

ScriptEase ISDK for
Java

v 5.01b

Nombas, Inc.

ScriptEase™ ISDK/Java 5.0 Manual, 2nd edition

Nombas ScriptEase ISDK/Java 5.01 1

Copyright © 1993-2004 Anchor Acquisition, Inc., a subsidiary
of Openwave Systems Inc. All rights reserved.

http://www.nombas.com/

All Nombas products are trademarks or registered trademarks of
Anchor Acquisition, Inc., a subsidiary of Openwave Systems
Inc. Other brand names are trademarks or registered trademarks
or their respective holders. Windows, as used in this manual,
refers to Microsoft's implementation of a windowing system.

This product includes software developed by the Apache Software
Foundation (http://www.apache.org/).

Nombas ScriptEase ISDK/Java 5.01 2

Table of Contents
Table of Contents...3
Introduction..7
Integrating the ISDK/Java..9

Unpacking ScriptEase:ISDK/Java ...9
Sample applications ...9
Integration Basics...10
The Nombas Preprocessor ...10
Advanced Integration - Debugging..12

Initialization and Contexts ...15
The ScriptEase Context Parameter Interfaces..16

Working with Variables ...23
IDENTIFYING A VARIABLE...23
EXAMINING VARIABLES ...31
MODIFYING VARIABLES ...32
USING SE.TEMP AND SE.WRAPPER_TEMP ..33
SE.RETURN EXPLAINED...33

Script Execution Topics...35
Using seEval ..35
FUNCTION GLOBALS..40
SCOPING ..41
CONTINUE FUNCTION..42

Wrapper functions..43
THE FUNCTION HEADER ...43
THE ARGUMENTS..44
THE RETURN...45
WRAPPER TABLES...45
WRAPPER TABLE METHODS AND OBJECT ...47
SELIBRARY INTERFACE ..49
THE SELIBRARYMANAGER CLASS ...50

Lifetimes ..53
Objects and Classes..57

OBJECT CLASSES...57
DYNAMIC OBJECTS...58
FUNCTION REDIRECTION..63

API Function List...65
INITIALIZATION/CONTEXT CREATION..65
VARIABLE LOCATING..68
VARIABLE READING ..71
OBJECT ACCESS ROUTINES ..77
VARIABLE WRITING ...79
EXECUTING SCRIPTS..88

Core Customization Topics..91
CORE CUSTOMIZATION ...91
FEATURE CUSTOMIZATION..94
SCRIPTEASE FEATURE CUSTOMIZATION ...95
DEBUGGING CUSTOMIZATION ..98

Fibers and Threads...99

Nombas ScriptEase ISDK/Java 5.01 3

USING SE.START ..99
YIELDING AND SUSPENDING...103
OTHER CONSIDERATIONS...103

ScriptEase JavaScript...105
Basics of ScriptEase...106
Identifiers ...108
Data types...111
Automatic type conversion ..116
Properties and methods of basic data types ...117
Operators..117
Flow decisions statements..125
Exception handling ..129
Functions..131
Objects ...136

ScriptEase versus C language ..143
Data types in C and SE ..143
Automatic type declaration ..143
Array representation...144
Automatic array allocation...145
Automatic and JavaScript Arrays ..145
Literal strings ...146
Structures ...149
Passing variables by reference ...150
Pointer operator * and address operator & ...151
Case statements..151
Initialization code which is external to functions ..152
Unnecessary tokens..152
Macros ...153
Token replacement macros ..153
Back quote strings..153
Converting existing C code to ScriptEase..153

Security ..155
Writing a Security Manager...155
Specifying Security ..158
Wrapper Functions And Security...159
Sample Script ...159

Internal Objects..161
Global object..163
Array object ...177
Blob Object ..187
Boolean Object...195
Buffer Object ...197
Clib Object ...209
Date Object ..269
Dos Object ...283
Function Object..287
Math Object ...291
Number Object...299
Object Object ...301
RegExp Object ...307
SElib Object ...325

Nombas ScriptEase ISDK/Java 5.01 4

String Object ..355
Unix Object..367

Appendices...371
Appendix A: Grouped Functions ...373
Appendix B: Instance and Static Notation ...385

Index ..389

Nombas ScriptEase ISDK/Java 5.01 5

Introduction

Thank you for choosing ScriptEase!

ScriptEase is a high-performance implementation of JavaScript, highly
customizable and portable to a wide variety of operating systems. No matter your
scripting needs, ScriptEase has you covered.

In this manual we show you how to add scripting support via ScriptEase to your
application, use the extensive ScriptEase API to control your scripting, and
perform a large number of common scripting tasks. This manual does not replace
the ScriptEase Language Reference. Refer to that guide for information on
JavaScript and ScriptEase extensions to it.

Let's dive right in by looking at integrating ScriptEase into your application.

Nombas ScriptEase ISDK/Java 5.01 7

Integrating the ISDK/Java

This chapter contains the instructions you’ll need to integrate the ScriptEase
ISDK into your Java application The next chapter builds on this to show you
how to use the ScriptEase API to script your application.

Unpacking ScriptEase:ISDK/Java
The distribution you received should first be installed on your system. The
distribution consists of a zip file that can be unpacked anywhere on your system.
Unpacking the distribution will produce a single directory tree containing the
ScriptEase ISDK installation. This tree contains all of the files you will need to
integrate the ScriptEase ISDK into your application. It also contains a number of
sample ISDK applications. In this manual, we will often refer to filenames and
directories. Those should be understood to be relative to the directory you
installed ScriptEase into. For instance, if you install ScriptEase in the directory
c:\se501 and we refer to the filename Samples\Sample\Sample0.java,
then you should understand that to be referring to the file
c:\se501\Samples\Sample/Sample0.java on your system.

The distribution contains several logical parts. In the Seisdk directory can be
found the interpreter core jar (NombasJS.jar), the ScriptEase standard library
jar (NombasLib.jar), and the ScriptEase regular expression jar
(SERegexp.jar) The interpreter jar contains the code to execute scripts along
with the ScriptEase API used to integrate the scripting engine into your Java
application. The standard library jar contains the code for the standard ECMA
function libraries, such as Math or RegExp. The regular expression jar contains
classes which are needed by the libraries jar. The NombasLib.jar also contains
the SELibraryManager class, which is used to make the standard libraries
available to your scripts (The SELibraryManager class is discussed in detail in
the Wrapper Functions chapter).

The next major part is the source code for the interpreter and the libraries. The
source for the class files contained in the NombasJS.jar are located in the
COM\Nombas\jse\Isdk and COM\Nombas\jse\utilities directories,
while the source for the NombasLib.jar is located in the
COM\Nombas\jse\libraries directory. If you are using an evaluation
version of the ScriptEase ISDK, source code for the interpreter is not included;
you use the pre built core jar we provide. (The source for the libraries is
provided, however.) The source files found in these directories are not .java
files, but instead are .jsrc files. The .jsrc files need to be translated into the
corresponding .java files by the included Nombas preprocessor. More
information regarding the preprocessor can be found in the following sections.

Sample applications
Before integrating the ScriptEase ISDK into your own application, it is suggested
you compile and run some of the sample applications provided with the
distribution. They are found in the Samples directory. The samples Sample0

Nombas ScriptEase ISDK/Java 5.01 9

and Sample1, are basic samples that are most appropriate to learn from. Each is
found in the subdirectory Samples.

Once you’ve build the samples, you may wish to refer to them as working
examples while you are adding the ISDK to your own application.

Integration Basics
Integrating the ScriptEase ISDK with your application requires a few basic tasks
as outlined below.

Edit your jseopt.jh
The first step is to edit the jseopt.jh file found in the Include directory of
the distribution. This file is self-documenting in its comments. Each preprocessor
switch or option has a description of what altering it will do. Change any switch
or option to your preference.

Rebuild the ScriptEase interpreter and libraries
In order to incorporate the changes you made to the jseopt.jh file, you must
first preprocess the source files and then recompile the resulting .java files.

Program your application to invoke ScriptEase
This topic is subject of the rest of the manual. Here we will only mention that all
of your source files that are to invoke ScriptEase should import interpreter
classes:
import COM.Nombas.jse.Isdk.*;

Add the ScriptEase classes to your CLASSPATH
The final step for integrating your application with ScriptEase is to add the
interpreter and library classes to your CLASSPATH. If you rebuilt the source in
a previous step, you would add the directory where those class files were placed
to your CLASSPATH. If you did not rebuild the source and plan to use the pre-
built jar files which were included in the distribution, you would add those jars to
your CLASSPATH. You will also need to include the SERegexp.jar file to
your CLASSPATH if you plan to use the ECMA RegExp object.

The Nombas Preprocessor
As mentioned above, the source files included in the distribution are not standard
.java files. Instead, they are .jsrc files which must be run through the provided
preprocessor before being compiled. The preprocessor outputs the corresponding
.java files which can then be compiled normally. In addition to the preprocessor
commands, the preprocessor also allows source lines in .jsrc files to be appended
using the ‘\’ character. For example, the following code:
#if DEBUG == 1 && \
 BLAH != 0

would be turned into a single line by the preprocessor.

The Preprocessor Commands
The Nombas preprocessor is modeled after the C preprocessor, but only supports
a subset of the commands offered by the C preprocessor. Unless stated

Nombas ScriptEase ISDK/Java 5.01 10

otherwise, the Nombas preprocessor commands behave exactly like their C
counterparts.

#include <filename>|”filename”
Inserts the text of another file into this one. If the file name is enclosed in angle
brackets, the preprocessor will only search the current working directory (the
directory the preprocessor was invoked from) for the file. If the file name is
enclosed in quotation marks, the preprocessor will search the include path for the
file. (See below for more information regarding the include path)

The ScriptEase source files include header files which have a .jh extension.
These header files are located in the ‘Include’ directory of the distribution. It is
important to place this directory in the preprocessor’s include path when
processing the ScriptEase source.

#define <name> <body>|<name>(<args>) <body>
#undef <name>
The #define command defines a preprocessor macro. When the preprocessor
encounters the macro name, it replaces it with the tokens in the specified body.
This directive can also be used to defined parameterized macros. The Nombas
preprocessor follows the same rules as C regarding the scanning and rescanning
of macro expansions. Once a macro is expanded the preprocessor will rescan the
resulting tokens for other defined macros. If other macros are found during the
rescanning phase, they are expanded and scanned recursively. If a macro is
found while scanning its own expansion, directly or as a result of recursion, that
macro is not expanded. For instance, given the following macro definitions:
#define A B B
#define B C C
#define C A A

The code
A B C

will be expanded into
A A A A A A A A B B B B B B B B C C C C C C C C

When defining parameterized macros, the ‘#’ character can be used to turn macro
parameters into string tokens. For example, the following code results in Hello
World! being printed to standard output:
#define FOO(x) #x
System.out.println(FOO(Hello World!));

The #undef command is used to undefined a macro.

#if <constant expression>
#elif <constant expression>
#ifdef <name>
#ifndef <name>
#else
#endif
These conditional compilation preprocessor commands are used to
include/exclude text from the resulting .java file. The if command includes or
excludes text based on a constant expression, which is subject to macro
expansion. If the constant expression is true, then the all of the text following the

Nombas ScriptEase ISDK/Java 5.01 11

#if up to the next #endif is included in the output file. If the expression is
false, the text following the #if is ignored. The #else and #elif commands
must follow an #if command and are only evaluated if the corresponding #if
expression is false. The #if , #else, and #elif commands work together like
the Java if, else, and else if statements.

The defined operator is available for use in #if and #elif statements. This
operator results in 1 if the specified name is defined as a preprocessor macro, 0
otherwise.

The #ifdef command includes text if the specified macro has been defined and
excludes text if the macro has not been defined. The #ifndef command is the
inverse of the #ifdef command.

The #endif command is used by all of the other conditional compilation
commands to determine where to stop including/excluding text.

#error <message>
Produces an error message with the specified tokens and exits the preprocessor.

Using the Preprocessor
The Preprocessor.jar file is located in the ‘Tools’ directory of the distribution. A
simple example of its usage follows:
java -jar Tools\Preprocessor.jar Foo.jsrc

This example would preprocess the file Foo.jsrc (assuming it exists) and output
Foo.java. The preprocessor accepts the following command line parameters:
-I <dir> : adds the <dir> to the Preprocessor's include path.
-O <dir> : places the output files into <dir>

To preprocess all of the Nombas source files, run the following commands from
the root of the distribution:
java -jar Tools\Preprocessor.jar -I Include
COM/Nombas/jse/Isdk/*.jsrc

java -jar Tools\Preprocessor.jar -I Include
COM/Nombas/jse/utilities/*.jsrc

java -jar Tools\Preprocessor.jar -I Include
COM/Nombas/jse/libraries/*.jsrc

Since no output directory was specified, the preprocessed .java files are placed in
the same directory where the corresponding .jsrc files were found.

Advanced Integration - Debugging
A debug mode build is differentiated by the presence or absence of the NDEBUG
flag in the jseopt.jh file. When this flag is on, asserts are removed and the
fastest code is generated while when it is off, asserts are fleshed out to catch
errors. ScriptEase follows this convention. When NDEBUG is undefined,
ScriptEase adds a lot of debugging code.

Nombas ScriptEase ISDK/Java 5.01 12

Using the debug build, many of the common ScriptEase problems, both in
integration and scripting, are detected and reported to you. We encourage you to
develop your application using the debug-mode of the ScriptEase library before
contacting Nombas for technical support. Carefully following this manual
chapter and building a debug-mode version will eliminate 90% of the problems
commonly encountered and will save you valuable time rather than waiting for
technical support to get to your question. If you encounter a true bug in our core,
the added information produced in the debug-mode build will allow us to find it
and create an errata more quickly.

Before you proceed to the next chapter on scripting your application, please look
over the following common problems you will encounter. It is best to keep these
in mind first, as many good habits are introduced. If you think of catching bugs
as something to be done after your code is written, you will unfortunately spend a
lot more time catching them. Prevention is the best cure.

Jsedebug.Log
This is the name of the debug output file. Under DOS, Windows, or OS/2, this
file is created in the root of c:\. For UNIX and Mac versions, it is put in the
current directory. The debug output will be put in this file, appended to whatever
the file already contains. When trying to debug your program, delete this file
first, run your program, then read the file to see what information it provides.
Even if this information is not enough for you to fix the problem, it will be
helpful to us, so include it when you contact Nombas for technical support.

Nombas ScriptEase ISDK/Java 5.01 13

Initialization and Contexts
Initialization is necessary before you can actually perform the tasks related to
executing scripts. The first task is to initialize the engine itself. Your application
only does this once when it starts and terminates the engine once when it exits.
Even if you are running multiple threads in your application and running many
different scripts, you only initialize the engine once. Here is a code snippet
demonstrating initializing and terminating the engine:
static public final void main(String[] argv)
{
 SE.seInitialize();

 /* your application, including scripting. */

 SE.seTerminate();
}

The two initialization methods (seInitialize() and seTerminate()) are
static members of the SE object. The SE object contains all the API initialization
methods along with all of the constants used by the API.

The other initialization task is to create an SEContext object. This is a handle
that ties all of your scripting together. Each script you wish to run needs a
context. It holds the variables, functions, preprocessor defines, and all the other
information a script needs. All of the API calls are methods of the SEContext
object.

A single context may run more than one script one after the other but not
simultaneously. Therefore, if you want to run multiple scripts at once, such as in
a multithreaded application, each thread will need its own context. You can
create as many contexts as you like. Most applications will create a single context
that is used for the life of the application then destroyed.

When a new context is created, none of the standard function libraries will be
available for script in it to call. You will need to add the desired function
libraries using the SELibraryManager object. When function libraries are
added to the context, the functions contained in the library are added to the global
object. In JavaScript, global variables are just the members of an object, the
global object. Any scripts running can see the stock libraries as global variables.
This is how a script access stock objects like eval, Math, String and so forth.

To create a context, you must use the SE.seCreateContext ScriptEase method.
The only required information for all versions is a context parameters object.
The context parameters object implements the SEContextParams interface and
is passed as the first parameter to seCreateContext. The newly created
context keeps a reference to the parameter object. The second parameter is a
string. If you are using a trial version of the ScriptEase ISDK, you must give
your userkey provided to you by Nombas. If you do not do so, the trial version
will fail in its construction of a new context and return null. If you have a
purchased version of ScriptEase, this second parameter is ignored.

Nombas ScriptEase ISDK/Java 5.01 15

The ScriptEase Context Parameter
Interfaces
As mentioned in the previous section, when calling seCreateContext you must
pass a context parameters object which implements the SEContextParams
interface. In addition to implementing the SEContextParams interface, the
parameters object may implement any of the other ScriptEase Context Parameter
Interfaces, depending on the needs of the application. The interfaces are
described in the following sections.

interface: SEContextParams
public int seGetOptions();
public void seSetOptions(int seOptions);

The SEContextParams interface is used by the interpreter to access the interpret
options you have set for the created context. The interpreter will call the
seGetOptions method whenever it needs to retrieve your options, and it will
call seSetOptions when it needs to temporarily turn off certain options for a
particular section of code. The following options can be |’ed together in any
combination:

SE.DEFAULT

Default behavior

SE.OPT_REQUIREVAR

All variables must be declared using the var keyword. If this flag is not used, the
normal JavaScript behavior is in effect. When you write to an undeclared
variable, the variable is automatically created as a global variable. Reading from
an undeclared variable always results in an error.

SE.OPT_DEFAULTLOCAL

Variables used without declaring them with the var keyword are declared
automatically as global variables as described above under
SE_OPT_REQUIREVAR. This flag makes them declared as local variables instead.
JavaScript standard behavior is to create the variables as global variables.

SE.OPT_WARNBADMATH

If any math operation involves NaN, flag an error. Normally, JavaScript allows
NaN to be used in an operation and defines specific results.

SE.OPT_EXTRAPARAMS

Wrapper functions indicate the maximum number of parameters they can take,
and extras will cause an error. This flag causes all library functions to take any
number of parameters, ignoring excess parameters. It is normally useful to leave
out this option, as extra parameters usually signal an incorrect usage of these
functions.

SE.OPT_TOBOOLOBJECTS

Nombas ScriptEase ISDK/Java 5.01 16

JavaScript states that any object converted to a Boolean results in TRUE. If this
flag is on, objects are first converted to a primitive then to a boolean. For
instance, without this flag the object new Boolean(False) or new
Number(0) will convert to TRUE, but with the flag they become FALSE.

SE.OPT_DEBUGGER

A debugger is in use, so ignore SE.INFREQUENT_CONT for all seEval calls.

interface: SEErrorHandler
public void sePrintErrorFunc(SEContext context, String
text);

The sePrintErrorFunc method is called by the interpreter to print an error to
the user. This happens when a script generates an error that is not trapped by a
try/catch handler. The error needs to be displayed to the user. This is the
function that is called by ScriptEase to do so.

interface: SEErrorFunction
public void seAtErrorFunc(SEContext context, SEAtErrorInfo
info);

The seAtErrorFunc method is invoked whenever a script generates an error, at
the point of error. This will occur for any error, even if the error is trapped via a
try/catch handler. Note that some scripts will throw errors as a valid part of
their program such as to indicate an error return from a function which will be
trapped higher up in the script. This is why normally you do not care about an
error until it comes back to you via the sePrintErrorFunc, indicating it never
is trapped. Getting an immediate notification is primarily useful in implementing
a debugger for which the user may want to stop anytime an error is generated
even if it will be handled, in order to step through the handling code.

The seAtErrorFunc is passed an informational SEAtErrorInfo object.
Currently, the SEAtErrorInfo has one public method:
public boolean getTrapped();

The getTrapped method returns true if the error will be trapped and false if
the sePrintErrorFunc will be called on it.

The actual value of the error is set up in the SE.RETURN object, described fully
in Chapter V. For an error, the value is an Error object as described by the
ECMAScript specification. Since working with variables and return values is not
described until later chapters, you should revisit this description once you have
read those chapters.

interface: SEContinueFunction
public void seContinueFunc(SEContext se);

Nombas ScriptEase ISDK/Java 5.01 17

The seContinueFunc method is called by the ScriptEase interpreter after every
statement while evaluating scripts. It is useful to perform periodic work, such as
checking Windows messages in a Windows ScriptEase application. It is also
useful in implementing a debugger to regain control after each statement is
executed.

When evaluating scripts using seEval (described in Chapter VI), you can pass
the SE.INFREQUENT_CONT flag to have the continue function called much less
frequently than once per statement. If all you need to do is an occasional
Windows Message processing, calling this function after every statement wastes
a lot of processing, which is when this flag is most useful.

You use the standard ScriptEase wrapper return rules to control execution using
this method. You can return an error in the normal way, which will abort script
execution but can be trapped like any other error. Alternately, you can use set the
object/member pair SE.RETURN,SE.EXIT to true in order to force the program
to abort completely. Returning a non error value does nothing, it is ignored.
Either you generate an error in order to abort script execution, or you return
nothing and the script continues as normal.

interface: SEFileLocation
public String seFileFindFunc(SEContext se,String fileName,
 boolean findLink);

The seFileFindFunc is used used by ScriptEase when looking for source files.
The filenames being looked for are the filenames passed to the #include and
#link directives. The parameter findLink tells you which kind if being
looked for: true for a #link extlib, false for a #include include file. (Note:
the #link directive is not currently implemented for Java, so this parameter
should always be false.)

If you do not implement this interface, then files are looked for directly, meaning
that the filename given must appear exactly as specified in the current directory.
By implementing this function, you can handle looking for these files with
various extensions in various directories. You are passed fileName, the file to
be looked for. This is the text that appears in the directive exactly as the user
entered it. You return a string containing the translated filename if the file was
found. Return null if the file could not be found.

interface: SEGetSourceFunction
public boolean seGetSourceFunc(SEContext se,SESourceInfo
 info,int mode);

The seGetSourceFunc callback is used to read script files. If you do not
provide the callback, files are read using the normal Java File I/O methods. By
defining this interface and the SEFileLocation interface above, you can
completely virtualize your files. Although you can handle the virtualizing of files
in this function alone, error reporting is based on the filename returned from
seFindFileFunc so implementing it is recommended for the user's ease.

Nombas ScriptEase ISDK/Java 5.01 18

The mode parameter tells you what the call is intended to do. It can be one of
these values:
SE.seSourceOpen open a new file
SE.seSourceGetLine get the next line from the file
SE.seSourceClose close the file

In each case, the seGetSourceFunc method is called with seSourceOpen.
Returning false results in an 'unable to open file' error in the script. Next the
method is repeatedly called with seSourceGetLine to get the individual lines
of the source, until you return false to indicate no more lines. Finally, the
method is called with seSourceClose to close down the file. The info
parameter points to an object that you use to accomplish these tasks. Each file
will be given its own SESourceInfo object to work with.

The SESourceInfo class defines the following public methods:
public String getName();
public void setCode(String code);
public int getLineNumber();
public void setLineNumber(int lineNumber);
public void setUserData(Object userData);
public Object getUserData();

The getName method is used to access the name of the file, which is the result of
your seFileFindFunc if you have implemented the SEFileLocation
interface. The setCode method is where to application puts the successive lines
of the file. The setLineNumber and getLineNumber methods are used by the
application to update and retrieve the current line number. Finally, the
setUserData and getUserData methods are used to store and retrieve
whatever information the application needs to process the file. A simple
implementation would use an InputStream for userdata, but a more complex
one might need to point to an object keeping necessary data.

interface: SEGetResourceFunction
public boolean seGetResourceFunc(SEContext se, int id,
 StringBuffer buf);

ScriptEase uses a number of text string resources, which it has internal string
values for. You can implement this interface to override those values. This is
useful for internalization, to translate the text strings into whatever language is
appropriate. The id parameter indicates which resource ScriptEase is trying to
access. You fill in the buf with the text you'd like to give the resource.

The list of identifier numbers and the English strings corresponding to them can
be found in Include\rsrccore.jh and Include\rsrclib.jh.

interface: SEPrepareContext
public void sePrepareContextFunc(SEContext se);

Nombas ScriptEase ISDK/Java 5.01 19

After seCreateContext has finished preparing a new context, it invokes the
sePrepareContextFunc. You can do any final setup on your context here,
such as adding your application specific wrapper tables (see Chapter VII). If you
do the final preparation here instead of in your code after calling
seCreateContext, then all calls to seCreateContext will do that same
preparation. This is useful if you are using utility libraries that create new
contexts with seCreateContext. It ensures those contexts are properly set up
for your application. Nombas has no utility routines that use
seCreateContext. However, some may be created in the future.

Here is an example of using the ScriptEase Context Parameter Interfaces to
create a context:
class MyParams implements SEContextParams, SEErrorHandler
{
 private int myOptions;

 MyParams(int options)
 {
 this.myOptions = options;
 }

 public int seGetOptions()
 {
 return myOptions;
 }

 public void seSetOptions(int newOptions)
 {
 this.myOptions = newOptions;
 }

 public void sePrintErrorFunc(SEContext se, String text)
 {
 System.err.println("Error encountered: " + text);
 }
}

public class MyApplication
{
 public static final void main(String[] argv)
 {
 SEContext se;
 MyParams params;

 SE.seInitialize();

 params = new MyParams(SE.DEFAULT);

 se = SE.seCreateContext(params, "");

 /* your application, including scripting using 'se'
 * as the scripting context.
 */

 se.seDestroyContext();

 SE.seTerminate();
 }
}

Nombas ScriptEase ISDK/Java 5.01 20

Nombas ScriptEase ISDK/Java 5.01 21

Working with Variables
The ScriptEase engine keeps track of all variables used by the scripts you
execute. The ScriptEase API provides functions to examine and modify these
variables. The most common place to use these functions is in the body of
wrapper functions, which are described in the next chapter. However, that is not
the only place you might want to examine variables. For instance, the ScriptEase
debugger executes scripts one statement at a time and lets the user examine the
variables as it is doing so. The debugger uses the ScriptEase API to do this.

The most important concept to remember is that every variable is a member of
some object. There are only a few top-level objects that store all variables and
values used by ScriptEase. For instance, if a script says:
var a = 4;

That global variable a is actually a member of an object, the global object, which
is one of these top-level objects. All global variables are members of this same
object. Similarly, functions can have local variables and parameters, such as in
this function, which are also part of an object:
function foo(b)
{
 var c = 10;
}

This function has two variables, the parameter b and the local variable c. Both
are part of what is called the activation object. Each time a function is called, a
new activation object is created for it. There is one global object, but there can be
many activation objects. Activation objects are created for a function when it
starts executing and destroyed when the function finishes. The ScriptEase API
lets you access all activation objects, so you can examine or modify all local
variables for functions currently being run.

IDENTIFYING A VARIABLE
The majority of ScriptEase API functions work with variables, retrieving or
modifying their values. All the functions share a common way to identify which
variable you want to work with. You specify the object and member that the
variable resides at as parameters to each function. ScriptEase provides a number
of predefined objects that you can use which cover all of the places variables are
stored internally. The most common is SE.GLOBAL, the global object. Each such
object is fully explained below.

Note that SE.GLOBAL, SE.THIS, and so forth are the names of the object. You
pass that exact text to the function to identify that as the object you want to work
with.

Later, when we discuss the API functions for examining variables, we will see it
is possible for a variable itself to be an object. In that case, seGetObject will
return an object handle for the object the variable contains. This handle, since it
is an object, can be used instead of SE.GLOBAL or the other stock objects in

Nombas ScriptEase ISDK/Java 5.01 23

further variable identifications. In this way, starting from the top-level objects,
you can access any variable on the system.

While it is possible to access any variable in this way, it is not always
convenient. For instance, let's say you want to get at the variable foo[5].goo.
You could do this in steps. You would get foo as a member of the global object.
After seeing that it is itself an object, you could get the numeric member 5 from
it. That gives yet another object from which you could extract the final member
goo. Not only is that ugly and difficult to understand, but there could be other
caveats. A script, when it refers to foo, might not be getting a global variable.
foo could be a local variable, or it could be found because the code is inside a
with statement. Trying to program all the possibilities would be tedious,
lengthy, and error prone.

Fortunately, ScriptEase provides an API call to do this for you. seVarParse
will take an arbitrary variable name, such as a or foo[5].goo and tell you what
object and member name it is referring to. Once you have the object and member
name, you are ready to call any of the variable access functions we will describe
below to examine or modify that variable.

LIST OF MEMBER SPECIFIERS
The second half of the variable locator is the object member to access. We will
discuss specifying that first, leaving the objects for below, as it reduces the
number of forward references.

When you want to access a member of some object, you use one of the following
macros to indicate which member you'd like to access.

SE.MEM(String)
SE.UNIMEM(String)
The simplest form, this accesses a named member of the object. In the Java
version of the ScriptEase ISDK, SE.MEM and SE.UNIMEM are identical.

SE.HIDDEN_MEM(String)
SE.HIDDEN_UNIMEM(String)
These are identical to SE.MEM and SE.UNIMEM except that the member
accessed is visible only the thei ScriptEase API, and not to the scripts
themselves. These hidden members are an excellent way to associate data with
an object (such as a Java Object) that you don't want to be seen by the script.

SE.COMPOUND_MEM(String)
SE.COMPOUND_UNIMEM(String)
Similar to SE.MEM and SE.UNIMEM but the member name can represent
complex expressions. See seVarParse for limits on these expressions.

SE.NUM(int)
Allows you to access numerically-named members. This is most useful with
arrays. Because of the way JavaScript works, member names that are number use
the text representation of that number as their name. Thus, SE_MEM("10") and
SE_NUM(10) refer to the same member name. Because of internal optimizations,
not only is this naming method more convenient for numeric members, it is
faster.

Nombas ScriptEase ISDK/Java 5.01 24

SE.STR(int)
Access a member using an internalized string handle that was received from the
ScriptEase API. You can generate such string handles using the
seInternalizeString API call, and member names passed to your callback
functions are in this format.

An internal string handle is faster to use than a string literal member name. When
you pass a member name using SE_MEM, it has to be converted into an internal
string internally before continuing. Therefore, doing it once and referring to
members using the resulting handle is faster. In addition, you can compare
handles for equality using the == operator, which is much faster than the
String.equals needed to compare text strings.

SE.INDEX(num)
Internally, all objects members are stored in slots. They are contiguous starting
from 0. SE_INDEX lets you access a member by its slot.

The usual use for this method of accessing members is to iterate over all
members of an object. The ScriptEase API call seObjectMemberCount will tell
you how many members an object has, and thus how many slots it is using.
Those slots are numbered from 0 to one less than the number of slots.

Note that the slot a particular member uses will changes as members are added to
or removed from an object. Do not try to use SE.INDEX to access regular
members or assume they occupy any particular slot.

SE.STRUCT(SEMemberDesc)
You can use this macro to retrieve the member from an SEMemberDesc object
and pass it to any of the functions. You store a member in the Object using the
seStoreMember function. Here is a short code example:
SEMemberDesc mem = new SEMemberDesc();
se.seStoreMember(mem,SE.NUM(0));
se.sePutNumber(myObj,SE.STRUCT(mem), 10);

Member description structures are useful to pass a member identifier as a
parameter to a function.

