in the cursor
while (curs.next())
 ;

Cursor previous()
SYNTAX: cursor.previous()
RETURN: boolean - false if the current row is the first row; otherwise

true.
DESCRIPTION: Using the previous method, the current row can be moved

backwards through the records in the Cursor. The previous
method moves the pointer and returns true as long as there is
another row available. When the current row has reached the
first row of the Cursor, next returns false. Note that, in the
event of an empty Cursor, this method will always return false.

SEE: #link <sedbc>, Cursor next(), Cursor first(), Cursor last()
EXAMPLE: // assume 'database' is a valid Database object

Nombas ScriptEase ISDK/C 5.01 441

var curs = database.cursor("select * from customer",
 true);

// set the current row to the last row in the cursor
curs.last();

// visit each object in the cursor, backwards
while (curs.previous())
 ;

Cursor reload()
SYNTAX: cursor.reload()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: Requeries the database and recreates the rows of the cursor,
taking into account the filter and sort properties of the Cursor.

SEE: #link <sedbc>, Database majorErrorCode(), Database
minorErrorCode(), Cursor sort, Cursor filter

EXAMPLE: // assume 'curs' is a valid Cursor object
// Change sort order of the cursor rows
curs.sort = "Year";

// reload the cursor's contents
err = cursor.reload();

Cursor updateRow()
SYNTAX: cursor.updateRow()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This method uses the values in the current row of an undatable
cursor to modify a row in a table. Before an updateRow can be
performed, make sure the next method has been called at least
once, so that the current row of the Cursor is assigned.

To update a row in a database table, assign values to columns in
the current row of the cursor, and call updateRow. Column
values that are not explicitly assigned are not changed by the
updateRow method.

SEE: #link <sedbc>, Cursor next(), Cursor previous(), Database
commitTransaction(), Database rollbackTransaction()

EXAMPLE: // assume 'database' is a valid Database object
var curs = database.table("customer");

// choose the first row to be updated
curs.next();

Nombas ScriptEase ISDK/C 5.01 442

// update the values for the new row
curs.Paid = False;

// update the row in the Cursor
curs.updateRow();
database.commitTransaction();

Database Object
 platform: Win32; all versions of SE
 source: #link <sedbc>

The Database object allows an application to access and interact with a
relational database.

Description of the Database object

Use the database object to connect to a remotely stored relational database stored
on a server.

The database object can be used to perform the following tasks on a relational
database:

• Execute SQL statements and queries on the database server
• Iterate the results of a query in order to process or display them
• Manage database transactions
• Run stored procedures

When closing down a database, be sure to close any associated open cursors,
result sets, and stored-procedure objects, or else unpredictable results may occur.

Database transactions
A transaction is a group of database actions that are performed together. Either
all the actions succeed together or they all fail together. When a group of
database actions is made permanent, it is called committing a transaction. Rolling
back a transaction cancels all of the actions of a non-committed transaction.

Explicit transaction control is available for any set of actions using the
beginTransaction, commitTransaction, and rollbackTransaction
methods. If transactions are not controlled explicitly, the runtime engine uses the
underlying database's autocommit feature to treat each database modification as a
separate transaction. Each statement is either committed or rolled back
immediately, based on the success or failure of the individual statement.
Explicitly managing transactions overrides this default behavior.

NOTE: When making changes to a database, it is recommended that explicit
transaction control be used. If not, the database may report errors. However,
even if errors are not specifically reported, data integrity cannot be guaranteed
unless explicit transactions are used. In addition, any time a Cursors object is
used to update a database, it is also recommended that explicit transactions be
used to ensure the consistency of the data.

For the database object, the scope of a transaction is limited to lifetime of the
connection. If the database object is disconnected before calling

Nombas ScriptEase ISDK/C 5.01 443

commitTransaction or rollbackTransaction method, then the transaction
is automatically rolled back.

Database beginTransaction()
SYNTAX: database.beginTransaction()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: After calling beginTransaction, all subsequent actions that
modify the database are grouped within this transaction, known
as the current transaction. Nested transactions are not supported.
If beginTransaction is called when a transaction is already
open, an error message will be returned.

SEE: #link <sedbc>, Database commitTransaction(), Database
rollbackTransaction()

EXAMPLE: var err = db.beginTransaction();

Database commitTransaction()
SYNTAX: database.commitTransaction()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: This method commits all of the actions performed since the last
call to beginTransaction. If there is no current transaction
(for instance, the application has not called
beginTransaction), calls to commitTransaction are
ignored.

SEE: #link <sedbc>, Database beginTransaction(), Database
rollbackTransaction()

EXAMPLE: var err = db.commitTransaction();

Database connect()
SYNTAX: database.connect(dbtype, server, username,

 password)
WHERE: dbtype - A string representing the database type. Currently only

"ODBC" is supported.

server - Data source name. On Windows systems using ODBC,
this is specified in the ODBC Administrator Control Panel; on
UNIX, in the .odbc.ini file. See your database or system
administrator for more information.

username - Name of the user to connect to the database. Some

Nombas ScriptEase ISDK/C 5.01 444

relational database management systems (RDBMS) require that
this be the same as your operating system login name; others
maintain their own collections of valid user names. If in doubt,
see your system administrator.

password - User's password. If the database does not require a
password, use an empty string.

RETURN: number - 0 if the call was successful; otherwise, a nonzero status
code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: Creates and caches a database connection to the specified
database of the given type, using the username and password
passed-in. When the connection goes out of scope, any pending
transactions are rolled back. If any database connections are
open when connect is called, they are closed and released
before the new connection is opened.

SEE: #link <sedbc>, Database disconnect(), Database connected()
EXAMPLE: // This example creates a new database and

// then connects it to
// the database named "CLIENTS" using
// the username "ADMIN" and
// the password "admin-password"
var db = new database();
var err = db.connect("ODBC", "CLIENTS", "ADMIN",
 "admin-passwd");

Database connected()
SYNTAX: database.connected()
RETURN: boolean - true if the Database object is currently connected to a

data source, false otherwise.
DESCRIPTION: This method returns true if the Database object is currently

connected to a database. If connected returns false,
reconnect the database before performing any further database
actions, otherwise the actions will result in errors.

SEE: #link <sedbc>, Database connect(), Database disconnect()
EXAMPLE: // This example first checks to see

// if the database is
// connected to a data source. If not,
// it connects it to the
// database named "CLIENTS" using
// the username "ADMIN" and the
// password "admin-password"
if (!db.connected())
 err = db.connect("ODBC", "CLIENTS",
 "ADMIN", "admin-passwd");

Database cursor()
SYNTAX: database.cursor(sqlstatement[,mode])

Nombas ScriptEase ISDK/C 5.01 445

WHERE: sqlstatement - String containing a SQL SELECT statement
supported by the database server.

mode - optional parameter indicating whether the cursor can be
modified.

RETURN: object - a new Cursor object, representing the results of the
specified SQL statement.

DESCRIPTION: This method creates a Cursor object that contains the rows
returned by the specified SQL SELECT statement in the
sqlstatement parameter. If the SELECT statement does not
return any rows, the resulting Cursor object also has no rows.

The optional mode parameter specifies how the Cursor object
will access and modify records. The options for this field are:

Database.snapshot - uses SQLExtendedFetch, static
cursor

Database.dynaset - uses SQLExtendedFetch, keyset
driven cursor

Database.forwardOnly - uses SQLFetch

Database.dynamic - uses SQLExtendedFetch,
dynamic cursor

If no value is specified in the mode parameter, the cursor is
created Database.snapshot.

If an updateable Cursor object is desired, the virtual table
returned by the sqlstatement parameter must be updateable.
For example, the SELECT statement passed as the
sqlstatement parameter cannot contain a GROUP BY clause.
In addition, the query usually must retrieve key values from a
table. For more information on constructing updateable queries,
consult your database vendor's documentation.

SEE: #link <sedbc>, Cursor object
EXAMPLE: // This example creates the updateable cursor 'custs'

// and
// returns the columns 'ID', 'CUST_NAME',
// and 'CITY' from the
// customer table:
custs = db.cursor("select id, cust_name,
 city from customer",
 Database.dynaset);

Database disconnect()
SYNTAX: database.disconnect()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

Nombas ScriptEase ISDK/C 5.01 446

DESCRIPTION: Disconnects Database object from its data source.
SEE: #link <sedbc>, Database connect(), Database connected()
EXAMPLE: // The example checks to see if

// the Database object is
// connected to a data source, and,
// if so, disconnects it.
if (db.connected())
 err = db.disconnect();

Database execute()
SYNTAX: database.execute(sqlstatement)
WHERE: sqlstatement - string representing the SQL statement to execute.
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: This method allows execution of any data definition language
(DDL) or data manipulation language (DML) SQL statement
supported by the database server that does not return a cursor
(such as CREATE, ALTER, or DROP). Each database supports a
standard core of DDL and DML statements. In addition, a
database may support DDL and DML statements specific to that
database vendor. Use execute to call any of those statements.
However, a database vendor may provide functions that are not
DDL or DML statements. Do not use execute to call those
functions. For example, do not call the Oracle describe
function or the Informix load function from the execute
method.

Although the execute method can be used to perform data
modification (INSERT, UPDATE, or DELETE statements), it is
recommended that Cursor objects be used instead to achieve the
same functionality. Using the Cursor object for these sorts of
actions allows better database-type independence and also allows
the use of binary large object (BLOb) data.

When using the execute method, the SQL statement must
strictly conform to the syntax requirements of the database
server. For example, some servers require each SQL statement
be terminated with a semicolon. See the server documentation
for more information. If a transaction has not been started with
beginTransaction, the single statement is automatically
immediately committed when execute is called.

SEE: #link <sedbc>, Database cursor(), Database
beginTransaction(), Database commitTransaction(), Database
rollbackTransaction()

EXAMPLE: // This example deletes all records from the database
// whose ID is 'requestedID'. It is recommended,

Nombas ScriptEase ISDK/C 5.01 447

// however, that the Cursor object be used
// to perform this action.
err = db.execute("delete from customer where
customer.ID = " + requestedID);

Database majorErrorCode()
SYNTAX: database.majorErrorCode()
RETURN: variable - the result returned by this method varies depending on

the database server being used, but contains an error code
indicating why the most recent database activity failed.

DESCRIPTION: SQL statements can fail for a variety of reasons, including
referential integrity constraints, lack of user privileges, record or
table locking in a multiuser database, and so on. When an action
fails, the database server returns an error code indicating the
reason for failure. Use this method to fetch that error code.

SEE: #link <sedbc>, Database majorErrorMessage(), Database
minorErrorCode(), Database minorErrorMessage()

EXAMPLE: errCode = db.majorErrorCode();

Database majorErrorMessage()
SYNTAX: database.majorErrorMessage()
RETURN: variable - the result returned by this method varies depending on

the database server being used, but contains an error message
explaining why the most recent database activity failed.

DESCRIPTION: SQL statements can fail for a variety of reasons, including
referential integrity constraints, lack of user privileges, record or
table locking in a multiuser database, and so on. When an action
fails, the database server returns an error message indicating the
reason for failure. Use this method to fetch that error message.

SEE: #link <sedbc>, Database majorErrorCode(), Database
minorErrorCode(), Database minorErrorMessage()

EXAMPLE: errMessage = db.majorErrorMessage();

Database minorErrorCode()
SYNTAX: database.minorErrorCode()
RETURN: variable - the result returned by this method varies depending on

the database server being used. In general, the method returns a
secondary error code indicating a condition where the last
database activity may not have completed as expected.

DESCRIPTION: The result returned by this method varies depending on the
database server being used. In general, the method returns a
secondary error code indicating a condition where the last
database activity may not have completed as expected.

SEE: #link <sedbc>, Database majorErrorCode, Database
majorErrorMessage, Database minorErrorMessage()

EXAMPLE: errCode = db.minorErrorCode();

Nombas ScriptEase ISDK/C 5.01 448

Database minorErrorMessage()
SYNTAX: database.minorErrorMessage()
RETURN: variable - the result returned by this method varies depending on

the database server being used. In general, the method returns a
secondary error message indicating a condition where the last
database activity may not have completed as expected.

DESCRIPTION: This method returns the secondary error message returned by
database vendor library.

SEE: #link <sedbc>, Database majorErrorCode, Database
majorErrorMessage, Database minorErrorCode()

EXAMPLE: errCode = db.minorErrorMessage();

Database procedureName()
SYNTAX: database.procedureName(n)
WHERE: n - Zero-based integer corresponding to the stored procedure in

the database.
RETURN: The name of the stored procedure with index n.
DESCRIPTION: This method returns the name of the stored procedure

corresponding to the specified index, n.
SEE: #link <sedbc>, Stproc object, Database storedProc()
EXAMPLE: // fetch the name of stored procedure 0

procName = db.procedureName(0);

Database procedures()
SYNTAX: database.procedures()
RETURN: number - number of stored procedures in the database.
DESCRIPTION: This method returns the number of procedures stored in the

database.
SEE: #link <sedbc>, Stproc object, Database storedProc(),

Database procedureName()
EXAMPLE: // get the number of stored procedures in 'db'

procCount = db.procedures();

Database rollbackTransaction()
SYNTAX: database.rollbackTransaction()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the
majorErrorCode and majorErrorMessage methods to
interpret the meaning of the error.

DESCRIPTION: This method undoes all actions performed since the last call to
beginTransaction. If there is no current transaction (for
instance, the application has not called beginTransaction),

Nombas ScriptEase ISDK/C 5.01 449

calls to rollbackTransaction are ignored.
SEE: #link <sedbc>, Database beginTransaction(), Database

commitTransaction()
EXAMPLE: err = db.rollbackTransaction()

Database storedProc()
SYNTAX: database.storedProc(procName)
WHERE: procName - String specifying the name of a stored procedure or

SQL statements with parameters.
RETURN: object - new Stproc object.
DESCRIPTION: This method creates a stored procedure object (Stproc) from

either the named stored procedure contained within the Database
object, or from the passed-in SQL statement.

SEE: #link <sedbc>, Stproc object, Database procedures(),
Database procedureName()

EXAMPLE: // this example create a new database,
//and then executes
// a stored procedure contained within
var db = new Database;
db.connect(DBEngine, DataSource, User, Password);
var sp = db.storedProc("SomeProc");
sp.ItemID = 123;
sp.execute();

// now, execute an SQL Stproc
sp = db.storedProc("delete from Items where Weight =
?");
sp[0] = 1000;
sp.execute();

// clean up
sp.close();
db.close();

Database table()
SYNTAX: database.table(tableName[,mode])
WHERE: tableName - The name of an existing table in the database.

mode - optional parameter indicating whether the cursor can be
modified.

RETURN: object - Cursor object representing the specified database table.
DESCRIPTION: This method creates a new Cursor object from the specified

table stored in the database. The resulting Cursor has one row
for each row in the database table and will be empty if the
database table has no rows.

The optional mode parameter specifies how the Cursor object
will access and modify records. The options for this field are:

Database.snapshot - uses SQLExtendedFetch, static

Nombas ScriptEase ISDK/C 5.01 450

cursor

Database.dynaset - uses SQLExtendedFetch, keyset
driven cursor

Database.forwardOnly - uses SQLFetch

Database.dynamic - uses SQLExtendedFetch,
dynamic cursor

If no value is specified in the mode parameter, the cursor is
created Database.snapshot.

If an updateable Cursor object is desired, the virtual table
returned by the sqlstatement parameter must be updateable.
For example, the SELECT statement passed as the
sqlstatement parameter cannot contain a GROUP BY clause.
In addition, the query usually must retrieve key values from a
table. For more information on constructing updateable queries,
consult your database vendor's documentation.

SEE: #link <sedbc>, Cursor object, Database tables(), Database
tableName()

EXAMPLE: // create a new Cursor object
// from the "clients" database table
clientsCurs = db.table("clients", false);

Database tableName()
SYNTAX: database.tableName(n)
WHERE: n - Zero-based integer corresponding to the table in the database.
RETURN: string - name of the table in the database with index n.
DESCRIPTION: This method returns the name of the database table

corresponding to the specified index, n.
SEE: #link <sedbc>, Database table(), Database tables()
EXAMPLE: // fetch the name of database table 0

tableName = db.tableName(0);

Database tables()
SYNTAX: database.tables()
RETURN: number - number of tables in the database.
DESCRIPTION: This method returns the number of tables stored in the database.
SEE: #link <sedbc>, Database table(), Database tableName()
EXAMPLE: // get the number of tables in 'db'

tableCount = db.tables();

SimpleDataset object
 title: SimpleDataset object
platform: Win32; all versions of SE
 source: #include <smdtset.jsh>

Nombas ScriptEase ISDK/C 5.01 451

A SimpleDataset object is an easy-to-use database-access object that combines
database and cursor functionality into a single object.

SimpleDataset is a JavaScript class that combines the concept of a table and a
cursor into a single, easy-to-use object. No more than one table may be
represented by a SimpleDataset, so inserting items into the dataset doesn't require
a target table to be specified. SQL is not needed to use a SimpleDataset and all
operations can be performed through simple method calls.

When a SimpleDataset is created, it initially contains all of the rows ("records")
in the specified table. The find() method allows this set to be reduced to only
those records that match specified templates.

A SimpleDataset has the notion of the "current record". This is the record that
SimpleDataset operations will affect. When the SimpleDataset is first created,
the current record is the record "before" the first record, and is thus undefined.

Use the firstRecord(), lastRecord(), nextRecord(), and prevRecord() methods, to
step through the records in the SimpleDataset. The current record is returned by
currentRecord(). The objects returned by these routines have one property for
each of the current record's fields.

The current record can be deleted using deleteRecord(). All items in the dataset
can be deleted by deleteAll().

Records can be inserted into the table of the SimpleDataset by insertRecord().
The "current" record can be replaced by a specified record using replaceRecord().

A Cursor object representing the SimpleDataset can be obtained by using the
cursor() method. It may be necessary to use this to perform more powerful
operations on the dataset.

Although the SimpleDataset can be closed through its close() method, it is
automatically closed when the object goes out of scope.

Using the SimpleDataset object, the following five-line script can be used to print
out the contents of a database:
function print_all(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user, passwd);

 while(var rec = ds.nextRecord())
 for(var prop in rec)
 Screen.writeln(prop + " = " + rec[prop]);

 ds.close();
}

SimpleDataset instance methods
SimpleDataset()
SYNTAX: new SimpleDataset(database, table, username,

password)
WHERE: database - The name of the ODBC database to open. On

Windows systems using ODBC, this is specified in the ODBC
Administrator Control Panel; on UNIX, in the .odbc.ini file. See

Nombas ScriptEase ISDK/C 5.01 452

your database or system administrator for more information.

table - the name of the database table to use.

username - name of the user to connect to the database. Some
relational database management systems (RDBMS) require that
this be the same as your operating system login name; others
maintain their own collections of valid user names. If in doubt,
see your system administrator.

password - user's password. If the database does not require a
password, use an empty string.

RETURN: object - a new SimpleDataset, or null on error.
DESCRIPTION: Constructor for the SimpleDataset object. When the

SimpleDataset is created, it contains all of the elements in the
table. The current element is set to the one "before" the first
element in the dataset (and thus is "out of range").

SEE: #include <smdtset.jsh>

EXAMPLE: // create a SimpleDataset connected to the database
// named "corporate", table named "clients" using
// the username "ADMIN" and the password
// "admin-password"
var ds = new SimpleDataset("corporate", "clients",
 "ADMIN", "admin-password");

SimpleDataset close()
SYNTAX: simpledataset.close()
RETURN: boolean - value indicating success. In the case that the operation

failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method closes the SimpleDataset object, freeing up the
system resources being used by it. It also closes the associated,
hidden, database and Cursor objects.