SE.VALUE
SE.VALUE means not to work with any member but rather to work with the
object itself. For instance, you can use the object/member pair
SE.GLOBAL,SE.VALUE to examine or change the global object. For most
objects, putting a value to the object itself using SE.VALUE will call the operator
overload function on that object with the operator SE.OP_ASSIGN being
overloaded. If the object has no operator overloading, then the operation does
nothing and is ignored. Several of the special ScriptEase objects have their own
behavior when assigned to the SE.VALUE member. For instance, with
SE.GLOBAL, doing so changes the global object. Read the individual descriptions
below of the ScriptEase objects to determine if that object allows a put to itself
via SE.VALUE, and what that put does.

SE.STOCK(JseStrID)
There are a number of stock member names, which are used via this method. The
JseStrID of such a stock string is put as the argument to the method such as

Nombas ScriptEase ISDK/Java 5.01 25

SE.STOCK(JseStrID.length) or SE.STOCK(JseStrID.this). For a
particular string, such as length, SE.STOCK(JseStrID.length) is
equivalent to SE.MEM(“length”). The advantage to using the SE.STOCK
method it that the method is faster. However, only some of the more commonly
used member names are available with SE.STOCK.

The following variable names have stock IDs and can be used with the
SE.STOCK method:
Array Boolean Buffer Date

Exception Function Number Object

RegEx String __parent__ _argc

_argv _call _class _construct

_prototype _value arguments callee

constuctor global length main

preferredType prototype this toSource

toString valueOf

SE.FUNCTION_TEXT
This is a special member that cannot be created, written to, or deleted. Only
script functions have this member. For all other objects, SE.FUNCTION_TEXT is
undefined. The value associated with the member is a text version of the script
function's body.

SE.OBJECT_DATA
This is a user-defined member associated with all objects. It is internally a
reference to an Object, so you'll want to store your data to this member with
sePutPointer and retrieve it with seGetPointer. It allows you to store
arbitrary user data with ScriptEase objects in your application. This is commonly
used when designing custom object classes specific to your application and is
explored more fully in Chapter IX, Objects. All stock ScriptEase objects,
described below, do not have an SE.OBJECT_DATA member, only user objects
have one.

SE.LIBRARY_DATA
All wrapper functions have a piece of user data associated with them, determined
by the seAddLibTable call that initialized that function. Use seGetPointer to
retrieve that data from a wrapper function. Only wrapper functions have library
data associated with them.

LIST OF STOCK OBJECTS
ScriptEase scripts contain a large amount of data you might want to access. You
access a particular piece of data using one of the following stock object. The
name given is the value you pass as the object parameter to any of the variable
accessing functions described below. After that is a description of the object and
what data you will actually be getting or changing when you access and modify
its members.

SE.GLOBAL

Nombas ScriptEase ISDK/Java 5.01 26

The members of this object are the global variables of the script. For instance, the
global variable zed is the member zed of this object. You can examine and
change global variables by using this stock object. You can also change the
global object itself by using using sePutObject on SE.GLOBAL,SE.VALUE.

Note that all functions remember the global object in effect when they were first
created and swap that in when they are executing. This facilitates scoping where
multiple scripts are executed using seEval, each with a new global object. The
various functions remember their global object, so variables created with the var
keyword in the script the function was evaluated in are accessible whenever the
function is executing. For some programs, this behavior is undesirable. For
instance, a person might want to create utility functions that always act on the
variables in effect and run them with different global objects. There are two ways
to change the behavior.

First, by turning off JSE_MULTIPLE_GLOBAL in your jseopt.jh file, this
behavior is turned off completely. Alternately, you can turn the behavior off for
any wrapper function by including the SE.KEEP_GLOBAL flag in the function
flags used to define that wrapper function (see Chapter VII, wrapper functions
for more details.)

SE.ARGS
The members of this object are the arguments passed to your wrapper function. If
you are outside a wrapper function, this object has no members. You cannot add
or delete members from this object, you can only access and update the actual
parameters passed to your function.

Since ScriptEase supports named arguments, you can specify a normal member
name. However, most wrapper functions have no names for the arguments.
Normally, you just use SE.NUM(x) to access argument number x. For instance,
SE.NUM(0) is the 0th argument (i.e. the first argument passed to your function)
and so forth. For the arguments object, SE.INDEX accesses the members just like
SE.NUM does, they are synonymous.

You cannot use SE.VALUE with SE.ARGS.

SE_ACTIVATION
An activation object is the object used to store local variables and parameters to a
function. Since a wrapper function is written in Java, it has no such variables.
However, the calling script function does, and it is often convenient to be able to
access them. SE.ACTIVATION accesses the calling script function's activation
object. If there is no calling script function, SE.ACTIVATION accesses the global
object, just as SE.GLOBAL does. You can get the activation object by using
SE.ACTIVATION,SE.VALUE but you cannot write to it.

SE.THIS
Whenever a function is called, it has a this variable associated with it. For
instance, when you call a function such as:
foo.func();

foo is the this variable for the function call to func(). When you don't specify
an explicit this variable, such as:
func();

Nombas ScriptEase ISDK/Java 5.01 27

The this variable is implicitly the global object. You can access the this
variable for your wrapper function, which is always an object, and its members
by using the SE.THIS stock object. If you use SE.THIS outside of a wrapper
function, it is always the global object.

You cannot write to SE.THIS,SE.VALUE, it is read-only.

SE.SCOPE
Using SE.SCOPE is a way to locate a variable in the same way that the script
interpreter would, following the _prototype and __parent__ chain of the active
functions. If you know for certain what object a member belongs to (some object
or SE.GLOBAL or SE.THIS for example), then using that object directly is more
efficient, but SE.SCOPE mimics the flexible scoping rules of the ECMAScript
language.

SE.TEMP
Often a ScriptEase API program needs to create variables of its own to store
temporary data. SE.TEMP refers to an object where such data can be stored. This
object lasts for the life of the context, so your data can be long lasting if you
desire. You are free to add and remove members from this object as you need.
Please see the in depth explanation of this object later in this chapter.

You cannot write to SE.TEMP,SE.VALUE.

SE.WRAPPER_TEMP
Like SE.TEMP, but the object and all of its members goes away when the current
wrapper function finishes. If used outside of a wrapper function, it is identical to
SE.TEMP. Like SE.TEMP, you cannot write to the object itself.

SE.NOWHERE
This is a garbage sink object. Any write to any member of this object is ignored,
as are attempts to create new members. Any read of a member returns the
undefined value. It is intended for one particular use, namely as a return from
functions that return an object/member pair when there is an error. If the
programmer doesn't check the error return and just tries to use the returned
object/member in this case, a SE.NOWHERE member is returned so the access
does nothing and doesn't crash.

If you compile the core with the SE.TRAP_NOWHERE option on, accesses to this
object will trigger assert failures. This is intended to facilitate debugging, so you
can find where you have not properly checked your returns from ScriptEase API
calls.

SE.DEFINES
The #define statement defines a macro, an identifier mapped to be a different
value. Note that ScriptEase does not support parameterized macros. This object's
members are the defined macros, the value of the members are strings that are
what the macro is defined to be. In other words, if you have this statement:
#define FOO goo

Then one of the members of the SE.DEFINES object will be FOO and its value
will be the string "goo". You can examine and modify the defines, as well as

Nombas ScriptEase ISDK/Java 5.01 28

adding new ones by creating new members. Note that these defines will only
affect scripts that are executed after you make the change.

You may not write to the SE.DEFINES object itself.

SE.RETURN
This is the place in which the return value from your wrapper function is to be
stored. This discussion will only be minimal for now, a more complete discussion
of this object can be found later in the chapter. SE.RETURN mainly works with
the SE.VALUE member. For the return, the SE.VALUE is the value to be returned.
That is to say, if you want to return the value 10, you would write:
se.sePutNumber(SE.RETURN,SE.VALUE, 10);

The object has four secondary members, all of which are booleans. You set one
(and only one) of them to true to indicate a special return condition. They are:

SE.ERROR
The returned value indicates an error. If this flag is false, the value returned in
SE.VALUE is a normal return like the JavaScript statement return 10;. If this
flag is true, it is the equivelent of throw 10;.

SE.EXIT
Exits out of the script with the returned value being the return of the script. This
is exactly analogous to a Java program calling System.exit(), for instance
System.exit(10); .

SE.YIELD
Causes the script to drop back to the calling seExec API call. This is useful for
fibers, described in Chapter XIII. It will allow the next fiber to take its turn. The
return value is still returned as normal once the fiber gets its next turn to run.

SE.SUSPEND
Similar to SE.YIELD, in that the fiber drops back to the calling ScriptEase ISDK
application. However, the fiber cannot be run until resumed by the application.
Any calls to seExec will return immediately. The application restores the fiber
by putting false to that fiber's SE.RETURN,SE.SUSPEND member. In addition,
the application may also modify the return value after it does so, but before it
seExecs the fiber. This is useful for implementing wrapper functions that delay
the fiber until some needed value is available, then return that value. The
application manager can examine the wrapper function's return value to allow the
wrapper function to communicate with the manager. Chapter XIII has more
details.

In addition to a place to put your return, the SE.RETURN object is also where you
receive the result from seEval API invocations. The reason for the dual use is
simple; in many cases, you want to execute some code using seEval then pass
along the result. By putting it in this place, you can immediately return from your
wrapper function, returning that value.

Note that once SE.ERROR is set to true, the return value is locked into place and
cannot be changed. The reason is again for convenience. Many times you want to
just run your snippet of code and not check for errors. In this way, if an error
occurs, it takes precedence. You don't have to check for the error to avoid

Nombas ScriptEase ISDK/Java 5.01 29

overwriting it. However, you can reset the SE.ERROR boolean back to false if
you want to erase the error and overwrite it.

SE.AT_EXIT
The SE.AT_EXIT object contains a number of members who are themselves
functions, wrapper or script. These functions should take no parameters. All of
the function members are invoked when the current seEval with the flag
SE.EXIT_LEVEL completes. The this object for these functions will be the
SE.AT_EXIT object they are a part of.

Members of the SE.AT_EXIT object that are not functions are ignored. However,
they can be used to store information retrieved by an at-exit function through its
SE.THIS object.

The sePutWrapper API function is useful for creating functions as members of
the SE.AT_EXIT object to then be called.

You should choose member names for your at-exit functions that are unique and
unlikely to be duplicated. Using short, common member names runs the risk of
overwriting another at-exit function or its associated data members.

SE.FILENAMES
This object is an array, so it has members 0, 1, and so forth. Each member’s
value is a string, one of the filenames the script is using. These filenames are the
source files of the script. Because a script can use the #include directive, a
script can be made up of several source files.

SE.STACK_INFO(depth)
These objects contain information about all function calls currently being
executed. SE.STACK_INFO(0) represents info on the wrapper function you are
in, SE.STACK_INFO(1) is the function that called you, and so forth. The
maximum depth you can look back is determined by the compile-time constant
SE.MAX_STACK_INFO_DEPTH which defaults to 64. Thus, by default, you may
use SE.STACK_INFO(0) to SE.STACK_INFO(63).

Here are the members of each stack info object and what that information is.
These members are all read-only:

SE.SI_WRAPPER
A boolean, true if the function is a wrapper function, false if it is a script
function.

SE.SI_FUNCTION
The object for the function.

SE.SI_FUNCNAME
The string name of the function.

SE.SI_TRAPPED
true if an error occuring would be trapped if it occured in this function.

SE.SI_GLOBAL
The global object for this function.

SE.SI_THIS
The this object for this function.

Nombas ScriptEase ISDK/Java 5.01 30

SE.SI_DATA
The user data associated with this function if it is a wrapper function. This is
null for script functions. You retrieve this value using seGetPointer.

SE.SI_FILENAME
The filename the current line of the script function is in. For wrapper functions,
this will be undefined.

SE.SI_LINENUM
The line number of the current line of the script function, or 0 for wrapper
functions.

SE.SI_ACTIVATION
The activation object for the script function. For wrapper functions, it will be the
same as the global object.

SE.SI_SCOPECHAIN
The current scope chain for the script function. See Chapter VI on script
evaluation for more information on scope chains.

SE.SI_DEPTH
The depth of the function. As you go deeper into the stack, the depth gets
smaller. The depth from any particular stack info object is the number of stack
objects in total. For instance, if a script is in a wrapper function called from the
main body of the stack, then the call stack comprises two levels,
SE.STACK_INFO(0) and SE.STACK_INFO(1). The SE.SI_DEPTH is
indication of how many function calls are nested beneath this level, including the
level itself. In this case, the SE.SI_DEPTH of SE.STACK_INFO(0) will be 2,
indicating 2 items nested. The SE.SI_DEPTH of SE.STACK_INFO(1) will be 1,
as this function has only itself and nothing nested beneath it. The depth can be 0
if SE.STACK_INFO(0) is used while no code is executing and thus no function
calls are nested at all.

SE.SERVICES
This is a storage space to associate names with arbitrary data. What data you
associate is reserved for your application. ScriptEase: Desktop, for instance,
stores a number of pointers with names.

You are allowed to retrieve and store values to SE.SERVICES,SE.VALUE. This
is a single slot that is accessed more quickly than the others. However, there is
only one such slot. Therefore, an application writer is given that slot for his
application. Any utility function library that need to associate data with a context
must use a named member of the SE.SERVICES object to store its data.

SE.SELF
A wrapper function can use this object to refer to itself, the wrapper function that
is currently executing. It is used most often to retrieve the library data for the
executing wrapper function using the SE.SELF,SE.LIBRARY_DATA pair.

EXAMINING VARIABLES
Now that you know how to select the variable you are interested in, let's look at
examining its value. JavaScript does not have variables of fixed type. When a

Nombas ScriptEase ISDK/Java 5.01 31

script is run, any variable can be assigned a value of any type. Each can be
assigned a value of differing types as the script continues. For this reason, you
have to look to see what type a variable currently is. You do this using the
seGetType API call. This tells you what type an object member is. You can use
this to execute different code based on the type of a variable.

Fortunately, you can let ScriptEase worry about converting types and just ask to
get a variable's value as a certain type. If the variable is not of the correct type, it
is converted. This is useful because many JavaScript functions are designed to
work this way; when passing parameters to the standard JavaScript functions,
they are converted to the type the function expects automatically. If you allow
ScriptEase to do the same when you are accessing variables, you will
automatically follow the JavaScript standard that variables are converted to the
correct type whenever necessary. The seGetXXX functions, where XXX is based
on the type you'd like to get, convert the ScriptEase variable value to the given
type and return it to you, in Java format. Note that the variable is not permanently
changed. You can use the seConvertXXX API call to do that.

All of the API calls that read a variable's value, either to get its type or get its
value, read the value exactly once per API call. This is important to understand
the behavior of dynamic objects. If you just use seGetXXX, the value is read,
converted to the required type, and returned to you. This is the preferred method.
However, you may want to read the type then get the value of that particular
type, presumably to do different things based on the variable's type. Understand
that this involves two calls to API functions that read the value, one to seGetType
and one to a seGetXXX. This means the value will be read twice. If the object the
member is being retrieved from is dynamic, that dynamic get will be called
twice. It is possible for it to return two different values, defeating the purpose of
your code.

In this situation, because seGetXXX is safe, your code will not crash just operate
unexpectedly. You can ignore such objects and let the object's designer worry
about it. Alternately, you can use seAssign to grab the value and store it in a
temporary location. This will read the value once. Now you can use seGetType
and seGetXXX on that stored value, knowing it will not change.

MODIFYING VARIABLES
The other thing you do with variables is to change their value. You use
sePutXXX to put a particular value into variable. Again, XXX has various options
for the various types of data you can store in a variable. Like a JavaScript
assignment, whatever value the variable held before the call is discarded in favor
of the new value. If the variable is a member of a dynamic object, a dynamic put
will be called to store the value.

In the same way as for reading a variable's value, each API call that modifies a
variable's value does so once, meaning one dynamic put call will be made per
API function call. You can use a similar technique to reading, build up the value
in a temporary location then put the value once to the real location, so any
dynamic put is called only once.

Nombas ScriptEase ISDK/Java 5.01 32

USING SE.TEMP AND
SE.WRAPPER_TEMP
Using these objects is pretty simple. You create a member, store some value it in
it, then delete it when you are done. For SE.WRAPPER_TEMP, you often do not
delete the members explicitly and instead let them go away automatically when
your wrapper function exits. The only problem arises in selecting which member
to use. You need to ensure that you do not conflict with some other part of your
program that may also be using a temporary member of these objects, or to utility
functions potentially written by someone else.

The way to do this is to choose a member name for your temporary variable that
is not a simple name like foo or i. It is suggested that you use a name that
incorporates the filename and wrapper function name, since that should be
unique for your application. For instance, your member name might be
foo.c:my_wrapper.temp1. In this way, you can ensure that your program
does not mysteriously fail due to conflicting SE.TEMP member names.

SE.RETURN EXPLAINED
The SE.RETURN object is potentially the most confusing of the objects.
However, it does not have to be. The main object/member pair is
SE.RETURN,SE.VALUE and is where you put the return value for your wrapper
function. For instance, if you want to return the number 10, you would write:
se.sePutNumber(SE.RETURN,SE.VALUE, 10);

That part is easy. However, the SE.RETURN object has four other boolean
members: SE.ERROR, SE.EXIT, SE_.IELD, and SE.SUSPEND. The last two are
used for fibers and are covered in Chapter XIII on fibers. The first two are
discussed next.

After you return a value (not before), you can mark that as an error result by
setting the SE.RETURN,SE.ERROR member to be true. Consider the JavaScript
statement:

return 10;

versus
throw 10;

In the first case, the result is 10. In the second case it is also 10, but it is an error
result of 10. If you don't understand the throw statement, you should consult a
JavaScript reference. The return statement is identical to the example we gave
above. The throw statement is done from the ScriptEase API as follows:
se.sePutNumber(SE.RETURN,SE.VALUE, 10);
se.sePutBoolean(SE.RETURN,SE.ERROR, true);

Throwing arbitrary values in this way is not common and is usually reserved for
complex scripts. Most often, you want to throw an exception. Some error
happens, such as illegal parameters to your wrapper function, and you want to
generate an error. That is a common occurance, and ScriptEase provides the

Nombas ScriptEase ISDK/Java 5.01 33

seThrow API call to do so. Explicitly setting SE.RETURN,SE.ERROR to true is
very uncommon, and you probably won't ever need to do it.

Similarly, the SE.EXIT flag indicates that the script should exit with the given
value. Consider the Java statement:
System.exit(10);

SE.EXIT is usually used to abort a script when an error occurs. Most of the time,
you will use seThrow to generate an error. seThrow errors can be trapped using
the try/catch statement allowing the script to recover from errors. However, if
something so drastic has happened that the wrapper function decides the script
must abort immediately and should not be trapped, you can duplicate the Java
System.exit() call using the SE.EXIT flag. This code does exactly that:
se.sePutNumber(SE.RETURN,SE.VALUE, 10);
se.sePutBoolean(SE.RETURN,SE.EXIT, true);

There is one final thing you should know. Normally, you can keep overwriting
SE.RETURN,SE.VALUE, and the last value returned is the result of the function.
However, once any of the four boolean members is turned to true,
SE.RETURN,SE.VALUE becomes read-only. Any error is locked in this way.
This means that if you call functions inside your wrapper function that generate
an error, that error will also be the result of your own function, and propagated
back to the user. This is usual desired behavior. In this way, you often do not
need to check the error results of the ScriptEase functions you call, as those
errors take precedence over whatever you try to return. This leads to small, easy-
to-understand wrapper functions in most cases. If you have a more complex
wrapper function that can recover from errors, you can unlock the error result by
setting whichever of the four members that is true back to false.

Nombas ScriptEase ISDK/Java 5.01 34

Script Execution Topics
Before we delve into customizing your scripting environment for your
application, it's time to talk about the most common scripting operation:
executing a script.

Using seEval
Having created an SEContext, you use this context to invoke scripts via the
ScriptEase API. The ScriptEase ISDK function to execute script code is seEval.
This function has a large number of parameters to control its behavior and the
behavior of executed code. This chapter is devoted to explaining seEval. Let's
start with a simple example that uses default values for most of the parameters:

se.seEval("var a = 10;",SE.TEXT,
 null,null,SE.DEFAULT,null);

All of the null values indicate a parameter that we are not interested in
providing, using the default value instead. This call as it is written will evaluate
the simple script var a = 10;. The full prototype of seEval is as follows:

 boolean
seEval(Object to_interpret,int interp_type,
 String text_args,SEObject stack_args,
 int flags,
 SEEvalParams params);

The function returns a boolean indicating whether or not the evaluation
succeeded. It would not if the script to evaluate contains an error. In addition to
indicating success or failure, the script returns a value using the return
statement. This value returned from the script or function is stored in the
SE.RETURN object. This means that if you invoke seEval in a wrapper function
then immediately return from the wrapper function, the result of the evaluation is
passed along as the result of your wrapper function. This is a useful technique
which is used, for instance, to implement the ECMAScript eval function.

An important concept of an evaluation is that of the global object. All global
variables in the script, as well as functions, are put into the global object. When
the script completes, all variables and functions are still part of the global object.
This means that additional calls to seEval will find the variables and functions
from past calls. You can specify a particular global object in the params
parameter to put these variables and functions in that object as is described
below.

As was mentioned when describing error returns, once a context has an error as
its return, any attempts to change the return value are ignored. Likewise, any
calls to seEval are ignored for the same reason. It is the most reasonable course
of action when some previous API call generated an error. You must first erase
the error as was described if you want to use seEval.

Let's look at the parameters and explain their use.

TO_INTERPRET, INTERP_TYPE

Nombas ScriptEase ISDK/Java 5.01 35

The first and second parameters are linked together. The second parameter,
interp_type, indicates what type of object the first
parameter,to_interpret,is. Here are the possibilities:
INTERP_TYPE TO_INTERPRET

SE.FILE String
SE.TEXT String
SE.PRECOMP byte[]
SE.FUNC SEObject

SE.FILE indicates a filename, which is read, parsed, and interpreted.

SE.TEXT, which we've already seen above, indicates the source code as a text
string.

SE.PRECOMP allows you to execute a precompiled script. You pass as the
parameter the script buffer that was given to you by the sePrecompile
ScriptEase API call.

SE.FUNC allows you to execute a function. You pass the function you wish to
execute. Remember, in JavaScript, a function is just an object. You can retrieve
the function you wish to call via the seGetObjectEx API call.

TEXT_ARGS, STACK_ARGS
The next two parameters are likewise related. You can pass arguments to your
script or function via one of them. stack_args takes precedence so if you use
them both the text_args are ignored. In either case, the arguments are
extracted and passed to the called script or function. For a function, these are just
standard arguments. Script arguments are treated like argc and argv for the
main function in a C program. They are stored for the script in the global
variables _argc and _argv.

For text arguments, specify the arguments in a text string, i.e. "-v foo". This is
parsed in exactly the same way as a command line; white space is used to
separate the arguments, and each is turned into a string in the _argv array. For
stack_args, you pass in a ScriptEase stack object created via the
seMakeStack ScriptEase API call. The arguments are defined by setting
members of this object numerically using the SE.INDEX() member format. In
other words SE.INDEX(0) is the first argument, SE.INDEX(1) is the second,
and so forth. This form of parameter passing is more commonly used for
functions. Most scripts that handle arguments expect all of their arguments to be
text strings. If you pass a script arguments that are not text strings, such as
numbers or objects, you will probably confuse it.

When you call a function that passes any parameters by reference, the arguments
in the stack object will be updated appropriately, so you can check their final
value before destroying the stack object after the function returns.

FLAGS
The flags parameter is any of the following values, |'ed together:

SE.NO_INHERIT

Nombas ScriptEase ISDK/Java 5.01 36

An eval is normally treated like the script text appeared in the containing script at
the point it is executed. The script can see the same variables of its parent,
change them, and so forth. If you user this flag, the eval is completely separate. It
has no effect on its parent except to return a value.

If you use this flag, the stock libraries previously added to the parent will have
new copies initialized for the child. See SE.NO_LIBRARIES below.

SE.NO_LIBRARIES
Only used with SE.NO_INHERIT, the stock libraries are not made available. This
flag is usually not useful, as the script will not be able to call any of your wrapper
functions. Still, you may want to just perform a computation that doesn't need to
spend the time to reinitialize standard libraries that won't ever be called.

SE.NEW_GLOBALS
If SE.NO_INHERIT flag is used, this flag is also automatically used. When the
flag is not used, any new variable created is stored in the global object of the
parent and is still around after this script finishes executing. If this flag is
included, a new global object is created for variables the script uses, and those
variables go away when the script completes. Specifying your own global
variable in the params parameter overrides this flag.

SE.CALL_MAIN
The ScriptEase extension of calling a function main after the evaluating the code
outside any function will be used. If the flag is not included, a function main is
not treated as special. This does not apply to calling a function.

SE.FUNCS_ONLY
A script is executed in two parts. First, any function defined in it are extracted
and created. Likewise, any variables defined using the var keyword are
initialized as undefined. This happens at the very start of the script. The second
part executes any code in the script. For instance, consider this script:
function foo()
{
 return 10;
}

var a = 10;

A normal evaluation creates a function foo in the global object as well as a
variable a as the undefined value. Then the code in the script is run, assigning a
to be 10. If you specify the SE.FUNCS_ONLY flag, only the first part is executed.
In this case, the function foo and the variable a are created, but the the script
body is not run, so the assignment to a is not executed.

Understanding this behavior also is helpful in understanding a subtle
ECMAScript rule, that all variables defined with the var keyword are extracted
and initialized before any code is run to be the undefined value. In this script
example, ECMAScript treats the script as if you wrote instead:
var a;

function foo()
{
 return 10;

Nombas ScriptEase ISDK/Java 5.01 37

}

a = 10;

SE.EXIT_LEVEL
Normally, any new at-exit functions are added to the parent. This means they are
not called when the seEval is done, but rather when the whole context is
cleaned up. If you turn on this flag, at-exit functions created inside the eval are
called when the eval is finished.

This may seem like a good idea, but there is an important caveat. At-exit
functions normally clean up resources. Since an evaled script can return a value
to you, that value may be dependent on those resources. If the at-exit functions
have been called, the value is using resources that have been cleaned up. This is
why you usually want all at-exit functions held until the context is being
destroyed, so you know all such values are no longer used.

SE.NEW_DEFINES
Normally any new defines (i.e. MACROS) are added to a global list, and will
remain for any new seEval calls. This flag makes a new list only accessible to
this evaluation for any new #defines defined in the script.

SE.NO_OLD_DEFINES
This flag will automatically turn on SE_NEW_DEFINES as well. Defines already
created, such as by previous seEval calls, will not be applied to this evaluation.

SE.REPORT_ERRORS
In many cases, you just want to interpret a script and continue. The script should
print any errors and then you are ready to do something else. That's what this flag
means. In other cases, you want whatever the call returns returned to you, even if
it was an error. For instance, you may want to pass the result along, error or
otherwise. In this case, don't include this flag and the return value of the called
function will also be copied to your own return value.

SE.INFREQUENT_CONT
Normally, the seContinueFunc function is called after each statement so
debuggers can function properly. With this flag, it is called much less frequently.
This is useful in Windows in which the continue function must check Window
messages so the task doesn't get the 'not responding' problem. However, calling it
after each statement wastes a lot of time. This flag causes the continue function
to be called far less frequently.

SE.START
The script is initialized but not actually run. You use the seExec API call to
execute one block of the script. seExec executes the script until the next time a
seContinueFunc would be needed, so refer to SE.INFREQUENT_CONT above.
The use of this flag is intented to allow easy cooperative multitasking within your
application. You can call seExec to execute one small script piece at a time,
with whatever other code you desire between calls. You can run several scripts
simultaneously, each in their own SEContext, by calling seEval on each with
this flag set, then calling seExec on each in turn.

SE.CONSTRUCTOR

Nombas ScriptEase ISDK/Java 5.01 38

This flag is only applicable if calling a function. seEval will then call the
function as a constructor, i.e. as new Func() rather than Func(). The this you
pass is usually null, in which case a blank version of the object type is created
for the constructor, the default behavior when you do a new Func(). You can
make the this something else in which case the constructor will get it. Watch
out, this may confuse constructors. Also, some constructors ignore the provided
object and create their own.

SE.NAMED_PARAMS
Passes parameters by name. This can only be used if passing parameters in
stack_args, and all the object members must have a name. You may use this
flag only when calling a function.

SE.INIT_IMPLICIT_THIS
When this flag is specified, initialization code (i.e., global code that is outside of
any function) will execute as if it is in a function with the SE.IMPLICIT_THIS
flag set. This flag is useful when executing small pieces of code that need
function-like scoping behavior, such as events.

SE.INIT_IMPLICIT_PARENTS
When this flag is specified, initialization code (i.e., global code that is outside of
any function) will execute as if it is in a function with the
SE.IMPLICIT_PARENTS flag set. This flag is useful when executing small
pieces of code that need function-like scoping behavior, such as events.

SE.DEFAULT
No special options.

PARAMS
This parameter is a object that contains several access methods. You use the
access methods to set the various option variables in the object. You can pass
null if you do not want to specify any of them. Here are the access methods of
the SEEvalParams class:

public SEObject getScopeStart();
public void setScopeStart(SEObject scopestart);
public SEObject getScopeEnd();
public void setScopeEnd(SEObject scopeend);

The scope chain is how ScriptEase determines what a variable name is referring
to. The scope chain is a list of objects. For a typical function, the list contains the
activation object in which local variables are stored and the global object in
which global variables are stored. The variables themselves are members of the
object they are a part of. As a result, for a typical function, the local variables are
first search for a variable name followed by the global variables. You can specify
your own objects to be added to the list.

The scopestart and scopeend members of the params object are SEObjects
created using the seMakeStack API call. The members of these objects should
be objects to be added to the scope chain. These objects are added at the start or
end of the scope chain respectively. Those added at the start are searched first.

Adding objects to the start of the scope chain is analogous to a script execution
inside a with statement. A with statement adds a single object to the start of the

Nombas ScriptEase ISDK/Java 5.01 39

scope chain. setScopeStart allows you to add a list of objects, but the same
principle applies. setScopeEnd works similarly but adds objects to be searched
after all other places to search for a variable name.

public SEObject getGlobal();
public void setGlobal(SEObject global);

Indicates a new global variable to evaluate the script using.

public SEObject getDefaultThis();
public void setDefaultThis(SEObject default_this);

The default_this parameter allows you to determine which object will be the
this variable for the executed script or function. For a script, the null value is
traditionally used which makes the global variable the default this for the
evaluated script as well. For a function, if the function is being invoked as a
member of some object, that object should be passed as the default_this
variable instead.

public SEObject getSecurityInit();
public void setSecurityInit(SEObject security_init);
public SEObject getSecurityTerm();
public void setSecurityInit(SEObject security_term);
public SEObject getSecurityGuard();
public void setSecurityGuard(SEObject security_guard);
public SEObject getSecurityObject();
public void setSecurityObject(SEObject security_object);

These are the standard security functions as described in the ScriptEase language
manual chapter on security. These objects work exactly the same in the
ScriptEase ISDK as they do for any other ScriptEase security application.

public String getFileName();
public void setFileName(String filename);
public int getLineNum();
public void setLineNum(int linenum);

These parameters are used when the SE.TEXT form of script is executed. They
specify the virtual filename and starting line number for the script text. This is
helpful in reporting errors that might occur in the script text.

FUNCTION GLOBALS
One ScriptEase feature that you should keep in mind is that all functions
remember the global object in effect when they are created and use that as their
own global object when called. A script file, especially header files, may be self-
contained packages that add functions and variables to the global object in
initialization. Those functions cannot work if they are run under a different
global object, they need their global object in which their definitions are stored.
Therefore, specifying a different global object for a function to run under has no
effect, because it is changed back when the function is actually run.
If you'd like to turn off this behavior, you can use define:

#define JSE_MULTIPLE_GLOBAL 0

Nombas ScriptEase ISDK/Java 5.01 40

in your jseopt.jh file. Be warned, doing so may make script function libraries
written by other people incompatible with your application.

SCOPING
A topic that leads to much confusion is that of scoping, and how to control it.
Scoping is the process of resolving a variable name when it is encountered in a
script. Normally, local variables are searched for the given variable name, if any,
followed by global variables. The JavaScript with statement is the most
common way to alter scoping. The various scoping rules and issues will now be
examined.

SCOPING - GLOBAL CODE
Global code is code outside of any function. Scoping for global code is simple,
the global object is searched for variables only. Modifying the scoping of global
code is done in the seEval call used to invoke that code using the
ssetScopeStart and setScopeEnd methods of the SEEvalParams class as
described above. The script user can then modify the scoping by using the with
statement.

SCOPING - FUNCTIONS
Functions are more complex. The normal behavior for a function is to search its
local variables and parameters first. Next, the local variables and parameters of
its parent function are searched. This only applies if the function is nested inside
a parent function, and it includes all parents if it is nested several levels deep.
Finally, the global variables are searched. Again, the user can modify this
behavior using the with statement.

There are several methods for controlling the scope of functions. If you call the
function directly using seEval, you can specify additions to the scope chain
using the ssetScopeStart and setScopeEnd methods of the SEEvalParams
class as described above. This method is rarely used because functions are
usually called from within a script.

The second method is to use the SE.IMPLICIT_THIS and
SE.IMPLICIT_PARENTS attributes. A script function can be given these
attributes using the seSetAttribs API call. Both of these attributes modify the
function's scope chain by adding elements to the scope chain after the local
variables, but before the global variables. The SE.IMPLICIT_THIS flag makes
the function add its this object to the scope chain. This makes the function
behave much like a Java method in that members of the this object can be
referred to directly without having to qualify them with this. as is normal for
JavaScript. SE.IMPLICIT_PARENTS is similar, except the parents of the this
variable are added to the scope chain. Parents are linked through the
__parent__ (two underscores on each side) member. this.__parent__ is the
parent of the this variable and is added to the scope chain if
SE.IMPLICIT_PARENTS attribute is set in the called function. Next, the parent
of that object is added and so forth for all parents in the chain. This is most useful
for implementing browser behavior, notably event handlers. The parents of an

Nombas ScriptEase ISDK/Java 5.01 41

event handler, the element it belongs to, the document it is in, and the window it
is part of, are all implicitly added in this fashion.

CONTINUE FUNCTION
The continue function is provided to allow an API application to process code
while a script is being executed. One use of it is to implement a debugger. A
second use is to process Windows messages. This section pulls all the
information about the continue function into one place.

The function is provided by the object provided to the seCreateContext API
call that implements the SEContinueFunction interface. During seEval script
evaluation, the function is called after each statement in the script is processed.
However, the seEval call can be provided with the SE.INFREQUENT_CONT flag
to call the function far less often. This flag is useful when code must be
processed occassionally, but not nearly as frequently as after each statement.
Because debuggers must regain control after each statement, the
SEContextParams has a flag SE.OPT_DEBUGGER. This flag overrides the
SE.INFREQUENT_CONT flag. This allows the API user to use the
SE.INFREQUENT_CONT flag whenever it makes sense. A debugger can then
optionally be used on the same code correctly, without changing that code.

Finally, when using the SE.START flag with seEval to execute code one piece
at a time, control is automatically returned from the seExec API call after each
script chunk. The amount of code executed in each call to seExec is determined
by the presence or absence of the SE.INFREQUENT_CONT flag and the
SE.OPT_DEBUGGER flag. Since control is returned to the caller after each seExec
call, the continue function is not called in this case. However, you may wish to
call it yourself, depending on your application.

Nombas ScriptEase ISDK/Java 5.01 42

Wrapper functions
Wrapper functions are functions that are written in Java using the ScriptEase API
instead of being written in JavaScript. From the script's point of view, they
appear just like any other function and can be called identically. Most wrapper
functions are initialized by the application before running scripts so as to be
available to the script user right from the start. This is done by writing a wrapper
function table and adding it to an SEContext using the seAddLibTable
ScriptEase API call. The table is added before the application makes any calls to
the seEval ScriptEase API call. All of the standard ECMAScript objects, such
as String, Math, or Number, are written using wrapper functions and wrapper
function tables, so you have a large body of example wrapper functions included
with ScriptEase to look at.

Here is a sample wrapper function, to get an idea of how one looks. The rest of
this chapter is devoted to demystifying it:
public void print()
{
 return new SEWrapper()
 {
 public void wrapperFunction(SEContext se, int argc)
 {
 switch(se.seGetType(SE.ARGS,SE_.NDEX(0)))
 {
 case SE_TYPE_NUMBER:
 /* for whatever reason, need a specific number
 * format
 */
 System.out.printlm(se.seGetNumber(SE.ARGS,
 SE.INDEX(0)));
 break;

 default:
 /* Oh what the heck, just let ScriptEase convert
 * whatever it is to a String.
 */
 System.out.println(se.seGetString(SE.ARGS,
 SE.INDEX(0)));
 break;
 }
 /* let's return something because we can */
 se.sePutString(SE.RETURN,SE.VALUE,
 "Go away, you bother me kid.");
 }
 };
}

Before looking into the wrapper function tables, a basic overview of a wrapper
function is necessary. The example above is simple but it demonstrates all that a
wrapper function does. It gets its arguments, uses them to perform the body of
the wrapper function, and returns a result.

THE FUNCTION HEADER

Nombas ScriptEase ISDK/Java 5.01 43

There are two methods used to define wrapper functions in Java, the inner class
method and the reflection method. The above example uses the inner class
method. The print method in the example creates a new inner class that
implements the SEWrapper interface. The SEWrapper interface defines a single
public method called wrapperFunction, which is where the code for your
wrapper function is placed. The wrapperFunction method takes two
parameters, the scripting context and the number of arguments passed to the
wrapper function.

The reflection method is a little more straight-forward. You simply define a
public method which has the same signature as the wraperFunction method of
the SEWrapper interface. For example, we could have defined the above print
wrapper function like so:
public void print(SEContext se, int argc)
{
 …
}

Wrapper functions defined using the inner class method as typically faster than
those defined using the reflection method, but they also tend to take up more
memory. Regardless of how it is defined, a wrapper function returns a void
result because it uses the ScriptEase API functions to indicate its return value,
which will of course be some ScriptEase value. Therefore, the Java return value
is not used for a wrapper function.

Wrapper functions are usually called during an seEval ScriptEase API function
call. seEval evaluates a script, and if that script invokes any of your functions
that are implemented via a wrapper function, that wrapper function will be called
back by ScriptEase. Wrapper functions receives two parameters. The first is the
SEContext that is doing the callback. A wrapper function can be added to
several contexts and it needs to know which one is doing the callback. You
should use this provided context in any calls to ScriptEase API functions inside
your wrapper function. You can compare the returned reference against any you
might have to determine which context is being called back, but it is frowned
upon. It is better to store any needed data along with each context using the
SE.SERVICES object and retrieve it in your wrapper function. The second
argument is simply a numeric count of the number of ScriptEase parameters
passed to your function. ScriptEase wrapper functions can take varying number
of arguments depending on how you define them as we will see later. If your
wrapper function takes a fixed number of arguments, you can ignore this
parameter.

THE ARGUMENTS
Now that you know how many arguments you have, how do you retrieve them?
You use any of the ScriptEase API's retrieval functions such as seGetNumber,
seGetString, and so forth. These functions will automatically convert the
value to the correct type if it is not already. You can use seGetType to check the
type first if you wish to be more stringent. The object/member pair to use for
your arguments is SE.ARGS, SE.NUM(x) where x is the argument number. You
can also use SE.INDEX(x), as for arguments it is synonymous. Arguments range

Nombas ScriptEase ISDK/Java 5.01 44

from 0 to one less than the number of arguments. SE.ARGS,SE.NUM(0) is the
first argument.

THE RETURN
You return a value by using the standard ScriptEase API calls sePutNumber,
sePutString, and so forth. The object/member pair to put to is
SE.RETURN,SE.VALUE. See Chapter V for a thorough discussion of using
SE.RETURN. For the simple case, you just put a value to
SE.RETURN,SE.VALUE. For instance, your wrapper function could return the
number 10 via:
se.sePutNumber(SE.RETURN,SE.VALUE, 10);

If you return nothing, by default the undefined value is returned. For constructor
functions, the pre-constructed object is returned in this case.

WRAPPER TABLES
The basic idea behind a wrapper table is that it is a list of wrapper functions to be
made available to your scripts. However, it has additional capabilities as well.
You can define entire object classes using the table.

Here is a sample wrapper table that includes many of the options that can be
used.
SELibraryTable[] my_lib =
{
 SE.NUMLITERAL("Identification", “1.03”,
 SE.DONTENUM),
 SE.STRING("IdentString", "Version 1.03b",
 SE.DONTENUM),

 /* Move into "Clib" */
 SE.INOBJECT("Clib",SE.DONTENUM),

 /* SE.METHOD is a synonym for SE.FUNCTION */
 SE.FUNCTION("MyFuncCall", MyFuncCallWrapper(),
 0, 10, SE.SECURE|SE.BYREF, SE.READONLY),

 SE.CLASS("MyDate", MyDateWrapper(), 0,1,
 SE.INSECURE, SE.STOCK_ATTRIBS),
 /* Stock attributes are DontDelete, ReadOnly,
 * and DontEnum
 */
 SE.PROTO,
 SE.FUNCTION("valueOf", MyDateValueOfWrapper(),
 0, 0, SE.SECURE, SE.STOCK_ATTRIBS),
 SE.END_PROTO,
 SE.END_CLASS,

 SE.END_OBJECT,

 /* And why not some stuff in "SElib", note that 'INOBJECT'
 * is always relative to the global object
 */
 SE.INOBJECT("SElib", SE.STOCK_ATTRIBS),
 SE.FUNCTION("Version", MyVersionWrapper(),
 0,0, SE.SECURE, SE.STOCK_ATTRIBS),

Nombas ScriptEase ISDK/Java 5.01 45

 SE.END_OBJECT,

 /* And demonstrate the last two functions. First we make
 * 'MyLib' a copy of 'Clib'. Then we change the attributes
 * on an existing variable.
 */
 SE.COPY("MyLib", "Clib", SE.READONLY),
 SE.ATTRIB("varname", SE.READONLY | SE.DONTDELETE)
}

As you can see, the table is a list of elements where each element is one of a
number of library table methods or objects such as SE.FUNCTION or SE.CLASS.
We will list each individual method or object and what it does below.

First, some overview. Most methods define something and use a name as the first
parameter. For instance, the first element defines a number:
SE.NUMLITERAL("Identification", “1.03”,
 SE.DONTENUM),

When the table is added, these definitions in the table are created in the global
object. Recall, members of the global object are the global variables of the script.
This line therefore declares a new global variable named Identification. As
the table is parsed, however, certain entries will cause this base object to change
from the global object to some other object. This line is such an entry.
SE.INOBJECT("Clib", SE.DONTENUM),

First, it too has a name Clib. It refers to the Clib member of the global object.
However, the purpose of the line is to make that the new base. Therefore, new
names declared after this line are no longer relative to the global object, but
rather to the Clib member of the global object. A few lines later, the
SE.END_OBJECT method undoes this, reverting back. This scheme allows a
more readable table. It is a simple hierarchical scheme that matches well with the
way objects and classes are defined.

There are two conveniences implemented. First, if you specify a name preceeded
by global., for instance global.foo, the global. means that foo is relative
to the global variable and the base is ignored for this entry only. Second, you can
use object notation such as foo.goo. For instance, instead of writing:
SE.INOBJECT("Clib", SE.DONTENUM),
SE.INTEGER("foo", 10, SE.DONTENUM),

You could instead write:
SE.INTEGER("Clib.foo", 10, SE.DONTENUM),

When using this notation, the base for further statements is not changed. The
Clib. part of it applies only to this particular definition. Also, if the object
referred to, in this case Clib, does not already exist or is not an object, it is
converted to an object.

Choose the notation in a particular instance that is clearer. If you are going to
define more than one item in an object, it is clearer to move into that object using
SE.INOBJECT while a single item can be clearer to write out a dot-separated
name.

Nombas ScriptEase ISDK/Java 5.01 46

WRAPPER TABLE METHODS AND
OBJECT
What follows is a description of each of the methods and objects you can use in a
wrapper table and what each does.

SYNTAX: SE.NUMLITERAL(name,string,vflags)
DESCRIPTION: Create a variable in the current base object with the given name

and the given value. The string passed must be parsable as a
floating point number. The flags of the variable are set to the
vflags value. The allowable flags are:

SE.DEFAULT No special attributes

SE.READONLY The member is read-only and cannot be
modified.

SE.DONTENUM The member should not be enumerated when a
script uses for..in.

SE.DONTDELETE The member cannot be deleted using the
JavaScript delete operator.

SYNTAX: SE.INTEGER(name,number,vflags)
DESCRIPTION: Create a variable in the current base object with the given name

and the given value. Identical to SE.NUMLITERAL, except an
integer value is given.

SYNTAX: SE.STRING(name,string,vflags)
DESCRIPTION: Very similar to SE.NUMLITERAL, except the variable is set to a

string value.

SYNTAX: SE.INOBJECT(name,vflags)
DESCRIPTION: The given name is treated as an object, and if the name is not

currently an object, it is turned into one. The object has its flags
set to the vflags value. Finally, that object is the new base for
all names until an SE.END_OBJECT is found.

SYNTAX: SE.END_OBJECT
DESCRIPTION: Undoes the SE.INOBJECT above so all names are derived from

the base before the SE.INOBJECT took effect.

SYNTAX: SE.FUNCTION(name,func,min_args,max_args,

 func_flags,var_flags)
DESCRIPTION: Declares a wrapper function. The parameters are the function's

name, the function itself (a wrapper function), the minimum and
maximum number of arguments, the function flags, and the
variable flags.

Nombas ScriptEase ISDK/Java 5.01 47

The overloaded second parameter (the wrapper function) differs
depending on how the wrapper function is actually defined. If
the wrapper function was defined using the inner class method,
then the second parameter will be the class that implements the
SEWrapper interface. If the wrapper function was defined using
the reflection method, the second parameter is a String
representing the name of the method.

Using the example print wrapper function from above, this is
how we would add the function to the library table:
/* Inner class method */
SE.FUNCTION(“myPrint”, print(), 1, 1, SE.DEFAULT),

/* Reflection method */
SE.FUNCTION(“myPrint”, “print”,1,1,SE.DEFAULT),

The maximum number of arguments can be -1 to specify no
limit.

The function flags are one or more from the following:

SE.DEFAULT No special flags.

SE.DYNAUNDEF The object's dynamic callbacks are only called
if the object does not already have the member in its internal
storage. See Chapter VIII for a complete description of callbacks
and this flag.

SE.BYREF Parameters passed to this function are passed by
reference, so that any changes to them are reflected in the
variables passed as the parameters.

SE.SECURE The function is secure. Only mark a wrapper
function as secure if it can not perform any dangerous task.
When in doubt, do not make it secure. The general rule is that
any access to the system, such as reading a file or calling a
system function, makes a function insecure.

SE.KEEP_GLOBAL Normally when a function is executed, the
global object in effect when the function was created is used as
the global object when the function is executed. With this flag,
the current global object is retained whenever the function is
executed.

SYNTAX: SE.METHOD(name,func,min_args,max_args,

 func_flags,var_flags)
DESCRIPTION: This is a synonym for SE.FUNCTION.

SYNTAX: SE.CLASS(name,func,min_args,max_args,

 func_flags,var_flags)
DESCRIPTION: This works similarly to SE.FUNCTION in that it adds the given

entry as a function. However, as a class, such a function is
expected to be used as a constructor. Several additional items are

Nombas ScriptEase ISDK/Java 5.01 48

therefore created to facilitate this. First, the function is given a
prototype which has the attributes SE.STOCK_ATTRIBS.
Second, the prototype is given an _class member with a name
equal to the name of the class. Finally, the prototype also gets a
constructor member which points back to the class. All of
these items are standard for ECMA classes.

After this table entry is finished, the base is moved to the class
object so you can add members or use SE.PROTO to add
prototype members. This works in the same way SE.INOBJECT
works. Use SE.END_CLASS to move back out of the object.

SYNTAX: SE_END_CLASS
DESCRIPTION: Changes the base to its value before the SE.CLASS entry.

SYNTAX: SE.PROTO
DESCRIPTION: Changes the base to the prototype of the current object. This is

used to define the methods available to members of the current
class. It is identical to:
 SE.INOBJECT(“prototype”)

SYNTAX: SE.END_PROTO
DESCRIPTION: Changes the base to its value before the SE.PROTO entry.

SYNTAX: SE.COPY(name,source(String),var_flags)
DESCRIPTION: Acts as an assignment, copying the source value to the given

name. It sets the destination flags as well.

SYNTAX: SE.ATTRIB(name,var_flags)
DESCRIPTION: Sets the variable flags on a given name, changing nothing else

about it.

SELIBRARY INTERFACE
A class needs to implement the SELibrary interface if any of its methods are to
be used as wrapper functions. The object that implements this interface (and thus
implements the actual wrapper functions) is passed to the seAddLibTable API
call along with the corresponding library table. In addition to implementing the
wrapper functions, this object could also be used to store any library specific
data.

The SELibrary interface declares the following two methods:
public SELibrary seLibraryInitFunc(SEContext se);
public void seLibraryTermFunc(SEContext se);

The seLibraryInitFunc method is called whenever the corresponding library
table is initialized. This method returns an object which contains any library

Nombas ScriptEase ISDK/Java 5.01 49

specific data structure that the library may need access to. For example, the
library may need to keep track of files opened. This method may create and
return a new object, but you will most likely want to simply return this.

Note that the library can be initialized more than once, and you must be prepared
to handle that case. The first time the library is initialized is when you call
seAddLibTable, but the library will be reinitialized in certain circumstances.

The seLibraryTermFunc is used is called when the library is terminated. This
function should be used to clean up any library specific resources. For each call
to the initialization function, there will be one call to the termination function.

THE SELIBRARYMANAGER CLASS
The SELibraryManager class (located in the COM.Nombas.jse.libraries package)
is used to make the ScriptEase standard library functions available to your
scripts. The SELibraryManager class has one static method,
addStandardLibraries, which has the following signature:

public static final void addStandardLibraries(SEContext se, int libs);

The first parameter is the context you want to add the library functions to. The
second parameter specifies which libraries to add to the context. This parameter
can be any of the following values |’d together:
SELibraryManager.ECMA_OBJECTS

Makes the following ECMA objects available to your scripts: Object, Function,
Array, String, Boolean, Number, Exception.
SELibraryManager.ECMA_MISC

Some miscellaneous ECMA functions: eval, parseInt, parseFloat, escape,
unescape, isNaN, isFinite.
SELibraryManager.ECMA_DATE

The ECMA Date object.
SELibraryManager.ECMA_MATH

The ECMA Math object.
SELibraryManager.ECMA_REGEXP

The ECMA RegExp object.
SELibraryManager.ECMA_ALL

Makes all of the ECMA objects and functions available to your scripts.
SELibraryManager.SE_TEST

The Nombas Test object, used to test and debug scripts.
SELibraryManager.LANG_MISC

Miscellaneous language extension functions: defined, undefined,
getArrayLength, setArrayLength
SELibraryManager.LANG_CONVERT

Nombas ScriptEase ISDK/Java 5.01 50

ECMA conversion functions: ToPrimitive, ToBoolean, ToNumber, ToInteger,
ToInt32, ToUint32, ToInt16, ToObject, ToString

For example, if you wanted to make the ECMA Date and Math objects available
to your scripts, you would invoke the library manager like this:
SELibraryManager.addStandardLibraries(se,
SELibraryManager.ECMA_DATE |
SELibraryManager.ECMA_MATH);

The SEToLocaleHandler interface
When using the SELibraryManager to add the ECMA_DATE library to your
context, you can specify a SEToLocaleHandler object for that library. When
the toLocaleString method of the Date object is invoked from your script, the
library will check for the presence of a SEToLocaleHandler object. If you
have specified one, that object’s toLocale method will be used to determine the
locale string.

The SEToLocaleHandler interface defines a single method:
public boolean toLocale(SEContext se,
 StringBuffer buffer,
 char type,
 double milli_since_1970);

This method is expected to be able to take the milliseconds since Jan 1, 1970 and
convert it to locale time. The type parameter determines whether the locale time
should be determined for just the date (‘d’), just the time (‘t’), or both (‘b’). The
converted locale time should then be placed into the provided buffer. If this
method returns false, then the contents of the buffer will be ignored and the result
of the toLocaleString function will be “bad date”.

Once you have an object that implements the SEToLocaleHanlder interface, you
can specify it when you add the Date library using the SELibraryManager:
SELibraryManager.addStandardLibraries(se,
SELibraryManager.ECMA_DATE, myToLocaleHandler);

or:
SELibraryManager.addStandardLibraries(se,
SELibraryManager.ECMA_ALL, myToLocaleHandler);

If you specify a SEToLocaleHandler object when adding one of the other
libraries (like the ECMA Math library), the SEToLocaleHandler will be
ignored.

Nombas ScriptEase ISDK/Java 5.01 51

Lifetimes

A primary ScriptEase consideration is the lifetime of the return from certain API
calls. These calls include seGetObject, seMakeObject and seMakeStack.
If you read the API manual section, they will all mention that they follow the
standard ScriptEase lifetime model. That is what we describe here.

The major point to understand is that the underlying item, we will use an object
as an example, always has its lifetime determined by the ScriptEase system. The
return value is always a handle to the underlying object, not the underlying object
itself. You control the lifetime of the handle only. No ScriptEase API call allows
you to destroy an object. You can force a new object to be created via the
seMakeObject API call but that new object is part of the ScriptEase system and
therefore is destroyed when the ScriptEase system sees fit to destroy it.

So what do you get when you call, for instance, seMakeObject and retrieve a
handle to that object? You get a lock on the object, so that the ScriptEase system
will not delete the object until you are done using it. During the time you have
the lock, you may use the returned object in any other ScriptEase API call. Once
your lock goes away, you are no longer using the object and may not use it in
ScriptEase API calls. However, it is quite likely that the object is still in use
somewhere on the system which is why the object will not necessarily go away.
You should think of getting a lock on an object as a license to use it only. Once
you stop using it, it is out of your control and what happens to it is no longer your
concern. Don't worry about it, the ScriptEase system will keep the object around
as long as it is needed and get rid of it when it is not.

That leads us to the lifetime of your handle. Continuing with the example of an
object lock returned via seMakeObject, how long can you use that object? The
answer is simple; you can use it until the callback you got the lock in returns.
Typically, the callback is a wrapper function. The lifetime operates exactly like a
Java local variable to your wrapper function. Here is a valid wrapper function:
public void foo(SEContext se,int argc)
{
 SEObject myobj = se.seMakeObject();
 se.sePutObject(SE.RETURN,SE.VALUE, myobj);
}

The function of this wrapper should be obvious, it creates and returns a new
blank object. However, the following wrapper function is invalid:
static SEObject myobj = null;

public foo(SEContext se,int argc)
{
 if(myobj==null)
 {
 myobj = se.seMakeObject();
 }

 se.sePutObject(SE.RETURN,SE.VALUE, myobj);
}

Nombas ScriptEase ISDK/Java 5.01 53

The intent is clear, to create a new object and return it then keep returning that
same object for any further calls to the function. But, as we know, the handle
returned by seMakeObject is only valid until the end of the wrapper function,
so when the wrapper function returns the first time, myobj is no longer valid.
Trying to use it in later invocations will use it after it has become invalid and
obviously not work. We will see how to make this example work as intended
shortly.

The careful reader will be wondering what happens if you get a lock when not
inside a wrapper function. Locks retrieved in a wrapper function are local
variables, locked retrieved not in a wrapper function are global variables. The
lock is permanent and lasts for the life of the program. It lasts until the
SEContext is destroyed and all variables and objects in it are freed.

While you may want to use the lock for your entire program, often you want to
manipulate an object for a few lines of code, then you are done with it.
Eventually, when everyone else is done using the object, you'd like it to be freed.
If you keep the object locked, it can never be freed, and it will continue to use up
memory until your program is done. For this reason, you may use the
seFreeXXX API routines, such as seFreeObject. seFreeObject simply tells
ScriptEase that you are done using the object at that point and that your lock is to
be freed then. Remember, this does not destroy the object. It only tells ScriptEase
that you are no longer using the object. As was emphasized before, ScriptEase
will actually destroy the object some time in the future when it determines it is
safe to do so.

An issue related to object lifetimes was brought up in the second wrapper
function described above. How do we keep an object handle past the wrapper
function it was created in? The answer is that you use the seLockXXX API calls,
in this case seLockObject. This call indicates that the given object handle is to
be valid for the life of the program. Once you pass an SEObject to this routine,
it will be treated exactly like a handle returned outside of any wrapper function, it
lasts until the end of the program unless you explicitly remove it using
seFreeObject. If the handle already is a global handle, seLockObject has no
additional effect.

So, the second wrapper function written correctly is:
static SEObject myobj = null;

public foo(SEContext se,int argc)
{
 if(myobj==null)
 {
 myobj = se.seMakeObject();
 se.seLockObject(myobj);

 /* make the lock permanent
 * so we can keep using it
 * in every call to this
 * wrapper function.
 */
 }

 se.sePutObject(SE.RETURN,SE.VALUE, myobj);
}

Nombas ScriptEase ISDK/Java 5.01 54

Summarizing the basic ScriptEase lifetime rules: Objects returned by the API are
handles that allow you to use the given item. The handle, if given to you in a
wrapper function, lasts until that wrapper function returns. If given to you outside
a wrapper function, the handle is permanent. As long as the handle is valid, you
may refer to the item, and the item will not be destroyed. Once you release the
handle, you cannot say what will happen to the item, but you shouldn't worry
about it as the ScriptEase system will properly take care of it.

You will notice the seCloneXXX API calls, such as seCloneObject. These
calls take a lock, which follows the rules just described, and makes a second lock
identical to the first. If the first lock was to be destroyed when the wrapper
returns, the second does as well. Once created, you have two independent locks
with different references although they both refer to the same ScriptEase object.
They both follow the lifetime rules given above independently. For instance, you
might clone a regular local lock and pass it to a utility routine. You continue to
use the original lock until it goes away at the end of the wrapper function. The
utility routine may call seLockObject on the cloned lock and use it for a while.
That is perfectly valid, both locks are independent.

Nombas ScriptEase ISDK/Java 5.01 55

Objects and Classes
One of the most important tasks for a ScriptEase application writer is to design
and implement object classes for the application’s scripts to use. Most
applications will have underlying data and functions that the script should be able
to access in object form. This chapter will start with a discussion of object classes
and finish with details on implementing those classes using ScriptEase.

OBJECT CLASSES
An object class starts with a constructor function. A constructor function’s job is
to initialize a new object of the object class. It can be written in Java using
wrapper functions or implemented in JavaScript. When the user wishes to create
a new object of your class, he calls your constructor function using the new
operator, such as:
var a = new MyClass();

In this case, the constructor function is MyClass. Your constructor function will
have a new blank object of its class provided to it as its this variable. The
function can then add members to the this variable as appropriate for the task
your object class is designed to perform. Here is a simple circle class constructor
written in JavaScript:
function circle(radius)
{
 this.radius = radius;
}

With this constructor in your script, you can create a new circle object in
JavaScript such as new circle(10). Although this example has implemented
the circle constructor in JavaScript, you could also implement the circle
constructor using the ScriptEase API, as we will demonstrate later in this chapter.

The particular parameters you pass to your constructor as well as how you set up
your new object is determined by the object’s intended use. The main point to
remember is that the this variable passed to your constructor is already a blank
object of the constructor’s object class. All objects of a single class share
common members via their prototype. This sharing is set up for your premade
this variable passed to your constructor.

You designate the methods to share by putting them in the prototype member
of the constructor function. All object’s of the constructor’s class have access to
those members. Here is a simple script that uses a slightly extended version of
the circle constructor:
function circle(radius)
{
 this.radius = radius;
}

function circle.prototype.toString()
{
 return "circle of radius " + this.radius;
}

Nombas ScriptEase ISDK/Java 5.01 57

var a = new circle(5);
Clib.puts(a.toString());

This is a simple program that will print circle of radius 5. Although we've
implemented this in script form, you can do the same using the ScriptEase API.
Here is the version that does so:
public void circle(SEContext se,int argc)
{
 assert(argc==1);
 se.seAssign(SE.THIS,SE.MEM("radius"), SE.ARGS,SE.NUM(0));
}

public void circleToString(SEContext se,int argc)
{
 String str = “circle of radius “ +
 (int)se.seGetNumber(SE.THIS,SE.MEM(“radius”));

 se.sePutString(SE.RETURN,SE.VALUE, str);
}

SELibraryTable[] circleTable =
{
 SE.CLASS("circle", “circle”, 1, 1, SE.SECURE, SE.DEFAULT),
 SE.PROTO

 SE.METHOD("toString", “circleToString”, 0, 0,
 SE_SECURE, SE.DEFAULT),

 SE.END_PROTO,
 SE.END_CLASS
}

se.seAddLibTable(circleTable,this);

Notice that the circle function in both the JavaScript and ScriptEase API versions
returns no value. It instead initializes the provided this variable. Constructors
can return a value which will override the default preconstructed this variable.
However, doing so requires you to do all of the initialization for the object you
intend to return yourself.

Please refer to a JavaScript language book for more information on objects and
object classes.