SEE: #include <smdtset.jsh>

EXAMPLE: var success = ds.close();

SimpleDataset currentRecord()
SYNTAX: simpledataset.currentRecord()
RETURN: object - the current record of a SimpleDataset, or null if the

current record is out of range.
DESCRIPTION: This method returns the record for the current record in the

SimpleDataset. If the current element is undefined, null is
returned. The returned object has one property for each field of
the current record a SimpleDataset.

SEE: #include <smdtset.jsh>, SimpleDataset nextRecord(),
SimpleDataset prevRecord(), SimpleDataset firstRecord(),
SimpleDataset lastRecord()

EXAMPLE: // get the current record

Nombas ScriptEase ISDK/C 5.01 453

var cr = ds.currentRecord();

// print out all of the fields of the object
for(var prop in cr)
 Clib.printf(prop + " = " + cr[prop] + "\n");

SimpleDataset nextRecord()
SYNTAX: simpledataset.nextRecord()
RETURN: object - the next record in the SimpleDataset. If there is no

next record, null is returned.
DESCRIPTION: This method moves the current record forward in the

SimpleDataset and returns the new current record. If the
previous current record was the last record or the
SimpleDataset is empty, null is returned.

SEE: #include <smdtset.jsh>, SimpleDataset currentRecord(),
SimpleDataset prevRecord(), SimpleDataset firstRecord(),
SimpleDataset lastRecord()

EXAMPLE: // get the next record
var rec = ds.nextRecord();

// so long as the record isn't null, print out all
// of the fields of the object
if(null != rec)
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

SimpleDataset prevRecord()
SYNTAX: simpledataset.prevRecord()
RETURN: object - the previous record in the SimpleDataset. If there is

no previous record, null is returned.
DESCRIPTION: object - the previous record in the SimpleDataset. If there is

no previous record, null is returned.
SEE: #include <smdtset.jsh>, SimpleDataset currentRecord(),

SimpleDataset nextRecord(), SimpleDataset firstRecord(),
SimpleDataset lastRecord()

EXAMPLE: // get the previous record
var rec = ds.prevRecord();

// so long as the record isn't null, print out all
// of the fields of the object
if(null != rec)
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

SimpleDataset firstRecord()
SYNTAX: simpledataset.firstRecord()
RETURN: object - the first record in the SimpleDataset. If the

SimpleDataset is empty, null is returned.
DESCRIPTION: This method moves the current record to the first record in the

Nombas ScriptEase ISDK/C 5.01 454

SimpleDataset and returns the new current record. If the
SimpleDataset is empty, null is returned.

SEE: #include <smdtset.jsh>, SimpleDataset currentRecord(),
SimpleDataset nextRecord(), SimpleDataset prevRecord(),
SimpleDataset lastRecord()

EXAMPLE: // get the first record
var rec = ds.firstRecord();

// so long as the record isn't null, print out all
// of the fields of the object
if(null != rec)
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

SimpleDataset lastRecord()
SYNTAX: simpledataset.lastRecord()
RETURN: object - the last record in the SimpleDataset. If the

SimpleDataset is empty, null is returned.
DESCRIPTION: This method moves the current record to the last record in the

SimpleDataset and returns the new current record. If the
SimpleDataset is empty, null is returned.

SEE: #include <smdtset.jsh>, SimpleDataset currentRecord(),
SimpleDataset nextRecord(), SimpleDataset prevRecord(),
SimpleDataset firstRecord()

EXAMPLE: // get the last record
var rec = ds.lastRecord();

// so long as the record isn't null,
// print out all of the
// of the fields of the object
if(null != rec)
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] + "\n");

SimpleDataset find() with template
SYNTAX: simpledataset.find(template1[, template2[, ...])
WHERE: templateN - Item template to search for. When more than one

template is present, the templates are OR'd together.

Templates contain properties to match. Only those records which
have properties that match those values will be included in the
result set.

RETURN: boolean - value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method searches the database table of a SimpleDataset for
all items that match the given templates. The contents of the
SimpleDataset are changed to reflect the results of the search.
The previous contents of the SimpleDataset are cleared and
the complete database table is searched to create the new

Nombas ScriptEase ISDK/C 5.01 455

contents.

After the find has completed, the current record is set to the
record "before" the first record. Fill out the properties in the
template to indicate which items to find. For instance, to find all
records whose 'city' field equals "Metropolis", set the value of
the 'city' property to "Metropolis". If a template has more than
one property, the properties will be combined with an AND to
form the search term.

More than one template can be used. If multiple templates are
used, the template values will be combined using an OR to form
the search term.

SEE: #include <smdtset.jsh>, SimpleDataset findAll(),
SimpleDataset findDistinct(), SimpleDataset caseSensitive

EXAMPLE: // the following function will print out the fields
// of each of the records that have either Boston,
// USA or Paris, France as
// their city, country values
function print_BostonParis(db, table, user, passwd)
{
 // create the SimpleDataset
 var ds = new SimpleDataset(db, table, user,
 passwd);

 var template1, template2;

 template1.city = "Boston";
 template1.country = "USA";

 template2.city = "Paris";
 template2.country = "France";

 ds.find(template1, template2);

 while(var rec = ds.nextRecord())
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] +
 "\n");

 ds.close();
}

SimpleDataset find() with clause
SYNTAX: simpledataset.find(whereClause)
WHERE: whereClause - A string containing the WHERE clause of an SQL

statement (without the word WHERE) indicating which items to
find.

RETURN: Boolean value indicating success. In the case that the operation
failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method searches the database table of a SimpleDataset for
all items that match the given SQL WHERE clause. The contents
of the SimpleDataset are changed to reflect the results of the

Nombas ScriptEase ISDK/C 5.01 456

search. The previous contents of the SimpleDataset are
cleared and the complete database table is searched to create the
new contents.

After the find has completed, the current record is set to the
record "before" the first record.

The string passed into find contains a SQL WHERE clause. This
allows more elaborate searches to be performed.

SEE: #include <smdtset.jsh>, SimpleDataset findAll(),
SimpleDataset findDistinct()

EXAMPLE: // the following function will print out the fields
// of each of the records that have either Boston
// or Paris as their city values
function print_BostonParis(db, table, user, passwd)
{
 // create the SimpleDataset
 var ds = new SimpleDataset(db, table, user,
 passwd);

 var whereClause;

 whereClause = "(City = \'Boston\') OR
 (City = \'Paris\')";

 ds.find(template1, template2);

 while(var rec = ds.nextRecord())
 for(var prop in rec)
 Clib.printf(prop + " = " + rec[prop] +
 "\n");

 ds.close();
}

SimpleDataset findAll()
SYNTAX: simpledataset.findAll()
RETURN: boolean - value indicating success. In the case that the operation

failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method clears the contents of the SimpleDataset and
replaces them with the entire contents of the database table.
Effectively, this resets the SimpleDataset to its initial state.

After setting the new contents, the current record is set to the
record "before" the first record.

SEE: #include <smdtset.jsh>, SimpleDataset find() with
template, SimpleDataset find() with clause, SimpleDataset
findDistinct()

EXAMPLE: // reset the contents of the SimpleDataset
err = ds.findAll();

SimpleDataset findDistinct()

Nombas ScriptEase ISDK/C 5.01 457

SYNTAX: simpledataset.findDistinct(field)
WHERE: field - string indicating for which field duplicate values should

be filtered out.
RETURN: boolean - value indicating success. In the case that the operation

failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method removes all records from the SimpleDataset that
have duplicate values for the indicated fields. In other words, for
the given field, only one record with each value is left in the
SimpleDataset.

Note that no guarantees are made as to which records are left in
the SimpleDataset for each value of the field.

SEE: #include <smdtset.jsh>, SimpleDataset find() with
template, SimpleDataset find() with clause, SimpleDataset
findAll()

EXAMPLE: // print the unique country values
// in a SimpleDataset
function unique_countries(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // find the distinct country values
 ds.findDistinct("country");

 while(var rec = ds.nextRecord())
 Clib.printf(var.country + "\n");
}

SimpleDataset addRecord()
SYNTAX: simpledataset.addRecord(record)
WHERE: record - Object whose properties contain the values of the fields

of the record to be added to the database table.
RETURN: boolean - value indicating success. In the case that the operation

failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method inserts the specified record into the
SimpleDataset and its associated database table. The record
to be inserted will have the field values indicated by the
properties of the object passed into addRecord. After inserting a
new record, the current record is left unchanged.

Note that no guarantees are made about the position of the
inserted record within the SimpleDataset.

SEE: #include <smdtset.jsh>, SimpleDataset deleteRecord(),
SimpleDataset deleteAll()

EXAMPLE: // The following function opens a SimpleDataset,
// adds the city
// Boston, Massachusetts to it,

Nombas ScriptEase ISDK/C 5.01 458

// and then closes it down
function add_city(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // set up the field values
 // of the item to be added
 var record;
 record.city = "Boston";
 record.country = "USA";
 record.state = "Massachusetts";
 record.population = 500000;

 // add the item and clean up
 ds.addRecord(record);
 ds.close();
}

SimpleDataset deleteRecord()
SYNTAX: simpledataset.deleteRecord()
RETURN: boolean - value indicating success. In the case that the operation

failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method removes the current record from the
SimpleDataset and its associated database table. After
deleting the record, the current record is set to the record
"before" the first record.

SEE: #include <smdtset.jsh>, SimpleDataset deleteAll()
EXAMPLE: // This function will delete all records

// with USA as their country
function delete_USA(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // find the entries whose country is USA
 var template;
 template.country = "USA";
 ds.find(template);

 // delete the records from the SimpleDataset
 // and clean up
 while(ds.next())
 ds.deleteRecord();
 ds.close();
}

SimpleDataset deleteAll()
SYNTAX: simpledataset.deleteAll()
RETURN: boolean - value indicating success. In the case that the operation

failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method removes all records from the SimpleDataset. The
corresponding rows will also be deleted from the associated

Nombas ScriptEase ISDK/C 5.01 459

database table.
SEE: #include <smdtset.jsh>, SimpleDataset deleteRecord()
EXAMPLE: // This function will delete all records

// with USA as their country
function delete_USA(db, table, user, passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // find the entries whose country is USA
 var template;
 template.country = "USA";
 ds.find(template);

 // delete the records from the SimpleDataset
 // and clean up
 ds.deleteAll();
 ds.close();
}

SimpleDataset replaceRecord()
SYNTAX: simpledataset.replaceRecord(record)
WHERE: record - object whose properties contain the values of the fields

of the record to replace the current record with.
RETURN: boolean - value indicating success. In the case that the operation

failed, use the getLastErrorCode() and getLastError()
methods to determine the reason for the failure.

DESCRIPTION: This method replaces the current record in the SimpleDataset
with the specified record. The record that the current record will
be replaced with will have the field values indicated by the
properties of the object passed into addRecord. After inserting
a new record, the current record remains unchanged; that is, the
current record is the record that replaced the previous current
record.

SEE: #include <smdtset.jsh>, SimpleDataset addRecord(),
SimpleDataset deleteRecord()

EXAMPLE: // This function will set the population
// of the first record
// with USA as its country to 100,000
function replace_population(db, table, user,
 passwd)
{
 var ds = new SimpleDataset(db, table, user,
 passwd);

 // find the entries whose country is USA
 var template;
 template.country = "USA";
 ds.find(template);

 // advance to first record in the result set
 var rec = ds.nextRecord();

 if(null != rec)

Nombas ScriptEase ISDK/C 5.01 460

 {
 // set the new population value
 rec.population = 100000;

 // replace the record and clean up
 ds.replaceRecord(rec);
 }
 ds.close();
}

SimpleDataset cursor()
SYNTAX: simpledataset.cursor()
RETURN: object - the Cursor object that represents the current contents of

the SimpleDataset
DESCRIPTION: This method returns the Cursor object that represents the

SimpleDataset. This may be useful if functionality beyond that
of the SimpleDataset is required.

SEE: #include <smdtset.jsh>, Cursor object
EXAMPLE: // get the SimpleDataset as a Cursor

var curs = ds.cursor();

SimpleDataset getLastErrorCode()
SYNTAX: simpledataset.getLastErrorCode()
RETURN: number - integer specifying error code
DESCRIPTION: This method returns an integer containing the code of any error

encountered by the last SimpleDataset method call. The error
codes/strings are reset whenever a SimpleDataset method is
called (excluding getLastErrorCode() and getLastError()).

SEE: #include <smdtset.jsh>, SimpleDataset getLastError()
EXAMPLE: // get the error code

errCode = ds.getLastErrorCode();

SimpleDataset getLastError()
SYNTAX: simpledataset.getLastError()
RETURN: string - message describing the last error encountered.
DESCRIPTION: This method returns a string explaining the error encountered by

the last SimpleDataset method call. The error codes/strings are
reset whenever a SimpleDataset method is called (excluding
getLastErrorCode() and getLastError()).

SEE: #include <smdtset.jsh>, SimpleDataset
getLastErrorCode()

EXAMPLE: // get a string describing the error
error = ds.getLastError()

SimpleDataset static properties
SimpleDataset.caseSensitive

Nombas ScriptEase ISDK/C 5.01 461

SYNTAX: SimpleDataset.caseSensitive
DESCRIPTION: Boolean value indicating whether or not find calls are case

sensitive. By default, searches are not case sensitive.
SEE: #include <smdtset.jsh>, SimpleDataset find() with

template, SimpleDataset find() with clause
EXAMPLE: // turn on case sensitivity

// for SimpleDataset searches
ds.caseSensitive = true;

Stproc object
 title: Stproc Object
platform: Win32; all versions of SE
 source: #link <sedbc>

An Stproc object represents a call to a database stored procedure or SQL
statement with parameters.

The Stproc object represents a stored procedure. A stored procedure is an SQL
statement or other procedure that can be saved in a database object. The
procedure object can be recalled and executed, if necessary returning its results
as a Cursor object.

Stproc instance properties
The properties of Stproc objects vary from instance to instance. Each Stproc
object has a property for each parameter in the stored procedure or SQL
statement. Thus, when an Stproc object is created, it acquires a property for each
of its parameters.

Parameters of an Stproc object may also be referred to as elements of an array.
The 0-index array element corresponds to the first parameter, the 1-index array
element corresponds to the second parameter, and so forth.

The following example demonstrates how to call a stored procedure using named
parameter properties. A GetCityArea procedure might be defined in a MS
Access database as follows:
/*
 PARAMETERS AreaParam Text, CityParam Text;
 SELECT Table3.* FROM Table3
 WHERE ((Table3.Area=[AreaParam]) AND
 (Table3.City=[CityParam]));
*/

// Recall the Stproc object 'GetCityArea' from the database
sp = db.storedProc("GetCityArea");

// Set the parameter values
sp.AreaParam = "Europe";
sp.CityParam = "Paris";

// Execute the stored procedure
citySet = sp.cursor();

// Clean up
citySet.close();
sp.close();

Nombas ScriptEase ISDK/C 5.01 462

/*
 This example uses the same procedure, but accesses the
 parameters through array indexes.
*/

// Recall the Stproc object 'GetCityArea' from the database
sp = database.storedProc("GetCityArea");

// Set the parameter values
sp[0] = "Europe";
sp[1] = "Paris";

// Execute the stored procedure
citySet = sp.cursor();

// Clean up
citySet.close();
sp.close();

Stproc instance methods
Stproc close()
SYNTAX: stproc.close()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This method closes an Stproc object and releases the memory it
uses. If an Stproc object is not explicitly closed with the close
method, the runtime engine automatically it when the
corresponding database object goes out of scope.

SEE: #link <sedbc>, Database majorErrorCode(), Database
minorErrorCode()

EXAMPLE: // Close down the Stproc
err = sp.close();

Stproc parameterName()
SYNTAX: stproc.parameterName(n)
WHERE: n - zero-based integer corresponding to the parameter in the

Stproc object. The first parameter is 0, the second is 1, etc.
return:

RETURN: string - the name of parameter n.
DESCRIPTION: This method returns the name of the parameter corresponding to

the given index.
SEE: #link <sedbc>, Stproc parameters()
EXAMPLE: // fetch the second parameter name

// of the Stproc 'sp'
paramName = sp.parameterName(1);

Nombas ScriptEase ISDK/C 5.01 463

Stproc parameters()
SYNTAX: stproc.parameters()
RETURN: number - parameters in the Stproc.
DESCRIPTION: This method returns the number of named and unnamed

parameters for the stored procedure or SQL statement.
SEE: #link <sedbc>, Stproc parameterName()
EXAMPLE: // create an array of parameter names

// for Stproc 'sp'
for(i=0; i<sp.parameters(); i++)
 pNames[i] = sp.parameterName(i);

Stproc cursor()
SYNTAX: stproc.cursor([updateable])
WHERE: updateable - Boolean parameter indicating whether the cursor

can be modified.
RETURN: A new Cursor object, representing the results of the stored

procedure.
DESCRIPTION: This method creates a Cursor object that contains the rows

returned by the SQL SELECT statement of the stored procedure
object. If the SELECT statement does not return any rows, the
resulting Cursor object also has no rows.

The optional mode parameter specifies how the Cursor object
will access and modify records. The options for this field are:

Database.snapshot - uses SQLExtendedFetch, static
cursor

Database.dynaset - uses SQLExtendedFetch, keyset
driven cursor

Database.forwardOnly - uses SQLFetch

Database.dynamic - uses SQLExtendedFetch,
dynamic cursor

If no value is specified in the mode parameter, the cursor is
created Database.snapshot.

If an updateable Cursor object is desired, the virtual table
generated by the stored procedure must be updateable. For
example, the SELECT statement cannot contain a GROUP BY
clause. In addition, the query usually must retrieve key values
from a table. For more information on constructing updateable
queries, consult your database vendor's documentation.

SEE: #link <sedbc>, Cursor object, Stproc execute()
EXAMPLE: // create a SQL stored procedure

SQL = "select id, cust_name, city from customer"
 "where (id >=?) and (id <=?)";
sp = database.storedProc(SQL);

// set the parameters

Nombas ScriptEase ISDK/C 5.01 464

sp[0] = 1000;
sp[1] = 2000;

// create the cursor
custs = sp.cursor(true)

Stproc execute()
SYNTAX: stproc.execute()
RETURN: number - 0 if the call was successful; otherwise, a nonzero status

code based on the error message produced by the database. If
the method returns a nonzero status code, use the associated
Database's majorErrorCode and majorErrorMessage
methods to interpret the meaning of the error.

DESCRIPTION: This method executes the stored procedure of SQL statement. It
allows execution of any stored procedure or SQL statement that
uses data definition language (DDL) or data manipulation
language (DML) statements supported by the database server
and that do not return a cursor (such as CREATE, ALTER, or
DROP).

Each database supports a standard core of DDL and DML
statements. In addition, a database may support DDL and DML
statements specific to that database vendor. Use execute to call
any of those statements. However, a database vendor may
provide functions that are not DDL or DML statements. Do not
use execute to call a stored procedure using those functions.
For example, do not call the Oracle describe function or the
Informix load function from a stored procedure's execute
method. Although the execute method can be used to perform
data modification (INSERT, UPDATE, or DELETE statements), it
is recommended that Cursor objects be used instead to achieve
the same functionality. Using the Cursor object for these sorts
of actions allows better database-type independence and also
allows the use of binary large object (BLOb) data.

When using the execute method, the stored procedure's SQL
statement must strictly conform to the syntax requirements of the
database server. For example, some servers require each SQL
statement be terminated with a semicolon. See the server
documentation for more information. If a transaction has not
been started with beginTransaction, the single statement is
automatically immediately committed when the stored
procedure's execute method is called.