DYNAMIC OBJECTS
We've seen how to make class objects constructors, and prototype functions.
However, it is often desirable to produce objects that are more flexible than a
standard object. For instance, you may want to map the object to a real entity in
your application and have changes to it immediately reflected. You might want to
map an object to your display screen such that when a user writes:
displayObj.background = BLUE;

Your screen changes to the color blue. You do this using dynamic objects. While
dynamic objects are most often used to make flexible class members, any object
can be dynamic not just members of a class.

Very often you will want to associate one or more Java Objects directly with
your object, so that when your wrapper function retrieve that object that can also

Nombas ScriptEase ISDK/Java 5.01 58

retrieve the Java Object. Using seGetPointer() and sePutPointer() along with
either SE.HIDDEN_MEM or SE.HIDDEN_UNIMEM or with an
seInternalizeStringHidden property, is an excellent way to keep the data on your
Java side safe from the script code and always associated with the proper objects.

SciptEase provides a related group of callback interfaces you can implement.
The object which implements the interfaces is then associated with your object
using the seSetCallbacks API function. Normally, you do this in your
constructor when initializing an object of your class. These are interfaces for all
the object manipulation tasks such as getting a member, putting a value to a
member, deleting a member, etc.

Your callbacks will override the normal behavior for the object. To implement
the above example, you would override the put behavior of the displayObj
object. Your code would check for your special property background and
changing the screen color to match the color being put to that member. You can
override only some of the behaviors by implementing only the interfaces you are
interested in.

Here is a list of the callback interfaces. When implementing any of these
interfaces for your own object, remember that SE.THIS refers to the object being
manipulated.

interface: SEGetCallback
public boolean get(SEContext se, int prop, boolean call_hint);

The get callback is used when a member of the object's value is being accessed.
It is also used when trying to determine if an object has a property if you have
not implemented SEHasPropCallback (see below). Implementing
SEHasPropCallback is the preferred method.

The prop parameter, a parameter to most of these dynamic callback functions,
indicates which member of the SE.THIS object is to be accessed. Normally, you
use seInternalizeString at the beginning of your program to internalize
your special properties, then you can compare them with the property being
accessed using a single integer comparison. The alternative is to turn prop into a
String using seGetInternalString then compare with a String.equals,
but this is a lot of work and must be done on each get operation.

call_hint is a boolean indicating if ScriptEase believes the returned value is
going to be used as a function to call. This would be the difference between:
a = yourobj.foo; /* call_hint==false */

and
a = yourobj.foo(); /* call_hint==true */

Knowing this information is useful in certain dynamic objects in which a
property and a method require different setup routines, such as COM.

Once you've decided what value the dynamic property should have, you return it
using the usual SE.RETURN object and return true from the function. If you've
decided the property is not one you are interested in, return false. ScriptEase

Nombas ScriptEase ISDK/Java 5.01 59

will act just as if the dynamic callback did not exist in this case, looking up the
property in its internal storage for the object.

Note that you can access the internal storage of the object within your dynamic
callback implementation. You should use the Direct versions of the seGetXXX
and sePutXXX API calls in order to bypass your dynamic properties. If you use
the non-Direct versions, the internal storage will be used for your object, but
only for gets. This is because a particular callback for an object is shut off inside
that callback, to prevent infinite recursion. However, only that one callback is
shut off. If you use the object in a way that uses another callback, ScriptEase will
use that callback. On rare occasions, you want that behavior. Most of the time,
however, the implementation of a dynamic callback will want to directly access
the members of its object. It is usually much clearer and quicker to just use the
Direct versions of all ScriptEase API calls while implementing a dynamic
callback.

interface: SEPutCallback
 public boolean put(SEContext se, int prop);

This callback is used whenever any of the object’s members is being put to. Like
the get callback, the parameter prop indicates the property being updated. The
value being put to that property is the first (and only) parameter to the callback,
SE.ARGS,SE.NUM(0). Also like get, you return true if you've handled the put
operation and false if you still want ScriptEase to update its internal storage
for the object in the regular way.

Like the other dynamic callbacks, the put callback for your object is turned off
while inside of it. However, it is usually better to make this behavior irrelevent
by always using the Direct versions of the ScriptEase API calls inside a
dynamic callback.

interface: SEHasPropCallback
 public int hasProp(SEContext se,int prop);

This callback is used when searching for a variable. ScriptEase maintains an
internal list of objects to search when resolving a variable reference. This list is
called the scope chain, and is described fully in the Execution chapter. This list
usually consists of the Activation Object, where local variables are stored,
followed by the Global Object. It is easy to add objects to the list by using the
with statement. If your object is on this list, this callback will be used to
determine if your object contains any property being searched for.

The return value can one of the following:
SE.HP_HAS

The object has the property.
SE.HP_HASNOT

The object does not have the property.
SE.HP_CHECK

Nombas ScriptEase ISDK/Java 5.01 60

Disregard this callback and check in the normal way. The normal way involves
calling your dynamic get callback if you have one.
SE.HP_DIRECTCHECK

Disregard this callback and check for the property in the object's internal storage
only, do not call the get callback.

interface: SECanPutCallback
 public boolean canPut(SEContext se,int prop);

Before trying to put a value, canPut will be called to determine if it is to be
allowed. You determine whether or not an property can be updated with this
callback. Return true to allow the put. It is most useful if you are not
implementing a put callback, because in that case you can merge the
functionality of this callback into the put callback by not doing any update.

interface: SEDeletePropCallback
 public boolean deleteProp(SEContext se,int prop);

When a property of an object is to be deleted, this callback will be invoked. As
usual, return false if you want ScriptEase to delete the property from its
internal storage. This routine will also be called when the object itself is to be
deleted, a destructor. In this case, the prop parameter will be –1.

interface: SEDefaultValueCallback
 public void defaultValue(SEContext se,int hint);

When an object is used in a situation when it has to be converted to a primitive
value (i.e. a string or number), this callback is used to do so. The only parameter
is hint, the type that the system needs the value as. It is permissible to always
convert to a single primitive type, which will then itself be converted to the
correct value, if you don't want to take the hint into account. Return the value in
the SE.RETURN object.

interface: SEOperatorOverloadCallback
 public Boolean operatorOverload(SEContext se,short op);

ScriptEase implements operator overloading. Whenever an object is used as the
left-hand operand, this callback is invoked. The op parameter will be the operator
being overloaded, according to this table:

SE.OP_PREINC ++expr

SE.OP_POSTING expr++

SE.OP_PREDEC --expr

SE.OP_POSTDEC expr--

SE.OP_ASSIGN lhs = expr

SE.OP_NOT !expr

Nombas ScriptEase ISDK/Java 5.01 61

SE.OP_UNARY_PLUS +expr

SE.OP_UNARY_MINUS -expr

SE.OP_BITNOT ~expr

SE.OP_EQUAL expr==expr

SE.OP_NOTEQUAL expr!=expr

SE.OP_STRICT_EQUAL expr===expr

SE.OP_STRING_NOTEQUAL expr!==expr

SE.OP_LESS expr<expr

SE.OP_LESS_EQUAL expr<=expr

SE.OP_GREATER expr>expr

SE.OP_GREATER_EQUAL expr>=expr

SE.OP_SUBTRACT expr-expr

SE.OP_ADD expr+expr

SE.OP_MULTIPLY expr*expr

SE.OP_DIVIDE expr/expr

SE.OP_MOD expr%expr

SE.OP_SHIFTLEFT expr<<expr

SE.OP_SHIFTRIGHT expr>>expr

SE.OP_USHIFTRIGHT expr>>>expr

SE.OP_OR expr|expr

SE.OP_XOR expr^expr

SE.OP_AND expr&expr

The assign operators, such as *=, are performed as two separate operations, as if
written expr = expr * expr instead of expr *= expr.

The right-hand side of the operator is to be found in SE.ARGS,SE.NUM(0). The
result of the operation should be returned in the SE.RETURN object with a return
from the function of true. A return of false will do the normal operation
which will involve converting the object to a primitive type compatible with the
other operand and doing the JavaScript operation.

Note that the operator overload will be called with the op SE.OP_ASSIGN if the
object is assigned to. Normally, this operation is ignored since you cannot assign
to an object directly. In a script, you can write:
some_obj = 10;

but this just discards the object in the given variable and replaces it with 10. If
the object has operator overloading, this will call the overload callback instead. If
you return false, the normal changing of some_obj's value takes place. If you

Nombas ScriptEase ISDK/Java 5.01 62

return true, it does not. Be careful, you can make a variable whose value the
user can never change in this way.

inteface: SEGetByIndexCallback
 public boolean getByIndex(SEContext se,int index);

This callback is used to get an object member's value by index. This will be used
solely by the ScriptEase API when a programmer is trying to iterate the members
of your dynamic object. There is no hint as there is no way to know how the
programmer intends to use the retrieved value. Return false if you have no such
indexed member.

In order to implement this routine correctly, you need to internally order the
members of your dynamic object in a consistent way. A person will be using this
routine to iterate all of your members, from 0 on up. You must return each
member once only and always in the same index. It is only permissible to
reorganize the members if a member is added or removed. Return the member in
the SE.RETURN object.

interface: SEGetNameByIndexCallback
public int getNameByIndex(SEContext se, int index);

A companion routine to getByIndex, this is used when a script wants to iterate
through your object using the for..in statement. You must return the names of
your object's members according to their index. Like getByIndex above, it is
only permissible to reorder your object if a member is added or removed. Return
-1 to indicate an index beyond the number of members in your object. Otherwise
return the internalized version of your member's name (see
seInternalizeString). The internalized string will be freed when you return
it just as if you called seFreeInternalString. This is useful in the majority
of cases in which you create the name to return and no longer need it locked. If
you do need to retain a lock on the returned string, use
seCloneInternalString to make a duplicate to return.

interface: SEMaxIndexCallback
 public int getMaxIndex(SEContext se);

Return the maximum index of the members of your objects which is equal to the
number of members minus one.

For all of the above callbacks, the SE.DYNA_UNDEF flag will cause your dynamic
property to be called only if the object does not contain the property in its
internal storage. This is useful for speed. When your dynamic put callback is
invoked on a property, if that property is not special, you can return false to put
it into the object's internal storage. From then on, that property will be treated
normally. The properties you are interested in you do not store in the object, you
handle them in your callback. They will continue to be routed through your
callbacks each time they are accessed.

FUNCTION REDIRECTION

Nombas ScriptEase ISDK/Java 5.01 63

Normally, an object is either a function or it is not. If it is a function, it can be
invoked or used as a constructor such as by Func(); or new Func();. Each of
these behaviors can be overridden. Two special members can be added to an
object to override, _call and _construct. They are used in the two instances
above, _call when invoked as a regular function and _construct when used
in a constructor with the new operator. These special members must themselves
be functions that are called in the appropriate case. It is possible to turn a regular
non-function object into a callable function by giving it an _call member and a
constructable object likewise by giving it an _construct member.

Nombas ScriptEase ISDK/Java 5.01 64

API Function List
Here are the API functions organized by functionality. For all the API functions,
if the call has an output parameter, a one-dimensional array which has its first
element filled in by the function, you can always pass null if you don't care
about that particular output. If you don’t pass null, you must make sure the
array has a length of at least 1, or an exception will be thrown.

Almost of the API functions are instance methods of the SEContext class. The
few that aren’t (seInitialize, seTerminate, seCreateContext, and
seCreateBlankContext) are static methods of the SE class.

INITIALIZATION/CONTEXT
CREATION
seInitialize
SYNTAX: int

SE.seInitialize(void);
WHERE: None
RETURN: The ScriptEase engine's version identifier.
DESCRIPTION: seInitialize is used to initialize the engine, once per

application. See seTerminate for the termination. Call this at
the start of your program, before doing any other ScriptEase
calls. All ScriptEase applications, even multithreaded ones,
should call this routine only once.

SEE: seTerminate

seTerminate
SYNTAX: void

SE.seTerminate(void);
WHERE: None
RETURN: None
DESCRIPTION: Call seTerminate once before your application exits to cleanup

ScriptEase. You must destroy any secontexts created before
calling this routine.

SEE: seInitialize

seCreateContext
SYNTAX: SEContext

SE.seCreateContext(SEContextParams params,
 String userkey);

WHERE: params is an object which implements the SEContextParams
interface.

userkey the userkey, if applicable

Nombas ScriptEase ISDK/Java 5.01 65

RETURN: An secontext, suitable to be used in further ScriptEase API
calls.

DESCRIPTION: Create a scripting context. Chapter IV is devoted to initializing
and creating new contexts, see it for full details.

The userkey is provided to you via email when you download an
evaluation version of ScriptEase. Purchased versions ignore this
parameter, for which you can pass null.

SEE: seDestroyContext

seCreateBlankContext
SYNTAX: SEContext

SE.seCreateBlankContext(
 SEContextParams params,
 String userkey);

WHERE: params is an object which implements the SEContextParams
interface.

userkey the userkey, if applicable
RETURN: An secontext, suitable to be used in further ScriptEase API

calls.
DESCRIPTION: This routine creates a scripting context without making a call to

the SEPrepareContextFunc method of your
SEContextParams object.

The userkey is provided to you via email when you download an
evaluation version of ScriptEase. Purchased versions ignore this
parameter, for which you can pass null.

SEE: seCreateContext, seDestroyContext

seCreateFiber
SYNTAX: SEContext

SEContext.seCreateFiber();
WHERE: None
RETURN: An SEContext, suitable to be used in further ScriptEase API

calls.
DESCRIPTION: Create a fiber context. Chapter XIII is devoted to the topic of

multithreading and fiber contexts. See it for full details.
SEE: seCreateContext, seDestroyContext

seGetContextParams
SYNTAX: SEContextParams

SEContext.seGetContextParams();
WHERE: se the context to get the parameters from.
RETURN: None
DESCRIPTION: Get a pointer to the context's parameter structure. The reference

to the object which implements the SEContextParams

Nombas ScriptEase ISDK/Java 5.01 66

interface used to create the context is stored with the context.
You can get this object and examine or modify it. If you use the
same object for multiple contexts, any change will affect all
contexts.

SEE: seCreateContext

seDestroyContext
SYNTAX: void

SEContext.seDestroyContext();
WHERE: None
RETURN: None
DESCRIPTION: When you are done with a context, you destroy it to free up all

associated resources, such as memory allocated.
SEE: seCreateContext, seCreateBlankContext, seCreateFiber

seAddLibTable
SYNTAX: boolean

SEContext.seAddLibTable(
 SELibraryTableEntry[] table,
 SELibrary libdata);

WHERE: table the table of functions to add

libdata the SELibrary object which implements your wrapper
functions

RETURN: A boolean indicating success. Failure can happen on an illegal
table or if memory becomes exhausted.

DESCRIPTION: This routine parses a library table and adds the variables,
functions, and classes defined in it to your context. You need to
add the tables to your context only once, right after you create it.
From then on, all scripts run in the context will have access to
the things you've defined in it. You do need to add the table to
each context. You should consider consolidating all of your
seAddLibTable calls into an sePrepareContextFunc
callback (see Chapter IV) so all contexts created in your
application have access to the functions.

SEE: None

seGarbageCollect
SYNTAX: void

SEContext.seGarbageCollect(int action);
WHERE: action the garbage collection action to perform
RETURN: None
DESCRIPTION: This routine allows you to manipulate and invoke garbage

collection on a given context. action can be one of the
following:

Nombas ScriptEase ISDK/Java 5.01 67

SE.GARBAGE_COLLECT

Perform a garbage collection immediately, even if it has been
disabled.
SE.GARBAGE_OFF

Disable garbage collection. Instead of collecting to free up
unused memory, more memory is always allocated from the
system whenever existing storage is exhausted.
SE.GARBAGE_ON

Re-enable garbage collection.

Note that each SE.GARBAGE_OFF must be paired with one
SE.GARBAGE_ON. If SE.GARBAGE_OFF has been invoked
several times, garbage collection will not be restarted until
SE.GARBAGE_ON has been invoked the same number of times.
However, a garbage collection can always be forced using the
SE.GARBAGE_COLLECT action.

SEE: None

VARIABLE LOCATING
seVarParse
SYNTAX: boolean

SEContext.seVarParse(SEObject startObject
 String string,
 SEObject[] object,
 int[] member,
 int flags);

WHERE: startObject to object to start seaching from

string the string name of the variable

object an output parameter which has its first element filled in
with the object

member an output parameter which has its first element filled in
with the member

flags flags to control variable resolution.
RETURN: A boolean indicating if the variable was found.
DESCRIPTION: Turn a text variable name into the correspond Object,Member

pair. Both output-only parameters, object and member, follow
the usual ScriptEase lifetime rules for the returned value types.
See seGetObject and seInternalizeString for more
information on the object and member respectively.

This routine parses a variable name and returns the given
variable's location. This allows you to read and update the
variable's value. The variable name must be constant. For
instance, foo[5].goo is acceptable but foo[goo].goo is not
because in this case [goo] would mean to access the variable

Nombas ScriptEase ISDK/Java 5.01 68

goo as a string and use that member name. Similarly,
goo(5).zoo is not allowed because it calls a function. The
reasoning is that this routine is used to access variables by name,
but it should be quick. If you need to use full-fledged
expressions, you should use the seEval routine instead although
that is much slower.

The primary return is the output parameters which are filled in
with an Object/Member pair you use to access or update that
variable. You would later pass the object and
SE.STR(member) to any of the other API functions to
manipulate that variable. These return values follow standard
rules for Lifetimes, and so may need extra code for cleaning up if
this is not called in a wrapper function. You may often choose
SE.COMPOUND_MEM or SE.COMPOUND_UNIMEM along
with standard seGet and sePut calls for simple access to complex
representations of a single variable

The flags may be any combination of the follows, |'ed togethor:
SE.DEFAULT

SE_GF_COMPOUND_CREATE - objects will be created if they
don't yet exist. see VARIABLE READING for more information
on this flag.

SEE: seGetObject, seInternalizeString,
seInternalizeStringHidden

seGetName
SYNTAX: String

SEContext.seGetName(SEObject object,
 SEMemberDesc member);

WHERE: object the object the variable is in

member the member description (ie. SE.VALUE, SE.NUM(5))
RETURN: The text of the variable's name
DESCRIPTION: Given an Object,Member pair, get a name for the variable This

function gets the full name of the given variable. It is intended
for error reporting. Be warned, this is a very slow function.

SEE: None

seInternalizeString
seInternalizeStringHidden
SYNTAX: int

SEContext.seInternalizeString(String string)

 Int
SEContext.seInternalizeStringHidden(String
 string)

WHERE: string the text of the member name to internalize

Nombas ScriptEase ISDK/Java 5.01 69

RETURN: The internalized string handle
DESCRIPTION: All object member names are internalized by the ScriptEase

engine before use. This API call is used to get the internalized
version of a particular string. It is useful for commonly-used
strings as whenever you use the text of the string, ScriptEase
must internalize that string. In addition, ScriptEase internal
strings can be directly compared using a single == comparison
rather than the much slower String.equals.

The resulting handle can be used as a member name using the
SE.STR() member description specifier. In addition, object
callbacks return internal handles for the member name being
accessed.

ScriptEase internal strings are always locked until explicitly
freed. Use seFreeInternalString to indicate you are
finished with a particular internal handle. You can also duplicate
an string handle using seCloneInternalString. Refer to the
standard ScriptEase lifetime model, as internal strings follow that
with the exception that no internal strings are freed automatically
when a wrapper function exits.

The difference between seInternalizeString() and
seInternalizeStringHidden() is that seInternalizeStringHidden()
will create a property name that is not accesible from scripts
(similar to SE.HIDDEN_MEM or SE.HIDDEN_UNIMEM).

SEE: seCloneInternalString, seFreeInternalString, seGetInternalString

seCloneInternalString
SYNTAX: int

SEContext.seCloneInternalString(int str);
WHERE: str the internal string to clone
RETURN: A duplicate of the internal string
DESCRIPTION: This is a standard clone function as described in Chapter VIII.

The returned string handle acts as an exact duplicate of the
original string handle.

SEE: seInternalizeString, seInternalizeStringHidden,
seFreeInternalString, seGetInternalString

seFreeInternalString
SYNTAX: void

SEContext.seFreeInternalString(int str);
WHERE: str the internal string to free
RETURN: None
DESCRIPTION: This is a standard free function as described in Chapter VIII.

Once called, the string handle is freed up and is no longer valid.
SEE: seInternalizeString, seInternalizeStringHidden,

Nombas ScriptEase ISDK/Java 5.01 70

seCloneInternalString, seGetInternalString

seGetInternalString
SYNTAX: String

SEContext.seGetInternalString(int str);
WHERE: str the string handle to get the text of
RETURN: The text of the string
DESCRIPTION: Retrieves the text of a member described by an internal string

handle.
SEE: seInternalizeString, seInternalizeStringHidden,

seCloneInternalString, seFreeInternalString

VARIABLE READING
seGetBoolEx
seGetNumberEx
seGetPointerEx
seGetObjectEx
seGetStringEx
SYNTAX: boolean

SEContext.seGetBoolEx(SEObject object,
 SEMemberDesc member,
 int fl);

 double
SEContext.seGetNumberEx(SEObject object,
 SEMemberDesc member,
 int fl);

 Object
SEContext.seGetPointerEx(SEObject object,
 SEMemberDesc member,
 int fl);

 SEObject
SEContext.seGetObjectEx(SEObject object,
 SEMemberDesc member,
 int fl);

 String
SEContext.seGetStringEx(SEObject object,
 SEMemberDesc member,
 int fl);

WHERE: object the object half of an Object,Member pair

member the member half of an Object,Member pair

fl flags determining how the variable is retrieved

Nombas ScriptEase ISDK/Java 5.01 71

RETURN: The Java value for the variable.
DESCRIPTION: These routines are a core element of the ScriptEase API. Given

an Object,Member pair, these routines extract the current value
as the given type, converting if necessary, and return the result.
Note that the underlying variable does not change type, its value
is retrieved and converted without changing the source variable.
A valid return will always result from these functions. If an
internal error occurs, like an illegal conversion, that error will be
set up as the result of your function (see seThrow), but a valid
result is still returned. The intent is that you can write a simple
wrapper with no error checking that uses these routines. See the
section SE.RETURN EXPLAINED in Chapter V for a
discussion of the implications of this behavior. The value
returned if an error occurs will always be a stock value. For
numbers, it is SE.NAN (or 0 for non-floating point numbers). For
strings, an empty string, “”, is returned. For objects,
SE.NOWHERE is returned. Finally, for booleans false is
returned.

The flags parameter can be any of the following |'d togethor:
SE.DEFAULT

SE.GF_DIRECT

SE.DEFAULT is the default. SE.GF_DIRECT means to ignore the
object's prototype and dynamic methods when looking for the
property. It directly accesses the object's internal structure. It is
intended for writing faster dynamic routines. See Chapter IX for
more information on using this flag.

In addition, you can specify the flags by using different named
functions that have the flags as part of their name. In this case,
you do not specify the flags, they are implicit. Taking
seGetNumberEx as an example:
seGetNumber(...) = seGetNumberEx(...,SE_DEFAULT)

seGetDirectNumber(...) =
seGetNumberEx(...,SE_GF_DIRECT)

The return from seGetObjectEx follows the usual ScriptEase
lifetime rules described in Chapter VIII.

SEE: None

seFreeObject
SYNTAX: void

SEContext.seFreeObject(SEObject item);

WHERE: item the item to free
RETURN: None
DESCRIPTION: You use this function to explicitly free an object returned from

seGetObjectEx. Once freed, the object or string is no longer

Nombas ScriptEase ISDK/Java 5.01 72

valid. See Chapter VIII for the standard ScriptEase lifetime rules.
SEE: SeGetObjectEx

seCloneObject
SYNTAX: SEObject

SEContext.seCloneObject(SEObject item);
WHERE: item the item to clone
RETURN: The cloned object
DESCRIPTION: These calls produce a duplicate of the given SEObject. The

duplicate and the original handle refer to the same item but are
independent. For instance, freeing one of the handles means that
handle can no longer be used, but the other handle is still valid
until it to is freed.

SEE: SeGetObjectEx

seWeakLockObject
SYNTAX: void

SEContext.seWeakLockObject(SEObject obj,
 boolean weak);

WHERE: obj the object to weak lock

weak should the object be weak locked
RETURN: None
DESCRIPTION: Lock an item to produce a weak lock. The object is always

locked, so it must eventually be explicitly freed, just as if you
use jseLockObject. The boolean determines if the lock is
weak. jseLockObject always produces normal locks.
Therefore, this routines is usually used to produce weak locks, so
the parameter is true. On occasion, you may need to turn off an
existing weak lock and restore it to a full lock which is when the
parameter may be false.

This API function is designed to resolve a common problem. It is
typical when mapping a Java object to a JavaScript object for a
programmer to want each item to have a reference to the other.
This allows both sides to have access to its sibling to perform
any needed task. The problem that arises is that the lock on the
ScriptEase object by the API keeps the object permanently in
memory, even when ScriptEase is no longer using the object. It
is a cyclic loop that cannot be detected because the cycle extends
outside of the ScriptEase core.

Using seWeakLockObject, the programmer retains a handle to
the object but that handle does not lock the object in memory. If
ScriptEase is no longer using the object, the presence of this lock
does not keep it from being garbage collected. Other than that
difference, this function performs exactly like seLockObject.

Be careful with this function. The object can be cleaned up at

Nombas ScriptEase ISDK/Java 5.01 73

any time once the script is no longer using it. If you try to use a
handle to such an object, you will probably crash the system.
You should make sure to add a destructor to the object so that
you know when you must stop using the handle, and free the
handle using seFreeObject at that time. Any use for this function
other than this intended one is likely to crash your application.

SEE: seLockObject, seFreeObject

seLockObject
SYNTAX: void

SEContext.seLockObject(SEObject obj);
WHERE: obj the object to lock
RETURN: None
DESCRIPTION: Lock an object. The object will remain locked until it is

explicitly freed. seLockObject always produces normal locks.
SEE: seFreeObject, seWeakLockObject

seGetType
SYNTAX: int

SEContext.seGetType(SEObject object,
 SEMemberDesc member);

WHERE: object the Object half of an Object,Member pair

member the Member half of an Object,Member pair
RETURN: The type of the member.
DESCRIPTION: This is a simple function, it returns the current type of the given

variable. Members that do not exist are reported as type
SE.TYPE_UNDEFINED. Members can also exist with type
SE.TYPE_UNDEFINED. Use the seExists api call to
differentiate them.

SEE: seExists

seExists
SYNTAX: boolean

SEContext.seExists(SEObject object,
 SEMemberDesc member);

WHERE: object the Object half of an Object,Member pair

member the Member half of an Object,Member pair
RETURN: true if the member exists, else false.
DESCRIPTION: This API function is used in place of seGetType when you do

not care what the type of the member is, only if it exists or not.
SEE: seGetType

seExistsDirect

Nombas ScriptEase ISDK/Java 5.01 74

SYNTAX: Boolean
SEContext.seExistsDirect(SEObject object,
 SEMemberDesc memer);

WHERE: object the Object half of an Object,Member pair

member the Member half of an Object,Member pair
RETURN: true if the member exists, else false.
DESCRIPTION: This API function is used in place of seGetType when you do

not care what the type of the member is, only if it exists or not.
Unlike seExists, this function ignores any dynamic properties
on the object and only checks if the internal ScriptEase storage
for the object contains the given member. Like all the Direct
functions, it is meant to be used in implementing object dynamic
functions so that the dynamic functions themselves can use the
internal ScriptEase store without having to take into account the
possibility of being called by each other.

SEE: seGetType, seExists

seGetAttribs
SYNTAX: int

SEContext.seGetAttribs(SEObject object,
 SEMemberDesc member);

WHERE: object the Object half of an Object,Member pair

member the Member half of an Object,Member pair
RETURN: The attributes of the member
DESCRIPTION: This function gets a member's attributes. The attributes a

member has can be one or more of the following flags, |'d
together:
SE.DEFAULT

No special attributes
SE.DONTENUM

The member is not enumerated when the for..in statement is
used on this object.
SE.DONTDELETE

Using the delete operator on this member is ignored.
SE.READONLY

Attempts to write to the member are ignored.
SE.IMPLICIT_THIS

Only objects can have this attribute, a member that is not an
object will never have it. When the object is called as a function,
the this variable is added to the function's scope chain. See
Chapter VI, SCOPING for more information.
SE.IMPLICIT_THIS

Nombas ScriptEase ISDK/Java 5.01 75

Only objects can have this attribute, a member that is not an
object will never have it. When the object is called as a function,
the this variable's parents are added to the function's scope
chain. See Chapter VI, SCOPING for more information.
SE.DYNA_UNDEF

Only objects can have this attribute, a member that is not an
object will never have it. Dynamic callbacks of the object are
only invoked if the object does not have the member being
worked on in its internal store. See Chapter IX for more
information.

SEE: seSetAttribs

seCompare
SYNTAX: boolean

SEContext.seCompare(SEObject obj1,
 SEMemberDesc mem1,
 SEObject obj2,
 SEMemberDesc mem2,
 int[] result);

WHERE: obj1 the object half of the Object,Member pair for the first
operand.

mem1 the member half of the Object,Member pair for the first
operand.

obj2 the object half of the Object,Member pair for the second
operand.

mem2 the member half of the Object,Member pair for the second
operand.

result an output parameter which has its first element set to -1,
0, or 1 to indicate that the first member is less than, equal to, or
greater than the second member.

RETURN: true if the two members are equal
DESCRIPTION: This function uses the ECMAScript rules to determine the

relationship between the two variables. Since ECMAScript only
defines a less-than relationship, this routine internally has to
compare twice to give all the possibilities. For that reason, you
can narrow the information you are interested in by specifying
one of the following special values as the result parameter. In
that case, only the boolean return of the function is used as
described in each case:
SE.COMP_EQUAL

Determine if the two members are equal
SE.COMP_LESS

Determine only if the first member is less than the second.
SEE: None

Nombas ScriptEase ISDK/Java 5.01 76

OBJECT ACCESS ROUTINES
seObjectMemberCount
SYNTAX: int

SEContext.seObjectMemberCount(SEObject object);
WHERE: object the object to query
RETURN: The number of members the object has.
DESCRIPTION: This call returns the number of members an object has. The usual

use is to iterate through all the members, using SE.INDEX()
from 0 to one less than the result of this call.

SEE: seObjectMemberName

seObjectMemberName
SYNTAX: String

SEContext.seObjectMemberName(SEObject object,
 SEMemberDesc mem);

WHERE: object the object the member is in

mem which member to get the name of
RETURN: The member name.
DESCRIPTION: This function is used to get the name of a member. It is most

useful when enumerating the members of an object using the
SE.INDEX() member access macro. If there is no such member
then a blank string is returned and SE.RETURN,SE.ERROR will
have been set.

Unlike seGetName, only the members name is returned, not a
fully-qualified variable name.

SEE: seGetStringEx, seGetName, seObjectMemberCount

seIsFunc
SYNTAX: boolean

SEContext.seIsFunc(SEObject object,
 SEMemberDesc member,
 boolean[] script);

WHERE: object the object half of an Object,Member pair.

member the member half of an Object,Member pair.

script an output parameter, true if the function is a script
function as opposed to a wrapper function.

RETURN: The boolean true if the object is a function.
DESCRIPTION: All functions in ScriptEase are objects, but not all objects are

functions. The API call lets you determine if an object is in fact a
function. If it is, the output boolean script will be true if the
function is a script function, false if it is a wrapper function.

SEE: seIsArray

Nombas ScriptEase ISDK/Java 5.01 77

seIsArray
SYNTAX: boolean

SEContext.seIsArray(SEObject object,
 SEMemberDesc member,
 int[] length);

WHERE: object the object half of an Object,Member pair.

member the member half of an Object,Member pair.

length an output parameter filled in with one more than the
highest numbered element, 0 if no numbered element.

RETURN: The boolean true if the object is an ECMA Array. Note that
objects that are not true Arrays can still have numbered
elements. Thus, the length parameter will be filled in for all
objects, though it will usually be 0.

DESCRIPTION: Determine if an object is an ECMA Array.
SEE: seIsFunction, seSetArray

seSetArray
SYNTAX: boolean

SEContext.seSetArray(SEObject object,
 int length);

WHERE: object the object to adjust

length one more than the new max element
RETURN: This function returns true if the object was adjusted, false if it

was already an Array and no elements were eliminated.
DESCRIPTION: This call turns an object into an ECMA Array and adjust its

elements. Any numbered element greater than or equal to the
length is deleted. In addition, the object is permanently marked
as an ECMA Array object. This means that its length element
corresponds to the numbered elements and adjusting either
adjusts the other just as for an Array.

If you want to turn an object into an Array without altering any
elements, use SE.MAX_INDEX as the length parameters.

SEE: seIsArray

seShareReadObject
SYNTAX: boolean

SEContext.seShareReadObject(SEObject object);
WHERE: object the object to make shared read
RETURN: This function returns true if the object was successfully shared

for reading, false if it could not be.
DESCRIPTION: Calling this routine makes the given object, and all its children,

read-only and shareable. The object handle no longer follows the
usual ScriptEase lifetime rules but rather is valid until the
ScriptEase engine is cleaned up using the seTerminate call.

Nombas ScriptEase ISDK/Java 5.01 78

All shared objects exist for the life of the program. The
SEObject handle passed to the routine can be used from then on
in any context.

When using this routine, you must remember that any object and
all its children are shared. This means the object's base class,
which it refers to via its _prototype is also shared. If you have
a complicated object hierarchy, you may end up sharing a large
number of objects. All these objects will persist until the
program terminates the ScriptEase engine. Also remember that
shared objects and their children become read-only to all
contexts, including the one that originally shared them.

Objects can only be made sharable when there is a single context
existing. You must mark all objects you wish to share before
making additional contexts. This routine will fail once two or
more contexts exist.

SEE:

VARIABLE WRITING
sePutBoolEx
sePutNumberEx
sePutPointerEx
sePutObjectEx
sePutStringEx
sePutUndefinedEx
sePutNullEx
SYNTAX: boolean

SEContext.sePutBoolEx(SEObject obj,
 SEMemberDesc mem,
 int fl,
 boolean val);

 boolean
SEContext.sePutNumberEx(SEObject obj,
 SEMemberDesc mem,
 int fl,
 double val);

 boolean
SEContext.sePutPointerEx(SEObject obj,
 SEMemberDesc mem,
 int fl,
 Object val);

 boolean

Nombas ScriptEase ISDK/Java 5.01 79

SEContext.sePutObjectEx(SEObject obj,
 SEMemberDesc mem,
 int fl,
 SEObject val);

 boolean
SEContext.sePutStringEx(SEObject obj,
 SEMemberDesc mem,
 int fl,
 String val);

 boolean
SEContext.sePutStringEx(SEObject obj,
 SEMemberDesc mem,
 int fl,
 String val,
 int len);

 boolean
SEConext.sePutUndefinedEx(SEObject obj,
 SEMemberDesc mem,
 int fl);

 boolean
SEContext.sePutNullEx(SEObject obj,
 SEMemberDesc mem,
 int fl);

WHERE: object the object half of an Object,Member pair

mem the member half of an Object,Member pair

fl flags determining how the variable is stored

val the value to put, type based on which routine you are using

len for the overloaded version of sePutString, the length in
characters of the String to be put. If len is less than the actual
length of the String, only len characters will be put.

RETURN: The boolean true if the member was created, false if it
already existed.

DESCRIPTION: These functions are the inverse of the seGetXXX versions, they
put a value into the given Object,Member location. Like their get
counterparts, these functions have versions that make the flags
implicit in their name. However, there is one additional flag,
SE.GF_MUST. SE.GF_MUST means that the value should ignore
the SE.READONLY attribute. This eases updating internal
members in your objects that should be read-only for the script
but not for you. It is equivelent to turning off the read-only bit,
putting the value, then turning it back on. It is most-often used in
combination with SE.GF_DIRECT. Here are the name/flag
equivelents using sePutNumberEx as an example:
sePutNumber(...) =
sePutNumberEx(...,SE.GF_DEFAULT)

sePutDirectNumber(...) =
sePutNumberEx(...,SE.GF_DIRECT)

seMustPutNumber(...) =

Nombas ScriptEase ISDK/Java 5.01 80

sePutNumberEx(...,SE.GF_MUST)

seMustPutDirectNumber(...) =
sePutNumberEx(...,SE.GF_MUST|SE.GF_DIRECT)

SEE: None

seDelete
SYNTAX: boolean

SEContext.seDelete(SEObject obj,
 SEMemberDesc mem);

WHERE: obj the object half of the Object,Member pair

mem the member half of the Object,Member pair
RETURN: The boolean true if the member was deleted or did not exist,

false if it could not be deleted such as trying to delete a virtual
object's member.

DESCRIPTION: This call deletes a member of an object. seDelete is not
affected by the SE.DONTDELETE flag, only the delete operator
is affected. If you would like to respect the flag, use
seGetAttribs to check attributes before deleting a member.

SEE: seGetAttribs

seMakeObject
SYNTAX: SEObject

SEContext.seMakeObject();
WHERE: None
RETURN: A handle to the created object.
DESCRIPTION: This call creates a new object. The returned object handle

follows the standard object lifetime rules described in chapter
VIII. The returned object is blank, meaning it has no members.
You'll usually want to store the object using sePutObject,
either to assign it to a variable or return it as the result of your
wrapper function.

SEE: seMakeStack, sePutObject

seMakeStack
SYNTAX: SEObject

SEContext.seMakeStack();
WHERE: None
RETURN: A handle to the created object (stack).
DESCRIPTION: This call creates a new stack. The returned object handle follows

the standard object lifetime rules described in chapter VIII.

A stack is an object and can be used wherever an object can be
used. However, you probably should not, as stacks are
significantly slower to manipulate than objects. Stacks do have

Nombas ScriptEase ISDK/Java 5.01 81

the benefit of guaranteeing that members will remain in the order
they are created, so that SE.INDEX(0) is always the first
member created, SE.INDEX(1) is the second, and so forth.
Regular objects do not have this property. Stacks are used when
needing to pass a list of items to the API, such as the parameters
or the scope chain to seEval.

SEE: seMakeObject, seEval

sePutWrapper
SYNTAX: boolean

SEContext.sePutWrapper(
 SEObject obj,
 SEMemberDesc mem,
 SEFunctionDescription desc,
 Object data);

WHERE: obj the object half of the Object,Member pair

mem the member half of the Object,Member pair

desc the SEFunctionDescription describing the wrapper function

data data associated with the function.

name the name of the function for error reporting wrapper_func -
the function

minArgs the minimum arguments to the function

maxArgs the maximum arguments to the function

funcFlags the function flags

varFlags the variable-type flags

RETURN: A boolean, true if the put was successful.
DESCRIPTION: This call turns a variable into a wrapper function. See Chapter

VII for complete details about wrapper functions.

The third parameter is an SEFunctionDescription object which
describes the wrapper function. An SEFunctionDescription
object can be created with the following constructor:
public SEFunctionDescription(
 String name,
 SEWrapper/String func,
 int minArgs,
 int maxArgs,
 byte funcFlags,
 short varFlags);

This parameters to this constructor correspond to the parameters
to the SE.FUNCTION() library table entry. Since you specify the
exact Object,Member location to put the new wrapper function

Nombas ScriptEase ISDK/Java 5.01 82

in, the name parameter does not indicate where to put the
function. It is used if an error message occurs related to the
function.

SEE: None

seSetCallbacks
SYNTAX: void

SEContext.seSetCallbacks(SEObject obj,
 SEMemberDesc mem,
 Object cbs);

WHERE: obj the object half of the Object,Member pair

mem the member half of the Object,Member pair

cbs an object that implements one or more of the callback
interfaces

RETURN: None
DESCRIPTION: This routine sets the object callbacks for an object. If the variable

is not an object, nothing is done. See Chapter IX for a complete
discussion on dynamic objects and object callbacks.

SEE: seEnableDynamicMethod

seEnableDynamicMethod
SYNTAX: RestoreDynamicMethodState

SEContext.seEnableDynamicMethod(
 SEObject obj, SEMemberDesc mem,
 int whichCallback,
 boolean enable,
 RestoreDynamicMethodState restore_state);

WHERE: obj the object half of the Object,Member pair

mem the member half of the Object,Member pair

whichCallback which method to enable/disable, this may be
any of:
SE.GET_CALLBACK
SE.PUT_CALLBACK
SE.HASPROP_CALLBACK
SE.CANPUT_CALLBACK
SE.DELETEPROP_CALLBACK
SE.DEFAULTVALUE_CALLBACK
SE.OPERATOROVERLOAD_CALLBACK
SE.GETBYINDEX_CALLBACK
SE.GETNAMEBYINDEX_CALLBACK
SE.GETMAXINDEX_CALLBACK
SE.ALL_CALLBACK /* all of the above */

enable whether to enable dynamic method

restore_sate null for first call in pair, for second call set to
value returned by the first call

RETURN: In first call in pair, this returns the value to be passed as
retore_state for second call. For second call in pair the

Nombas ScriptEase ISDK/Java 5.01 83

return value has no meaning.
DESCRIPTION: Enable (if enable is true) the calling of the dynamic method

named methodName, else disable calling of that dynamic
method. These methods are disabled during a callback of that
method (i.e. put is disabled while within put to prevent
recursion). This is a risky function and not a default part of the
API. To enable this API function compile with
JSE_ENABLE_DYNAMETH.

This function is always used in a pair. For the first call in the
pair restore_state should be null. For the second call,
which will undo the first, restore_state must be the value
returned by the first call of the pair.

SEE: seSetCallbacks

seConvert
SYNTAX: void

SEContext.seConvert(SEObject obj,
 SEMemberDesc mem,
 int type);

WHERE: obj the object half of an Object,Member pair

mem the member half of an Object,Member pair

type the type to convert to.
RETURN: None
DESCRIPTION: This routine retrieves the value using a get from the

Object,Member pair, converts it, and puts it back to the same
location. The possible conversions are:
SE.TOPRIMITIVE

Convert to a primitive value. A primitive value is a non-object
value.
SE.TOBOOLEAN

Converts to a boolean
SE.TONUMBER

Converts to a number
SE.TOINTEGER

Converts to an integer.
SE.TOINT32

Converts to a signed 32-bit integer
SE.TOUINT32

Converts to an unsigned 32-bit integer
SE.TOUINT16

Converts to an unsigned 16-bit integer

Nombas ScriptEase ISDK/Java 5.01 84

SE.TOSTRING

Converts to a string
SE.TOOBJECT

Converts to an object.
SEE: None

seSetAttribs
SYNTAX: void

SEContext.seSetAttribs(SEObject obj,
 SEMemberDesc mem,
 int attributes);

WHERE: obj the object half of an Object,Member pair

mem the member half of an Object,Member pair

attributes the attributes to set
RETURN: None
DESCRIPTION: This call sets the variable's attributes. The attributes can be any

of the following, |'d togethor:
SE.DEFAULT

The default, no special attributes
SE.READONLY

Any attempt to update the member is ignored
SE.DONTDELETE

Attempts to delete the member using the ECMAScript delete
operator are ignored
SE.DONTENUM

The member is not included in for..in enumerations

The following flags apply only if the variable is an object:
SE.DYNA_UNDEF

Dynamic callbacks for the objects are only used if the object
does not contain the desired member in the ScriptEase internal
storage for the object.
SE.IMPLICIT_THIS

When the function is executed, the this variable is added to the
front of the scope chain so all members of this are visible
without putting this. in front of them. This is exactly as if the
entire body of the function was wrapped in the statement with(
this) ... This behavior is similar to how Java member
functions work.
SE.IMPLICIT_PARENTS

Nombas ScriptEase ISDK/Java 5.01 85

Similar to SE.IMPLICIT_THIS, the parents of the this
variable are put into the scope chain. This chain begins with
this.__parent__ and continues as long as each such object
itself has a __parent__ property. Note that there are two
underscores on each side of parent above. This is useful for
browsers in which event handlers can refer to variables in the
enclosing element, document, and window. By chaining these
objects together using __parent__ and adding
SE.IMPLICIT_THIS and SE_IMPLICIT_PARENTS to the event
handler function, the desired behavior is achieved.

SEE: seGetAttribs()

seAssign
SYNTAX: boolean

SEContext.seAssign(SEObject destObj,
 SEMemberDesc destMem,
 SEObject srcObj,
 SEMemberDesc srcMem);

WHERE: destObj the desination object half of the Object,Member pair

destMem the desination member half of the Object,Member pair

srcObj the source object half of the Object,Member pair

srcMem the desination member half of the Object,Member pair
RETURN: A boolean, true if the destination member was created, false

if it already existed.
DESCRIPTION: This function does a get on the source Object,Member followed

by a put of that value to the destination Object,Member.
SEE: seMustAssign

seMustAssign
SYNTAX: boolean

SEContext.seMustAssign(SEObject destObj,
 SEMemberDesc destMem,
 SEObject srcObj,
 SEMember srcMem);

WHERE: destObj the desination object half of the Object,Member pair

destMem the desination member half of the Object,Member pair

srcObj the source object half of the Object,Member pair

srcMem the desination member half of the Object,Member pair
RETURN: A boolean, true if the destination member was created, false

if it already existed.
DESCRIPTION: This function does a get on the source Object,Member followed

by a put of that value to the destination Object,Member. This
routine ignores the SE.READONLY flag on the destination if it has
that flag.

Nombas ScriptEase ISDK/Java 5.01 86

SEE: seAssign

seThrow
SYNTAX: void

SEContext.seThrow(String message);
WHERE: se the current context

message the message of the error message in standard
ScriptEase format.

RETURN: None
DESCRIPTION: An error object is constructed and set up in the SE.RETURN

object. In addition, the error flag is turned on. If the wrapper
function calling seThrow returns after this call, it’s result will be
the given error.

The standard error message format for ScriptEase allows
information on the type of the error to be included. By default, a
stock Exception object is constructed with the text passed to
this function. The extended form of the string is:
!TYPE NUM: MESSAGE

For instance, you could pass:
!SyntaxError 9999: You made a mistake.

The TYPE indicates the type of the error. An error object of this
type is constructed to contain the error. The error types are:
SyntaxError

ReferenceError

ConversionError

ArrayLengthError

TypeError

URIError

EvalError

RegExpError

These types are defined by ECMA, including what errors are
generated in normal error situations. When writing your own
wrapper functions, pick the error type you feel is most
appropriate.

The NUM indicates a resource number for your error message.
Values of 10000 or more are reserved for user-errors, and you
should use one. These numbers are used by the
seGetResourceFunc to internationalize the text associated
with various text strings, including error messages.

MESSAGE is the text of the error message.

Nombas ScriptEase ISDK/Java 5.01 87

SEE: None

EXECUTING SCRIPTS
seEval
SYNTAX: boolean

SEContext.seEval(Object to_interpret,
 int interp_type,
 String text_args,
 SEObject stack_args,
 int flags,
 SEEvalParams params);

WHERE: to_interpret the script or function to execute

interp_type what the to_interpret parameter is

text_args arguments as a text string

stack_args arguments on a stack seobject

flags options on how to eval

params eval params
RETURN: A boolean, true if the evaluation was successful
DESCRIPTION: See “Using seEval” in the chapter “Script Execution Topics” for

details on using the seEval ScriptEase API call.
SEE: seExec, seEnd

seExec
SYNTAX: boolean

SEContext.seExec();
WHERE: None
RETURN: true if there are more statements to execute, false when the

seEval is completed.
DESCRIPTION: This routine executes one script statement from a script started

with seEval using the SE.START option. When the eval is
completed, the return value will be stored in the SE.RETURN
object.

SEE: seEval, seEnd

seEnd
SYNTAX: void

SEContext.seEnd();
WHERE: None
RETURN: None
DESCRIPTION: This call aborts a script started with seEval using the

SE.START option. This will immediately terminate the script
which is being executed one statement at a time. There is no

Nombas ScriptEase ISDK/Java 5.01 88

return value from an aborted script.
SEE: seEval, seExec

sePrecompile
SYNTAX: byte[]

SEContext.sePrecompile(String to_interpret,
 int interp_type,
 SEEvalParams params);

WHERE: to_interpret the text of the script or the filename to compile

interp_type how to interpret to_interpret, either
SE.TEXT or SE.FILE

params used to get the virtual file and line number only.
RETURN: The bytecodes
DESCRIPTION: This routine compiles a script into the corresponding bytecodes.

The file to precompile is specified exactly like seEval and must
be either SE.TEXT or SE.FILE. The given file is precompiled
and the resulting bytecodes are returned. Usually, these
bytecodes are then written to disk for use later.

The bytecodes can be passed as the item to evaluate in a later
seEval call with SE.PRECOMP as the type. The bytecodes must
be freed using seFreeBytecodes. Although the script is
precompiled, it is not added to the context or run. The context
will be unchanged as a result of this call.

You can provide the optional params object. Only the
xxxLineNum and xxxFileName methods of the object are used.

SEE: seFreeBytecodes

seFreeBytecodes
SYNTAX: void

SEContext.seFreeBytecodes(byte[] codes);
WHERE: codes the bytecodes returned from sePrecompile
RETURN: None
DESCRIPTION: Call this routine to free the bytecodes given to you from

sePrecompile after you are finished using them, such as after
writing them to disk.

SEE: sePrecompile

seIsBreakpoint
SYNTAX: boolean

SEContext.seIsBreakpoint(String filename,
 int lineNumber);

WHERE: filename the file interested in

lineNumber the line in that file

Nombas ScriptEase ISDK/Java 5.01 89

RETURN: A boolean, true if the line is a valid breakpoint.
DESCRIPTION: This function is provided for use by a debugger. It checks to see

if it is possible for any function currently loaded to break at the
given file and line. This check is intended to be called in
response to a user request to set a breakpoint. Be warned that this
call is very slow. The filename must match one of the currently
loaded filenames (which can be found in the SE.FILENAMES
object) or it cannot be a breakpoint and this function will return
false. If you have a seFindFileFunc callback in your
context (described in Chapter IV), the filenames that are used are
the ones returned from this function, the translated filename, not
the untranslated ones passed to the callback.

SEE: None

Nombas ScriptEase ISDK/Java 5.01 90

Core Customization Topics
The ScriptEase core is highly customizable to suit the needs of a variety of
scripted applications. This chapter described the customization options available.
All of these options are determined by compile-time #defines. Once the
options are set, the ScriptEase core must be re-preprocessed and recompiled to
reflect these options. As a result, only customers who have purchased ScriptEase
and thus have the source code to the ScriptEase core can benefit from
customizing the core.

The jseopt.jh file found in the distribution contains the same documentation as is
here. For each define, it starts either on or off (off being commented out). Read
through this chapter and the jseopt.jh file, and change the state of any of the
options you like. Below, each option is listed as either on or off, reflecting the
default state.

CORE CUSTOMIZATION
The following options modify the internals of the ScriptEase core, and are used
mostly to balance performance and memory use.

JSE_MULTIPLE_GLOBAL (on)
By default, ScriptEase remembers the global object in effect when each function
is created, and runs each function under its original global object. This flag can
be used to turn off this behavior.

JSE_ONE_STRING_TABLE (off, on if
SE_SHARED_OBJECTS is defined)
Turning on this define makes a single string table be used, as opposed to each
context having its own table. A single string table is compatible with a
multithreaded application using more than one context.

JSE_INFREQUENT_COUNT (5000)
ScriptEase normally calls an application's continue function after each script
statement is executed. seEval provides the option to call less frequently. This
define indicates how many statements are to be processed between each call to
the continue function.

JSE_GET_RESOURCE (off)
Normally, all resources (text error messages for instance) have their text stored
with the application. If this option is on, rather than using the stored text, the
application's seGetResourceFunc callback is used to retrieve the text for any
resource.

JSE_SHORT_RESOURCE (off)
When this define is turned on, all resource strings retain only their identifier. If
you provide an seGetResourceFunc, those identifiers will be turned into real
strings using it, otherwise error messages and other resources will contain only
the error number and no message.

Nombas ScriptEase ISDK/Java 5.01 91

JSE_TRAP_NOWHERE (off)
Normally, when an API function tries to get an object that doesn't exist, or can't
be converted to an object, the engine returns SE_NOWHERE. This allows your
application to use that object without error checking the result. However, you
may instead wish to check all your results for errors and ensure that this object is
never used. Turning on this define, which defaults to being off, causes an error if
SE_NOWHERE is ever tried to be used.

JSE_INLINES (off)
In the ScriptEase core, a number of functions are expanded inline to improve
speed. These functions, however, take up considerable code space and can
actually harm performance in later versions of the JDK (1.3.1 and 1.4).

JSE_PEEPHOLE_OPTIMIZER (on)
The peephole optimizer is run on the bytecodes ScriptEase produces for each
function, transforming certain inefficient common sequences into more efficient
ones. It speeds up programs and shrinks the resulting bytecodes. The only
disadvantage is an increase in compilation time, which may outweigh speed
performance if scripts consist of a number of quick and tiny functions.

JSE_CACHE_GLOBAL_VARS (on)
When on, ScriptEase maintains a cache of recently-accessed global variables,
speeding access to them in many cases. However, without certain transformations
done by the peephole optimizer, the global variable cache can be too aggressive
and return the wrong result at times. Therefore, you should only use the global
cache if the peephole optimizer is turned on, as is the default.

JSE_GLOBAL_CACHE_SIZE (10)
By default, the number of global variables retained in the cache is 10. Increasing
the size of the cache could increase cache hits, but the time to look through them
may slow misses. Our internal testing indicates the value of 10 is about optimal.
Global caching must be enabled for this define to be useful.

JSE_COMPACT_LIBFUNCS (off)
By default, this is on. ScriptEase stores wrapper functions in a minimal way,
expanding them on first use. Since most applications include a large number of
wrapper functions, such as the standard ECMA library, and scripts use only a
fraction of them, this setting conserves a lot of memory. There doesn't seem to be
a good reason to turn it off, but the option exists nonetheless.

JSE_REFCOUNT (off)

JSE_GC (on)
Normally, JSE_GC is on, meaning ScriptEase reclaims memory by garbage
collecting. If JSE_GC is off and JSE_REFCOUNT is on, ScriptEase uses a
reference counting scheme. This takes more memory and is slower, but it frees
objects as soon as they become unused. It cannot detect cyclic loops. If both are
on, reference counting is supplemented via garbage collection to find cyclic
loops.

Nombas ScriptEase ISDK/Java 5.01 92

JSE_GC is noticeably quicker and less memory-hungry than is JSE_REFCOUNT.
Garbage collection passes are quick as well, on the order of tenths of a
milliseconds on a typical machine. Therefore, the main benefit of
JSE_REFCOUNT is to find objects that have become freed as soon as they have
done so. However, in most applications, you are better off leaving JSE_GC on
and forcing a garbage collection (by calling seGarbageCollect) at any critical
point that you need to ensure unused objects are freed.

By default, JSE_GC is on, and JSE_REFCOUNT is off. Note that either one or
both of the following may be defined. However, at least one of the two must be
defined. If both are turned off, JSE_GC will be selected automatically.

SE_OBJ_POOL_SIZE (1024, 128 if JSE_MIN_MEMORY is on)
ScriptEase maintains a pool of objects for its needs so that it doesn't need to
allocate and free objects to the system as often. The bigger the pool, the less
system allocation is required at the expense of more memory used by the pool.
Also, the emptying of the pool triggers garbage collection, so the bigger the pool,
the longer ScriptEase can go between garbage collections.

Because emptying a pool triggers garbage collection, reducing the pool sizes
below the value for a JSE_MIN_MEMORY build will cause ScriptEase's execution
speed to slow drastically due to constant collection while freeing up very little
memory. It is advised that you treat 128 as the minimum for this define.

SE_MEM_POOL_SIZE (1024, 128 if JSE_MIN_MEMORY is on)
The members of an object are stored in a separate structure that works exactly
like SE_OBJ_POOL_SIZE. Since each object requires one descriptor for its
members, it is usually best to keep these two pool sizes identical.

JSE_PACK_OBJECTS (off)
Objects are packed to use the minimum memory. Turning this on saves
significant memory, but on many systems brings an equally significant loss in
performance when dealing with objects.

JSE_PER_OBJECT_CACHE (on, off if JSE_MIN_MEMORY
is on)
Each object caches the last member in it that was accessed. In many programs,
this improves performance. Turning it off reduces memory requirements for
objects slightly at the cost of performance.

JSE_PER_OBJECT_MISS_CACHE (on, off if
JSE_MIN_MEMORY is on)
Objects store the last member searched for that the object did not have. This
speeds up searching searching for global variables in which a chain of objects is
searched for a particular member, often missing each time for the first few
objects in the chain. By default, non-min memory builds have a per-object miss
cache.

SE_APIVARNAME_POOL_SIZE (5)

Nombas ScriptEase ISDK/Java 5.01 93

Varname structures are used by the API for internalized variable names. Like
string locking structures, they are needed only when the user has an internal
string locked. While many programs will lock a number of such names, they
remain locked for the life of the program. Typically, only one or a few names are
locked and then freed at a time.

SE_STACK_SIZE (2048, 512 if JSE_MIN_MEMORY is on)
ScriptEase uses an internal stack for resolving function calls and evaluating
expressions. Each function call needs a few entries for overhead plus one entry
per parameter passed to it and per local variable it allocates. The default size of
this stack is 2048 entries, enough to recurse typical functions to a depth in the
hundreds. 512 entries is allocated for a min-memory build.

SE_MAX_STACK_INFO_DEPTH (64)
The SE_STACK_INFO stock objects allow the API user to examine the call stack
of a running script. This macro determines the maximum depth that can be
examined. Each depth only requires one pointer (usually four bytes), so
increasing the max depth isn’t costly. However, it is unlikely any program need
more depth.

FEATURE CUSTOMIZATION
The following options all turn on or off certain JavaScript features. These
features are part of standard ECMAScript, but you may choose to disable certain
features to conserve space for low-memory systems.

JSE_COMPILER (on)
The ScriptEase compiler is necessary to run script code. With the compiler
turned off, your application will only be able to run precompiled scripts. The
JavaScript eval function relies on the compiler being enabled. The compiler is
on by default.

JSE_TOOLKIT_APPSOURCE (on)
This define determines whether the seGetSourceFunc is to be used by the
compiler when it reads text. By default, it is on. This define is only applicable for
the compiler.

JSE_SAVE_FUNCTION_TEXT (on, off if
JSE_MIN_MEMORY is on or JSE_COMPILER is off)
ScriptEase needs to retain information about the source of script functions to
allow the toSource call to turn those functions back into the source they came
from. This option tells it to do so.

JSE_PROTOTYPES (on)
Allows the JavaScript prototype-related features. JavaScript is heavily dependent
on prototypes, and many of its features are built on top of them. Turning this off
is probably a bad idea.

JSE_ALWAYS_IMPLICIT_THIS (off)

Nombas ScriptEase ISDK/Java 5.01 94

With this flag set, the this variable is always searched as part of the scope
chain. Normally, the user must set the SE_IMPLICIT_THIS flag for each
function individually. Turning this compile-time option on will make that the
default for all functions.

JSE_ALWAYS_IMPLICIT_PARENTS (off)
Similar to JSE_ALWAYS_IMPLICIT_THIS, this flag will turn on implicit parents
for every function, causing the engine to search the __parent__ member of the
'this' variable when resolving variable names.

JSE_FUNCTION_ARGUMENTS (on)
When calling a function, some older scripts use the
<function_name>.arguments syntax rather than just using arguments. This
behavior is rare, but by default we support it.

JSE_AUTO_OBJECT (off)
An older ScriptEase behavior, undefined variables are automatically converted to
an object when used as an object.

JSE_REGEXP_LITERALS (on)
By default, JavaScript regular expression literals are allowed. They are a standard
part of JavaScript. However, if you turn off the regular expression portion of the
ECMA library, you should turn this off as well. The regular expression code is
large, and is commonly left out of applications running in tight memory.

JSE_FUNCTION_LENGTHS (on)
Each function gets a .length property, the number of parameters it takes. Turning
this off will conserve memory slightly. Because it is a JavaScript feature, this
option is on by default.

JSE_HTML_COMMENT_STYLE (off)
If this option is turned on, HTML-style comments will be accepted (i.e. <!--
... -->).

SE_ECMA_RETURNS (on)
If no value is explicitly returned from the body of a script, the last expression
evaluated is returned implicitly. Normally, each expression evaluated has its
result preserved against the possibility it is the last expression evaluated and thus
needs to be returned. If this flag is turned off, the last expression is determined by
an alternate algorithm. While this algorithm is faster, some cases will confuse the
algorithm and cause an improper value to be returned.

SCRIPTEASE FEATURE
CUSTOMIZATION
The following options are similar to Feature Customization, but they modify
ScriptEase-only features.

JSE_TOKENSRC (on)

Nombas ScriptEase ISDK/Java 5.01 95

Allows ScriptEase to produce tokens. You can use sePrecompile only if this
define is on. The compiler portion of ScriptEase must also be turned on.

JSE_TOKENDST (on)
Allows ScriptEase to run precompiled scripts. This option is necessary to pass
precompiled scripts to seEval.

JSE_OBJECTDATA (on)
This option reserves space in each object to store a userdata pointer. The
SE_OBJECT_DATA member requires this definition. Turning this off will break
most Nombas-supplied libraries.

JSE_DYNAMIC_CALLBACKS (on)
By default, objects can be given a callback table to implement their get, put,
delete, and other operators using the seSetCallbacks API call. Turning off
this option removes that capability.

JSE_OPERATOR_OVERLOADING (on)
Operator overloading is one of the object callbacks. It can be individually turned
off.