SEE: #link <sedbc>, Stproc cursor(), Database majorErrorCode(),
Database majorErrorMessage()

EXAMPLE: // Create a new database object, and
// connect it to a data source
var a = new Database;
a.connect(DBEngine, DataSource, User, Password);

// execute the stored procedure 'SomeProc'

Nombas ScriptEase ISDK/C 5.01 465

var sp = a.storedProc("SomeProc");
sp.ItemID = 123;
sp.execute();

// execute an SQL stored procedure
sp = a.storedProc("delete from Items where Weight =
?");
sp[0] = 1000;
sp.execute();

// clean up
sp.close();
a.close();

Nombas ScriptEase ISDK/C 5.01 467

Socket Link Library
The Socket object is used to communicate between computers over the internet
through sockets.

Socket object
platform: All OS except DOS and OS2; All Versions of SE
 source: #link <sesock>

Socket object instance methods
Socket() with hostname
SYNTAX: Socket(hostname, port)
WHERE: hostname - Name of remote host to connect to

port - Port of remote host to connect to
RETURN: object - A new Socket object, or null on error
DESCRIPTION: This method attempts to connect to the specified remote host. If

the library is unable to connect to the remote host, then null is
returned and error is set. Once the connection is established, the
socket can be read from / written to until it is closed or the
connection is lost.

SEE: #link <sesock>, Socket error()
EXAMPLE: function connect(hostnamePort)

{
 var index;
 var port = 1000; // Default port

 if((index = hostnamePort.indexOf(":")) != -1)
 {
 port = ToNumber(hostnamePort.substring(index,
 hostnamePort.length));
 hostnamePort = hostnamePort.substring(0,index);
 }

 var socket = Socket(hostnamePort, port);

 return socket;
}

Socket() with port
SYNTAX: Socket(port)
WHERE: port - Port to listen on
RETURN: object - A Socket object, or null on error.
DESCRIPTION: There are two types of sockets, in general. One type is a socket

which is an established connection between a client and a server.
This socket can be read to and written from just like a file. The
other type of socket is a listening socket, which is a server-side
socket which is not connected to a specific client, but rather to a
certain port. It is listening for any new requests on that port.

Nombas ScriptEase ISDK/C 5.01 468

Requests can be checked for using the Socket.select() method.
Once it is established that there is a request waiting, the peer-to-
peer connection can be established using the accept() method.
This creates a new connection socket on another port, leaving the
original socket still listening for incoming connections.

SEE: #link <sesock>, Socket select(), Socket accept()
EXAMPLE: var listenSocket = Socket(1000);

if(listenSocket != null)
{
 if(listenSocket.ready())
 {
 var connectSocket = listenSocket.accept();
 if(connectSocket != null)
 {
 // Finally! we have the socket
 // ... do stuff with socket ...
 connectSocket.close();
 }
 }
}

/* Creates a socket to listen on port 1000
 * and wait for any incoming
 * connections. The no-parameter form
 * of ready() uses an infinite
 * timeout, so the program waits indefinitely
 * for a connection. This is
 * also equiavalent to
 * "Socket.select(-1,listenSocket)", which is a
 * generic form which allows for
 * listening on multiple sockets.
 */

Socket accept()
SYNTAX: socket.accept()
RETURN: object - A new socket object connected to the client of the

incoming request, or null if there is an error.
DESCRIPTION: If there is no incoming request waiting on the socket, or this

socket is not listening on a certain port, then it is an error and
null is returned. Otherwise, the method establishes a socket
connection on another port and returns a socket object
representing this connection. The returned socket can later be
used for reading/writing and other communication between the
client and server.

SEE: #link <sesock>, Socket select(), Socket ready()

Socket blocking()
SYNTAX: socket.blocking(flag)
WHERE: flag - A boolean value indicating whether this socket is to be

blocking or non-blocking.

Nombas ScriptEase ISDK/C 5.01 469

RETURN: boolean - Whether the operation was successful.
DESCRIPTION: This method sets the state of the socket to be blocking if flag is

true, and non-blocking otherwise. A blocking socket will wait
indefinitely for data on reads, while a non-blocking socket will
immediately exit with an error indicating that there is no data to
be read. By default, all sockets are blocking when they are
created.

SEE: #link <sesock>, Socket select(), Socket read()

Socket close()
SYNTAX: socket.close()
RETURN: boolean - Whether the operation was successful or not
DESCRIPTION: This method closes the specified socket and frees up any

memory associated with the object. It must be called to
appropriately dispose of the socket. If not explicitly called, then
the socket will be automatically closed when the library is
unloaded. If the socket is successfully closed, then true is
returned, otherwise false. The nature of the error can be
retrieved with Socket error().

SEE: #link <sesock>, Socket error()

Socket linger()
SYNTAX: socket.linger(flag[, timeout])
WHERE: flag - A boolean value indicating whether this socket will linger

or not

timeout - A timeout, in seconds, to wait for when closing the
socket, only used when linger is on. This defaults to 10 if not
supplied.

RETURN: boolean - Whether the operation was successful
DESCRIPTION: If flag is true, then this socket is set to linger, otherwise it is

not. A lingering socket will remain active after closing it if there
remains data to be read or written. If linger is not set, then the
socket will immediately close, but any remaining data will be
sent, if possible, before closing the socket. If linger is active,
and timeout 0, then the socket is immediately closed and any
unsent data is lost, simulating a hard close. Otherwise, the
socket remains open until the data is transferred or timeout is
reached. By default, all sockets are non-lingering.

SEE: #link <sesock>, Socket close()

Socket read()
SYNTAX: socket.read(destination, description)
WHERE: destination - A destination variable which will be converted to

Nombas ScriptEase ISDK/C 5.01 470

the appropriate type based on description.

description - A variable description, either one of the special
Blob variables UWORD8, SWORD8, UWORD16, SWORD16,
UWORD24, SWORD24, UWORD32, SWORD32, FLOAT32, FLOAT64,
FLOAT80, a blobDescriptor object describing a structure, or a
positive value indicating the length of a buffer to read.

RETURN: number - elements read.
DESCRIPTION: This method is almost identical to Clib.fread(), except that it

reads from the current socket rather than a supplied file. The
description variable acts in the same way as Clib.fread(). If it
is a positive value, then destination is treated as a buffer and
filled with raw data. Otherwise, one of the blob types or blob
descriptors can be used to read data values. For buffers, the
length of the buffer read is returned. For all other values, 1 is
returned if the item is read successfully, -1 or 0 otherwise. Use
Socket error() to determine the nature of the error. Typically, -1
means the socket is non-blocking and no data is available to
read. 0 usually indicates that the program at the other end of the
socket closed it.

SEE: #link <sesock>, Clib.fread(), Socket write(), Socket error()
EXAMPLE: function readInfo(socket)

{
 var description = new blobDescriptor();
 description.name = 12;
 description.age = UWORD8;
 description.extension = UWORD16;
 var info;

 if(!socket.read(info, description))
 return null;
 else
 return info;
}

/* The above function will read the special
 * info data structure from
 * the socket, returning null
 * if there is some sort of error.
 */

Socket ready()
SYNTAX: socket.ready([timeout])
WHERE: timeout - Maximum time to poll, in milliseconds, or -1 for no

timeout
RETURN: boolean - whether the socket is ready for reading in the specified

time.
DESCRIPTION: This method is very similar to Socket.select(), except that it only

polls the current socket for input. If no timeout is specified or it
is -1, then the socket is polled indefinitely, unless there is an
error. This method is useful for simple applications, when there

Nombas ScriptEase ISDK/C 5.01 471

are just a few sockets open, or in special instances where the
Socket.select() method is impractical or impossible.

SEE: #link <sesock>, Socket select()
EXAMPLE: var listenSocket = Socket(1000);

// Assume 'done' is a global flag
if(listenSocket != null)
{
 while(!done)
 {
 if(listenSocket.ready(10))
 {
 // Open connection with accept() ...
 }

 // Do other idle stuff...
 }

 listenSocket.close();
}

/* This code creates a socket listening
 * on port 1000, and continuously
 * polls it to see if there is
 * an incoming connection, alternatively doing
 * idle code when there is no connection ready.
 */

Socket remoteHost()
SYNTAX: socket.remoteHost()
RETURN: string - The host this socket is connected to, or null if it is not

connected.
DESCRIPTION: For listening sockets that are only connected to a port, then this

method returns null. Otherwise, it returns the name of the
remote host, either the server that the socket connected to, or the
client from an incoming request. This method can be used to tell
whether or not a socket is listening or is connected.

SEE: #link <sesock>
EXAMPLE: var listenSocket = Socket(1000);

if(listenSocket != null)
{
 if(listenSocket.ready())
 {
 var connection = listenSocket.accept();
 if(connection != null)
 {
 // Print out name of incoming request
 Screen.writeln(connection.remoteHost());
 // .. do other stuff ...
 connection.close();
 }
 }
 listenSocket.close();
}

Nombas ScriptEase ISDK/C 5.01 472

Socket write()
SYNTAX: socket.write(source, description)
WHERE: source - Source variable to write to the socket

description - Variable description describing how to write the
source variable to the socket.

RETURN: number - the number of elements written.
DESCRIPTION: This method is almost identical to Clib.fwrite(), except that it

writes to the current socket, rather than to a supplied file. The
description variable acts in the same way as in Clib.fwrite().
If it is a positive value, then source is treated as a buffer of the
specified length. Otherwise, description must be a Blob
value (SWORD8, UWORD32, etc) or a blobDescriptor object
describing how the data should be written to the socket. If
source is a buffer, then the number of bytes written is returned,
otherwise 1 is returned if the datum is successfully written, -1
otherwise. Use Socket error() to determine the nature of the
error.

SEE: #link <sesock>, Clib.fwrite(), Socket read(), Socket error()
EXAMPLE: function writeInfo(socket, info)

{
 if(!socket.write(info.name, 12) ||
 !socket.write(info.age, UWORD8) ||
 !socket.write(info.extension, UWORD16))
 return false;
 else
 return true;
}

/* This function will write the contents
 * of the info object to the
 * specified socket in a native data format.
 */

Socket object static methods
Socket.addressByName()
SYNTAX: Socket.addressByName(address)
WHERE: address - Address of host to look up
RETURN: string - The address of the specified host.
DESCRIPTION: This method attempts to find the address of the specified host

through a reverse DNS lookup. If this lookup is successful, then
the address is returned as a string. Otherwise, null is returned.

SEE: #link <sesock>, Socket.hostByName()

Socket.error()
SYNTAX: Socket.error()
RETURN: number - The last error from the socket library
DESCRIPTION: When there is some sort of error within the socket library, the

Nombas ScriptEase ISDK/C 5.01 473

special errno value gets set indicating the error number. If a
method returns a value indicating an error, this method can be
used to determine the exact nature of the error. The actual
meaning of the value depends what system is being run.

SEE: #link <sesock>

Socket.hostByName()
SYNTAX: Socket.hostByName(name)
WHERE: name - Name of host to look up
RETURN: string - The name of the specified host
DESCRIPTION: This method looks up the specified host through a DNS lookup

and returns it. This method can be used to convert between
numerical addresses and domain names, as well as resolving
local names appropriately. If unable to find the host name, then
null is returned.

SEE: #link <sesock>, Socket.addressByName()
EXAMPLE: var hostname = Socket.hostByName("44.55.66.77");

Socket.hostName()
SYNTAX: Socket.hostName()
RETURN: string - The name of the host
DESCRIPTION: This method attempts to find the name of the local host. If the

call is successful, then a string is returned with the name of the
host. Otherwise, the empty string is returned.

SEE: #link <sesock>

Socket.select()
SYNTAX: Socket.select([timeout ,] socket1[, socket2

 ...])
WHERE: timeout - Maximum time to poll, in milliseconds, -1 for no

timeout

socketN - A list of sockets to poll for data, or an array of sockets
RETURN: object - The first supplied socket object which is ready for

reading, or null if none is ready before the timeout is reached.
DESCRIPTION: This method is an alternative to Socket ready(). The other ready

method is a property of Socket instances, and only polls the
current socket for data. This global method allows for polling of
multiple sources, which is needed when multiple sockets are
open. When any of the specified sockets are ready to be read
from, then this method returns the first socket which is so ready.
Note that these sockets can be either connected sockets or
listening sockets. A listening socket that is ready to be read from
means that a request is waiting. If no timeout is specified, then -
1 (infinite) timeout is used.

Nombas ScriptEase ISDK/C 5.01 474

SEE: #link <sesock>, Socket ready()
EXAMPLE: var listenSocket1 = Socket(1000);

var listenSocket2 = Socket(1001);

// Assume 'done' is a global flag somewhere
if(listenSocket1 != null && listenSocket2 != null)
{
 while(!done)
 {
 var acceptSocket;
 if((acceptSocket = Socket.select(100,
 [listenSocket1, listenSocket2])) != null)
 {
 // Connect with socket ...
 }

 // Do other stuff ...
 }
}

/* This code opens two sockets for listening,
 * and then continuously polls
 * these two sockets for incoming connections.
 * Note that in a real
 * program, it would be better to create
 * a dynamic array which holds all
 * of the open sockets.
 */

Nombas ScriptEase ISDK/C 5.01 475

UUCode Link Library
The Unix-To-Unix encoding library provides two functions for encoding and
decoding data in a text format.
platform: Mac, OS2, Windows; All versions of SE
 source: #link <uucode>

UU object static methods
UU.encode()
SYNTAX: UU.encode(infile[, outfile])
WHERE: infile - Name of input file

outfile - Name of output file
RETURN: boolean - Whether or not the operation was successful
DESCRIPTION: This method uses the Unix-to-Unix encoding mechanism, still

popular in newsgroups, as a way of translating binary data into
printable text data. If <code>outfile</code> is not supplied, then
an appropriate filename is generated by either adding or
replacing the extension with ".uue". The file "foo.c" would
become "foo.uue". This file later can be decoded with any
popular UUdecoding program, or a call to UU.decode();

SEE: #link <uucode>, UU.decode()

UU.decode()
SYNTAX: UU.decode(infile[, outfile])
WHERE: infile - Name of input file

outfile - Name of output file
RETURN: boolean - Whether or not the operation was successful
DESCRIPTION: This method decodes a file stored using the Unix-to-Unix

encoding mechanism. If <code>outfile</code> is not supplied,
then the filename that is stored in the infile (the original name of
the file) is used instead.

SEE: #link <uucode>, UU.encode()

Nombas ScriptEase ISDK/C 5.01 477

Productivity Tools
ScriptEase ISDK 5.0 provides tools to increase your productivity and make the
toolkit easier to use and integrate into your applications.

ScriptEase ISDK Toolbox

The ScriptEase ISDK Toolbox is your launching pad when you work with
ScriptEase ISDK. You can use it get started with ScriptEase as well as accessing
Help, sample files, technical support, and other ISDK support tools. It has six
main views:

• Home. General information and latest news about ScriptEase ISDK.

• Getting Started. Quick integration guide to getting you started with

ScriptEase ISDK.

• ISDK Help. Your source for all online documentation included with ISDK.

• Support. Access our technical support web site directly from within the
Toolbox application.

• Samples. Get a listing and descriptions of our sample projects.

• Productivity Tools. Launch our supporting productivity tools from within
this view.

Selib Assistant

Selib Assistant is a visual tool to simplify the .lib building process of ScriptEase
ISDK. Selib Assistant provides a visual 2-way means of working with the
Jseopt.h file rather than dealing with the underlying source. It works directly
with the actual header file, so that you can work interchangeably with the Selib
Assistant or the source file itself.

Selib Assistant also automates the process of building the ScriptEase core and
library .lib files using Microsoft Visual Studio and adding them to your own
Visual Studio projects.

Note: You must have Microsoft Visual Studio 6.0 installed on your system and
in your path to use the Build and Add To Project features of Selib Assistant. If
Selib Assistant does not find Visual Studio on your system, it will hide these
features.

Nombas ScriptEase ISDK/C 5.01 478

Description of Selib Assistant Modes

There are three main modes of Selib Assistant:

Set Options. Provides two views for working with the jseopt.h
file to declare compiler options.

Build Libraries. Builds core and extended library .lib files
based on the current options set in the jseopt.h file.

Add To Project. Adds the built .lib files to a Microsoft Visual
Studio project you specify.

Set Options Mode

The jseopt.h file contains literally hundreds of compiler options that you can turn
off/on depending on the specific needs of your application. Set Options mode is
used to configure this file. You can work with the underlying jseopt.h file in two
ways – Explorer View or Source View.

Both views are kept in synch such that when you check/uncheck an option in
Explorer View, the Source View reflects that change. In the same way, when you
turn off/on a flag in Source View, the Explorer View will identify that change
and denote it accordingly.

Visually Edit Jseopt.h Using Explorer View

The Explorer View displays the compiler options in a visual tree structure,
structured in logical groups (Target Platform, Standard Libraries, Operating
System Libraries, etc.). Each item in the tree represents an compiler option.

Nombas ScriptEase ISDK/C 5.01 479

Compiler Option Help

While in Explorer View, you can get further information for each of the flags by
selecting it in the tree. When a node is selected, its #define flag and description is
provided in the right pane. Additionally, general information for each of the
categories is also provided in the description area.

Tree Item Types

There are three main types of tree items: checkbox, radio button, and number
value. These are described as follows:

Checkbox

Check the checkbox to turn it on, uncheck to turn it off.

Radio Button

Select one of the radio options.

Number

Click the push button to display a dialog box to modify the numeric define value.

Changing Labels In Explorer View

You can toggle between Friendly Text and Flag Name labels inside of Explorer
View. Friendly text provides a descriptive name for a #define flag being
represented, while a flag name is the literal #define flag used in the source file.
Use the appropriate menu item in View menu to toggle between these views. The
default is Friendly Text.

Manually Edit Jseopt.h Using Source View

If you prefer, you can also work with the jseopt.h file in Source View, which
displays the actual source file. The Source View editor provides basic text editing
capabilities (Cut, Copy, Paste, Undo, etc.) for use when modifying the jseopt.h
file.
Syntax Updating Rules

When modifying the jseopt.h file manually, avoid placing text comments in front
the #define flag statement on the same line, in order to have the Selib Assistant
function as expected. For example, the following two are valid:

 /* The language extension library. */

Nombas ScriptEase ISDK/C 5.01 480

 #define JSE_LANG_ALL

 or

 /* The language extension library. */
 /* #define JSE_LANG_ALL */

 However, the following are NOT valid:

 /* The language extension library. */ #define JSE_LANG_ALL

 or

 /* The language extension library. */ /* #define JSE_LANG_ALL
*/

Basic Instructions for Working with a Jseopt.h File

• Create New Jseopt.h. Choose File | New or click the New toolbar button to

create a new jseopt.h file with the default flags set.

• Open Existing Jseopt.h. Choose File | Open or click the Open toolbar button

to open an existing jseopt.h on your file system.

• Save Changes. Choose File | Save or File | Save As to save changes.

Build Libraries Mode

Build Libraries mode is used to build the ScriptEase libary files (.lib) that your
application will then utilize. The ScriptEase engine compiles into two libraries –
one for the core ScriptEase intrepreter and one for the ScriptEase extended
libraries.

Specifying A Character Set

Each ScriptEase library needs to be associated with a character set. The default is
ASCII, but you can select from ASCII, MBCS, or Unicode. The character set is
specified in the jseopt.h, which can be modified from the Set Options mode.
When you enter Build Libraries mode, Selib Assistant will look for the current
character set value in your jseopt.h file and display it in the Character Set radio
group.

Building Libraries

To build the libraries based on the active jseopt.h file, click the Build Now
button. Selib Assistant will compile them using Visual Studio’s command line
utility. Debug and release versions of the core and extended libraries will be
built.

The output files will be located in a win32\msvc60\static subdirectory under the
location of the jseopt.h file. The results of the compilation process will be output

Nombas ScriptEase ISDK/C 5.01 481

to the Results box in the Build Libraries view. (This information can also be
found in the win32\msvc60\static\selib_build.log file.)

The names of the .lib files created depend on the character set and built type:

Filename ScriptEase Library Charset Build Type

sec501ar.lib Core Ascii Release

sec501ad.lib Core Ascii Debug

sec501mr.lib Core MBCS Release

sec501md.lib Core MBCS Debug

sec501ur.lib Core Unicode Release

sec501ud.lib Core Unicode Debug

sel501ar.lib Extended Ascii Release

sel501ad.lib Extended Ascii Debug

sel501mr.lib Extended MBCS Release

sel501md.lib Extended MBCS Debug

sel501ur.lib Extended Unicode Release

sel501ud.lib Extended Unicode Debug

In addition to the .lib files created, Selib Assistant will place Visual Studio
project files (.dsp) for both libraries. The ScriptEase core library project is
sec501.dsp, and the extended library project is sel501.dsp.

Note: The evaluation version of Selib Assisant has a prebuilt version of the core
libraries that are copied to the win32\msvc60\static destination. Therefore, no
.dsp file is available for the core library for the evaluation version.

Add To Project Mode

Add To Project mode can be used to automatically link ScriptEase core and
extended library files created in Build Libraries mode directly into your Visual
Studio project. You will then be able to immediately start using ScriptEase
functionality directly within your application.

To add to ScriptEase libraries to your project, following instructions below:

• The Recently built .lib files box will display the last set of .lib files generated

by Selib Assistant. If this box is empty, be sure to use the Build Libraries
mode first before continuing.

• In the Select build type to add box, choose either Debug or Release libraries
to add to your project.

Nombas ScriptEase ISDK/C 5.01 482

• In the Filename box, enter your Visual Studio project (.dsp file) that you
would like to link the libraries to.

• If you’d also like to add the ScriptEase library .dsp files into your project’s
Workspace, then check the Add ScriptEase .dsp file(s) to Workspace option.

• Click the Add Now button.

Selib Assistant will link the .lib files into your project and optionally add their
.dsp files to the Workspace.

Nombas ScriptEase ISDK/C 5.01 483

Appendices

See:

• Appendix 1: Standard Libraries
• Appendix 2: Using Wrapper.jse
• Appendix A: Grouped Functions
• Appendix B: Instance and Static Notation

Nombas ScriptEase ISDK/C 5.01 485

Appendix 1: Standard Libraries

ScriptEase ships with a number of standard libraries which you can add to your
application. The chapter "Integration Into Your C/C++ Application" describes
how to do so, by modifying your jseopt.h file. Here is a list of the available
libraries, the #define value you should define in your jseopt.h file to make a
particular library available, and a short description of what the library contains.

BUFFER (#define JSE_BUFFER_ALL)
The Buffer object provides a way to work with raw sequential data (e.g. read raw
bytes, work with individual bytes, and read/write in formats such as FLOAT64,
UWORD8, and so on).

CLIB (#define JSE_CLIB_ALL)
A C-compatibility library. This library contains the complete set of C library
functions in a ScriptEase form for use within scripts. They are all grouped under
the Clib object, so there are functions such as Clib.strcmp and Clib.fopen.

CSTRING (#define JSE_CSTRING_ALL)
The CString object provides an object that acts much like a string in the C
language. Individual elements may be accessed with str[index] syntax, and
pointer-like arithmetic is available (e.g. index = str1 - str2). The Clib object is
aware of the CString object and will use it if available..

DOS (#define JSE_DOS_ALL)
Useful DOS & Win16 functions. Grouped under the SElib object.

DSP (#define JSE_DSP_ALL)
Nombas' Distributed Scripted Protocol for communicating between scripts. Most
often used as a link library.

ECMA (#define JSE_ECMA_ALL)
ECMA compatibility library. This is perhaps the most important library, as it
provides the set of objects required by the ECMAScript specification. This
includes the String object, Math object, Date object, and all other objects and
methods required by the ECMA specification.

GD (#define JSE_GD_ALL)
A GIF manipulation library based on the freely available gd package. Most often
used as a link library.

IDSP (#define JSE_IDSP_ALL)
The internet-enabled version of the DSP library. Most often used as a link
library.

LANG (#define JSE_LANG_ALL)

Nombas ScriptEase ISDK/C 5.01 486

The language extension library. This contains common global functions such as
define and getArrayLength which serve as general extensions to the
JavaScript language.

MAC (#define JSE_MAC_ALL)
Useful Macintosh functions. Grouped under the SElib object.

MD5 (#define JSE_MD5_ALL)
An MD5 library, used for managing checksums. Most often used as link library.

NLM (#define JSE_NLM_ALL)
Useful Netware functions.

OS2 (#define JSE_OS2_ALL)
Useful OS2 functions. Grouped under SElib object.

SELIB (#define JSE_SELIB_ALL)
A group of Nombas supplied functions which provide useful interfaces for some
common tasks. They are grouped under the SElib object. Some functions
include SElib.directory and SElib.dynamicLink.

SESOCK (#define JSE_SOCKET_ALL)
A socket library for Internet communications. Most often used as a link library.

TEST (#define JSE_TEST_ALL)
A small suite of functions for testing scripts and the language. Grouped under the
Test object.

UNIX (#define JSE_UNIX_ALL)
Useful Unix functions. Grouped under the SElib object.

UUCODE (#define JSE_UUCODE_ALL)
A library of UU Encoding and Decoding functions. Most often used as a link
library.

WIN (#define JSE_WIN_ALL)
Useful Windows 3.1/95/NT functions. Grouped under SElib object.

In addition to including the entire library, it is possible to include particular
functions from the library or to exclude them. To include a particular function, do
not define the JSE_XXX_ALL, but do define the particular function's define to 1.
To exclude a function, do include all the functions in the library using the
JSE_XXX_ALL define, but then define the particular function's define to 0. A list
of the functions in each library and the defines to use them can be found in the
file tools\selibdef.dat.

Nombas ScriptEase ISDK/C 5.01 487

Appendix 2: Using Wrapper.jse
The wrapper.jse script is a tool that generates ScriptEase wrapper functions to
wrap C functions defined in a C header file. This is a quick and easy way to
allow scripts to access your application's capabilities.

You need a C header that describes all of the functions you'd like to make
wrappers for. You may have multiple headers and use wrapper.jse on each
individually. Note that each header can include other headers, and those will not
be wrapped. For instance, you may include windows.h to get needed defines,
and wrapper.jse won't try to write wrappers for lots of Windows functions.

If your application relies on any #defines to properly parse its headers, you
must provide a file with those defines in it and pass that filename as a parameter.
Here is an example file of definitions you might need:
// mydefines.h:
#define WIN32 1
#define MY_APP_THINGEE 1

to tell wrapper.jse to use it, add the parameter
-defines mydefines.h

In addition, you need to pass the directories that contain the include files such as
 -path c:\vc98\include -path c:\myapp\include

The only required parameter is your header file to translate. An example call
would be:
secon32 wrapper.jse -defines mydefs.h -path c:\include example.h

The output for this example is the file example_wrappers.c, which you need
to add to your application. Finally, you need to add the produced wrappers into
your running context. You do this at the same time you add other wrapper
libraries using seAddLibTable. Typically this is done in your
sePrepareContext callback described in the The seContextParams Structure.
See the chapter on "Wrapper functions" for more information on wrapper
functions and wrapper libraries. wrapper.jse generates a function for you to
call at this point that adds its definitions. First, make sure to tell the compiler
about the function by adding at the top of the file:
extern void example_add_wrappers(secontext se);

and add those wrapper library by calling:
example_add_wrappers(se);

Note that the name of the function to call and the .c file that implements it is
dependent on the name of the header file it was produced from. In this case,
example.h produces example_wrappers.c and
example_add_wrappers().

Nombas ScriptEase ISDK/C 5.01 489

Appendix A: Grouped Functions
In the current section, the functions and methods of ScriptEase are organized
according to purpose and operation and not according to object. Some functions
and methods are specific to certain operating systems and do not exist in all
versions of ScriptEase. For example, SElib.subclassWindow() does not
apply to the DOS operating system.

Routines for arrays
For dynamic arrays
Clib qsort() Sort an array.

global.getArrayLength() Determines size of an array.
global.setArrayLength() Sets the size of an array.

For Array objects
Array concat() Concatenate to array.
Array join() Creates a string from array elements.
Array pop() Get last element of array.
Array push() Add element to end of array.
Array reverse() Reverses the order of elements of an array.
Array shift() Get first element of array.
Array slice() Get a subset of an array.
Array sort() Sorts array elements.
Array splice() Insert elements into array.
Array unshift() Add elements to start of array.

Array properties
Array length Returns the length of array.

array.jsh - arrays and objects
item.jsh - delimited strings/arrays

Routines for Buffers
Buffer methods
Buffer getString() Returns a string starting from the current cursor position.
Buffer getValue() Returns a value from a specified position.
Buffer putString() Puts a string into a buffer.
Buffer putValue() Puts a specified value into a buffer.
Buffer subBuffer() Returns a section of a buffer.
Buffer toString() Returns string equivalent of the current state of buffer.

Buffer properties
Buffer bigEndian Boolean flag for bigEndian byte ordering.
Buffer cursor Current position within a buffer.
Buffer size Size of a buffer object.

Nombas ScriptEase ISDK/C 5.01 490

Buffer unicode Boolean flag for the use of unicode strings.

Routines for character classification
Clib.isalnum() Tests for alphanumeric character.
Clib.isalpha() Tests for alphabetic character.
Clib.isascii() Tests for ASCII coded character.
Clib.iscntrl() Tests for any control character.
Clib.isdigit() Tests for any decimal-digit character.
Clib.isgraph() Tests for any printing character except space.
Clib.islower() Tests for lower-case alphabetic letter.
Clib.isprint() Tests for any printing character.
Clib.ispunct() Tests for punctuation character.
Clib.isspace() Tests for white-space character.
Clib.isupper() Tests for upper-case alphabetic character.
Clib.isxdigit() Tests for hexadecimal-digit character.

Routines for console I/O
Clib.kbhit() Checks if a keyboard keystroke is available.
Clib.getch() Gets a character from the keyboard, no echo.
Clib.getchar() Gets character from standard input, keyboard.
Clib.getche() Gets character from the keyboard, with echo.
Clib.gets() Reads string from standard input, keyboard.
Clib.perror() Displays a message describing error in errno.
Clib.printf() Formatted output to standard output, screen.
Clib.putchar() Writes a character to standard output, screen.
Clib.puts() Writes a string to standard output, console.
Clib.scanf() Formatted input from standard input, keyboard.
Clib.vprintf() Formatted output to stdout, screen, variable args.
Clib.vscanf() Formatted input from stdin, keyboard, variable args.

dlgobj.jsh - Dialog object
getit.jsh - getItem and getLine
inout.jsh - routines for input/output
inputbox.jsh - input box
key.jsh - keys and keyboard
msgbox.jsh - message boxes

Routines for conversion/casting
global.escape() Escapes special characters in a string.
global.parseFloat() Converts a string to a Float.
global.parseInt() Converts a string to an Integer.
global.unescape() Removes escape sequences in a string.

global.ToBoolean() Converts a value to a Boolean.
global.ToBuffer() Converts a value to a buffer.
global.ToBytes() Converts a value to a buffer, raw transfer.
global.ToInt32() Converts a value to a large Integer.

Nombas ScriptEase ISDK/C 5.01 491

global.ToInteger() Converts a value to an Integer.
global.ToNumber() Converts a value to a Number.
global.ToObject() Converts a value to an Object.
global.ToPrimitive() Converts a value to a Primitive.
global.ToString() Converts a value to a String.
global.ToUint16() Converts a value to an unsigned Integer.
global.ToUint32() Converts a value to an unsigned large Integer.

array.jsh - arrays and objects

Routines for data/variables
Methods for data
Blob get() Reads data from specified location of a Blob.
Blob put() Writes data into specified location of a Blob.
Blob size() Determine size of a Blob.
blobDescriptor object Describe data in a Blob.

global.defined() Tests if variable has been defined.
global.getAttributes() Gets attributes of a variable.
global.isFinite() Determines if a value is finite.
global.isNaN() Determines if a value is Not a Number.
global.setAttributes() Sets attributes of a variable.
global.undefine() Makes a variable undefined.

SElib.getObjectProperties() Get name list of members of object/structure.

toString() Converts any variable to a string representation.
valueOf() Returns the value of any variable.

profobj.jsh - Profile object for ini files
regobj.jsh - Registry object

Routines for date/time
Clib.asctime() Converts data and time to an ASCII string.
Clib.clock() Gets processor time.
Clib.ctime() Converts date-time to an ASCII string.
Clib.difftime() Computes difference between two times.
Clib.gmtime() Converts data and time to GMT.
Clib.localtime() Converts date/time to a structure.
Clib.mktime() Converts time structure to calendar time.
Clib.strftime() Formatted write of date/time to a string.
Clib.time() Gets current time.

Date getDate() Returns the day of the month.
Date getDay() Returns the day of the week.
Date getFullYear() Returns the year with four digits.
Date getHours() Returns the hour.
Date getMilliseconds() Returns the millisecond.

Nombas ScriptEase ISDK/C 5.01 492

Date getMinutes() Returns the minute.
Date getMonth() Returns the month.
Date getSeconds() Returns the second.
Date getTime() Returns date/time, milliseconds, in Date object.
Date getTimezoneOffset() Returns difference, in minutes, from GMT.
Date getUTCDate() Returns the UTC day of the month.
Date getUTCDay() Returns the UTC day of the week.
Date getUTCFullYear() Returns the UTC year with four digits.
Date getUTCHours() Returns the UTC hour.
Date getUTCMilliseconds() Returns the UTC millisecond.
Date getUTCMinutes() Returns the UTC minute.
Date getUTCMonth() Returns the UTC month.
Date getUTCSeconds() Returns the UTC second.
Date getYear() Returns the year with two digits.
Date setDate() Set day of the month.
Date setFullYear() Sets the year with four digits.
Date setHours() Sets the hour.
Date setMilliseconds() Sets the millisecond.
Date setMinutes() Sets the minute.
Date setMonth() Sets the month.
Date setSeconds() Sets the second.
Date setTime() Sets date/time, in milliseconds, in Date object.
Date setUTCDate() Sets the UTC day of the month.
Date setUTCFullYear() Sets the UTC year with four digits.
Date setUTCHours() Sets the UTC hour.
Date setUTCMilliseconds() Sets the UTC millisecond.
Date setUTCMinutes() Sets the UTC minute.
Date setUTCMonth() Sets the UTC month.
Date setUTCSeconds() Sets the UTC second.
Date setYear() Sets the year with two digits.
Date toDateString() Returns the date portion of current date as string.
Date toGMTString() Converts a Date object to a string.
Date toLocaleDateString() Same as date.toDateString using local time.
Date toLocaleString() Returns a string for local date and time.
Date toLocaleTimeString() Same as date.toTimeString using local time.
Date toSystem() Converts a Date object to a system time.
Date toTimeString() Returns the time portion of current date as string.
Date toUTCString()() Returns a string that represents the UTC date.

Date.fromSystem() Converts system time to Date object time.
Date.parse() Converts a Date string to a Date object.
Date.UTC() Returns date/time, milliseconds, use parameters.

datetime.jsh - date and time

Routines for diagnostic/error
Clib.clearerr() Clears end-of-file and error status for a file.
Clib.errno() Returns value of error condition.
Clib.ferror() Tests for error on a file stream.
Clib.perror() Prints an message describing error in errno.

Nombas ScriptEase ISDK/C 5.01 493

Clib.strerror() Gets a string describing an error number.

Routines for directory, file, and OS
Clib.chdir() Changes directory.
Clib.flock() File locking.
Clib.getcwd() Gets current working directory.
Clib.mkdir() Makes a directory.
Clib.rmdir() Removes a directory.

Clib.getenv() Gets an environment string.
Clib.putenv() Sets an environment string.

SElib.directory() Searches directory listing for file spec.
SElib.fullPath() Converts partial path spec to full path name.
SElib.splitFileName() Gets directory, name, and extension parts of a file

specification.

Nombas ScriptEase ISDK/C 5.01 495

Routines for DOS
Dos.address() Set a memory address.
Dos.asm() Execute machine code in a memory location.
Dos.inport() Get byte from a hardware port.
Dos.inportw() Get word from a hardware port.
Dos.interrupt() Execute 8086 interrupt.
Dos.offset() Get offset of memory address.
Dos.outport() Write byte to hardware port.
Dos.outportw() Write word to hardware port
Dos.segment() Get segment of memory address.

Routines for execution control
Clib.abort() Terminates program, normally due to error.
Clib.assert() Test a condition and abort if it is false.
Clib.atexit() Sets function to be called at program exit.
Clib.exit() Normal program termination.
Clib.system() Passes a command to the command processor.

global.eval() Evaluate string as script code, like SElib.interpret.

SElib.baseWindowFunction() Call base procedure for a window.
SElib.breakWindow() Release control of a window.
SElib.compileScript() Compiles script into executable code.
SElib.doWindows() Start ScriptEase window manager.
SElib.dynamicLink() Make a call to the API.
SElib.inSecurity() Calls security manager initialization routine.
SElib.instance() Get instance handle of currently executing

script.
SElib.interpret() Interprets ScriptEase code or source file.
SElib.interpretInNewThread() Creates a new thread within a current process.
SElib.makeWindow() Create window to be managed.
SElib.messageFilter() Restrict messages to a window.
SElib.multiTask() Toggle multitasking on and off.
SElib.ShellFilterCharacter() Add character filter to ScriptEase shell.
SElib.ShellFilterCommand() Add command filter to ScriptEase shell.
SElib.spawn() Runs an external executable.
SElib.subclassWindow() Hooks a windowFunction in message loop.
SElib.suspend() Suspends program execution for a while.
SElib.windowList() Get handles of child windows.

exec.jsh - execute programs
getopt.jsh - get options
keypush.jsh - keyboard simulation
menuctrl.jsh - control menus
message.jsh - for windows
mouseclk.jsh - mouse simulation
optparms.jsh - get parameters

Nombas ScriptEase ISDK/C 5.01 496

winexec.jsh - execute programs

Routines for file/stream I/O
Clib.fclose() Closes an open file.
Clib.feof() Tests if at end of file stream.
Clib.fflush() Flushes stream for open file(s).
Clib.fgetc() Gets a character from file stream.
Clib.fgetpos() Gets current position of a file stream.
Clib.fgets() Gets a string from an input stream.
Clib.fopen() Opens a file.
Clib.fprintf() Formatted output to a file stream.
Clib.fputc() Writes a character to a file stream.
Clib.fputs() Writes a string to a file stream.
Clib.fread() Reads data from a file.
Clib.freopen() Assigns new file spec to a file handle.
Clib.fscanf() Formatted input from a file stream.
Clib.fseek() Sets file position for an open file stream.
Clib.fsetpos() Sets position of a file stream.
Clib.ftell() Gets the current value of the file position.
Clib.fwrite() Writes data to a file.
Clib.getc() Gets a character from file stream.
Clib.putc() Writes a character to a file stream.
Clib.remove() Deletes a file.
Clib.rename() Renames a file.
Clib.rewind() Resets file position to beginning of file.
Clib.tmpfile() Creates a temporary binary file.
Clib.tmpnam() Gets a temporary file name.
Clib.ungetc() Pushes character back to input stream.
Clib.vfprintf() Formatted output to a file stream using variable args.
Clib.vfscanf() Formatted input from a file stream using variable args.

copyfile.jsh - copying files
fileobj.jsh - File objects

Routines for general use
profobj.jsh - Profile object for ini files
regobj.jsh - Registry object
seutil.jsh - ScriptEase header

Routines for math
Math methods
Clib.abs() Returns the absolute value of an integer.
Clib.acos() Calculates the arc cosine.
Clib.asin() Calculates the arc sine.
Clib.atan() Calculates the arc tangent.
Clib.atan2() Calculates the arc tangent of a fraction.
Clib.atof() Converts ASCII string to a floating-point number.