JSE_ENABLE_DYNAMETH (off)
Object callbacks are normally not recursive, they are shut off while active. In
other words, if you are implementing the dynamic get for an object and you try to
get a member of that object, you won't be stuck in an infinite loop, rather that get
will get the property from the internal ScriptEase store. It is possible that a
particular application does want the recursive behavior. This option makes
available the seEnableDynamicMethod API call, which allows a particular
dynamic method to be turned back on.

JSE_GETFILENAMELIST (off)
If your application does not need to use the SE_FILENAMES object, you can turn
it off and save the code and runtime space associated with storing these
filenames.

JSE_BREAKPOINT_TEST (off)
If your application does not need to use the seIsBreakpoint call, you can get
rid of it to save some space. The ScriptEase debugger requires this call to
operate.

JSE_TASK_SCHEDULER (on)
ScriptEase supports the concept of fibers. Turning off this option will turn off the
seCreateFiber API call as well as the SE_YIELD and SE_SUSPEND members
of the SE_RETURN object.

JSE_INCLUDE (on)
Turns on the #include directive.

JSE_DEFINE (on)

Nombas ScriptEase ISDK/Java 5.01 96

Turns on the #define directive.

JSE_CONDITIONAL_COMPILE (on)
Turns on the #if, #elif, #else, #ifdef, and #ifndef directives.

JSE_SECUREJSE (on)
By default, the ScriptEase security model is on. If you are not intending to use
security, you can turn it off to save space.

JSE_MAIN_ARGC_ARGV (on)
ScriptEase has the legacy option to treat a function named main as special, auto-
calling it like C. The SE_CALL_MAIN option to seEval causes this to be done.
By default, this is available. If you have no interest in this option, you can get rid
of it completely and save some code space.

JSE_TOSOURCE (on)
ScriptEase provides a number of helper functions that ease turning an object class
into its appropriate source code, to implement the toSource method. Many of
the standard ECMA objects we provide rely on this code. Turn it off only if you
are not using the ECMA objects, and do not need the helper routines for your
own functions.

JSE_NAMED_PARAMS (on)
ScriptEase allows passing parameters by name, such as calling a function like
foo(a:10,b:"blah");. Turn off this option to remove this capability.

JSE_TIMEZONE_GLOBAL (off)
Some implementations do not have knowledge of the local machines timezone.
In this case, you can turn on this define, and fill in this global variable with the
information:
extern slong jse_minutes_from_gmtime;

JSE_TOLOCALEDATE_FUNCTION (off)
The optional toLocaleDate method of the the Date object is off by default.

JSE_MILLENIUM (off)
Several JavaScript date functions deal with 2-digit dates, assuming to be from the
20th century. Because such functions are not year-2000 compatible, they are
turned off by default.

SE_SHARED_OBJECTS (on)

Activates the API function seShareReadObject which allows objects to be
shared among threads.

JSE_PASSBYREF (on)

ScriptEase supports the passing of parameters to script functions by reference by
using the & operator and to wrapper functions by using the SE.BYREF flag. This
define turns the support on, which is the default.

Nombas ScriptEase ISDK/Java 5.01 97

JSE_FLOATING_POINT (on)
This value defines whether the ScriptEase interpreter and libraries will support
floating-point operations. If this is not defined then the engine will only support
integers, and any use of a floating-point number or operation will result in an
exception (e.g. pi=3.1415, Math.cos(), 0.0). An application for a small
device may run much smaller and faster when JSE_FLOATING_POINT is not
defined if floating-point math is not needed.

DEBUGGING CUSTOMIZATION
These options affect debugging and the level of internal checks ScriptEase
performs.

NDEBUG
When NDEBUG is not defined (i.e. a debug build), ScriptEase does a significant
amount of internal checking to check for any bugs, either errors in ScriptEase
itself or errors in an application's use of the API. You should do all development
without the NDEBUG flag, as you can find many bugs this way. When you are
ready to release, turn NDEBUG back on for the fastest possible code.

JSE_TRACK_OBJECT_USE (off)
This is an internal routine that keeps track of how many times object members
are accessed, and whether they are found in the cache or needed to be looked up.
It is used primarily to optimize the object cache and detect bottlenecks in
member lookup.

JSE_NEVER_FREE (off)
An extreme bug-detection setting used for self-debugging by the core. When on,
the garbage collector never frees unused memory, though it does fill the memory
with a particular byte value when no longer used. This will cause ScriptEase to
use enormous memory, but is useful to isolate internal garbage-collection related
bugs.

JSE_DONT_POOL (off)
Another garbage collection setting. ScriptEase normally maintains a pool of
objects and reuses them whenever possible. In this mode, all memory is returned
to the system when not in use and reallocated when needed. This is a very slow
mode, again designed to shake out any internal bugs.

JSE_ALWAYS_COLLECT (off)
The garbage collector normally runs only when ScriptEase detects it is low on
memory. If this is on, the garbage collector is run any time it could possibly be
run, regardless of memory. This is an important setting to self-diagnose
ScriptEase core bugs, but is very slow. 'very slow' means that - VERY slow.

Nombas ScriptEase ISDK/Java 5.01 98

Fibers and Threads
Each SEContext can be used by only a single thread at one time. If you want to
run multiple scripts simultaneously in a multithreaded application, you need to
create one SEContext using seCreateContext per thread. You can in fact
create more than one SEContext per thread if you like.

Each context contains a copy of much of the same data. Namely, each context
will initialize the standard function libraries into its global object in order to
allow its scripts to see them. In addition, each context keeps a pool of various
kinds of memory available in order to increase performance. As a result, each
context has significant overhead of memory. Fibers exist to help alleviate this
problem.

Fibers are like sibling contexts. Each fiber in the same group has access to the
same variables, uses the same pools of memory, and so forth. Therefore the
overhead described exists only once even when a large number of fibers exist in
the same group. However, fibers are not a replacement for separate contexts in
multiple threads. All fibers in the same group are considered one context, so they
can only be used by a single thread and only one fiber can be active at once. You
can use fibers to cooperatively multitask scripts but since only one fiber can be
run at once, fibers do not take advantage of multiple processors. If your machine
has multiple processors, and you would like to run multiple scripts taking
advantage of all the processors, you must use full contexts not fibers.

Fibers are created using the ScriptEase seCreateFiber API call. You pass as a
parameter an existing context. The new fiber is created as part of the same fiber
group the existing context is part of. You create the first context using
seCreateContext then create any number of fiber siblings using
seCreateFiber. When you are done, you have a number of related contexts,
each which can run its own script. However, all of the contexts share a single
global object. You can change the global object in any of the fibers, but the intent
of the fibers is to conserve memory so sharing the global object is the norm.

USING SE.START
As was mentioned, each fiber group has the limitation that only one of the fibers
can be running at the same time. If you use seEval to evaluate a script in one
fiber, you must wait for it to complete before evaluating another script in a
different fiber. To get around this limitation, seEval has the SE.START flag
option.

SE.START initializes an eval and then returns. Successive lines of the script are
run using the ScriptEase seExec API call. Using this method, when you
initialize each fiber you begin the script it is to run using seEval and SE.START,
which then returns to you quickly. You do the same for each fiber. Now you can
execute a single line of each script using seExec. Typically, you keep evaluating
one line on each fiber in a round-robin fashion in this way. As each fiber
completes its task, it is removed from the list of fibers to execute in this way.
New fibers can be created and added into the list easily.

Nombas ScriptEase ISDK/Java 5.01 99

GLOBAL MANIPULATION
Although the intent of fibers is to conserve memory by sharing overhead, often
each fiber should still be independent. For instance, you may not want them to
share global variables. This is easy to accomplish. After you create the initial
context and set up the libraries in it using seCreateContext, you preserve that
global object. Then for each fiber (including the original context returned by
seCreateContext), you give it a new global object with its _prototype
pointing to the preserved global object. Thus, all new variables created in a fiber
will be created in its private global object, yet it still can refer via the global’s
prototype to the original global object which contains all the standard function
libraries.

Here is a short example ScriptEase API application that creates several fibers and
runs them all.
public class FibersSample implements
 SEContextParams, SEErrorHandler, SELibrary
{
 static final int MAX_FIBERS = 5;
 private int seOptions;

 /* ---
 * SEContextParams interface
 * ---*/
 public int seGetOptions()
 {
 return this.seOptions;
 }

 public void seSetOptions(int options)
 {
 this.seOptions = options;
 }

 /* ---
 * Error handler
 * ---*/

 public void sePrintErrorFunc(SEContext se, String text)
 {
 System.out.println("Error encountered: " + text);
 }

 /* ---
 * SELibrary interface
 * ---*/
 public SELibrary seLibraryInitFunc(SEContext se)
 {
 return this;
 }

 public void seLibraryTermFunc(SEContext se)
 {
 }

 /* A wrapper function to write out a string. It converts
 * whatever argument it is given to a string then writes it
 * to the terminal using 'printf'. The user would use it like
 * this:
 *

Nombas ScriptEase ISDK/Java 5.01 100

 * StringOut("Hello, world!");
 */

 /* ---
 * Text output
 * ---*/

 public SEWrapper StringOut()
 {
 return new SEWrapper()
 {
 public void wrapperFunction(SEContext se, int argc)
 {
 int i;
 String text;

 for(i=0;i<argc;i++)
 {
 /* Get each successive argument and print them
 */
 text = se.seGetString(SE.ARGS,SE.NUM(i));
 System.out.println(text);
 }
 }
 };
 }

 SELibraryTableEntry[] SampleFunctionList =
 {
 SE.FUNCTION("StringOut", StringOut(), 1, -1,
 SE.SECURE, SE.DONTENUM)
 };

 static void add_fiber(SEContext se,
 SEContext[] table,
 int[] number,
 SEObject glob)
 {
 table[(number[0])++] = se;

 /* give the fiber a private global */
 se.sePutObject(SE.GLOBAL,SE.VALUE,se.seMakeObject());

 /* but point back to shared so can see it */
 se.sePutObject(SE.GLOBAL,

 SE.STOCK(JseStrID._prototype),
 glob);

 se.seEval("var a = 10;\nStringOut(a);\n",SE.TEXT,
 null,null,SE.START,null);
 }

 static void remove_fiber(int num,
 SEContext[] table,
 int[] number)
 {
 /* we are done with the context */
 table[num].seDestroyContext();

 /* remove it from the table */
 while(num<(number[0])-1)

Nombas ScriptEase ISDK/Java 5.01 101

 {
 table[num] = table[num+1];
 num++;
 }
 (number[0])--;
 }

 public static final void main(String[] argv)
 {
 SEContext se;
 SEContext[] fibers = new SEContext[MAX_FIBERS];
 int[] fibers_used = {0};
 int fiber_current = 0;
 SEObject shared_global;
 FibersSample sample = new FibersSample();
 sample.seSetOptions(SE.DEFAULT);

 SE.seInitialize();

 /* initialize the main context */
 se = SE.seCreateContext(sample,null);
 if(se==null)
 {
 System.err.println("Invalid user key.");
 System.exit(0);
 }

 shared_global = se.seGetObject(SE.GLOBAL,SE.VALUE);

 /* add libaries so we have the StringOut function */
 se.seAddLibTable(sample.SampleFunctionList,sample);

 /* Add the original context to our fiber list. All contexts
 * including the parent will be treated identically
 */
 add_fiber(se,fibers,fibers_used,shared_global);

 /* Create some more fibers. All are added to one big
 * pool.
 */
 while(fibers_used[0]<MAX_FIBERS)
 add_fiber(fibers[0].seCreateFiber(),fibers,
 fibers_used,shared_global);

 /* run the fibers until all have exited. For each fiber,
 * execute its next available statement using seExec().
 * Notice that an seEval using SE.START was started in
 * each fiber when it was added above. As each fiber
 * finishes its seEval(), we remove it from the fiber list.
 * We exit when all fibers are done.
 */
 while(fibers_used[0]>0)
 {
 if(!fibers[fiber_current].seExec())
 {
 remove_fiber(fiber_current,fibers,fibers_used);
 /* and continue using the fiber that fell into its
 * place
 */
 }

Nombas ScriptEase ISDK/Java 5.01 102

 else
 {
 fiber_current++;
 }
 if(fiber_current>=fibers_used[0]) fiber_current = 0;
 }

 /* Done with the sample, shut everything down. */
 SE.seTerminate();
 }
}

YIELDING AND SUSPENDING
At times, you may want to control the behavior of your fiber execution more than
the simple controls executing a single statement at a time provides. Two methods
are provided for you to do so. Both methods are invoked by a wrapper function to
affect the execution of the fiber the wrapper functions is within.

When a wrapper function is ready to return, it sets up its value in the SE.RETURN
object. Two members of the object, SE.YIELD and SE.SUSPEND, can likewise
be set. Both are boolean members and are set true to invoke their relevent
behavior.

First is SE.YIELD. By yielding, the fiber ensures that the current seExec
statement is immediately ended. Recall that the SE.INFREQUENT_CONT option
to seEval means that several statements are executed for each call to seExec. If
a wrapper function yields, the seExec returns immediately. The return value for
the wrapper function is still treated normally. The next time the fiber is executed
using seExec, execution resumes with the code that called the wrapper function
getting that value as the return.

The second option is SE.SUSPEND. Suspending functions is similar to yielding in
that the calling seExec finishes immediately. However, the fiber is put into a
suspended state. This means that further calls to seExec will immediately return
without executing any code of the fiber. It is the job of your application to
determine when the fiber is ready to be restored and remove its suspended state.
This is done by assigning false to the fiber’s SE.RETURN,SE.SUSPEND
member. After the suspend is removed, the application can also change the return
value to be returned by the wrapper function before again executing any code. It
does this by assigning the new value to the SE.RETURN,SE.VALUE member as
normal. If it does not, the value returned by the wrapper function is used. This is
useful if the value to be returned is unknown when the wrapper function
suspended, perhaps that is why it needed to be suspended. Remember, though,
that the SE.RETURN,SE.VALUE member is read-only as long as any of the
boolean members is true including the SE.SUSPEND member. You must turn
the suspension off before you are allowed to write a new return value. Of course,
you must do it also before you call seExec on the fiber after it is unsuspended.

OTHER CONSIDERATIONS
It is important to understand that values returned from the ScriptEase API that
follow the usual ScriptEase lifetime rules, such as SEObjects, are tied to the

Nombas ScriptEase ISDK/Java 5.01 103

context they were created in. Any ScriptEase call that is passed that parameter
must be passed the same context used to initially get that item. You cannot use an
SEObject created in one context with another, for instance.

Fibers are the exception. Fibers are designed to allow several contexts to share
the same variables. All fibers in the same fiber group can share these items and
use them in any context of the same fiber group. Items created in this way still
must not be used with a context that is not part of the fiber group, however.

Nombas ScriptEase ISDK/Java 5.01 104

ScriptEase JavaScript
ScriptEase is a scripting or programming language that allows a computer user or
programmer to write simple scripts with tremendous power. The guiding
principles for ScriptEase are simplicity and power which add up to easy
elegance in scripting. Scripts are much easier to write and use than the source
code for compiled languages such as C++.

ScriptEase uses JavaScript, one of the most popular scripting language in today's
world, as its core language. In fact, ScriptEase uses the ECMAScript standard for
JavaScript. ECMAScript is the core version of JavaScript which has been
standardized by the European Computer Manufacturers Association and is the
only standardization of JavaScript. ScriptEase closely follows and will follow
this standardized JavaScript.

ScriptEase is not limited to JavaScript, as good as it may be. ScriptEase has
enhanced the power of JavaScript by adding two objects, Clib and SElib, that
have the power of the C programming language. Indeed, ScriptEase implements
a scripting version of C which has the power of C in a simple scripting language.
With the power of C readily available, computer users or programmers are able
to accomplish any tasks that they pursue. Both JavaScript and C script can be
intermingled in ScriptEase code, which allows scripters flexibility, power, and
simplicity.

The following line is a complete script which could be saved as a script file and
run as a program. The program simply displays a message, "A simple one line
script," on a computer screen
Screen.writeln("A simple one line script")

The following code fragment uses a more structured approach to accomplish the
same task. JavaScript and C share similar programming styles, such as the main()
function shown in this fragment.
function main()
{
 Clib.puts("A simple one line script");
}

A ScriptEase script may be written using a very straightforward scripting
approach as shown in the first example above, which is similar to the simple
scripting of a DOS batch file. A second line could be added to the single line as
shown in the following fragment.
Screen.writeln("A simple one line script")
Clib.puts("Now there are two lines")

The example using the main() function could be expanded as follows.
function main()
{
 Clib.puts("A simple one line script");
 Screen.writeln("Now there are two lines");
}

Nombas ScriptEase ISDK/Java 5.01 105

These examples illustrate how easily ScriptEase can be used in a simple scripting
mode and how easily the power of functions can be put in a script, and not just
the power of functions, but the power of C. They show how easily JavaScript and
C script can be intermingled, since C is implemented as a JavaScript object.
Functions and other programming concepts are explained in the following
descriptions of the ScriptEase language. A tutorial section provides illustrations
of scripts in addition to the example code fragments in the text.

Most JavaScript, other than ScriptEase, is part of web browsers and is used while
users are connected to the Internet. Usually people are unaware that JavaScript is
commonly being executed on their computers when they are connected to various
Internet sites. Not only are they unaware, they are unable to write and execute
scripts on their computers for their own uses. ScriptEase steps in at this point.
ScriptEase Desktop is designed for users to control their own computers in a
stand alone mode. Users do not have to be connected to the Internet to use
ScriptEase, as they must be with other JavaScript interpreters.

Whether the desire is to write a simple script to copy a document to a backup
folder or to write an entire data processing program, ScriptEase can do the job or
any other job desired. ScriptEase has joined JavaScript and C. Further,
ScriptEase adds commands and functions not available in standard
implementations of either. In short, ScriptEase is the most powerful and
advanced scripting language available today, and it achieves its power while still
being simple to use.

The following sections of this manual will help you to start enjoying the power of
ScriptEase.

Basics of ScriptEase
Case sensitivity
ScriptEase is case sensitive. A variable named "testvar" is a different variable
than one named "TestVar", and both of them can exist in a script at the same
time. Thus, the following code fragment defines two separate variables:
var testvar = 5
var TestVar = "five"

All identifiers in ScriptEase are case sensitive. For example, to display the word
"dog" on the screen, the Screen.write() method could be used:
Screen.write("dog"). But, if the capitalization is changed to something like,
Screen.Write("dog"), then the ScriptEase interpreter generates an error
message. Control statements and preprocessor directives are also case sensitive.
For example, the statement while is valid, but the word While is not. The
directive #if works, but the letters #IF fail.

White space characters
White space characters, space, tab, carriage-return and new-line, govern the
spacing and placement of text. White space makes code more readable for
humans, but is ignored by the interpreter.

Lines of script end with a carriage-return, and each line is usually a separate
statement. (Technically, in many editors, lines end with a carriage-return and

Nombas ScriptEase ISDK/Java 5.01 106

linefeed pair, "\r\n".) Since the interpreter usually sees one or more white space
characters between identifiers as simply white space, the following ScriptEase
statements are equivalent to each other:
var x=a+b
var x = a + b
var x = a + b
var x = a
 + b

White space separates identifiers into separate entities. For example, "ab" is one
variable name, and "a b" is two. Thus, the fragment, var ab = 2 is valid, but
var a b = 2 is not.

Many programmers use all spaces and no tabs, because tab size settings vary
from editor to editor and programmer to programmer. By using spaces only, the
format of a script will look the same on all editors. All scripts provided by
Nombas with ScriptEase use spaces only.

Comments
A comment is text in a script to be read by humans and not the interpreter which
skips over comments. Comments help people to understand the purpose and
program flow of a program. Good comments, which explain lines of code well,
help people alter code that they have written in the past or that was written by
others.

There are two formats for comments: single-line comments (end of line
comments) and multi-line comments (block comments). Single-line comments
may contain any character except a line terminator character ("\n").

• Single-line comments begin with two slash characters, "//". Any text after
two consecutive slash characters is ignored to the end of the current line. The
interpreter begins interpreting text as code on the next line.

• Multi-line comments are enclosed within a beginning block comment, "/*",
and an end of block comment, "*/". Any text between these markers is a
comment, even if the comment extends over multiple lines. Multi-line
comments may not be nested within other multi-line comments, but single-
line comments can exist within multi-line comments.

The following code fragments are examples of valid comments:
// this is a single-line comment

/* this is a multi-line comment
 This is one big comment block.
 // this comment is okay inside the block
 Isn't it pretty?
*/

var FavoriteAnimal = "dog"; // except for poodles

//This line is a comment but
var TestStr = "this line is not a comment";

Expressions, statements, and blocks

Nombas ScriptEase ISDK/Java 5.01 107

An expression or statement is any sequence of code that performs a computation
or an action, such as the code var TestSum = 4 + 3 which computes a sum
and assigns it to a variable. ScriptEase code is executed one statement at a time in
the order in which it is read. Many programmers put semicolons at the end of
statements, although they are not required. Each statement is usually written on a
separate line, with or without semicolons, to make scripts easier to read and edit.

A statement block is a group of statements enclosed in curly braces, "{}", which
indicate that the enclosed individual statements are a group and are to be treated
as one statement. A block can be used anywhere that a single statement can.

A while statement causes the statement after it to be executed in a loop. By
enclosing multiple statements in curly braces, they are treated as one statement
and are executed in the while loop. The following fragment illustrates:
while(ThereAreUncalledNamesOnTheList() == true)
{
 var name = GetNameFromTheList();
 CallthePerson(name);
 LeaveTheMessage();
}

All three lines after the while statement are treated as a unit. If the braces were
omitted, the while loop would only apply to the first line. With the braces, the
script goes through all lines until everyone on the list has been called. Without
the braces, the script goes through all names on the list, but only the last one is
called. Two very different procedures.

Statements within blocks are often indented for easier reading.

Identifiers
Identifiers are merely names for variables and functions. Programmers must
know the names of built in variables and functions to use them in scripts and
must know some rules about identifiers to define their own variables and
functions. The following rules are simple and intuitive.

• Identifiers may use only ASCII letters, upper or lower case, digits, the
underscore, "_", and the dollar sign, "$". That is, they may use only
characters from the following sets of characters.
"abcdefghijklmnopqrstuvwxyz"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"0123456789"
"_$"

• Identifiers may not use the following characters.
"+- <>&|=!*/%^~?:{};()[].'"`#,"

• Identifiers must begin with a letter, underscore, or dollar sign, but may have
digits anywhere else.

• Identifiers may not have white space in them since white space separates
identifiers for the interpreter.

• Identifiers may be as long a programmer needs.

The following identifiers, variables and functions, are valid:
Sid

Nombas ScriptEase ISDK/Java 5.01 108

Nancy7436
annualReport
sid_and_nancy_prepared_the_annualReport
$alice
CalculateTotal()
$SubtractLess()
_Divide$All()

The following identifiers, variables and functions, are not valid:
1sid
2nancy
this&that
Sid and Nancy
ratsAndCats?
=Total()
(Minus)()
Add Both Figures()

Prohibited identifiers
The following words or tokens have special meaning for the interpreter and
should not or may not be used as identifiers, neither as variable nor as function
names. See identifiers to avoid for a list of words to shun as identifiers.

abstract as break boolean byte case
catch char class const continue debugger
default delete do double else enum
export extends false final finally float
for function goto if implements import
in instanceof int interface is long
namespace native new null package private
protected public return short static super
switch synchronized this throw throws transient
true try typeof use var void
volatile while with

Identifiers to avoid
Safe programming suggests that the following words or tokens should not be
used as identifiers, neither as variable nor as function names. See prohibited
identifiers for a list of words to that simply should not be used as identifiers.

arguments Array Boolean Date
decodeURI decodeURIComponent encodeURI
Error escape eval EvalError
Function Infinity isFinite isNaN
Math NaN Number Object
parseFloat parseInt RangeError ReferenceError
RegExp String SyntaxError TypeError
undefined unescape URIError

Variables

Nombas ScriptEase ISDK/Java 5.01 109

A variable is an identifier to which data may be assigned. Variables are used to
store and represent information in a script. Variables may change their values,
but literals may not. For example, if programmers want to display a name
literally, they must use something like the following fragment multiple times.
Screen.writeln("Rumpelstiltskin Henry Constantinople")

But they could use a variable to make their task easier, as in the following.
var Name = "Rumpelstiltskin Henry Constantinople"
Screen.write(Name)

Then they can use shorter lines of code for display and use the same lines of code
repeatedly by simply changing the contents of the variable Name.

Variable scope
Variables in ScriptEase may be either global or local. Global variables may be
accessed and modified from anywhere in a script. Local variables may only be
accessed from the functions in which they are created. There are no absolute
rules for preferring or using global or local variables. Each type has value. In
general, programmers prefer to use local variables when reasonable since they
facilitate modular code that is easier to alter and develop over time. It is generally
easier to understand how local variables are used in a single function than how
global variables are used throughout an entire program. Further, local variables
conserve system resources.

To make a local variable, declare it in a function using the var keyword:
var perfectNumber;

A value may be assigned to a variable when it is declared:
var perfectNumber = 28;

The default behavior of ScriptEase is that variables declared outside of any
function or inside a function without the var keyword are global variables.
However, this behavior can be changed by the DefaultLocalVars and
RequireVarKeyword settings of the #option preprocessor directive. This
directive is explained in the section on preprocessing. For now, consider the
following code fragment.
var a = 1;
function main()
{
 b = 1;
 var d = 3;
 someFunction(d);
}

function someFunction(e)
{
 var c = 2
 ...
}

In this example, a and b are both global variables, since a is declared outside of a
function and b is defined without the var keyword. The variables, d and c, are
both local, since they are defined within functions with the var keyword. The

Nombas ScriptEase ISDK/Java 5.01 110

variable c may not be used in the main() function, since it is undefined in the
scope of that function. The variable d may be used in the main() function and is
explicitly passed as an argument to someFunction() as the parameter e. The
following lines show which variables are available to the two functions:
main(): a, b, d
someFunction(): a, b, c, e

It is possible, though not usually a good idea, to have local and global variables
with the same name. In such a case, a global variable must be referenced as a
property of the global object, and the variable name used by itself refers to the
local variable. In the fragment above, the global variable a can be referenced
anywhere in its script by using: global.a.

Function identifier
Functions are identified by names, as variables are. Functions perform script
operations, and variables store data. Functions do the work of a script and will be
discussed in more detail later. The reason they are mentioned here is simply to
point out that they have identifiers, names, that follow the same rules for
identifiers as variable names do.

Function scope
Functions are all global in scope, much like global variables. A function may not
be declared within another function so that its scope is merely within a certain
function or section of a script. All functions may be called from anywhere in a
script. If it is helpful, think of functions as methods of the global object. The
following two code fragments do exactly the same thing. The first calls a
function, SumTwo(), as a function, and the second calls SumTwo() as a method
of the global object.
// fragment one
function SumTwo(a, b)
{
 return a + b
}

Screen.writeln(SumTwo(3, 4))

// fragment two
function SumTwo(a, b)
{
 return a + b
}

Screen.writeln(global.SumTwo(3, 4))

Data types
Data types in ScriptEase can be classified into three groupings: primitive,
composite, and special. In a script, data can be represented by literals or
variables. The following lines illustrates variables and literals:
var TestVar = 14;
var aString = "test string";

Nombas ScriptEase ISDK/Java 5.01 111

The variable TestVar is assigned the literal 14, and the variable aString is
assigned the literal "test string". After these assignments of literal values to
variables, the variables can be used anywhere in a script where the literal values
could to be used.

In the fragment above which defines and uses the function SumTwo(), the
literals, 3 and 4, are passed as arguments to the function SumTwo() which has
corresponding parameters, a and b. The parameters, a and b, are variables for the
function the hold the literal values that were passed to it.

Data types need to be understood in terms of their literal representations in a
script and of their characteristics as variables.

Data , in literal or variable form, is assigned to a variable with an assignment
operator which is often merely an equal sign, "=" as the following lines illustrate.
var happyVariable = 7;
var joyfulVariable = "free chocolate";
var theWorldIsFlat = true;
var happyToo = happyVariable;

The first time a variable is used, its type is determined by the interpreter, and the
type remains until a later assignment changes the type automatically. The
example above creates three variables, each of a different type. The first is a
number, the second is a string, and the third is a boolean variable. Variable types
are described below. Since ScriptEase automatically converts variables from one
type to another when needed, programmers normally do not have to worry about
type conversions as they do in strongly typed languages, such as C.

Primitive data types
Variables that have primitive data types pass their data by value, by actually
copying the data to the new location. The following fragment illustrates:
var a = "abc";
var b = ReturnValue(a);

function ReturnValue(c)
{
 return c;
}

After "abc" is assigned to variable a, two copies of the string "abc" exist, the
original literal and the copy in the variable a. While the function ReturnValue is
active, the parameter/variable c has a copy, and three copies of the string "abc"
exist. If c were to be changed in such a function, variable a, which was passed as
an argument to the function, would remain unchanged. After the function
ReturnValue is finished, a copy of "abc" is in the variable b, but the copy in the
variable c in the function is gone because the function is finished. During the
execution of the fragment, as many as three copies of "abc" exist at one time.

The primitive data types are: Number, Boolean, and String.

Number type
Integer

Nombas ScriptEase ISDK/Java 5.01 112

Integers are whole numbers. Decimal integers, such as 1 or 10, are the most
common numbers encountered in daily life. ScriptEase has three notations for
integers: decimal, hexadecimal, and octal.

Decimal
Decimal notation is the way people write numbers in everyday life and uses base
10 digits from the set of 0-9. Examples are:
1, 10, 0, and 999
var a = 101;

Hexadecimal
Hexadecimal notation uses base 16 digits from the sets of 0-9, A-F, and a-f.
These digits are preceded by 0x. ScriptEase is not case sensitive when it comes
to hexadecimal numbers. Examples are:
0x1, 0x01, 0x100, 0x1F, 0x1f, 0xABCD
var a = 0x1b2E;

Octal
Octal notation uses base 8 digits from the set of 0-7. These digits are preceded
by 0. Examples are:
00, 05, and 077
var a = 0143;

Floating point
Floating point numbers are number with fractional parts which are often
indicated by a period, for example, 10.33. Floating point numbers are often
referred to as floats.

Decimal floats
Decimal floats use the same digits as decimal integers but allow a period to
indicate a fractional part. Examples are:
0.32, 1.44, and 99.44
var a = 100.55 + .45;

Scientific floats
Scientific floats are often used in the scientific community for very large or small
numbers. They use the same digits as decimals plus exponential notation.
Scientific notation is sometimes referred to as exponential notation. Examples
are:
4.087e2, 4.087E2, 4.087e+2, and 4.087E-2
var a = 5.321e33 + 9.333e-2;

Boolean type
Booleans may have only one of two possible values: false or true. Since
ScriptEase automatically converts values when appropriate, Booleans can be
used as they are in languages such as C. Namely, false is zero, and true is
non-zero. A script is more precise when it uses the actual ScriptEase values,
false and true, but it will work using the concepts of zero and not zero. When

Nombas ScriptEase ISDK/Java 5.01 113

a Boolean is used in a numeric context, it is converted to 0, if it is false, and 1,
if it is true.