Nombas ScriptEase ISDK/C 5.01 497

Clib.atoi() Converts ASCII string to an integer.
Clib.atol() Converts ASCII string to an integer.
Clib.ceil() Rounds up.
Clib.cos() Calculates the cosine.
Clib.cosh() Calculates the hyperbolic cosine.
Clib.div() Integer division, returns quotient & remainder.
Clib.exp()() Computes the exponential function.
Clib.fabs() Absolute value.
Clib.floor() Rounds down.
Clib.fmod() Modulus, calculate remainder.
Clib.frexp() Breaks into a mantissa and an exponential power of 2.
Clib.labs() Returns the absolute value of an integer.
Clib.ldexp() Calculates mantissa * 2 ^ exp.
Clib.ldiv() Integer division, returns quotient & remainder.
Clib.log() Calculates the natural logarithm.
Clib.log10() Calculates the base-ten logarithm.
Clib.max() Returns the largest of one or more values.
Clib.min() Returns the minimum of one or more values.
Clib.modf() Splits a value into integer and fractional parts.
Clib.pow() Calculates x to the power of y.
Clib.rand() Generates a random number.
Clib.sin() Calculates the sine.
Clib.sinh() Calculates the hyperbolic sine.
Clib.sqrt() Calculates the square root.
Clib.srand() Seeds random number generator.
Clib.tan() Calculates the tangent.
Clib.tanh() Calculates the hyperbolic tangent.

Math.abs() Returns the absolute value of an integer.
Math.acos() Calculates the arc cosine.
Math.asin() Calculates the arc sine.
Math.atan() Calculates the arc tangent.
Math.atan2() Calculates the arc tangent of a fraction.
Math.ceil() Rounds up.
Math.cos() Calculates the cosine.
Math.exp()() Computes the exponential function.
Math.floor() Rounds down.
Math.log() Calculates the natural logarithm.
Math.max() Returns the largest of one or more values.
Math.min() Returns the minimum of one or more values.
Math.pow() Calculates x to the power of y.
Math.random() Returns a random number.
Math.round() Rounds value up or down.
Math.sin() Calculates the sine.
Math.sqrt() Calculates the square root.
Math.tan() Calculates the tangent.

Math properties
Math.E Value of e, base for natural logarithms.
Math.LN10 Value for the natural logarithm of 10.

Nombas ScriptEase ISDK/C 5.01 498

Math.LN2 Value for the natural logarithm of 2.
Math.LOG2E Value for the base 2 logarithm of e.
Math.LOG10E Value for the base 10 logarithm of e.
Math.PI Value for pi.
Math.SQRT1_2 Value for the square root of 2.
Math.SQRT2 Value for the square root of 2.

Number.MAX_VALUE Largest number (positive)
Number.MIN_VALUE Smallest number (negative)
Number.NaN Not a Number
Number.NEGATIVE_INFINITY Number below MIN_VALUE
Number.POSITIVE_INFINITY Number above MAX_VALUE

Routines for memory manipulation
Clib.bsearch() Binary search in memory/array/buffer.

SElib.peek() Reads data from memory location.
SElib.pointer() Gets address of variable.
SElib.poke() Writes data to memory location.

Routines for miscellaneous
Clib.bsearch() Binary search for member of a sorted array.
Clib.qsort() Sorts an array, may use comparison function.

Routines for objects and functions
SElib.getObjectProperties() Get names of properties of an object.

Object hasOwnProperty() Determine if an object has a property.
Object isPrototypeOf() Determine if a property is part of prototype.
Object
propertyIsEnumerable()

Is the attribute of a property DONT_ENUM.

Object toLocaleString() Object to string using local settings.

array.jsh - arrays and objects

Function apply() Apply arguments array to a function.
Function call() Call function with argument list.

Routines for regular expressions
RegExp compile() Sets a regular expression for the object.
RegExp exec() Performs regular expression search.
RegExp test() Tests a regular expression search.
String match() Regular expression match
String replace() Regular expression search/replace
String search() Regular expression search

Nombas ScriptEase ISDK/C 5.01 499

Routines for strings/byte arrays
Methods for strings
Clib.memchr() Searches a byte array.
Clib.memcmp() Compares two byte arrays.
Clib.memcpy() Copies from one byte array to another.
Clib.memmove() Moves from one byte array to another.
Clib.memset() Copies character to byte array.

Clib.rsprintf() Returns formatted string.
Clib.sprintf() Formatted output to a string.
Clib.sscanf() Formatted input from a string.
Clib.strcat() Concatenates strings.
Clib.strchr() Searches a string for a character.
Clib.strcmp() Compares two strings.
Clib.strcmpi() Case-insensitive compare of two strings.
Clib.strcpy() Copies one string to another.
Clib.strcspn() Searches string for first character in a set of characters.
Clib.stricmp() Case-insensitive compare of two strings.
Clib.strlen() Gets the length of a string.
Clib.strlwr() Converts a string to lowercase.
Clib.strncat() Concatenates bytes of one string to another.
Clib.strncmp() Compares part of two strings.
Clib.strncmpi() Case-insensitive compare of parts of two strings.
Clib.strncpy() Copies bytes from one string to another.
Clib.strnicmp() Case-insensitive compare of parts of two strings.
Clib.strpbrk() Searches string for character from a set of characters.
Clib.strrchr() Searches string for the last occurrence of a character.
Clib.strspn() Searches string for character not in a set of characters.
Clib.strstr() Searches a string for a substring.
Clib.strstri() Case insensitive version of Clib.strstr.
Clib.strtod() Converts a string to a floating-point value.
Clib.strtok() Searches a string for delimited tokens.
Clib.strtol() Converts a string to an integer value.
Clib.strupr() Converts a string to uppercase.

Clib.toascii() Converts to ASCII.
Clib.tolower() Converts to lowercase.
Clib.toupper() Converts to uppercase.

Clib.vsprintf() Formatted output to string using variable args.
Clib.vsscanf() Formatted input from a string.

String charAt() Returns a character in a string.
String charCodeAt() Returns a unicode character in a string.
String concat() Concatenate a string.
String indexOf() Returns index of first substring in a string.
String lastIndexOf() Returns index of last substring in a string.
String localeCompare() Compare string using local settings.
String slice() Get a substring from a string.
String split() Splits a string into an array of strings.

Nombas ScriptEase ISDK/C 5.01 500

String substring() Retrieves a section of a string.
String toLocaleLowerCase() Returns lowercase string using local settings.
String toLocaleUpperCase() Returns uppercase string using local settings.
String toLowerCase() Converts a string to lowercase.
String toUpperCase() Converts a string to uppercase.

String.fromCharCode() Creates a string from character codes.

item.jsh - delimited strings/arrays

string.jsh - more for strings

String properties
String length Holds the length of a string in characters.

Routines for variable argument lists
Clib.va_arg() Retrieves variable from variable list of args.
Clib.va_end() Terminates variable list of args.
Clib.va_start() Starts a variable list of args.

Clib.rvsprintf() Returns formatted string using variable args.
Clib.vfprintf() Formatted output to a file stream using variable args.
Clib.vfscanf() Formatted input from file stream using variable args.
Clib.vprintf() Formatted output to stdout, screen, using variable args.
Clib.vscanf() Formatted input from stdin, using var args.
Clib.vsprintf() Formatted output to string using variable args.
Clib.vsscanf() Formatted input from a string.

Routines for UNIX
Unix.fork() Create duplicate processes.
Unix.kill() Wrapper for UNIX kill command.
Unix.setgid() Change group id.
Unix.setsid() Create a new session.
Unix.setuid() Change user id.
Unix.wait() Suspend execution until child process

stops.
Unix.waitpid() Suspend execution with additional

controls.

Nombas ScriptEase ISDK/C 5.01 501

Appendix B: Instance and Static
Notation

ScriptEase uses object properties which are integral to JavaScript. For clarity we
refer to object properties and object methods, not just properties, though both
properties and methods may be referred to by the general term property. When
using the terms property and method, object properties refer to the variables and
data of an object and object methods refer to the functions of an object. We have
clarified one dimension of object properties and methods. But, to be precise, we
must deal with another dimension.

Object properties and methods are either instance, belonging to an instance of an
object, or static, belonging to an object itself. Thus, all properties and methods of
an object may be classified according to two dimensions. Is a property of an
object a property or a method, and is it an instance or a static property? The
following examples illustrate

• Instance property string.length
• Instance method string.indexOf()
• Static property String.illus
• Static method String.fromCharCode()

Objects may have all four categories of methods and properties, but usually they
do not. In this illustration, the String object has three of the categories, but not a
static property, which is the reason why String.illus had to be made up for
this example.

ScriptEase documentation uses a couple of style conventions to distinguish
between properties and methods and between being instance or static. The four
sections, following the bullet list of explanations, illustrate how these distinctions
are made in reference sections of documentation.

• First, headings, such as "String instance properties" below, specifically
identify whether the following reference information applies to instance
properties, instance methods, static properties, or static methods.

• Second, properties do not have parentheses "()" but methods do.
• Third the top lines of reference tables vary in how they refer to instance and

static properties and methods. Instance properties and methods have object
names followed by a space, such as "String ", whereas static properties and
methods have object names followed by a period, such as "String.".

• Fourth, the syntax line for instance properties and methods uses the object
name in all lowercase, whereas, the syntax line for static properties and
methods uses the object name precisely. The significance is that instance
properties and methods actually use the variable name of an instance of an
object, whereas, static properties and methods use the actual object name
itself.

• Fifth, the use of lowercase for instance properties and methods is used
consistently in text and descriptions, not just the reference tables themselves.

String instance properties sample

Nombas ScriptEase ISDK/C 5.01 502

String length
SYNTAX: string.length
DESCRIPTION:
SEE:
EXAMPLE:

String instance methods sample
String indexOf
SYNTAX: string.indexOf(substring[, offset])
WHERE:
RETURN:
DESCRIPTION:
SEE:
EXAMPLE:

String static properties sample
String.illus
SYNTAX: String.illus
DESCRIPTION:
SEE:
EXAMPLE:

String static methods sample
String.fromCharCode()
SYNTAX: String.fromCharCode(char1[, char2 ...])
WHERE:
RETURN:
DESCRIPTION:
SEE:
EXAMPLE:

Prototype property
For the technically inclined, objects have a prototype property. Instance
properties and methods are attached to the prototype property of an object. As
an illustration, assume that two new methods and two new properties are added
to the String object. The instance property and method are added to the
prototype property of the String object, whereas, the static property and
method are added to the String object itself.

Nombas ScriptEase ISDK/C 5.01 503

The following two declaration lines illustrate an instance property and an
instance method:
String.prototype.newInstanceProperty
String.prototype.newInstanceMethod()

The following two declaration lines illustrate a static property and a static
method:
String.newStaticProperty
String.newStaticMethod()

The following code fragment illustrates the differences in using these properties
and methods.

 // Begin an instance of a String object
var newStr = "an example string";
var instVal = newStr.newInstanceProperty;
newStr.newInstanceMethod();
 // Use the static property and method directly
var statVal = String.newStaticProperty;
String.newStaticMethod();

Nombas ScriptEase ISDK/C 5.01 505

Index

###, 345
$
$, 343, 346
$', 346
$&, 346
$`, 346
$+, 346
$1, $2 ... $9, 346
$n, 352
&
&, 181
(
(, 345
(...), 344
(?!...), 345
(?", 344
(?=...), 344
)
), 345
*
*, 181, 342, 345
*?, 342
.
., 343, 345
/
/, 339, 345
?
?, 342, 345
[
[, 345
[...], 343
[^...], 343
[\b], 340, 343
\
\, 345
]
], 345
^
^, 343
_
_argc, 193
_argv, 194
_call(...), 172
_class, 176, 334
_construct(...), 171

`
`, 183
{
{, 345
{n, m}, 343
{n,}?, 343
{n}, 343
|
|, 344, 345
}
}, 345
+
+, 342, 345
+?, 342
A
A, 344
abort(), 250
abs(), 287, 322
accept(), 468
acos(), 288, 322
Add ScriptEase compiler options,

11
Add To Project Mode, 481
addRecord(), 457
address operator, 181
address(), 313
addressByName(), 472
Advanced Integration - Debugging,

12
Anchor characters, 343
Anchor meaning, 343
API Function List, 65
Appendices, 483
Appendix 1: Standard Libraries, 485
Appendix 2: Using Wrapper.jse, 487
Appendix A: Grouped Functions,

489
Appendix B: Instance and Static

Notation, 501
apply(), 318
arc(), 416
Array class, 176
Array concat(), 210
Array constructor, 210
array conversion, 176
Array join(), 211
Array length, 209

Nombas ScriptEase ISDK/C 5.01 506

Array object, 207
Array object instance methods, 210
Array object instance properties,

209
Array pop(), 211
Array properties, 489
Array push(), 212
Array representation, 174
Array reverse(), 212
Array shift(), 213
Array slice(), 213
Array sort(), 214
Array splice(), 215
Array toString(), 215
Array type, 145
Array unshift(), 216
Array(), 210
arrays, 174, 175
asctime(), 246
asin(), 288, 323
asm(), 313
assert(), 251
Assignment arithmetic, 149
atan(), 288, 323
atan2(), 288, 323
atexit(), 251
atof(), 288
atoi(), 289
atol(), 289
attributes, 339
Auto-increment (++) and auto-

decrement (--), 149
Automatic and JavaScript Arrays,

175
Automatic array allocation, 175
automatic arrays, 174, 175
Automatic type conversion, 146
Automatic type declaration, 173
avoid, 139
B
b, 344
Back quote, 385
Back quote strings, 183
back quotes, 385
Basic arithmetic, 148
Basic Instructions for Working with

a Jseopt.h File, 480
Basics of ScriptEase, 136
beginTransaction(), 443
bigEndian, 229
Binary Large Objects, 217

Bit operators, 150
Blob, 217
Blob Object, 217
Blob object static methods, 217
Blob.get(), 217
Blob.put(), 217
Blob.size(), 219
blobDescriptor example, 221
blobDescriptor object, 220
block comments, 137
blocking(), 468
blue(), 417
Boolean Object, 225
Boolean object instance methods,

225
Boolean type, 143
Boolean(), 225
Boolean.toString(), 225
boundary, 344
boundsSafe(), 417
brackets, array, 208
break, 157
BREAKPOINT ADD/REMOVE

filename:line-number, 106
bsearch(), 266
Buffer, 217, 224
BUFFER (#define

JSE_BUFFER_ALL), 485
Buffer bigEndian, 229
Buffer compare(), 232
Buffer cursor, 229
Buffer equal(), 233
Buffer getString(), 232
Buffer getValue(), 233
Buffer methods, 489
Buffer Object, 227
Buffer object instance methods, 231
Buffer object instance properties,

229
Buffer object static methods, 236
Buffer properties, 489
Buffer putString(), 233
Buffer putValue(), 234
Buffer size, 229
Buffer subBuffer(), 235
Buffer toString(), 236
Buffer unicode, 230
Buffer(), 231
Buffer.compare (), 236
Buffer.equal (), 236
Buffer[] Array, 230

Nombas ScriptEase ISDK/C 5.01 507

Build Libraries Mode, 480
Build ScriptEase Libraries, 9
BUILDING AN EXTLIB, 111
by reference, 180
C
C, 345
C style arrays, 175
call(), 318
Carriage return, 345
case expression, 179
Case sensitivity, 136
Case statements, 181
caseSensitive, 461
catch, 159
cC, 345
ceil(), 289, 324
cfunction, 173
Character classification, 269
character code, 395
CHARACTER SET

CUSTOMIZATIONS, 113
charAt(), 387
charCodeAt(), 387
charUp(), 418
chdir(), 264
class, 176, 334
CLEAR BREAKPOINTS, 106
clearerr(), 253
Clib, 173
CLIB (#define JSE_CLIB_ALL),

485
Clib Object, 239
Clib.abort(), 250
Clib.abs(), 287
Clib.acos(), 287
Clib.asctime(), 246
Clib.asin(), 288
Clib.assert(), 251
Clib.atan(), 288
Clib.atan2(), 288
Clib.atexit(), 251
Clib.atof(), 288
Clib.atoi(), 289
Clib.atol(), 289
Clib.bsearch(), 266
Clib.ceil(), 289
Clib.chdir(), 264
Clib.clearerr(), 253
Clib.clock(), 246
Clib.cos(), 289
Clib.cosh(), 289

Clib.ctime(), 247
Clib.difftime(), 247
Clib.div(), 290
Clib.errno, 252
Clib.exit(), 252
Clib.exp(), 290
Clib.fabs(), 290
Clib.fclose(), 255
Clib.feof(), 255
Clib.ferror(), 253
Clib.fflush(), 255
Clib.fgetc(), 256
Clib.fgetpos(), 256
Clib.fgets(), 256
Clib.flock(), 265
Clib.floor(), 290
Clib.fmod(), 290
Clib.fopen(), 254
Clib.fprintf(), 257
Clib.fputc(), 257
Clib.fputs(), 257
Clib.fread(), 220, 257
Clib.freopen(), 259
Clib.frexp(), 291
Clib.fscanf(), 259
Clib.fseek(), 260
Clib.fsetpos(), 261
Clib.ftell(), 261
Clib.fwrite(), 220, 261
Clib.getc(), 262
Clib.getch(), 241
Clib.getchar(), 242
Clib.getche(), 242
Clib.getcwd(), 264
Clib.getenv(), 268
Clib.gets(), 242
Clib.gmtime(), 247
Clib.isalnum(), 269
Clib.isalpha(), 270
Clib.isascii(), 270
Clib.iscntrl(), 270
Clib.isdigit(), 270
Clib.isgraph(), 270
Clib.islower(), 270
Clib.isprint(), 271
Clib.ispunct(), 271
Clib.isspace(), 271
Clib.isupper(), 271
Clib.isxdigit(), 271
Clib.kbhit(), 242
Clib.labs(), 291

Nombas ScriptEase ISDK/C 5.01 508

Clib.ldexp(), 291
Clib.ldiv(), 292
Clib.localtime(), 247
Clib.log(), 292
Clib.log10(), 292
Clib.max(), 292
Clib.memchr(), 285
Clib.memcmp(), 286
Clib.memcpy(), 286
Clib.memmove(), 287
Clib.memset(), 287
Clib.min(), 292
Clib.mkdir(), 265
Clib.mktime(), 248
Clib.modf(), 293
Clib.perror(), 253
Clib.pow(), 293
Clib.printf(), 239
Clib.putc(), 262
Clib.putchar(), 243
Clib.putenv(), 268
Clib.puts(), 243
Clib.qsort(), 267
Clib.rand(), 293
Clib.remove(), 263
Clib.rename(), 263
Clib.rewind(), 263
Clib.rmdir(), 266
Clib.rsprintf(), 272
Clib.rvsprintf(), 272
Clib.scanf(), 243
Clib.sin(), 293
Clib.sinh(), 294
Clib.sprintf(), 273
Clib.sqrt(), 294
Clib.srand(), 294
Clib.sscanf(), 273
Clib.strcat(), 274
Clib.strchr(), 274
Clib.strcmp(), 275
Clib.strcmpi(), 275
Clib.strcpy(), 275
Clib.strcspn(), 276
Clib.strerror(), 253
Clib.strftime(), 249
Clib.stricmp(), 276
Clib.strlen(), 277
Clib.strlwr(), 277
Clib.strncat(), 277
Clib.strncmp(), 278
Clib.strncmpi(), 278

Clib.strncpy(), 278
Clib.strnicmp(), 279
Clib.strpbrk(), 279
Clib.strrchr(), 280
Clib.strspn(), 280
Clib.strstr(), 280
Clib.strstri(), 281
Clib.strtod(), 281
Clib.strtok(), 282
Clib.strtol(), 283
Clib.strupr(), 284
Clib.system(), 252
Clib.tan(), 294
Clib.tanh(), 294
Clib.time(), 250
Clib.tmpfile(), 263
Clib.tmpnam(), 264
Clib.toascii(), 284
Clib.tolower(), 284
Clib.toupper(), 284
Clib.ungetc(), 264
Clib.va_arg(), 295
Clib.va_end(), 296
Clib.va_start(), 296
Clib.vfprintf(), 297
Clib.vfscanf(), 297
Clib.vprintf(), 244
Clib.vscanf(), 245
Clib.vsprintf(), 285
Clib.vsscanf(), 297
clock(), 246
close(), 437, 452, 462, 469
closeConnection(), 410
code\:character, 395
Color styles, 415
colorAllocate(), 418
colorClosest(), 418
colorDeallocate(), 419
colorExact(, 419
colorExact(), 419
colorsTotal(), 420
colorTransparent(), 420
columnName(), 437
columns(), 438
COM object, 403
COM Object Link Library, 403
COMCreateObject(), 403
COMGetObject(), 404
Comments, 137
commitTransaction(), 443
compile(), 349

Nombas ScriptEase ISDK/C 5.01 509

Composite data types, 144
COMReleaseObject(), 405
concat(), 210, 387
concatenate, 210
Concatenation operator, 152
Conditional operator, 159
Configuring A jseopt.h File, 9
connect(), 443
connected(), 444
Console I/O functions, 239
continue, 157
CONTINUE FUNCTION, 44
control character, 345
Conversion or casting, 193
convert arrays, 176
Converting existing C code to

ScriptEase, 183
copy(), 420
copyResized(), 421
CORE CUSTOMIZATION, 113
Core Customization Topics, 113
cos(), 289, 324
cosh(), 289
Creating a DSP object, 407
Creating arrays, 207
CSTRING (#define

JSE_CSTRING_ALL), 485
ctime(), 247
currentRecord(), 452
cursor, 229
Cursor close(), 437
Cursor columnName(), 437
Cursor columns(), 438
Cursor deleteRow(), 438
Cursor filter, 436
Cursor first(), 438
Cursor insertRow(), 439
Cursor Instance Methods, 437
Cursor Instance Properties, 436
Cursor last(), 440
Cursor next(), 440
Cursor object, 435
Cursor previous(), 440
Cursor reload(), 441
Cursor sort, 436
Cursor updateRow(), 441
cursor(), 444, 460, 463
D
d, 343
dashedLine(), 422
data, 207

Data types, 141, 173
Data types in C and SE, 173
Database beginTransaction(), 443
Database commitTransaction(), 443
Database connect(), 443
Database connected(), 444
Database cursor(), 444
Database disconnect(), 445
Database execute(), 446
Database majorErrorCode(), 447
Database majorErrorMessage(), 447
Database minorErrorCode(), 447
Database minorErrorMessage(), 448
Database Object, 442
Database procedureName(), 448
Database procedures(), 448
Database rollbackTransaction(), 448
Database storedProc(), 449
Database table(), 449
Database tableName(), 450
Database tables(), 450
Database transactions, 442
Date getDate(), 301
Date getDay(), 301
Date getFullYear(), 301
Date getHours(), 302
Date getMilliseconds(), 302
Date getMinutes(), 302
Date getMonth(), 302
Date getSeconds(), 302
Date getTime(), 302
Date getTimezoneOffset(), 303
Date getUTCDate(), 303
Date getUTCDay(), 303
Date getUTCFullYear(), 303
Date getUTCHours(), 303
Date getUTCMilliseconds(), 303
Date getUTCMinutes(), 303
Date getUTCMonth(), 304
Date getUTCSeconds(), 304
Date getYear(), 304
Date Object, 299
Date object instance methods, 300
Date object static methods, 311
Date setDate(), 304
Date setFullYear(), 304
Date setHours(), 305
Date setMilliseconds(), 305
Date setMinutes(), 305
Date setMonth(), 305
Date setSeconds(), 306

Nombas ScriptEase ISDK/C 5.01 510

Date setTime(), 306
Date setUTCDate(), 306
Date setUTCFullYear(), 306
Date setUTCHours(), 307
Date setUTCMilliseconds(), 307
Date setUTCMinutes(), 307
Date setUTCMonth(), 308
Date setUTCSeconds(), 308
Date setYear(), 308
Date toDateString(), 308
Date toGMTString(), 309
Date toLocaleDateString(), 309
Date toLocaleString(), 309
Date toLocaleTimeString(), 309
Date toString(), 310
Date toSystem(), 310
Date toTimeString(), 310
Date toUTCString(), 310
Date valueOf(), 310
Date(), 300
Date.fromSystem(), 311
Date.parse(), 311
Date.UTC(), 312
DEBUGGING CUSTOMIZATION,

122
Decimal, 143
Decimal floats, 143
decode(), 475
defined(), 194
delete, 205
delete operator, 152
deleteAll(), 458
deleteRecord(), 458
deleteRow(), 438
Description of Selib Assistant

Modes, 478
destroy(), 422
difftime(), 247
Directory, 264
disconnect(), 445
div(), 290
do {...} while, 156
DONT_ENUM, 171
DOS (#define JSE_DOS_ALL), 485
Dos Object, 313
Dos object static methods, 313
Dos.address(), 313
Dos.asm(), 313
Dos.inport(), 314
Dos.inportw(), 314
Dos.interrupt(), 314

Dos.offset(), 315
Dos.outport(), 315
Dos.outportw(), 315
Dos.segment(), 316
drawChar(), 417
DSP (#define JSE_DSP_ALL), 485
DSP dspClose(), 412
DSP dspCloseConnection(), 410
DSP dspGetValue(), 412
DSP dspLoad(), 411
DSP dspReceive(), 410
DSP dspSecurityGuard(), 413
DSP dspSecurityInit(), 412
DSP dspSecurityTerm(), 413
DSP dspSend(), 411
DSP dspService(), 411
DSP Link Library, 407
DSP Object, 407
DSP object instance methods, 409
DSP object static properties, 414
DSP(), 409
dsp.dspClose(), 412
dsp.dspService(), 411
DSP.remote, 414
dspGetValue(), 412
dspLoad(), 411
dspReceive(), 410
dspSecurityGuard(), 413
dspSecurityInit(), 412
dspSecurityTerm(), 413
dspSend(), 411
DYNAMIC OBJECTS, 58
dynamicLink, 224
E
E, 321
ECMA (#define JSE_ECMA_ALL),

485
Edit your jseopt.h, 11
elements of array, 207
else, 155
encode(), 475
end of line comments, 137
enumerate properties, 171
Environment variables, 268
errno, 252
Error, 252
Error checking for functions, 165
error(), 472
escape sequences, 183
Escape sequences for characters,

385

Nombas ScriptEase ISDK/C 5.01 511

escape(), 195
EVAL expression, 108
eval(), 195
EXAMINING VARIABLES, 34
Exception handling, 159
exec(), 350
execute(), 446, 464
EXECUTING SCRIPTS, 91
exit(), 252
exit, Clib.atexit(), 251
exp(), 290, 324
EXPR ADD expression, 106
EXPR REMOVE #number, 107
Expressions, statements, and blocks,

137
Extlibs, 111
F
f, 345
fabs(), 290
fclose(), 255
FEATURE CUSTOMIZATION,

118
feof(), 255
ferror(), 253
fflush(), 255
fgetc(), 256
fgetpos(), 256
fgets(), 256
Fibers and Threads, 127
File I/O, 254
fill(), 422
filledPolygon(), 423
filledRectangle(), 423
fillToBorder(), 424
filter, 436
finally, 159
find(), 454, 455
findAll(), 456
findDistinct(), 457
first(), 438
firstRecord(), 453
FLAGS, 39
FLOAT32, 220
FLOAT64, 220
FLOAT80, 220
Floating point, 143
FLOATING POINT

CUSTOMIZATION, 123
flock(), 265
floor(), 290, 325
Flow decisions statements, 155

fmod(), 290
Font specifications, 415
fopen(), 254
for, 156
For Array objects, 489
For dynamic arrays, 489
for/in, 171
fork(), 397
Form feed, 345
fprintf(), 257
fputc(), 257
fputs(), 257
fread(), 257
freopen(), 259
frexp(), 291
fromCharCode(), 236, 395
fromGd(), 431
fromGif(), 431
fromSystem(time), 311
fromXbm(), 432
fscanf(), 259
fseek(), 260
fsetpos(), 261
ftell(), 261
Function apply(), 318
Function call(), 318
FUNCTION GLOBALS, 42
Function identifier, 141
Function Object, 317
Function object instance methods,

317
Function property arguments[], 164
Function recursion, 164
FUNCTION REDIRECTION, 64
Function return statement, 162
Function scope, 141
Function toString(), 319
Function(), 317
Functions, 161
fwrite(), 261
G
g, 339
GD (#define JSE_GD_ALL), 485
GD arc(), 416
GD blue(), 416
GD boundsSafe(, 417
GD charUp(), 418
GD colorAllocate(), 418
GD colorClosest(), 418
GD colorDeallocate(), 419
GD colorExact(), 419

Nombas ScriptEase ISDK/C 5.01 512

GD colorsTotal(), 420
GD colorTransparent(), 420
GD copy(), 420
GD copyResized(), 421
GD dashedLine(), 422
GD destroy(), 422
GD drawChar(), 417
GD fill(), 422
GD filledPolygon(), 423
GD filledRectangle(), 423
GD fillToBorder(), 424
GD getInterlaced(), 424
GD getPixel(), 424
GD getTransparent(), 425
GD green(), 425
GD height(), 425
GD interlace(), 425
GD line(), 426
GD Link Library, 415
GD Object, 415
GD object instance methods, 416
GD object static methods, 431
GD polygon(), 426
GD rectangle(), 427
GD red(), 427
GD setBrush(), 428
GD setPixel(), 428
GD setStyle(), 428
GD setTile(), 429
GD string(), 430
GD stringUp(), 430
GD toGd(), 430
GD toGif(), 431
GD width(), 431
GD(), 416
GD.fromGd(), 431
GD.fromGif(), 431
GD.fromXbm(), 432
GET object index, 108
get(), 217
getArrayLength(), 196
getArrrayLength, 176
getAttributes(), 197
getc(), 262
getch(), 241
getchar(), 242
getche(), 242
getcwd(), 264
getDate(), 301
getDay(), 301
getenv(), 268

getFullYear(), 302
getHours(), 302
getInterlaced(), 424
getLastError(), 460
getLastErrorCode(), 460
getMilliseconds(), 302
getMinutes(), 302
getMonth(), 302
getPixel(), 424
gets(), 242
getSeconds(), 302
getString(), 232
getTime(), 302
getTimezoneOffset(), 303
getTransparent(), 425
getUTCDate(), 303
getUTCDay(), 303
getUTCFullYear(), 303
getUTCHours(), 303
getUTCMilliseconds(), 303
getUTCMinutes(), 304
getUTCMonth(), 304
getUTCSeconds(), 304
getValue(), 233
getYear(), 304
global, 346
GLOBAL MANIPULATION, 128
global match, 339
Global object, 193
global object methods/functions,

194
global._argc, 193
global._argv, 194
global.defined(), 194
global.escape(), 195
global.eval(), 195
global.getArrayLength(), 196
global.getAttributes(), 197
global.isFinite(), 195
global.isNaN(), 196
global.parseFloat(), 197
global.parseInt(), 197
global.setArrayLength(), 198
global.setAttributes(), 199
global.ToBoolean(), 200
global.ToBuffer(), 201
global.ToBytes(), 201
global.ToInt32(), 201
global.ToInteger(), 202
global.ToNumber(), 202
global.ToObject(), 202

Nombas ScriptEase ISDK/C 5.01 513

global.ToPrimitive, 203
global.ToSource(), 203
global.ToString(), 204
global.ToUint16(), 205
global.ToUint32(), 205
global.undefine(), 205
global.unescape(), 205
gmtime(), 247
GO number, 107
goto and labels, 158
greedy match, 342
green(), 425
Group with capture, 344
Group without capture, 344
Groups, 344
H
hasOwnProperty(), 332
height(), 425
Hexadecimal, 143, 345
Horizontal tab, 345
hostByName(), 473
hostName(), 473
I
i, 340
Identifiers, 138
Identifiers to avoid, 139
Identifiers\:avoid, 139
IDENTIFYING A VARIABLE, 25
IDSP (#define JSE_IDSP_ALL),

485
if, 155
ignoreCase, 347
in operator, 153
indentifiers, 139
index (RegExp), 348
index in brackets, array, 208
indexOf(), 388
INITIALIZATION, 104
Initialization and Contexts, 19
Initialization code which is external

to functions, 182
INITIALIZATION/CONTEXT

CREATION, 65
Initializers for arrays and objects,

208
Initializers for objects and arrays,

168
inport(), 314
inportw(), 314
input, 352
input (RegExp), 349

insensitive matches, 340
insertRow(), 439
inside of functions, 182
instanceof operator, 153
Integer, 142
INTEGRATING THE

SCRIPTEASE DEBUGGER, 99
Integration Basics, 11
Integration Into Your C/C++

Application, 9
Integration on Unix Systems, 9
Integration on Windows Systems, 9
interlace(), 425
Internal Objects, 191
interrupt(), 314
Introduction, 7
INVOKING THE DEBUGGER,

101
INVOKING THE DEBUGGER ON

AN ERROR, 102
isalpha(), 270
isascii(), 270
iscntrl(), 270
isdigit(), 270
isFinite(), 196
isgraph(), 270
islower(), 270
isNaN(), 196
isprint(), 271
isPrototypeOf(), 332
ispunct(), 271
isspace(), 271
isupper(), 271
isxdigit(), 271
J
JavaScript arrays, 175
join(), 211
JSE_ALIGN_DATA (off), 115
JSE_ALWAYS_COLLECT (off),

123
JSE_ALWAYS_IMPLICIT_PARE

NTS (off), 118
JSE_ALWAYS_IMPLICIT_THIS

(off), 118
JSE_ASCII (on), 113
JSE_AUTO_OBJECT (off), 118
JSE_BREAKPOINT_TEST (off),

120
JSE_BROWSEROBJECTS (off),

121

Nombas ScriptEase ISDK/C 5.01 514

JSE_CACHE_GLOBAL_VARS
(on), 115

JSE_COMPACT_LIBFUNCS (off),
115

JSE_COMPILER (on), 118
JSE_CONDITIONAL_COMPILE

(on), 120
JSE_DEFINE (on), 120
JSE_DONT_POOL (off), 123
JSE_DYNAMIC_CALLBACKS

(on), 119
JSE_ENABLE_DYNAMETH (off),

120
JSE_ENFORCE_MEMCHECK

(on), 122
JSE_FLOATING_POINT (on), 124
JSE_FP_EMULATOR (off), 124
JSE_FUNCTION_ARGUMENTS

(on), 118
JSE_FUNCTION_LENGTHS (on),

119
JSE_GC (on), 115
JSE_GET_RESOURCE (off), 114
JSE_GETFILENAMELIST (off),

120
JSE_GLOBAL_CACHE_SIZE

(10), 115
JSE_HASH_SIZE (256), 114
JSE_HTML_COMMENT_STYLE

(off), 119
JSE_INCLUDE (on), 120
JSE_INFREQUENT_COUNT

(5000), 114
JSE_INLINES (on, off if

JSE_MIN_MEMORY is
defined), 114

JSE_INTERNAL_PROFILING
(off), 114

JSE_LINK (on), 120
JSE_MAIN_ARGC_ARGV (on),

120
JSE_MBCS (off), 113
JSE_MEM_DEBUG (on if

NDEBUG not defined), 122
JSE_MEMEXT_MEMBERS (off),

124
JSE_MEMEXT_OBJECTS (off),

124
JSE_MEMEXT_READONLY (off),

124

JSE_MEMEXT_SECODES (off),
124

JSE_MEMEXT_STRINGS (off),
124

JSE_MILLENIUM (off), 121
JSE_MIN_MEMORY (off for most

systems), 113
JSE_MULTIPLE_GLOBAL (on),

114
JSE_NAMED_PARAMS (on), 121
JSE_NEVER_FREE (off), 123
JSE_NO_AUTO_INIT (off), 121
JSE_NUMTOSTRING_ROUNDIN

G (on), 120
JSE_ONE_STRING_TABLE (off),

114
JSE_OPERATOR_OVERLOADIN

G (on), 119
JSE_PACK_OBJECTS (off, on is

JSE_MIN_MEMORY is on), 116
JSE_PACK_SECODES (off, on if

JSE_MIN_MEMORY is on), 116
JSE_PEEPHOLE_OPTIMIZER

(on), 115
JSE_PER_OBJECT_CACHE (on,

off if JSE_MIN_MEMORY is
on), 117

JSE_PER_OBJECT_MISS_CACH
E (on, off if
JSE_MIN_MEMORY is on), 117

JSE_POOL_STRINGDATA (on,
off if JSE_MIN_MEMORY is
on), 117

JSE_PREEMPTIVE_THREADS
(on), 121

JSE_PROTOTYPES (on), 118
JSE_PSEUDO_PALMOS (off), 123
JSE_REFCOUNT (off), 115
JSE_REGEXP_LITERALS (on),

119
JSE_SAVE_FUNCTION_TEXT

(on, off if JSE_MIN_MEMORY
is on or JSE_COMPILER is off),
118

JSE_SECUREJSE (on), 120
JSE_SHORT_RESOURCE (off),

114
JSE_SLOW_MEM_ALLOC (off),

122

Nombas ScriptEase ISDK/C 5.01 515

JSE_STRINGS_COLLECT
(1000000, 100000 if
JSE_MIN_MEMORY is on), 116

JSE_TASK_SCHEDULER (on),
120

JSE_THREADSAFE_POSIX_CRT
L (off), 121

JSE_TIMEZONE_GLOBAL (off),
121

JSE_TOKENDST (on), 119
JSE_TOKENSRC (on), 119
JSE_TOLOCALEDATE_FUNCTI

ON (off), 121
JSE_TOOLKIT_APPSOURCE

(on), 118
JSE_TOSOURCE (on), 121
JSE_TRACK_MEMUSE (off), 122
JSE_TRACK_OBJECT_USE (off),

123
JSE_TRAP_NOWHERE (off), 114
JSE_UNICODE (off), 113
JSE_USER_DEFINED_MBCS

(off), 113
Jsedebug.Log, 13
Jsememreport, 14
jseSecurityGuard, 187
jseSecurityInit, 185
jseSecurityTerm, 186
K
kbhit(), 242
kill(), 397
L
labs(), 291
LANG (#define JSE_LANG_ALL),

485
last(), 440
lastIndex, 347
lastIndexOf(), 389
lastMatch, 352
lastParen, 353
lastRecord(), 454
ldexp(), 291
ldiv(), 292
leftContext, 353
length, array, 209
Lifetimes, 53
Line feed, 345
line(), 426
linger(), 469
Link Libraries, 401
Link ScriptEase Library Files, 9

Link with the ScriptEase libraries,
12

LIST OF MEMBER SPECIFIERS,
26

LIST OF STOCK OBJECTS, 28
Literal strings, 176
Literal strings and assignments, 177
Literal strings and comparisons, 177
Literal strings and parameters, 178
Literal strings and returns, 178
Literal Strings and switch

statements, 178
literals, 339
LN10, 321
LN2, 321
localeCompare(), 389
localtime(), 247
log(), 292, 325
log10(), 292
LOG10E, 321
LOG2E, 321
Logical operators and conditional

expressions, 150
look ahead, 344
lower case, 395
lower case\:locale, 394
M
m, 340
MAC (#define JSE_MAC_ALL),

486
Macros, 183
MAIN DEBUG MODE, 105
main() function, 165
majorErrorCode(), 447
majorErrorMessage(), 447
Manually Edit Jseopt.h Using