String type
A String is a series of characters linked together. A string is written using
quotation marks, for example: "I am a string", 'so am I', `me too`, and "344". The
string "344" is different from the number 344. The first is an array of characters,
and the second is a value that may be used in numerical calculations.

ScriptEase automatically converts strings to numbers and numbers to string,
depending on context. If a number is used in a string context, it is converted to a
string. If a string is used in a number context, it is converted to a numeric value.
Automatic type conversion is discussed more fully in a later section

Strings, though classified as a primitive, are actually a hybrid type that shares
characteristics of primitive and composite data types. Strings are discussed more
fully a later section.

Composite data types
Whereas primitive types are passed by value, composite types are passed by
reference. When a composite type is assigned to a variable or passed to a
parameter, only a reference that points to its data is passed. The following
fragment illustrates:
var AnObj = new Object;
AnObj.name = "Joe";
AnObj.old = ReturnName(AnObj)

function ReturnName(CurObj)
{
 return CurObj.name
}

After the object AnObj is created, the string "Joe" is assigned, by value since a
property is a variable within an Object, to the property AnObj.name. Two copies
of the string "Joe" exist. When AnObj is passed to the function ReturnName, it is
passed by reference. CurObj does not receive a copy of the Object, but only a
reference to the Object. With this reference, CurObj can access every property
and method of the original. If CurObj.name were to be changed while the
function was executing, then AnObj.name would be changed at the same time.
When AnObj.old receives the return from the function, the return is assigned by
value, and a copy of the string "Joe" transferred to the property. Thus, AnObj
holds two copies of the string "Joe": one in the property .name and one in the
property .old. Three total copies of "Joe" exist, counting the original string literal.

The composite data types are: Object and Array.

Object type
An object is a compound data type, consisting of one or more pieces of data of
any type which are grouped together in an object. Data that are part of an object
are called properties of the object. The Object data type is similar to the structure
data type in C and in previous versions of ScriptEase. The object data type also
allows functions, called methods, to be used as object properties. Indeed, in
ScriptEase, functions are considered to be like variables. But for practical

Nombas ScriptEase ISDK/Java 5.01 114

programming, think of objects as having methods, which are functions, and
properties, which are variables and constants.

Objects and their characteristics are discussed more fully in a later section.

Array type
An array is a series of data stored in a variable that is accessed using index
numbers that indicate particular data. The following fragments illustrate the
storage of the data in separate variables or in one array variable:
var Test0 = "one";
var Test1 = "two";
var Test2 = "three";

var Test = new Array;
Test[0] = "one";
Test[1] = "two";
Test[2] = "three";

After either fragment is executed, the three strings are stored for later use. In the
first fragment, three separate variables have the three separate strings. These
variables must be used separately. In the second fragment, one variable holds all
three strings. This array variable can be used as one unit, and the strings can be
accessed individually. The similarities, in grouping, between Arrays and Objects
is more than slight. In fact, Arrays and Objects are both objects in ScriptEase
with different notations for accessing properties. For practical programming,
Arrays may be considered as a data type of their own.

Arrays and their characteristics are discussed more fully in a later section.

Special values
undefined
If a variable is created or accessed with nothing assigned to it, it is of type
undefined. An undefined variable merely occupies space until a value is
assigned to it. When a variable is assigned a value, it is assigned a type according
to the value assigned. Though variables may be of type undefined, there is no
literal representation for undefined. Consider the following invalid fragment.
var test;
if (test == undefined)
 Screen.writeln("test is undefined")

After var test is declared, it is undefined since no value has been assigned to it.
But, the test, test == undefined, is invalid because there is no way to
literally represent undefined.

null
The value null is a special data type that indicates that a variable is empty, a
condition that is different from being undefined. A null variable holds no
value, though it might have previously. The null type is represented literally by
the identifier, null. Since ScriptEase automatically converts data types, null is
both useful and versatile. The code fragment above will work if undefined is
changed to null, as shown in the following:
var test;
if (test == null)

Nombas ScriptEase ISDK/Java 5.01 115

 Screen.write("test is undefined")

Since null has a literal representation, assignments like the following are valid:
var test = null;

Any variable that has been assigned a value of null can be compared to the
null literal.

The value null is an internal standard ECMAScript value. However, the value
NULL is defined as 0 in seutil.jsh and is used in some scripts as it is found in C
based documentation. Because of automatic conversion in JavaScript, the two
values often operate alike, but not always. They are two separate values.

NaN
The NaN type means "Not a Number". NaN is an acronym for the phrase.
However, NaN does not have a literal representation. To test for NaN, the
function, global.isNaN(), must be used, as illustrated in the following fragment:
var Test = "a string";
if (isNaN(parseInt(Test)))
 Screen.writeln("Test is Not a Number");

When the global.parseInt() function tries to parse the string "a string" into an
integer, it returns NaN, since "a string" does not represent a number like the string
"22" does.

Number constants
Several numeric constants can be accessed as properties of the Number object,
though they do not have a literal representation.

Constant Value Description
Number.MAX_VALUE 1.7976931348623157e+308 Largest number

(positive)
Number.MIN_VALUE 2.2250738585072014e- 308 Smallest

number
(negative)

Number.NaN NaN Not a Number
Number.POSITIVE_INFINITY Infinity Number above

MAX_VALUE
Number.NEGATIVE_INFINITY - Infinity Number below

MIN_VALUE

Automatic type conversion
When a variable is used in a context where it makes sense to convert it to a
different type, ScriptEase automatically converts the variable to the appropriate
type. Such conversions most commonly happen with numbers and strings. For
example:
"dog" + "house" == "doghouse" // two strings are joined
"dog" + 4 == "dog4" // a number is converted
4 + "4" == "44" // to a string
4 + 4 == 8 // two numbers are added
23 - "17" == 6 // a string is converted
 // to a number

Nombas ScriptEase ISDK/Java 5.01 116

Converting numbers to strings is fairly straightforward. However, when
converting strings to numbers there are several limitations. While subtracting a
string from a number or a number from a string converts the string to a number
and subtracts the two, adding the two converts the number to a string and
concatenates them. String always convert to a base 10 number and must not
contain any characters other than digits. The string "110n" will not convert to a
number, because the ScriptEase interpreter does not know what to make of the
"n" character.

You can specify more stringent conversions by using the global methods,
global.parseInt() and global.parseFloat() methods. Further, ScriptEase has many
global functions to cast data as a specific type, functions that are not part of the
ECMAScript standard. These functions are described in the section on global
functions that are specific to ScriptEase.

Properties and methods of basic data
types
The basic data types, such as Number and String, have properties and methods
assigned to them that may be used with any variable of that type. For example,
all String variables may use all String methods.

The properties and methods of the basic data types are retrieved in the same way
as from objects. For the most part, they are used internally by the interpreter, but
you may use them if choose. For example, if you have a numeric variable called
number and you want to convert it to a string, you can use the toString() method
as illustrated in the following fragment.
 var n = 5
 var s = n.toString()

After this fragment executes, the variable n contains the number 5 and the
variable s contains the string "5".

The following two methods are common to all variables and data types.

toString()
This method returns the value of a variable expressed as a string. Every data type
has toString() as a method. Thus, toString() is documented here and not
in every conceivable place that it might be used.

valueOf()
This method returns the value of a variable. Every data type has valueOf() as a
method. Thus, valueOf() is documented here and not in every conceivable
place that it might be used.

Operators
Object operator

Nombas ScriptEase ISDK/Java 5.01 117

The object operator is a period, ".". This operator allows properties and methods
of an object to be accessed and used. For example, Math.abs() is a method of the
Math object. It may be accessed as follows:
var AbsNum = Math.abs(-3)

The variable AbsNum now equals 3. The variable AbsNum is an instance of the
Number object, not an instance of the Math object. Why? It is assigned the
number 3 which is the return of the Math.abs() method.

The Math.abs() method is a static method, that is, it is used directly with the
Math object instead of an instance of the object. Many methods are instance
methods, that is, they are used with instances of an object instead of the object
itself. The String substring() method is an instance method of the String object.
An instance method is not used with an object itself but only with instances of an
object. The String substring() method is never used with the String object
as String.substring(). The following fragment declares and initializes a
string variable, which is an instance of the String object, and then uses the
String substring() method with this instance by using the object operator.
var s = "One Two Three";
var new = s.substring(4,7);

The variable s is an instance of the String object since it is initialized as a string.
The variable new now equals "Two" and is also an instance of the String object
since the String substring() method returns a string.

The main point here is that the period "." is an object operator that may be used
with both static and instance methods and properties. A method or property is
simply attached to an appropriate identifier using the object operator, which then
accesses the method or property.

Mathematical operators
Mathematical operators are used to make calculations using mathematical data.
The following sections illustrate the mathematical operators in ScriptEase.

Basic arithmetic
The arithmetic operators in ScriptEase are pretty standard.
= assignment assigns a value to a variable
+ addition adds two numbers
- subtraction subtracts a number from another
* multiplication multiplies two numbers
/ division divides a number by another
% modulo returns a remainder after division

The following are examples using variables and arithmetic operators.
var i;
i = 2; i is now 2
i = i + 3; i is now 5, (2+3)
i = i - 3; i is now 2, (5- 3)
i = i * 5; i is now 10, (2*5)
i = i / 3; i is now 3, (10/3) (remainder is ignored)
i = 10; i is now 10

Nombas ScriptEase ISDK/Java 5.01 118

i = i % 3; i is now 1, (10%3)

Expressions may be grouped to affect the sequence of processing. All
multiplications and divisions are calculated for an expression before additions
and subtractions unless parentheses are used to override the normal order.
Expressions inside parentheses are processed first, before other calculations. In
the following examples, the information inside square brackets, "[]," are
summaries of calculations provided with these examples and not part of the
calculations.

Notice that:
4 * 7 - 5 * 3; [28 - 15 = 13]

has the same meaning, due to the order of precedence, as:
(4 * 7) - (5 * 3); [28 - 15 = 13]

but has a different meaning than:
4 * (7 - 5) * 3; [4 * 2 * 3 = 24]

which is still different from:
4 * (7 - (5 * 3)); [4 * (-8) = - 32]

The use of parentheses is recommended in all cases where there may be
confusion about how the expression is to be evaluated, even when they are not
necessary.

Assignment arithmetic
Each of the above operators can be combined with the assignment operator, =, as
a shortcut for performing operations. Such assignments use the value to the right
of the assignment operator to perform an operation with the value to the left. The
result of the operation is then assigned to the value on the left.
= assignment assigns a value to a variable
+= assign addition adds a value to a variable
-= assign subtraction subtracts a value from a variable
*= assign multiplication multiplies a variable by a value
/= assign division divides a variable by a value
%= assign remainder returns a remainder after division

The following lines are examples using assignment arithmetic.
var i;
i = 2; i is now 2
i += 3; i is now 5, (2+3) same as i = i + 3
i -= 3; i is now 2, (5-3) same as i = i - 3
i *= 5; i is now 10, (2*5) same as i = i * 5
i /= 3; i is now 3, (10/3) same as i = i / 3
i = 10; i is now 10
i %= 3; i is now 1, (10%3) same as i = i % 3

Auto-increment (++) and auto-decrement (--)

Nombas ScriptEase ISDK/Java 5.01 119

To add or subtract one, 1, to or from a variable, use the auto- increment, ++, or
auto- decrement, - - , operator. These operators add or subtract 1 from the
value to which they are applied. Thus, i++ is a shortcut for i += 1, which is a
shortcut for i = i + 1.

These operators can be used before, as a prefix operator, or after, as a postfix
operator, their variables. If they are used before a variable, it is altered before it is
used in a statement, and if used after, the variable is altered after it is used in the
statement. The following lines demonstrates prefix and postfix operations.
i = 4; i is 4
j = ++i; j is 5, i is 5 (i was incremented before use)
j = i++; j is 5, i is 6 (i was incremented after use)
j = --i; j is 5, i is 5 (i was decremented before use)
j = i--; j is 5, i is 4 (i was decremented after use)
i++; i is 5 (i was incremented)

Bit operators
ScriptEase contains many operators for operating directly on the bits in a byte or
an integer. Bit operations require a knowledge of bits, bytes, integers, binary
numbers, and hexadecimal numbers. Not every programmer needs to or will
choose to use bit operators.
<< shift left i = i << 2;
<<= assignment shift left i <<= 2;
>> shift right i = i >> 2;
>>= assignment shift right i >>= 2;
>>> shift left with zeros i = i >>> 2
>>>= assignment shift left with zeros i >>>= 2
& bitwise and i = i & 1
&= assignment bitwise and i &= 1;
| bitwise or i = i | 1
|= assignment bitwise or i |= 1;
^ bitwise xor, exclusive or i = i ^ 1
^= assignment bitwise xor, exclusive or i ^= 1
~ Bitwise not, complement i = ~i;

Logical operators and conditional expressions
Logical operators compare two values and evaluate whether the resulting
expression is false or true. The value false is zero, and true is not false,
that is, anything not zero. A variable or any other expression may be false or
true, that is, zero or non-zero. An expression that does a comparison is called a
conditional expression.

Many values are evaluated as true, in fact, everything except 0. It is often safer
to make comparisons based on false, which is only one value, rather than to
true, which can be many. Expressions can be combined with logic operators to
make complex true/false decisions.

Logical operators are used to make decisions about which statements in a script
will be executed, based on how a conditional expression evaluates. As an

Nombas ScriptEase ISDK/Java 5.01 120

example, suppose that you are designing a simple guessing game. The computer
thinks of a number between 1 and 100, and you guess what it is. The computer
tells you if you are right or not and whether your guess is higher or lower than
the target number. This procedure uses the if statement, which is introduced in
the next section. Basically, if the conditional expression in the parenthesis
following an if statement is true, the statement block following the if statement
is executed. If false, the statement block is ignored, and the computer continues
executing the script at the next statement after the ignored block. The script
might have a structure similar to the one below in which GetTheGuess() is a
function that gets your guess.
var guess = GetTheGuess(); //get the user input
if (guess > target_number)
{
 ...guess is too high...
}

if (guess < target_number)
{
 ...guess is too low...
}

if (guess == target_number)
{
 ...you guessed the number!...
}

This example is simple, but it illustrates how logical operators can be used to
make decisions in ScriptEase.

The logical operators are:
! not reverses an expression. If (a+b) is true, then

!(a+b) is false.
&& and true if, and only if, both expressions are

true. Since both expressions must be true
for the statement as a whole to be true, if the
first expression is false, there is no need to
evaluate the second expression, since the
whole expression is false.

|| or true if either expression is true. Since only
one of the expressions in the or statement
needs to be true for the expression to
evaluate as true, if the first expression
evaluates as true, the interpreter returns
true and does not bother with evaluating the
second.

== equality true if the values are equal, else false. Do
not confuse the equality operator, ==, with the
assignment operator, =.

!= inequality true if the values are not equal, else false.
=== identity true if the values are identical or strictly

equal, else false. No type conversions are
performed as with the equality operator.

Nombas ScriptEase ISDK/Java 5.01 121

!== non-identity true if the values are not identical or not
strictly equal, else false. No type
conversions are performed as with the
inequality operator.

< less than a < b is true if a is less than b.
> greater than a > b is true if a is greater than b.
<= less than or equal to a <= b is true if a is less than or equal to b.
>= greater than or equal

to
a >= b is true if a is greater than b.

Remember, the assignment operator, =, is different than the equality operator,
==. If you use one equal sign when you intend two, your script will not function
the way you want it to. This is a common pitfall, even among experienced
programmers. The two meanings of equal signs must be kept separate, since there
are times when you have to use them both in the same statement, and there is no
way the computer can differentiate them by context.

Concatenation operator
The plus + may also be used to concatenate strings. The following expression:
"one" + "--" + "two"

results in the following string:
"one--two"

delete operator
The delete operator deletes properties from objects and elements from arrays.
Deleted properties and arrays are actually undefined. Any memory cleanup is
handled by normal garbage collection.

The following fragment defines an array with three elements: 0, 1, and 2, and an
object with three properties: four, five, and six. It then deletes the middle, that is,
the second, element of the array and property of the object.
var a = ["one", "two", "three"];
var o = {four:444, five:555, six:666};

delete(a[1]);
delete(o.five);

There are several ways to eliminate the data in a property of an object or in an
element of an array. The delete operator is the most complete way. Three other
techniques use undefine(), undefined, and void, as illustrated next:
undefine(a[1]);
undefine(o.five);

a[1] = undefined;
o.five = undefined;

a[1] = void a[1];
o.five = void o.five;

These three techniques may be used with any variable, whereas the delete
operator may be used only with properties of objects and elements of arrays.

Nombas ScriptEase ISDK/Java 5.01 122

Generally, delete is the best to use with properties of objects and elements of
arrays, thought in specific situations the other techniques might be preferable.

See global.undefine() and undefined for more information.

in operator
The in operator determines if a property exists in an object. The following script
fragment illustrates for the discussion in this section:
var isProp;
var obj = {one:111, two:222, Three:333};
var test = 'one';

isProp = test in obj;

if (isProp)
 Screen.writeln(isProp);
Screen.writeln('two' in obj);
Screen.writeln('three' in obj);

/********************************
Display is:
 true
 true
 false
********************************/

The script above defines an object, obj, with three properties: "one", "two", and
"Three" (note the capitalization). The in operator is used three times to see if the
following strings are properties in obj: "one", "two", "three" (note the
capitalization). The first two uses of in result in true and the third in false.
Look at the expression "test in obj". The expression to the left, in this case
test, of the in operator must be a string or be able to convert to a string (since
properties of objects are represented as strings). The expression to the right must
be an object or array.

ScriptEase JavaScript has a global.defined() function which is useful. The in
operator may be used in a similar way. In the following fragment, both in and
defined() result in true, and the display is:
true
true

The fragment is:
var test = 'TEST';

Screen.writeln('test' in global);
Screen.writeln(defined(test));

instanceof operator
The instanceof operator, which also may used as instanceof(), determines
if a variable is an instance of a particular object. Since the variable s is created as
an instance of the String object in the following code fragment, the second line
displays true.
var s = new String("abcde");

Nombas ScriptEase ISDK/Java 5.01 123

Screen.writeln(s instanceof String);

The display is:
true

The second line could also be written as:
Screen.writeln(s instanceof(String));

The instanceof operator does not work with the class of an object, rather it
determines if a variable was constructed from an object. In the example above,
the variable s was defined as an instance of String so it is an instance of the
String object and is in the class of String. That is, both of the following lines
display true:
Screen.writeln(s instanceof(String));
Screen.writeln(s._class == "String");

The display is:
true
true

The following code defines a new object and defines the variable ms as an
instance of MyString, a user defined object. In this case, the variable ms is an
instance of MyString but is in the class of Object.
var ms = new MyString("abcde");
Screen.writeln(ms instanceof(MyString));
Screen.writeln(ms._class == "Object");
ms.show();

function MyString(string)
{

 this.data = string;
 return this;
} // MyString

function MyString.prototype.show()
{
 Screen.writeln(this.data);
} // MyString.prototype.show

The display is:
true
true
abcde

typeof operator
The typeof operator, which also may be used as typeof(), provides a way to
determine and to test the data type of a variable and may use either of the
following notations, with or without parentheses.
var result = typeof variable
var result = typeof(variable)

Nombas ScriptEase ISDK/Java 5.01 124

After either line, the variable result is set to a string that is represents the
variable's type: "undefined", "boolean", "string", "object", "number", or
"function".

Flow decisions statements
This section describes statements that control the flow of a program. Use these
statements to make decisions and to repeatedly execute statement blocks.

if
The if statement is the most commonly used mechanism for making decisions in
a program. It allows you to test a condition and act on it. If an if statement finds
the condition you test to be true, the statement or statement block following it
are executed. The following fragment is an example of an if statement.
if (goo < 10)
{
 Screen.write("goo is smaller than 10\n");
}

else
The else statement is an extension of the if statement. It allows you to tell your
program to do something else if the condition in the if statement was found to be
false. In ScriptEase code, it looks like the following.
if (goo < 10)
{
 Screen.write("goo is smaller than 10\n");
}
else
{
 Screen.write("goo is not smaller than 10\n");
}

To make more complex decisions, else can be combined with if to match one out
of a number of possible conditions. The following fragment illustrates using
else with if.
if (goo < 10)
{
 Screen.write("goo is less than 10\n");
 if (goo < 0)
 {
 Screen.write("goo is negative; so it's less than 10\n");
 }
}
else if (goo > 10)
{
 Screen.write("goo is greater than 10\n");
}
else
{
 Screen.write("goo is 10\n");
}

while

Nombas ScriptEase ISDK/Java 5.01 125

The while statement is used to execute a particular section of code, over and
over again, until an expression evaluates as false.
while (expression)
{
 DoSomething();
}

When the interpreter comes across a while statement, it first tests to see whether
the expression is true or not. If the expression is true, the interpreter carries
out the statement or statement block following it. Then the interpreter tests the
expression again. A while loop repeats until the test expression evaluates to
false, whereupon the program continues after the code associated with the
while statement.

The following fragment illustrates a while statement with a two lines of code in a
statement block.
while(ThereAreUncalledNamesOnTheList() != false)
{
 var name=GetNameFromTheList();
 SendEmail(name);
}

do {...} while
The do statement is different from the while statement in that the code block is
executed at least once, before the test condition is checked.
var value = 0;
do
{
 value++;
 ProcessData(value);
} while(value < 100);

The code used to demonstrate the while statement could also be written as the
following fragment.
do
{
 var name = GetNameFromTheList();
 SendEmail(name)
} while (name != TheLastNameOnTheList());

Of course, if there are no names on the list, the script will run into problems!

for
The for statement is a special looping statement. It allows for more precise
control of the number of times a section of code is executed. The for statement
has the following form.
for (initialization; conditional; loop_expression)
{
 statement
}

The initialization is performed first, and then the expression is evaluated. If the
result is true or if there is no conditional expression, the statement is executed.

Nombas ScriptEase ISDK/Java 5.01 126

Then the loop_expression is executed, and the expression is re- evaluated,
beginning the loop again. If the expression evaluates as false, then the
statement is not executed, and the program continues with the next line of code
after the statement. For example, the following code displays the numbers from 1
to 10.
for(var x=1; x<11; x++)
{
 Screen.write(x);
}

None of the statements that appear in the parentheses following the for statement
are mandatory, so the above code demonstrating the while statement would be
rewritten this way if you preferred to use a for statement:
for(; ThereAreUncalledNamesOnTheList() ;)
{
 var name=GetNameFromTheList();
 SendEmail(name)
}

Since we are not keeping track of the number of iterations in the loop, there is no
need to have an initialization or loop_expression statement. You can use an
empty for statement to create an endless loop:
for(;;)
{
 //the code in this block will repeat forever,
 //unless the program breaks out of the for loop somehow.
}

break
Break and continue are used to control the behavior of the looping statements:
for, switch, while, and do ... while. The break statement terminates the
innermost loop of for, while, or do statements. The program resumes execution
on the next line following the loop. The following code fragment does nothing
but illustrate the break statement.
for(;;)
{
 break;
}

The break statement is also used at the close of a case statement, as shown
below. See switch, case, and default.

continue
The continue statement ends the current iteration of a loop and begins the next.
Any conditional expressions are reevaluated before the loop reiterates. The
continue statement works with the same loops as the break statement.

switch, case, and default
The switch statement makes a decision based on the value of a variable or
statement. The switch statement follows the following format:
switch(switch_variable)

Nombas ScriptEase ISDK/Java 5.01 127

{
case value1:
 statement1
 break;
case value2:
 statement2
 break;

...

default:
 default_statement
}

The variable switch_variable is evaluated, and then it is compared to all of the
values in the case statements (value1, value2, . . . , default) until a match is
found. The statement or statements following the matched case are executed until
the end of the switch block is reached or until a break statement exits the
switch block. If no match is found, the default statement is executed, if there
is one.

For example, suppose you had a series of account numbers, each beginning with
a letter that determines what type of account it is. You could use a switch
statement to carry out actions depending on that first letter. The same task could
be accomplished with a series of nested if statements, but they require much
more typing and are harder to read.
switch (key[0])
{
case 'A':
 Screen.write("A"); //handle 'A' accounts...
 break;
case 'B':
 Screen.write("B"); //handle 'B' accounts...
 break;
case 'C':
 Screen.write("C"); //handle 'C' accounts...
 break;
default:
 Screen.write("Invalid account number.\n");
 break;
}

A common mistake is to omit a break statement to end each case. In the
preceding example, if the break statement after the Screen.write("B")
statement were omitted, the computer would print both "B" and "C", since the
interpreter executes commands until a break statement is encountered.

Normally, if a switch and series of case statements reference array variables,
then a comparison is performed whether or not the reference the same array data.
But if either the switch variable or one of the case values is a literal string, then
the comparison of the strings is done using the values of the strings in a
Clib.strcmp() type of comparison.

goto and labels
You may jump to any location within a function block by using the goto
statement. The syntax is:

Nombas ScriptEase ISDK/Java 5.01 128

goto LABEL;

where label is an identifier followed by a colon (:). The following code
fragment continuously prompts for a number until a number less than 2 is
entered.
beginning:
Screen.write("Enter a number less than 2:")
var x = getche(); //get a value for x
if (a >= 2)
 goto beginning;
Screen.write(a);

As a rule, goto statements should be used sparingly, since they make it difficult
to track program flow.

Conditional operator
The conditional operator, "? :", provides a shorthand method for writing if
statements. It is harder to read than conventional if statements, and so is
generally used when the expressions in the if statements are brief. The syntax is:
test_expression ? expression_if_true : expression_if_false

First, test_expression is evaluated. If test_expression is non- zero, true, then
expression_if_true is evaluated, and the value of the entire expression replaced
by the value of expression_if_true. If test_expression is false, then
expression_if_false is evaluated, and the value of the entire expression is that of
expression_if_false.

The following fragment illustrates the use of the conditional operator.
foo = (5 < 6) ? 100 : 200; // foo is set to 100
Screen.write("Name is " + ((null==name) ? "unknown" : name));

Exception handling
Exception handling statements consist of: throw, try, catch, and finally.
The concept of exception handling includes dealing with unusual results in a
function and with errors and recovery from them. Exception handling that uses
the try related statements is most useful with complex error handling and
recovery. Testing for simple errors and unwanted results is usually handled most
easily with familiar if or switch statements. In this section, the discussion and
examples deal with simple situations, since explanation and illustration are the
goals. The exception handling statements might seem clumsy or bulky here, but
do not lose sight of the fact that they are very powerful and elegant in real world
programming where error recovery can be very complex and require much code
when using traditional statements.

Another advantage of using try related exception handling is that much of the
error trapping code may be in a function rather than in the all the places that call
a function.

Before getting to specifics, here is some generalized phrasing that might help
working with exception handling statements. A function may have code in it to

Nombas ScriptEase ISDK/Java 5.01 129

detect unusual results and to throw an exception. The function is called from
inside a try statement block which will try to run the function successfully. If
there is a problem in the function, the exception thrown is caught and handled
in a catch statement block. If all exceptions have been handled when execution
reaches the finally statement block, the final code is executed.

Remember these execution guides:

• When a throw statement executes, the rest of the code in a function is
ignored, and the function does not return a value.

• A program continues in the next catch statement block after the try
statement block in which an exception occurred., and any value thrown is
caught in a parameter in the catch statement.

• A program executes a finally statement block if all thrown exceptions
have been caught and handled.

catch will receive an error object that can be printed directly as a string, and
which will contain these properties

• name - Name of the exception class, e.g. "ConversionError"
• message - text of error, e.g. "1607: Variable "b" is undefined."
• fileName - Name of the source file where error occurred, if available, e.g.

"c:\foo\myscript.jsa"
• lineNum - Line number if file where error occurred, if available, e.g. "173"
• functionName - Name of executing function where error occurred, if

available, e.g. "foobar"

The following simple script illustrates all exception handling statements. The
main() function has try, catch, and finally statement blocks. The try block
calls SquareEven(), which throws an exception if an odd number is passed to
it. If an even number is passed to the function, then the number is squared and
returned. If an odd number is passed, it is fixed, and an exception is thrown.
When the throw statement executes, it passes an object, as an argument, with
information for the catch statement to use.
For example, the script below, as shown, displays:
16
We caught odd and squared even.

If you change rtn = SquareEven(4) to rtn = SquareEven(3), the display
is:
Fixed odd number to next higher even. 16
We caught odd and squared even.

function main(argc, argv)
{
 var rtn;

 try
 {
 rtn = SquareEven(4);
 // No display here if number is odd
 Screen.writeln(rtn);
 }

Nombas ScriptEase ISDK/Java 5.01 130

 catch (err)
 {
 // Catch the exception info
 // that was thrown by the function.
 // In this case, the info was returned
 // in an object.
 Screen.writeln(err);
 Screen.write("Error occurred at line " + err.lineNum);
 if (err.fileName)
 Screen.write(" of file " + err.fileName);
 if (err.functionName)
 Screen.writeln(" in function " + err.functionName);
 Screen.writeln("");
 }
 finally
 {
 // Finally, display this line after normal processing
 // or exceptions have been caught.
 Screen.writeln("We caught odd and squared even.");
 }

 Screen.write("Paused..."); Clib.getch();
} //main

 // Check for odd integers
 // If odd, make even, simplistic by adding 1
 // Square even number
function SquareEven(num)
{
 // Catch an odd number and fix it.
 // "throw an exception" to be caught by caller
 if ((num % 2) != 0)
 {
 num += 1;
 throw {msg:"Fixed odd number to next higher even. ",
 rtn:num * num};

 // We throw an object here. We could have thrown
 // a primitive, such as:
 // throw("Caught and odd");
 // We would have to alter the catch statement
 // to expect whatever data type is used.
 }
 // Normal return for an even number.
 return num * num;
} //SquareEven

This example script does not actually handle errors. Its purpose is to illustrate
how exception handling statements work. For purposes of this illustration,
assume that an odd number being passed to SquareEven() is an error or
extraordinary event.

Functions
A function is an independent section of code that receives information from a
program and performs some action with it. Once a function has been written, you
do not have to think again about how to perform the operations in it. Just call the
function, and let it handle the work for you. You only need to know what
information the function needs to receive, that is, the parameters, and whether it
returns a value to the statement that called it.

Nombas ScriptEase ISDK/Java 5.01 131

Screen.write() is an example of a function which provides an easy way to display
formatted text. It receives a string from the function that called it and displays the
string on the screen. Screen.write is a void function, meaning it has no return
value.

In JavaScript, functions are considered a data type, evaluating to whatever the
function's return value is. You can use a function anywhere you can use a
variable. Any valid variable name may be used as a function name. Like
comments, using descriptive function names helps you keep track of what is
going on with your script.

Two things set functions apart from the other variable types: instead of being
declared with the "var" keyword, functions are declared with the "function"
keyword, and functions have the function operator, "()", following their names.
Data to be passed to a function is included within these parentheses.