Source View, 479
match, 339
match(), 390
Math, 287
Math methods, 496
Math Object, 321
Math object static methods, 322
Math object static properties, 321
Math properties, 497
Math.abs(), 322
Math.acos(), 322
Math.asin(), 323
Math.atan(), 323
Math.atan2(), 323
Math.ceil(), 324

Nombas ScriptEase ISDK/C 5.01 516

Math.cos(), 324
Math.E, 321
Math.exp(), 324
Math.floor(), 325
Math.LN10, 321
Math.LN2, 321
Math.log(), 325
Math.LOG10E, 321
Math.LOG2E, 321
Math.max(), 325
Math.min(), 326
Math.PI, 322
Math.pow(), 326
Math.random(), 327
Math.round(), 327
Math.sin(), 327
Math.sqrt(), 328
Math.SQRT1_2, 322
Math.SQRT2, 322
Math.tan(), 328
Mathematical operators, 148
max(), 292, 325
maximal match, 342
MD5 (#define JSE_MD5_ALL),

486
MD5 Checksum Link Library, 433
md5 Object, 433
md5 object instance methods, 433
md5(), 433
memchr(), 285
memcmp(), 286
memcpy(), 286
memmove(), 287
MEMORY EXTENSIONS, 124
Memory manipulation, 285
Memory Tracking, 13
memset(), 287
Methods - assigning functions to

objects, 169
Methods for data, 491
Methods for strings, 499
min(), 292, 326
minimal match, 342
minorErrorCode(), 447
minorErrorMessage(), 448
mkdir(), 265
mktime(), 248
mode\:file read/write, 254
modf(), 293
MODIFYING VARIABLES, 34
multiline, 347

N
n, 344, 345
NaN, 146
NDEBUG, 122
Negative look ahead group, 345
newline, 345
next(), 440
nextRecord(), 453
NLM (#define JSE_NLM_ALL),

486
non-greedy match, 342
null, 145
Number constants, 146
number conversion, 330
Number Object, 329
Number object instance methods,

329
Number toExponential(), 329
Number toFixed(), 329
Number toLocaleString(), 329
Number toPrecision(), 329
Number toString(), 330
Number type, 142
O
OBJECT ACCESS ROUTINES, 79
Object class, 176
OBJECT CLASSES, 57
Object hasOwnProperty(), 332
Object isPrototypeOf(), 332
Object Object, 331
Object object instance methods, 331
Object operator, 147
Object propertyIsEnumerable(), 333
Object prototypes, 169
Object toLocaleString(), 333
Object toSource(), 333
Object toString(), 334
Object type, 144
Object valueOf(), 335
Object(), 331
Objects, 166
Objects and Classes, 57
Octal, 143, 345
offset(), 315
Operators, 147
order of precedence, 346
OS2 (#define JSE_OS2_ALL), 486
OTHER CONSIDERATIONS, 131
outport(), 315
outportw(), 315
outside of functions, 182

Nombas ScriptEase ISDK/C 5.01 517

P
P_SWAP, 252
parameterName(), 462
parameters(), 463
PARAMS, 41
parse(), 311
parseFloat(), 197
parseInt(), 197
pass\:by reference, 144
pass\:by value, 142
Passing information to functions,

162
Passing variables by reference, 180
pattern, 339
PERL, 337
perror(), 253
PI, 322
Point specifications, 415
pointer, 181
Pointer operator * and address

operator &, 181
polygon(), 426
pop(), 211
Positive look ahead group, 344
pow(), 293, 326
precedence, 346
Predefining objects with constructor

functions, 167
previous(), 440
prevRecord(), 453
Primitive data types, 142, 181
printf(), 239
procedureName(), 448
procedures(), 448
Productivity Tools, 477
Program your application to invoke

ScriptEase, 12
Prohibited identifiers, 139
Properties and methods of basic data

types, 147
propertyIsEnumerable(), 333
Prototype property, 502
push(), 212
put(), 217
putc(), 262
putchar(), 243
putenv(), 268
puts(), 243
putString(), 233
putValue(), 234

Q
qsort(), 267
QUIT, 109
quotes, 385
quotes\:back, 385
R
r, 345
radix, 330
rand(), 293
random(), 327
read(), 469
READ-ONLY SHARED

OBJECTS, 131
ready(), 470
Rebuild the ScriptEase libraries, 11
rectangle(), 427
red(), 427
reference\:assignment by, 144
reference\:pass by, 144
RegExp compile(), 349
RegExp exec(), 350
RegExp global, 346
RegExp ignoreCase, 347
RegExp lastIndex, 347
RegExp multiline, 347
RegExp Object, 337
RegExp object instance methods,

349
RegExp object instance properties,

346
RegExp object static properties, 352
RegExp returned array properties,

348
RegExp source, 348
RegExp test(), 351
RegExp(), 349
RegExp.$_, 352
RegExp.$n, 352
RegExp.input, 352
RegExp.lastMatch, 352
RegExp.lastParen, 353
RegExp.leftContext, 353
RegExp.multiline, 347
RegExp.rightContext, 353
RegExp["$&"], 352
RegExp["$+"], 353
Regular expression anchor

characters, 343
Regular expression attributes, 339
Regular expression character

classes, 343

Nombas ScriptEase ISDK/C 5.01 518

Regular expression characters, 339
Regular expression escape

sequences, 345
Regular expression literals, 339
regular expression pattern, 339
Regular expression precedence, 346
Regular expression reference

characters, 344
Regular expression repetition

characters, 341
Regular expression replacement

characters, 346
Regular expression special

characters, 340
Regular expression summary, 340
Regular expression syntax, 339
Regular expressions, 337
RELEASE #object-id, 109
reload(), 441
remote, 414
remoteHost(), 471
remove(), 263
rename(), 263
repetition specifier, 342
replace(), 391
replacement characters, 346
replaceRecord(), 459
REPORT, 105
reserved, 139
reserved\:identifiers, 139
reverse(), 212
rewind(), 263
rightContext, 353
rmdir(), 266
rollbackTransaction(), 448
round(), 327
Routines for arrays, 489
Routines for Buffers, 489
Routines for character classification,

490
Routines for console I/O, 490
Routines for conversion/casting, 490
Routines for data/variables, 491
Routines for date/time, 491
Routines for diagnostic/error, 492
Routines for directory, file, and OS,

493
Routines for DOS, 495
Routines for execution control, 495
Routines for file/stream I/O, 496
Routines for general use, 496

Routines for math, 496
Routines for memory manipulation,

498
Routines for miscellaneous, 498
Routines for objects and functions,

498
Routines for regular expressions,

498
Routines for strings/byte arrays, 499
Routines for UNIX, 500
Routines for variable argument lists,

500
rsprintf(), 272
rvsprintf(), 272
S
s, 341, 343
Sample Applications, 10
Sample Script, 189
scanf(), 243
Scientific floats, 143
SCOPING, 43
SCOPING - FUNCTIONS, 43
SCOPING - GLOBAL CODE, 43
Script execution, 250
Script Execution Topics, 37
SCRIPTEASE FEATURE

CUSTOMIZATION, 119
ScriptEase ISDK for C/C++, 1
ScriptEase ISDK Toolbox, 477
ScriptEase JavaScript, 135
ScriptEase Types, 15
ScriptEase versus C language, 173
se, 38
SE_ACTIVATION, 29
SE_APISTRING_POOL_SIZE (5),

117
SE_APIVARNAME_POOL_SIZE

(5), 117
SE_ARGS, 29
SE_AT_EXIT, 32
SE_CALL_MAIN, 39
SE_CALLBACK(), 17
SE_COMPOUND_MEM(, 26
SE_COMPOUND_UNIMEM(secon

stcharptr), 26
SE_CONSTRUCTOR, 41
SE_DEFAULT, 41
SE_DEFINES, 30
SE_ECMA_RETURNS (on), 119
SE_ERROR, 31
SE_EXIT, 31

Nombas ScriptEase ISDK/C 5.01 519

SE_EXIT_LEVEL, 40
SE_FILENAMES, 32
SE_FUNCS_ONLY, 39
SE_FUNCTION_GLOBAL, 28
SE_FUNCTION_TEXT, 28
SE_GLOBAL, 29
SE_HIDDEN_MEM(, 26
SE_HIDDEN_UNIMEM(seconstch

arptr), 26
SE_INDEX(num), 27
SE_INFREQUENT_CONT, 40
SE_INIT_IMPLICIT_PARENTS,

41
SE_INIT_IMPLICIT_THIS, 41
SE_LIBRARY_DATA, 28
SE_MAX_STACK_INFO_DEPTH

(64), 117
SE_MEM(, 26
SE_MEM_POOL_SIZE (1024, 128

if JSE_MIN_MEMORY is on),
116

SE_NAMED_PARAMS, 41
SE_NEW_DEFINES, 40
SE_NEW_GLOBALS, 39
SE_NO_INHERIT, 39
SE_NO_LIBRARIES, 39
SE_NO_OLD_DEFINES, 40
SE_NOWHERE, 30
SE_NUM(sememcount), 26
SE_OBJ_POOL_SIZE (1024, 128 if

JSE_MIN_MEMORY is on), 116
SE_REPORT_ERRORS, 40
SE_RETURN, 31
SE_RETURN EXPLAINED, 35
SE_SCOPE, 30
SE_SELF, 33
SE_SERVICES, 33
SE_SHARED_SERVICES, 33
SE_SI_ACTIVATION, 33
SE_SI_DATA, 33
SE_SI_DEPTH, 33
SE_SI_FILENAME, 33
SE_SI_FUNCNAME, 32
SE_SI_FUNCTION, 32
SE_SI_GLOBAL, 32
SE_SI_LINENUM, 33
SE_SI_SCOPECHAIN, 33
SE_SI_THIS, 32
SE_SI_TRAPPED, 32
SE_SI_WRAPPER, 32
SE_STACK_INFO(depth), 32

SE_STACK_SIZE (2048, 512 if
JSE_MIN_MEMORY is on), 117

SE_START, 40
SE_STOCK(string), 28
SE_STR(sestring), 27
SE_STRING_POOL_SIZE (512, 64

if JSE_MIN_MEMORY is on),
116

SE_STRUCT(memdesc), 27
SE_SUSPEND, 31
SE_TEMP, 30
SE_THIS, 29
SE_UNIMEM(seconstcharptr), 26
SE_VALUE, 27
SE_WRAPPER_TEMP, 30
SE_YIELD, 31
seAddLibTable, 67
search(), 392
seAssignEx, 89
sebool, 15
sechar, 16
secharptr, 16
SECHARPTR_DIFF(string1,string2

), 17
SECHARPTR_GETC(string), 17
SECHARPTR_INC(string), 17
SECHARPTR_NEXT(string), 17
SECHARPTR_OFFSET(string,offs

et), 17
SECHARPTR_PUTC(string,char),

17
secharptrdatum, 16
seCloneInternalString, 70
seCloneObject, 74
seCloneString, 74
seCompare, 78
seconstcharptr, 16
secontext, 15
SECONTINUEFUNC, 95
seConvert, 87
seCreateBlankContext, 66
seCreateContext, 65
seCreateFiber, 66
Security, 185
securityVariable, 188
sedatatype, 15
SEDBC Link Library, 435
seDelete, 84
seDestroyContext, 67
seEnableDynamicMethod, 86
seEnd, 92

Nombas ScriptEase ISDK/C 5.01 520

seEval, 91
seExec, 92
seExists, 76
seExistsDirect, 77
seFreeBytecodes, 93
seFreeInternalString, 71
seFreeObject, 74
seFreeString, 74
seGarbageCollect, 67
seGetAttribs, 77
seGetBool, 72
seGetBoolEx, 72
seGetContextParams, 66
seGetInternalString, 71
seGetName, 69
seGetNumber, 72
seGetNumberEx, 72
seGetObject, 72
seGetObjectEx, 72
seGetPointer, 72
seGetPointerEx, 72
seGetString, 72
seGetStringEx, 72
seGetType, 76
segment(), 316
seInitialize, 65
seInternalizeString, 69
seInternalizeStringHidden, 69
seIsArray, 80
seIsBreakpoint, 93
seIsFunc, 80
select(), 473
SElib, 173
SELIB (#define JSE_SELIB_ALL),

486
Selib Assistant, 477
SElib Object, 355
SElib object static methods, 355
SElib.baseWindowFunction(), 355
SElib.bound(), 355
SElib.breakWindow(), 356
SElib.compileScript(), 356
SElib.directory(), 359
SElib.doWindows(), 361
SElib.dynamicLink(), 220, 380
SElib.dynamicLink() - for OS/2,

383
SElib.dynamicLink() - for Win16,

382
SElib.dynamicLink() - for Win32,

380

SElib.fullpath(), 362
SElib.getObjectProperties(), 171,

363
SElib.inSecurity(), 364
SElib.instance(), 364
SElib.interpret(), 364
SElib.interpretInNewThread(), 366
SElib.makeWindow(), 367
SElib.messageFilter(), 369
SElib.multiTask(), 370
SElib.peek(), 370
SElib.pointer(), 371
SElib.poke(), 372
SElib.ShellFilterCharacter(), 373
SElib.ShellFilterCommand(), 374
SElib.spawn(), 374
SElib.splitFilename(), 376
SElib.subclassWindow(), 377
SElib.suspend(), 378
SElib.version(), 379
SElib.windowList(), 379
seLockObject, 76
seLockString, 76
seMakeObject, 84
seMakeStack, 85
sememcount, 17
semicolons, 182
SEND FILE filename, 106
senumber, 15
seobject, 16
seObjectMemberCount, 79
seObjectMemberCountDirect, 79
seObjectMemberName, 80
sePrecompile, 92
sePutBoolEx, 82
sePutNullEx, 82
sePutNumberEx, 82
sePutObjectEx, 82
sePutPointerEx, 82
sePutStringEx, 82
sePutUndefinedEx, 82
sePutWrapper, 85
sequential data, 207
seSetArray, 81
seSetAttribs, 88
seSetCallbacks, 86
seShareReadObject, 81
sesmemcount, 17
SESOCK (#define

JSE_SOCKET_ALL), 486
sestring, 16

Nombas ScriptEase ISDK/C 5.01 521

Set Options Mode, 478
setArrayLength(), 198
setAttributes(), 199
setBrush(), 428
setDate(day), 304
seTerminate, 65
setFullYear(), 304
setgid(), 398
setHours(), 305
seThrow, 90
setMilliseconds(), 305
setMinutes(), 305
setMonth(), 305
setPixel(), 428
setSeconds(), 306
setsid(), 398
setStyle(), 428
setTile(), 429
setTime(), 306
setuid(), 398
setUTCDate(), 306
setUTCFullYear(), 306
setUTCHours(), 307
setUTCMilliseconds(), 307
setUTCMinutes(), 307
setUTCMonth(), 308
setUTCSeconds(), 308
setYear(), 308
seVarParse, 68
seWeakLockObject, 75
SHARED SERVICES, 132
shift(), 213
SimpleDataset addRecord(), 457
SimpleDataset close(), 452
SimpleDataset currentRecord(), 452
SimpleDataset cursor(), 460
SimpleDataset deleteAll(), 458
SimpleDataset deleteRecord(), 458
SimpleDataset find() with clause,

455
SimpleDataset find() with template,

454
SimpleDataset findAll(), 456
SimpleDataset findDistinct(), 456
SimpleDataset firstRecord(), 453
SimpleDataset getLastError(), 460
SimpleDataset getLastErrorCode(),

460
SimpleDataset instance methods,

451
SimpleDataset lastRecord(), 454

SimpleDataset nextRecord(), 453
SimpleDataset object, 450
SimpleDataset prevRecord(), 453
SimpleDataset replaceRecord(), 459
SimpleDataset static properties, 460
SimpleDataset(), 451
SimpleDataset.caseSensitive, 460
Simulated named parameters, 163
sin(), 293, 327
Single quote, 385
sinh(), 294
size(), 219
slash, 339
slice(), 213, 392
Socket accept(), 468
Socket blocking(), 468
Socket close(), 469
Socket linger(), 469
Socket Link Library, 467
Socket object, 467
Socket object instance methods, 467
Socket object static methods, 472
Socket read(), 469
Socket ready(), 470
Socket remoteHost(), 471
Socket write(), 472
Socket() with hostname, 467
Socket() with port, 467
Socket.addressByName(), 472
Socket.error(), 472
Socket.hostByName(), 473
Socket.hostName(), 473
Socket.select(), 473
sort, 437
sort(), 214
Sorting, 266
source, 348
special characters, 339
Special values, 145
Specifying Security, 188
splice(), 215
split(), 393
sprintf(), 273
sqrt(), 294, 328
SQRT1_2, 322
SQRT2, 322
srand(), 294
sscanf(), 273
STACK index, 109
STEP, 107
storedProc(), 449

Nombas ScriptEase ISDK/C 5.01 522

Stproc close(), 462
Stproc cursor(), 463
Stproc execute(), 464
Stproc instance methods, 462
Stproc instance properties, 461
Stproc object, 461
Stproc parameterName(), 462
Stproc parameters(), 463
strcat(), 274
strchr(), 274
strcmp(), 275
strcmpi(), 275
strcpy(), 275
strcspn(), 276
strerror(), 253
strftime(), 249
stricmp(), 276
String as data type, 385
String as object, 386
String charAt(), 387
String charCodeAt(), 387
String concat(), 387
string data, 224
string data\:dynamicLink, 224
string data\:in a buffer, 224
String indexOf(), 388
String instance methods sample, 502
String instance properties sample,

501
String lastIndexOf(), 389
String length, 386
String localeCompare(), 389
String manipulation, 272
String match(), 389
String Object, 385
STRING object index, 109
String object instance methods, 386
String object instance properties,

386
String object static methods, 395
String properties, 500
String replace(), 391
String search(), 392
String slice(), 392
String split(), 393
String static methods sample, 502
String static properties sample, 502
String substr(), 393
String substring(), 394
String toLocaleLowerCase(), 394
String toLocaleUpperCase(), 395

String toLowerCase(), 395
String toUpperCase(), 395
String type, 144
String(), 386, 430
String.fromCharCode(), 395
stringUp(), 430
strlen(), 277
strlwr(), 277
strncat(), 277
strncmp(), 278
strncmpi(), 278
strncpy(), 278
strnicmp(), 279
strpbrk(), 279
strrchr(), 280
strspn(), 280
strstr(), 280
strstri(), 281
strtod(), 281
strtok(), 282
strtol(), 283
structure data types, 222
structure definitions, 217
Structures, 179
strupr(), 284
subBuffer(), 235
substr(), 393
substring(), 394
switch expression, 179
switch, case, and default, 157
SWORD16, 220
SWORD24, 220
SWORD32, 220
SWORD8, 220
Syntax Updating Rules, 479
system(), 252
T
t, 345
table(), 449
tableName(), 450
tables(), 450
tan(), 294, 328
tanh(), 294
term(), 433
Terminology for objects, 166
TEST (#define JSE_TEST_ALL),

486
TEST BREAKPOINT

filename:line-number, 108
test(), 351
TEXT_ARGS, STACK_ARGS, 38

Nombas ScriptEase ISDK/C 5.01 523

THE ARGUMENTS, 46
THE AT ERROR FUNCTION, 101
THE CHARACTER ACCESS

ROUTINES, 17
THE CONTINUE FUNCTION, 100
The Debugger, 95
THE FUNCTION HEADER, 45
THE RETURN, 46
THE SCRIPTEASE DEBUGGER

PROTOCOL VERSION 1.0, 103
The seContextParams Structure, 19
THE SIMPLE DEBUGGER, 95
throw, 159
Time functions, 246
time(), 250
tmpfile(), 263
tmpnam(), 264
TO_INTERPRET, INTERP_TYPE,

38
toascii(), 284
ToBoolean(), 200
ToBuffer(), 201
ToBytes(), 201
toDateString(), 308
toGd(), 430
toGif(), 431
toGMTString(), 309
ToInt32(), 201
ToInteger(, 202
Token replacement macros, 183
toLocaleDateString(), 309
toLocaleLowerCase(), 394
toLocaleString(), 309, 329, 333
toLocaleTimeString(), 309
tolower(), 284
toLowerCase(), 395
ToNumber(), 202
ToObject(), 202
ToPrimitive(), 203
ToSource(), 203
toString(), 147, 204, 215, 330
toSystem(), 310
toTimeString(), 310
ToUint16(), 205
ToUint32(), 205
toupper(), 284
toUpperCase(), 395
toUTCString(), 310
try, 159
type conversion, 146, 200, 201, 202,

203, 204, 205, 331

Type declarations, 183
typedef, 222
typeof operator, 154
U
undefine(), 205
undefined, 145, 205
unescape(), 205
ungetc(), 264
unicode, 230
UNIX (#define JSE_UNIX_ALL),

486
Unix Object, 397
Unix object static methods, 397
Unix.fork(), 397
Unix.kill(), 397
Unix.setgid(), 398
Unix.setsid(), 398
Unix.setuid(), 398
Unix.wait(), 399
Unix.waitpid(), 399
Unnecessary tokens, 182
Unpacking ScriptEase:ISDK/C, 9
unshift(), 216
update(), 433
updateRow(), 441
upper case, 395
upper case\:locale, 395
Using a DSP object, 408
Using an alternate jseopt.h, 12
USING SE_START, 127
USING SE_TEMP AND

SE_WRAPPER_TEMP, 35
Using seEval, 37
UTC(), 312
UU object static methods, 475
UU.decode(), 475
UU.encode(), 475
UUCODE (#define

JSE_UUCODE_ALL), 486
UUCode Link Library, 475
UWORD16, 220
UWORD24, 220
UWORD32, 220
UWORD8, 220
V
v, 345
va_arg(), 295
va_end(), 296
va_start(), 296
value\:assignment by, 142
value\:pass by, 142

Nombas ScriptEase ISDK/C 5.01 524

valueOf(), 147
Variable argument lists, 295
VARIABLE LOCATING, 68
VARIABLE READING, 72
Variable scope, 140
VARIABLE WRITING, 82
Variables, 139
VARNAME object index, 109
Vertical tab, 345
vfprintf(), 297
Visually Edit Jseopt.h Using

Explorer View, 478
void, 205
vprintf(), 244
vscanf(), 245
vsprintf(), 285
vsscanf(), 297
W
w, 343
wait(), 399
waitpid(), 399
while, 155

White space characters, 136
width(), 431
WIN (#define JSE_WIN_ALL), 486
Win32 API, 221
with, 171
word boundary, 344
Working with Variables, 25
Wrapper functions, 45
Wrapper Functions And Security,

189
WRAPPER MACROS, 48
WRAPPER TABLES, 46
write(), 472
Writing a Security Manager, 185
X
x##, 345
Y
YIELDING AND SUSPENDING,

130
Z
Z, 344

	Table of Contents
	Introduction
	Integration Into Your C/C++ Application
	Integration on Windows Systems
	Configuring A jseopt.h File
	Build ScriptEase Libraries
	Link ScriptEase Library Files

	Integration on Unix Systems
	Unpacking ScriptEase:ISDK/C
	Sample Applications
	Integration Basics
	Edit your jseopt.h
	Rebuild the ScriptEase libraries
	Add ScriptEase compiler options
	Program your application to invoke ScriptEase
	Link with the ScriptEase libraries
	Using an alternate jseopt.h

	Advanced Integration - Debugging
	Jsedebug.Log
	Memory Tracking
	Jsememreport

	ScriptEase Types
	secontext
	sedatatype
	sebool
	senumber
	seobject
	sestring
	secharptr
	seconstcharptr
	sechar
	secharptrdatum
	sememcount
	sesmemcount
	SE_CALLBACK()
	THE CHARACTER ACCESS ROUTINES
	SECHARPTR_INC(string)
	SECHARPTR_GETC(string)
	SECHARPTR_PUTC(string,char)
	SECHARPTR_OFFSET(string,offset)
	SECHARPTR_NEXT(string)
	SECHARPTR_DIFF(string1,string2)

	Initialization and Contexts
	
	The seContextParams Structure

	Working with Variables
	IDENTIFYING A VARIABLE
	LIST OF MEMBER SPECIFIERS
	SE_MEM("member name")
	SE_UNIMEM(seconstcharptr)
	SE_HIDDEN_MEM("member name")
	SE_HIDDEN_UNIMEM(seconstcharptr)
	SE_COMPOUND_MEM("compound.member.name")
	SE_COMPOUND_UNIMEM(seconstcharptr)
	SE_NUM(sememcount)
	SE_STR(sestring)
	SE_INDEX(num)
	SE_STRUCT(memdesc)
	SE_VALUE
	SE_STOCK(string)
	SE_FUNCTION_TEXT
	SE_FUNCTION_GLOBAL
	SE_LIBRARY_DATA

	LIST OF STOCK OBJECTS
	SE_GLOBAL
	SE_ARGS
	SE_ACTIVATION
	SE_THIS
	SE_SCOPE
	SE_TEMP
	SE_WRAPPER_TEMP
	SE_NOWHERE
	SE_DEFINES
	SE_RETURN
	SE_ERROR
	SE_EXIT
	SE_YIELD
	SE_SUSPEND

	SE_AT_EXIT
	SE_FILENAMES
	SE_STACK_INFO(depth)
	SE_SI_WRAPPER
	SE_SI_FUNCTION
	SE_SI_FUNCNAME
	SE_SI_TRAPPED
	SE_SI_GLOBAL
	SE_SI_THIS
	SE_SI_DATA
	SE_SI_FILENAME
	SE_SI_LINENUM
	SE_SI_ACTIVATION
	SE_SI_SCOPECHAIN
	SE_SI_DEPTH

	SE_SERVICES
	SE_SHARED_SERVICES
	SE_SELF

	EXAMINING VARIABLES
	MODIFYING VARIABLES
	USING SE_TEMP AND SE_WRAPPER_TEMP
	SE_RETURN EXPLAINED

	Script Execution Topics
	Using seEval
	se
	TO_INTERPRET, INTERP_TYPE
	TEXT_ARGS, STACK_ARGS
	FLAGS
	SE_NO_INHERIT
	SE_NO_LIBRARIES
	SE_NEW_GLOBALS
	SE_CALL_MAIN
	SE_FUNCS_ONLY
	SE_EXIT_LEVEL
	SE_NEW_DEFINES
	SE_NO_OLD_DEFINES
	SE_REPORT_ERRORS
	SE_INFREQUENT_CONT
	SE_START
	SE_CONSTRUCTOR
	SE_NAMED_PARAMS
	SE_INIT_IMPLICIT_THIS
	SE_INIT_IMPLICIT_PARENTS
	SE_DEFAULT

	PARAMS

	FUNCTION GLOBALS
	SCOPING
	SCOPING - GLOBAL CODE
	SCOPING - FUNCTIONS

	CONTINUE FUNCTION

	Wrapper functions
	Lifetimes
	Objects and Classes
	OBJECT CLASSES
	DYNAMIC OBJECTS
	FUNCTION REDIRECTION

	API Function List
	INITIALIZATION/CONTEXT CREATION
	VARIABLE LOCATING
	VARIABLE READING
	seLockString

	OBJECT ACCESS ROUTINES
	VARIABLE WRITING
	sePutObjectEx

	EXECUTING SCRIPTS

	The Debugger
	SECONTINUEFUNC
	THE SIMPLE DEBUGGER
	INTEGRATING THE SCRIPTEASE DEBUGGER
	THE CONTINUE FUNCTION
	THE AT ERROR FUNCTION
	INVOKING THE DEBUGGER
	INVOKING THE DEBUGGER ON AN ERROR

	THE SCRIPTEASE DEBUGGER PROTOCOL VERSION 1.0
	INITIALIZATION
	MAIN DEBUG MODE
	REPORT
	SEND FILE filename
	CLEAR BREAKPOINTS
	BREAKPOINT ADD/REMOVE filename:line-number
	EXPR ADD expression
	EXPR REMOVE #number
	GO number
	STEP
	TEST BREAKPOINT filename:line-number
	EVAL expression
	GET object index
	STRING object index
	VARNAME object index
	STACK index
	RELEASE #object-id
	QUIT

	Extlibs
	
	
	BUILDING AN EXTLIB

	Core Customization Topics
	CHARACTER SET CUSTOMIZATIONS
	JSE_ASCII (on)
	JSE_UNICODE (off)
	JSE_MBCS (off)
	JSE_USER_DEFINED_MBCS (off)

	CORE CUSTOMIZATION
	JSE_MIN_MEMORY (off for most systems)
	JSE_MULTIPLE_GLOBAL (on)
	JSE_HASH_SIZE (256)
	JSE_ONE_STRING_TABLE (off)
	JSE_INFREQUENT_COUNT (5000)
	JSE_INTERNAL_PROFILING (off)
	JSE_GET_RESOURCE (off)
	JSE_SHORT_RESOURCE (off)
	JSE_TRAP_NOWHERE (off)
	JSE_INLINES (on, off if JSE_MIN_MEMORY is defined)
	JSE_PEEPHOLE_OPTIMIZER (on)
	JSE_CACHE_GLOBAL_VARS (on)
	JSE_GLOBAL_CACHE_SIZE (10)
	JSE_COMPACT_LIBFUNCS (off)
	JSE_ALIGN_DATA (off)
	JSE_REFCOUNT (off)
	JSE_GC (on)
	SE_OBJ_POOL_SIZE (1024, 128 if JSE_MIN_MEMORY is on)
	SE_MEM_POOL_SIZE (1024, 128 if JSE_MIN_MEMORY is on)
	SE_STRING_POOL_SIZE (512, 64 if JSE_MIN_MEMORY is on)
	JSE_STRINGS_COLLECT (1000000, 100000 if JSE_MIN_MEMORY is on)
	JSE_PACK_OBJECTS (off, on is JSE_MIN_MEMORY is on)
	JSE_PACK_SECODES (off, on if JSE_MIN_MEMORY is on)
	JSE_POOL_STRINGDATA (on, off if JSE_MIN_MEMORY is on)
	JSE_PER_OBJECT_CACHE (on, off if JSE_MIN_MEMORY is on)
	JSE_PER_OBJECT_MISS_CACHE (on, off if JSE_MIN_MEMORY is on)
	SE_APISTRING_POOL_SIZE (5)
	SE_APIVARNAME_POOL_SIZE (5)
	SE_STACK_SIZE (2048, 512 if JSE_MIN_MEMORY is on)
	SE_MAX_STACK_INFO_DEPTH (64)

	FEATURE CUSTOMIZATION
	JSE_COMPILER (on)
	JSE_TOOLKIT_APPSOURCE (on)
	JSE_SAVE_FUNCTION_TEXT (on, off if JSE_MIN_MEMORY is on or JSE_COMPILER is off)
	JSE_PROTOTYPES (on)
	JSE_ALWAYS_IMPLICIT_THIS (off)
	JSE_ALWAYS_IMPLICIT_PARENTS (off)
	JSE_FUNCTION_ARGUMENTS (on)
	JSE_AUTO_OBJECT (off)
	JSE_REGEXP_LITERALS (on)
	JSE_FUNCTION_LENGTHS (on)
	JSE_HTML_COMMENT_STYLE (off)
	SE_ECMA_RETURNS (on)

	SCRIPTEASE FEATURE CUSTOMIZATION
	JSE_TOKENSRC (on)
	JSE_TOKENDST (on)
	JSE_DYNAMIC_CALLBACKS (on)
	JSE_OPERATOR_OVERLOADING (on)
	JSE_ENABLE_DYNAMETH (off)
	JSE_GETFILENAMELIST (off)
	JSE_BREAKPOINT_TEST (off)
	JSE_TASK_SCHEDULER (on)
	JSE_LINK (on)
	JSE_INCLUDE (on)
	JSE_DEFINE (on)
	JSE_CONDITIONAL_COMPILE (on)
	JSE_SECUREJSE (on)
	JSE_NUMTOSTRING_ROUNDING (on)
	JSE_MAIN_ARGC_ARGV (on)
	JSE_TOSOURCE (on)
	JSE_NAMED_PARAMS (on)
	JSE_TIMEZONE_GLOBAL (off)
	JSE_TOLOCALEDATE_FUNCTION (off)
	JSE_MILLENIUM (off)
	JSE_NO_AUTO_INIT (off)
	JSE_BROWSEROBJECTS (off)
	JSE_THREADSAFE_POSIX_CRTL (off)
	JSE_PREEMPTIVE_THREADS (on)

	DEBUGGING CUSTOMIZATION
	NDEBUG
	JSE_MEM_DEBUG (on if NDEBUG not defined)
	JSE_SLOW_MEM_ALLOC (off)
	JSE_ENFORCE_MEMCHECK (on)
	JSE_TRACK_MEMUSE (off)
	JSE_TRACK_OBJECT_USE (off)
	JSE_NEVER_FREE (off)
	JSE_DONT_POOL (off)
	JSE_ALWAYS_COLLECT (off)
	JSE_PSEUDO_PALMOS (off)

	FLOATING POINT CUSTOMIZATION
	JSE_FLOATING_POINT (on)
	JSE_FP_EMULATOR (off)

	MEMORY EXTENSIONS
	JSE_MEMEXT_MEMBERS (off)
	JSE_MEMEXT_OBJECTS (off)
	JSE_MEMEXT_SECODES (off)
	JSE_MEMEXT_STRINGS (off)
	JSE_MEMEXT_READONLY (off)

	Fibers and Threads
	
	READ-ONLY SHARED OBJECTS
	SHARED SERVICES

	ScriptEase JavaScript
	Basics of ScriptEase
	Case sensitivity
	White space characters
	Comments
	Expressions, statements, and blocks

	Identifiers
	Prohibited identifiers
	Identifiers to avoid
	Variables
	Variable scope
	Function identifier
	Function scope

	Data types
	Primitive data types
	Number type
	Integer
	Decimal
	Hexadecimal
	Octal

	Floating point
	Decimal floats
	Scientific floats

	Boolean type
	String type

	Composite data types
	Object type
	Array type

	Special values
	undefined
	null
	NaN
	Number constants

	Automatic type conversion
	Properties and methods of basic data types
	toString()
	valueOf()

	Operators
	Object operator
	Mathematical operators
	Basic arithmetic
	Assignment arithmetic
	Auto-increment (++) and auto-decrement (--)

	Bit operators
	Logical operators and conditional expressions
	Concatenation operator
	delete operator
	in operator
	instanceof operator
	typeof operator

	Flow decisions statements
	if
	else
	while
	do {...} while
	for
	break
	continue
	switch, case, and default
	goto and labels
	Conditional operator

	Exception handling
	Functions
	Function return statement
	Passing information to functions
	Simulated named parameters
	Function property arguments[]
	Function recursion
	Error checking for functions
	main() function

	Objects
	Terminology for objects
	Predefining objects with constructor functions
	Initializers for objects and arrays
	Methods - assigning functions to objects
	Object prototypes
	for/in
	with
	_construct(...)
	_call(...)

	ScriptEase versus C language
	Data types in C and SE
	Automatic type declaration
	Array representation
	Automatic array allocation
	Automatic and JavaScript Arrays
	Literal strings
	Literal strings and assignments
	Literal strings and comparisons
	Literal strings and parameters
	Literal strings and returns
	Literal Strings and switch statements

	Structures
	Passing variables by reference
	Pointer operator * and address operator &
	Case statements
	Initialization code which is external to functions
	Unnecessary tokens
	Macros
	Token replacement macros
	Back quote strings
	Converting existing C code to ScriptEase

	Security
	Writing a Security Manager
	jseSecurityInit
	jseSecurityTerm
	jseSecurityGuard
	securityVariable

	Specifying Security
	Wrapper Functions And Security
	Sample Script

	Internal Objects
	Global object
	Conversion or casting
	global object methods/functions

	Array object
	Creating arrays
	Initializers for arrays and objects

	Array object instance properties
	Array object instance methods

	Blob Object
	Blob object static methods
	blobDescriptor object
	blobDescriptor example

	Boolean Object
	Boolean object instance methods

	Buffer Object
	Buffer object instance properties
	Buffer object instance methods
	Buffer object static methods

	Clib Object
	Console I/O functions
	Time functions
	Script execution
	Error
	File I/O
	Directory
	Sorting
	Environment variables
	Character classification
	String manipulation
	Memory manipulation
	Math
	Variable argument lists

	Date Object
	Date object instance methods
	Date object static methods

	Dos Object
	Dos object static methods

	Function Object
	Function object instance methods

	Math Object
	Math object static properties
	Math object static methods

	Number Object
	Number object instance methods

	Object Object
	Object object instance methods

	RegExp Object
	Regular expression syntax
	Regular expression literals
	Regular expression characters
	Regular expression attributes

	Regular expression special characters
	Regular expression summary
	Regular expression repetition characters
	Regular expression character classes
	Regular expression anchor characters
	Regular expression reference characters
	Regular expression escape sequences
	Regular expression replacement characters

	Regular expression precedence
	RegExp object instance properties
	RegExp returned array properties
	RegExp object instance methods
	RegExp object static properties

	SElib Object
	SElib object static methods
	SElib.dynamicLink()

	String Object
	String as data type
	Escape sequences for characters
	Single quote
	Back quote

	String as object
	String object instance properties
	String object instance methods
	String object static methods

	Unix Object
	Unix object static methods

	Link Libraries
	COM Object Link Library
	COM object

	DSP Link Library
	DSP Object
	Creating a DSP object
	Using a DSP object
	DSP object instance methods
	DSP object static properties

	GD Link Library
	GD Object
	Point specifications
	Font specifications
	Color styles

	GD object instance methods
	GD object static methods

	MD5 Checksum Link Library
	md5 Object
	md5 object instance methods

	SEDBC Link Library
	Cursor object
	Cursor Instance Properties
	Cursor Instance Methods
	Database Object
	Database transactions
	SimpleDataset object
	SimpleDataset instance methods
	SimpleDataset static properties
	Stproc object
	Stproc instance properties
	Stproc instance methods

	Socket Link Library
	Socket object
	Socket object instance methods
	Socket object static methods

	UUCode Link Library
	UU object static methods

	Productivity Tools
	ScriptEase ISDK Toolbox
	Selib Assistant
	Description of Selib Assistant Modes
	Set Options Mode
	Visually Edit Jseopt.h Using Explorer View
	Manually Edit Jseopt.h Using Source View
	Syntax Updating Rules

	Basic Instructions for Working with a Jseopt.h File

	Build Libraries Mode
	Add To Project Mode

	Appendices
	Appendix 1: Standard Libraries
	Appendix 2: Using Wrapper.jse
	Appendix A: Grouped Functions
	Routines for arrays
	For dynamic arrays
	For Array objects
	Array properties

	Routines for Buffers
	Buffer methods
	Buffer properties

	Routines for character classification
	Routines for console I/O
	Routines for conversion/casting
	Routines for data/variables
	Methods for data

	Routines for date/time
	Routines for diagnostic/error
	Routines for directory, file, and OS
	Routines for DOS
	Routines for execution control
	Routines for file/stream I/O
	Routines for general use
	Routines for math
	Math methods
	Math properties

	Routines for memory manipulation
	Routines for miscellaneous
	Routines for objects and functions
	Routines for regular expressions
	Routines for strings/byte arrays
	Methods for strings
	String properties

	Routines for variable argument lists
	Routines for UNIX

	Appendix B: Instance and Static Notation
	String instance properties sample
	String instance methods sample
	String static properties sample
	String static methods sample
	Prototype property

	Index