Several sets of built- in functions are included as part of the ScriptEase
interpreter. These functions are described in this manual. They are internal to the
interpreter and may be used at any time. In addition, ScriptEase ships with a
number of external libraries or .jsh files. External libraries must be explicitly
included in your script to use the functions in them. See the description of the
include directive in the preprocessor.

ScriptEase allows you to have two functions with the same name. The interpreter
uses the function nearest the end of the script, that is, the last function to load is
the one that to be executed when the function name is called. By taking
advantage of this behavior, you can write functions that supersede the ones
included in the interpreter or .jsh files.

Function return statement
The return statement passes a value back to the function that called it. Any
code in a function following the execution of a return statement is not
executed.
function DoubleAndDivideBy5(a)
{
 return (a*2)/5
}

Here is an example of a script using the above function.
function main()
{
 var a = DoubleAndDivideBy5(10);
 var b = DoubleAndDivideBy5(20);
 Screen.write(a + b);
}

This script displays12.

Passing information to functions
JavaScript uses different methods to pass variables to functions, depending on the
type of variable being passed. Such distinctions ensure that information gets to
functions in the most complete and logical ways. To be technically correct, the
data that is passed to a function are called arguments, and the variables in a
function definition that receive the data are called parameters.

Nombas ScriptEase ISDK/Java 5.01 132

Primitive types, namely, strings, numbers, and booleans, are passed by value.
The value of theses variables are passed to a function. If a function changes one
of these variables, the changes will not be visible outside of the function where
the change took place.

Composite types, objects and arrays, are passed by reference. Instead of passing
the value of the object, that is, the values of each property, a reference to the
object is passed. The reference indicates where in a computer's memory that
values of an object's properties are stored. If you make a change in a property of
an object passed by reference, that change will be reflected throughout in the
calling routine.

In ScriptEase it is possible to pass primitive types by reference instead of by
value, which is the default. When a function is defined, an ampersand, &, may be
put in front of one or more of its parameters. Thus, when the function is called,
an argument, corresponding to a parameter with an ampersand, is passed by
reference instead of by value. The following fragment illustrates.
var num1 = 4;
var num2 = 4;
var num3;
SetNumbers(num1, num2, num3, 6)

function SetNumbers(&n1, n2, &n3, &n4)
{
 n1 = n2 = n3 = n4 = 5;
}

After executing this code, the values of variables is:
num1 == 5
num2 == 4
num3 == 5

The variable num1 was passed by reference to parameter n1. When n1 was set to
5, num1 was actually set to 5 since n1 merely pointed to num1. The variable
num2 was passed by value to parameter n2. When n2, which received an actual
value of 4, was set to 5, num2 remained unchanged. The variable num3 was
undefined when passed by reference to parameter n3. When n3, which pointed
to num3, was set to 5, num3 was actually set to 5 and defined as an integer type.
The literal value 6 was passed to parameter n4, but not by reference since 6 is not
a variable that can be changed. Though n4 has an ampersand, the literal value 6
was passed by value to n4 which, in this example, becomes merely a local
variable for the function SetNumbers().

Simulated named parameters
The properties of object data types may be used like named parameters. The
following line simulates named parameters in a call to a function (note the use of
curly braces {}):
var area = RectangleArea({length:4, width:2});

The following line uses traditional ordered parameters:
var area = RectangleArea(4, 2);

Nombas ScriptEase ISDK/Java 5.01 133

The following function definition receives the named and ordered parameters in
the lines above. The definition allows for named or ordered parameters to be
used.
function RectangleArea(length, width)
{
 if (typeof(length) == "object")
 {
 width = length.width;
 length = length.length;
 }
 return length * width;
} //RectangleArea

The function above could be rewritten as:
function RectangleArea(length, width)
{
 if (typeof(arguments[0]) == "object")
 {
 width = arguments[0].width;
 length = arguments[0].length;
 }
 return length * width;
} //RectangleArea

Either function definition works the same. The choice of one over the other is a
matter of personal preference.

Though JavaScript allows many variations in how objects may be used, this
straightforward example illustrates the essence of simulating named parameters
in JavaScript. See the section "Named parameters in JavaScript" in the
ScriptEase Tutorial for a detailed discussion about simulating named parameters
in JavaScript.

Function property arguments[]
The arguments[] property is an array of all of the arguments passed to a
function. The first variable passed to a function is referred to as arguments[0],
the second as arguments[1], and so forth.

The most useful aspect of this property is that it allows you to have functions
with an indefinite number of parameters. Here is an example of a function that
takes a variable number of arguments and returns the sum of them all.
function SumAll()
{
 var total = 0;
 for (var ssk = 0; ssk < SumAll.arguments.length; ssk++)
 {
 total += SumAll.arguments[ssk];
 }
 return total;
}

Function recursion
A recursive function is a function that calls itself or that calls another function
that calls the first function. Recursion is permitted in ScriptEase. Each call to a
function is independent of any other call to that function. (See the section on

Nombas ScriptEase ISDK/Java 5.01 134

variable scope.) Be aware that recursion has limits. If a function calls itself too
many times, a script will run out of memory and abort.

Do not worry if recursion is confusing, since you rarely have to use it. Just
remember that a function can call itself if it needs to. For example, the following
function, factor(), factors a number. Factoring is an ideal candidate for recursion
because it is a repetitive process where the result of one factor is then itself
factored according to the same rules.
function factor(i) // recursive function to print all factors of
i,
{// and return the number of factors in i
 if (2 <= i)
 {
 for (var test = 2; test <= i; test++)
 {
 if (0 == (i % test))
 {
 // found a factor, so print this factor then call
 // factor() recursively to find the next factor
 return(1 + factor(i/test));
 }
 }
 }
 // if this point was reached, then factor not found
 return(0);
}

Error checking for functions
Some functions return a special value if they fail to do what they are supposed to
do. For example, the Clib.fopen() method opens or creates a file for a script to
read from or write to. But suppose that the computer is unable to open a file. In
such a case, the Clib.fopen() method returns null.

If you try to read from or write to a file that was not properly opened, you get all
kinds of errors. To prevent these errors, make sure that Clib.fopen() does not
return null when it tries to open a file. Instead of just calling Clib.fopen() as
follows:
var fp = Clib.fopen("myfile.txt", "r");

check to make sure that null is not returned:
if (null == (var fp = Clib.fopen("myfile.txt", "r")))
{
 ErrorMsg("Clib.fopen returned null");
}

You may abort a script in such a case, but at least you will know why. See the
section on the Clib object.

main() function
If a script has a function called main(), it is the first function executed. (For
more information on what takes place when a script is run, see the section on
running a script.) Other than the fact that main() is the first function executed, it
is like other functions. If the main() function returns a value, that value is
returned to the operating system or whatever process called the script.

Nombas ScriptEase ISDK/Java 5.01 135

The main() function automatically receives two parameters, which, by
convention, are called argc and argv. The parameter argc, argument count, is the
number of parameters passed to the script and the parameter argv is an array of
strings, with each element being one of the parameters. The first element,
argv[0], of this array is always the name of the script, thus if argc == 1, then
no variables were passed to a script.

Arguments are passed to a script as parameters when it is called from a command
line as illustrated in the following line.
sewin32.exe jseedit.jse document.txt

In the example above, argc == 2, argv[0] == "jseedit.jse" and
argv[1] == "document.txt".

Objects
Variables and functions may be grouped together in one variable and referenced
as a group. A compound variable of this sort is called an object in which each
individual item of the object is called a property. In general, it is adequate to
think of object properties, which are variables or constants, and of object
methods, which are functions.

To refer to a property of an object, use both the name of the object and of the
property, separated by the object operator ".", a period. Any valid variable name
may be used as a property name. For example, the code fragment below assigns
values to the width and height properties of a rectangle object and calculates the
area of a rectangle and displays the result:
var Rectangle;

Rectangle.height = 4;
Rectangle.width = 6;

Screen.write(Rectangle.height * Rectangle.width);

The main advantage of objects occurs with data that naturally occurs in groups.
An object forms a template that can be used to work with data groups in a
consistent way. Instead of having a single object called Rectangle, you can have
a number of Rectangle objects, each with their own values for width and height.

Terminology for objects
The terminology used to describe the methods and properties of objects is not
consistent in the programming community. The following list shows three
common naming schemes.

• Object members
Object methods
Object properties

• Object properties

Object methods
Object attributes

Nombas ScriptEase ISDK/Java 5.01 136

• Object properties
Object methods
Object properties

In the first scheme uses "members" as the term to encompass "methods" and
"properties". The second scheme uses "properties" as the term to encompass
"methods" and "attributes". The third scheme uses "properties" as the term to
encompass "methods" and "properties". The order in which the schemes are
presented is in order from least ambiguous to most ambiguous. Unfortunately this
order does not conform to age of use of the schemes nor to the popularity of the
schemes. As a result of the lack of consensus in the programming community, all
of these naming schemes are represented in ScriptEase documentation, though
the first one is preferred because it is not ambiguous. The following paragraphs
explain these schemes in more detail.

The first scheme uses the term "member" for the both functions and data. A
"method" is a function attached to an object and a "property" is a datum attached
to an object. This scheme has the advantages of being clear and of using common
terminology. The disadvantage is that the use of "members" to refer to "methods"
and "properties" is not the most common. This scheme is preferred in ScriptEase
documentation for a couple of reasons. First, objects are thought of as collections
of routines and data, which is an intuitive and useful metaphor for describing
objects. The term "member" fits nicely with the metaphor and is distinct from the
terms for items in the collection. Second, the use of the terms "method" and
"property" for the routines and data attached to or collected in an object is the
most common usage.

The second scheme uses the term "property" for the both functions and data. A
"method" is a function attached to an object and an "attribute" is a datum
attached to an object. This scheme has the advantages of being clear and of using
common terminology. The disadvantage is that the use of "attributes" for the data
of objects is not the most common.

The third scheme uses the term "property" for the both functions and data. A
"method" is a function attached to an object and a "property" is a datum attached
to an object. This scheme is inherently confusing because it uses the same term
"property" for two different concepts about an object.

Predefining objects with constructor functions
A constructor function creates an object template. For example, a constructor
function to create Rectangle objects might be defined like the following.
function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

The keyword this is used to refer to the parameters passed to the constructor
function and can be conceptually thought of as "this object." To create a
Rectangle object, call the constructor function with the "new" operator:
var joe = new Rectangle(3,4)
var sally = new Rectangle(5,3);

Nombas ScriptEase ISDK/Java 5.01 137

This code fragment creates two rectangle objects: one named joe, with a width of
3 and a height of 4, and another named sally, with a width of 5 and a height of 3.

Constructor functions create objects belonging to the same class. Every object
created by a constructor function is called an instance of that class. The examples
above creates a Rectangle class and two instances of it. All of the instances of a
class share the same properties, although a particular instance of the class may
have additional properties unique to it. For example, if we add the following line:
joe.motto = "ad astra per aspera";

we add a motto property to the Rectangle joe. But the rectangle sally has no
motto property.

Initializers for objects and arrays
Variables may be initialized as objects and arrays using lists inside of "{}" and
"[]". By using these initializers, instances of Objects and Arrays may be created
without using the new constructor. Objects may be initialized using a syntax
similar to the following:
var o = {a:1, b:2, c:3};

This line creates a new object with the properties a, b, and c set to the values
shown. The properties may be used with normal object syntax, for example,
o.a == 1.

Arrays may initialized using a syntax similar to the following:
var a = [1, 2, 3];

This line creates a new array with three elements set to 1, 2, and 3. The elements
may be used with normal array syntax, for example, a[0] == 1.

The distinction between Object and Array initializer might be a bit confusing
when using a line with syntax similar to the following:
var a = {1, 2, 3};

This line also creates a new array with three elements set to 1, 2, and 3. The line
differs from the first line, Object initializer, in that there are no property
identifiers and differs from the second line, Array initializer, in that it uses "{}"
instead of "[]". In fact, the second and third lines produce the same results. The
elements may be used with normal array syntax, for example, a[0] == 1.

The following code fragment shows the differences.
var o= {a:1, b:2, c:3};
Screen.writeln(typeof o +" | "+ o._class +" | "+ o);

var a = [1, 2, 3];
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

var a= {1, 2, 3};
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

The display from this code is:
object | Object | [object Object]
object | Array | 1,2,3

Nombas ScriptEase ISDK/Java 5.01 138

object | Array | 1,2,3

As shown in the first display line, the variable o is created and initialized as an
Object. The second and third lines both initialize the variable a as an Array.
Notice that in all cases the typeof the variable is object, but the class, which
corresponds to the particular object and which is reflected in the _class
property, shows which specific object is created and initialized.

Methods - assigning functions to objects
Objects may contain functions as well as variables. A function assigned to an
object is called a method of that object.

Like a constructor function, a method refers to its variables with the this
operator. The following fragment is an example of a method that computes the
area of a rectangle.
function rectangle_area()
{
 return this.width * this.height;
}

Because there are no parameters passed to it, this function is meaningless unless
it is called from an object. It needs to have an object to provide values for
this.width and this.height.

A method is assigned to an object as the following lines illustrates.
joe.area = rectangle_area;

The function will now use the values for height and width that were defined
when we created the rectangle object joe.

Methods may also be assigned in a constructor function, again using the this
keyword. For example, the following code:
function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
 this.area = rectangle_area;
}

creates an object class Rectangle with the rectangle_area method included as one
of its properties. The method is available to any instance of the class:
var joe = Rectangle(3,4);
var sally = Rectangle(5,3);

var area1 = joe.area;
var area2 = sally.area;

This code sets the value of area1 to 12, and the values of area2 to 15.

Object prototypes

Nombas ScriptEase ISDK/Java 5.01 139

Nombas ScriptEase ISDK/Java 5.01 140

area method.

An object prototype lets you specify a set of default values for an object. When
an object property that has not been assigned a value is accessed, the prototype is
consulted. If such a property exists in the prototype, its value is used for the
object property.

Object prototypes are useful for two reasons: they ensure that all instances of an
object use the same default values, and they conserve the amount of memory
needed to run a script. When the two Rectangles, joe and sally, were created in
the previous section, they were each assigned an area method. Memory was
allocated for this function twice, even though the method is exactly the same in
each instance. This redundant memory waste can be avoided by putting the
shared function or property in an object's prototype. Then all instances of the
object will use the same function instead of each using its own copy of it.

The following fragment shows how to create a Rectangle object with an area
method in a prototype.
function rectangle_area()
{
 return this.width * this.height;
}

function Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

Rectangle.prototype.area = rectangle_area;

The rectangle_area method can now be accessed as a method of any Rectangle
object as shown in the following.
var area1 = joe.area();
var area2 = sally.area();

You can add methods and data to an object prototype at any time. The object
class must be defined, but you do not have to create an instance of the object
before assigning it prototype values. If you assign a method or data to an object
prototype, all instances of that object are updated to include the prototype.

If you try to write to a property that was assigned through a prototype, a new
variable will be created for the newly assigned value. This value will be used for
the value of this instance of the object's property. All other instances of the object
will still refer to the prototype for their values. If, for the sake of this example,
we assume that joe is a special Rectangle, whose area is equal to three times its
width plus half its height, we can modify joe as follows.
joe.area = function joe_area()
{
 (this.width * 3) + (this.height/2);
}

This fragment creates a value, which in this case is a function, for joe.area that
supercedes the prototype value. The property sally.area is still the default
value defined by the prototype. The instance joe uses the new definition for its

for/in
The for/in statement is a way to loop through all of the properties of an object,
even if the names of the properties are unknown. The statement has the following
form.
for (var property in object)
{
 DoSomething(object[property]);
}

where object is the name of an object previously defined in a script. When using
the for . . . in statement in this way, the statement block will execute once for
every property of the object. For each iteration of the loop, the variable property
contains the name of one of the properties of object and may be accessed with
"object[property]". Note that properties that have been marked with the
DontEnum attribute are not accessible to a for . . . in statement.

milar to the ECMAScript for/in loop. The
important difference is that a for/in loop does not enumerate properties that have
DONT_ENUM as part of their attributes (
SElib.getObjectProperties() includes them in the array that it returns.
See

with
The with statement is used to save time when working with objects. It lets you
assign a default object to a statement block, so you need not put the object name
in front of its properties and methods. The object is automatically supplied by the
interpreter. The following fragment illustrates using the
with (Clib)
{
 printf("I am a camera");
 srand();
 xxx = rand() % 5;
 putchar(xxx);
}

The Clib methods,
the sample above are called as if they had been written with Clib prefixed. All
code in the block following a with statement seems to be treated as if the
methods associated with the object named by the with statement were global
functions. Global functions are still treated normally, that is, you do not need to
prefix "global." to them unless you are distinguishing between two like- named
functions common to both objects.

If you were to jump, from within a with statement, to another part of a script, the
with statement would no longer apply. In other words, the with statement only
applies to the code within its own block, regardless of how the interpreter
accesses or leaves the block.

You may not use p into or out of the middle of a with
statement block.

_construct(...)

SElib.getObjectProperties() is si

global.setAttributes()), whereas

Object propertyIsEnumerable().

Clib object.

Clib.printf(), Clib.srand(), Clib.rand(), and Clib.putchar(), in

goto and labels to jum

Nombas ScriptEase ISDK/Java 5.01 141

This method is called whenever a new object is created with the new operator.
The object will have been already created and passed as the this variable to the
.construct() method.

_call(...)
The call function is called whenever an object method is called. Whatever
parameters are passed to the original function will be passed to the call()
function.

The following example creates an Annoying object that beeps whenever it
retrieves the value of a property.
function myget(prop)
{
 System.beep();
 return this[property];
}

var Annoying = new Object;

Annoying.get = myget;

Note that the System.beep() method is used only for this example and must be
explicitly created for actual use.

Nombas ScriptEase ISDK/Java 5.01 142

ScriptEase versus C language
This section is primarily for those who already know how to program in C,
though novice programmers can learn more about the Clib and SElib objects and
C concepts by reading it. The emphasis is on those elements of ScriptEase that
differ from standard C. Most of the pertinent differences involve the

who are not familiar with C should first
read the section on ScriptEase JavaScript.

The assumption here is that readers of this section already know C. Thus, only
those aspects of the C portion of ScriptEase that differ from C are described. If
something is not mentioned here, ScriptEase follows standard C behavior. While
in this section on the differences from C, the term ScriptEase is used for the
portion of ScriptEase that implements the standard C library and ScriptEase
additions to that library. Almost all of the implementation of C in ScriptEase
involves the use of Clib objects, SElib objects, or CString. Thus, references to
ScriptEase as the C portion of ScriptEase usually involve Clib, SElib, or CString.

Deviations from C result from following several principles:

• simplicity
• power
• safety

The C portion of ScriptEase is different from C where changes make ScriptEase
more convenient for scripting, writing small programs, and entering command
line code or where unaltered C rules encourage coding that is potentially unsafe.
Keep in mind, that most issues involved in this section involve the use of Clib,
SElib, and CString.

The C portion of ScriptEase is C without type declarations and pointers. If you
already know C and can forget these two aspects of C while using ScriptEase,
then you already know the C portion of ScriptEase. If you were to take C code
and delete all the lines, code words, and symbols that either declare data types or
explicitly point to data, then you would be left with code that would work with
Clib, SElib, and CString. Though you would be altering source code, you would
not be removing capabilities.

The most basic idea underlying this section is that the C portion of ScriptEase is
C without type declarations and pointers.

Data types in C and SE

 Clib object,
SElib object, and CString object. Users

ScriptEase uses the same data types as JavaScript.

Automatic type declaration
There are no type declarations nor type castings as found in C. Types are
determined from context. In the statement, var i = 6, the variable i is a
number type. For example, the following C code:
int max(int a, int b)
{

Nombas ScriptEase ISDK/Java 5.01 143

Nombas ScriptEase ISDK/Java 5.01 144

consecutive memory locations. The following C declaration:
char c[3][3]; // this is the C version

 int result;
 result = (a < b) ? b : a;
 return result;
}

could be converted to the following ScriptEase code:
Clib.max(a, b)
{
 var result = (a < b) ? b : a;
 return result;
}

The code could be made even more like C by using a with statement as in the
following fragment.
with (Clib)
{
 max(a, b)
 {
 var result = (a < b) ? b : a;
 return result;
 }
}

A with statement can be used with large blocks of code which would allow Clib
and SElib methods to be called like C functions. C programmers will appreciate
this ability. Other users who decide to use the extra power of C functions will
come to appreciate this ability.

Array representation
This section on the representation of arrays in memory only deals with automatic
arrays which are part of the C portion of ScriptEase. JavaScript uses constructor
functions that create instances of JavaScript arrays which are actually objects
more than arrays. Everything said in this section is about automatic arrays
compared to C arrays. The methods and functions used to work with JavaScript
constructed arrays and ScriptEase automatic arrays are different. The following
fragment creates a JavaScript array.
var aj = new Array();

The following line creates an automatic array in ScriptEase.
var ac[3][3];

The two arrays are different entities that require different methods and functions.
For example, the property aj.length provides the length of the aj array, but the
function getArrayLength(ac)provides the length of the ac automatic array.
When the term array is used in the rest of this section, the reference is to an
automatic array. JavaScript arrays are covered in the section on ScriptEase
JavaScript.

Arrays are used in ScriptEase much like they are in C, except that they are stored
differently. A single dimension array, for example, an array of numbers, is stored
in consecutive bytes in memory, just as in C, but arrays of arrays are not in

indicates that there are nine consecutive bytes in memory. In ScriptEase a similar
statement such as the following:
var c[2][2] = 'a'; // this is the ScriptEase version

indicates that there are at least three arrays of characters, and the third array of
arrays has at least three characters in it. Though the characters in c[0] and the
characters in c[1] are in consecutive bytes, the two arrays c[0] and c[1] are not
necessarily adjacent in memory.

Automatic array allocation
Arrays are dynamic, and any index, positive or negative, into an array is always
valid. If an element of an array is referenced, then ScriptEase ensures that such
an element exists. For example, if a statement in a script is:
var foo[4] = 7;

then ScriptEase makes an array of 5 integers referenced by the variable foo. If a
later statement refers to foo[6] then ScriptEase expands foo, if necessary, to
ensure that the element foo[6] exists. The same is true for negative indices.
When foo[- 10] is referenced, foo is grown in the negative direction if necessary,
but foo[4] still refers to the initial 7. Arrays can be of any order of dimensions,
thus foo[6][7][34][- 1][4] is a valid variable or array.

Automatic and JavaScript Arrays
C style automatic arrays have just been discussed. Perhaps some simple and
direct comparisons of the two different kinds of arrays would be helpful.

The following lines of code create an automatic array of 3 elements:
var a;
a[0] = 0;
a[1] = "one";
a[2] = 2;

The following line of code creates an automatic array consisting of objects that
have information about files in the root directory of drive C. See

 the C library objects, Clib and SElib,
return automatic arrays.
var a = SElib.directory("c:*.*");

The following two lines of code both produce identical JavaScript arrays of 3
elements each.
var a = new Array(0, "one", 2);
var a = [0, "one", 2];

The following lines of code also produce a JavaScript array which is identical to
the two immediately preceding arrays:
var a = new Array();
a[0] = 0;
a[1] = "one";
a[2] = 2;

SElib.directory(). Several functions from

Nombas ScriptEase ISDK/Java 5.01 145

The elements of automatic and JavaScript arrays are accessed in the same way
using indices, for example:
a[3] = "three";
Screen.writeln(a[3]);

These lines behave the same for both automatic and JavaScript arrays. But what
are some of the differences? The following fragment:
var aa;
aa[0] = 0;
aa[1] = "one";

var ja = [0, "one"];

Screen.writeln(typeof(aa));
Screen.writeln(typeof(ja));

Screen.writeln(aa._class);
Screen.writeln(ja._class);

results in the following display:
object
object
Object
Array

which shows that both automatic and JavaScript arrays are of type object. But
automatic arrays belong to the Object class and JavaScript arrays belong to the
Array class. See array.jsh - arrays and objects for more information on the
differences. The Array class inherits the properties of the Object class but the
Object class does not have the properties of the Array class. What does that
mean?

Instances of both automatic arrays and JavaScript arrays may use the properties
and methods of the Object class, but only JavaScript arrays may use the
properties of the Array class. For example and using the two arrays defined
immediately above, the length property of the Array class may only be used
with the JavaScript array ja, that is, var len = ja.length is valid but var
len = aa.length is an error. To get the length of aa, an automatic array, the
function ust be used with it. As just explained, the
JavaScript array ja may also be used with the function. That is, both of the
following are valid: getArrrayLength(aa) and getArrrayLength(ja).

Having both types of arrays is a result of providing the C standard library in the
Clib and SElib objects. If you want to simplify matters use the Object convert()
method to convert arrays from one class to the other. In general, if you convert
automatic arrays to JavaScript arrays and work only with JavaScript arrays, your
scripting will be simpler and more powerful. But, remember, if you are only
going to do simple things with arrays, then working with either class of array is
quick and simple.

Literal strings

global.getArrayLength() m

A literal string in ScriptEase is any array of characters, that is, a string, appearing
in source code within double, single, or back quotes. Back quotes are sometimes

Nombas ScriptEase ISDK/Java 5.01 146

referred to as back-ticks. The following lines show examples of literal strings in
ScriptEase:
"dog" // literal string (double quote)
'dog' // literal string (single quotes)
`dog` // literal string (back- ticks)
{'d','o','g','\0'} // not a literal string, rather
 // an array initialization

Literal strings have special treatment for certain ScriptEase operations for the
following reasons.

• To protect literal string data from being overwritten accidentally
• To reduce confusion for novice programmers who do not think of strings as

arrays of bytes
• To simplify writing code for common operations, for example, the statement:

TestStr == "MYLONGPASSWORD"

is simpler than :
Clib.strcmp(TestStr, "MYLONGPASSWORD").

In general, literal strings adhere to the two following rules.

• Comparisons are intrinsically handled by
• Assignment and passing of literal strings is done by making copies of the

literal string

Literal strings and assignments
When a literal string is assigned to a variable, a copy is made of the string, and
the variable is assigned the copy of the literal string. For example, the following
code:
for (var i = 0; i < 3; i++)
{
 var str = "dog";
 Clib.strcat(str, "house");
 Clib.puts(str);
}

results in the following output:
doghouse
doghouse
doghouse

A strict C interpretation of this code would not only overwrite memory, but
would also generate the following output:
doghouse
doghousehouse
doghousehousehouse

Literal strings and comparisons
If both sides of a comparison operator are strings, and at least one of them is a
literal string, then the comparison is performed as if

Clib.strcmp()

Clib.strcmp() were being

Nombas ScriptEase ISDK/Java 5.01 147

used. If one or both variables are literal strings, then the following translation of
the comparison operation is performed.
lvar operator rvar Clib.strcmp(lvar, rvar) operator 0

The following examples demonstrate how literal strings follow the logic of
Clib.strcmp().
if (animal == "dog") // if (Clib.strcmp(animal, "dog") == 0)
if (animal < "dog") // if (Clib.strcmp(animal, "dog") < 0)
if ("dog" <= animal) // if (Clib.strcmp("dog", animal) <= 0)

In ScriptEase, the following fragment:
var animal = "dog";
if (animal == "dog")
Clib.puts("hush puppy");

displays:
"hush puppy"

Literal strings and parameters
When a literal string is a parameter to a function, it is passed as a copy, that is, by
value. For example, the following code:
for (var i = 0; i < 3; i++)
{
 var str = Clib.strcat("dog", "house");
 Clib.puts(str)
}

results in the following output:
doghouse
doghouse
doghouse

Literal strings and returns
When a literal string is returned from a function by a return statement, it is
returned as a copy of the string. The following code:
for (var i = 0; i < 3; i++)
{
 var str = Clib.strcat(dog(),"house");
 Clib.puts(str)
}

function dog()
{
 return "dog";
}

results in the following output:
doghouse
doghouse
doghouse

Nombas ScriptEase ISDK/Java 5.01 148

Literal Strings and switch statements

If either a switch expression or a case expression is a literal string, then the case
statement match is based on a string comparison using
following fragment illustrates.
switch(Clib.strlwr(temp, argv[1]))
{
case "add":
{
 DoTheAddThing();
 break;
}
case "remove":
{
 DoTheRemoveThing();
 break;
}
default:
{
 Clib.puts("Whaddya want?");
}
}

Structures

Clib.strcmp() logic. The

Structures are created dynamically, and their elements are not necessarily
contiguous in memory. When ScriptEase encounters a statement such as:
foo.animal = "dog"

it creates a structure element of foo that is referenced by "animal" and that is an
array of characters. The "animal" variable becomes an element of the "foo"
variable. Though foo, in this example, may be thought of and used as a structure
and animal as an element, in actuality, foo is a JavaScript object and animal is a
property. The resulting code looks like regular C code, except that there is no
separate structure definition anywhere. The following C code:
struct Point
{
 int Row;
 int Column;
}

struct Square
{
 struct Point BottomLeft;
 struct Point TopRight;
}

void main()
{
 struct Square sq;
 int Area;
 sq.BottomLeft.Row = 1;
 sq.BottomLeft.Column = 15;
 sq.TopRight.Row = 82;
 sq.TopRight.Column = 120;
 Area = AreaOfASquare(sq);
}

int AreaOfASquare(struct Square s)

Nombas ScriptEase ISDK/Java 5.01 149

Nombas ScriptEase ISDK/Java 5.01 150

 ...
}

{
 int width, height;
 width = s.TopRight.Column - s.BottomLeft.Column + 1;
 height = s.TopRight.Row - s.BottomLeft.Row + 1;
 return(width * height);
}

can be easily converted into ScriptEase code as shown in the following.
function main()
{
 var sq.BottomLeft.Row = 1;
 sq.BottomLeft.Column = 15;
 sq.TopRight.Row = 82;
 sq.TopRight.Column = 120;
 var Area = AreaOfASquare(sq);
}

function AreaOfASquare(s)
{
 var width = s.TopRight.Column - s.BottomLeft.Column + 1;
 var height = s.TopRight.Row - s.BottomLeft.Row + 1;
 return(width * height);
}

Structures can be passed, returned, and modified just as any other variable. Of
course, structures and arrays are different and independent, which allows a
statement like the following.
foo[8].animal.forge[3] = bil.bo

Some operations, such as addition, are not defined for structures.

Passing variables by reference
By default, lvalues in ScriptEase are passed to functions by value (that is, the
function cannot alter the lvalue) . But if a variable is declared in a function with
the "&" symbol then it is passed by reference. I a function alters a pass-by-
reference (i.e. &argument) variable, then the variable passed as an argument by
the calling routine is altered also, if it is an lvalue. So instead of the following C
code which uses address and pointer operators:
main()
{
 CQuadrupleInPlace(&i);
 ...
}

void CQuadrupleInPlace(int *j)
{
 *j += 4;
}

a ScriptEase conversion could be:
function main()
{
 ...
 QuadrupleInPlace(i);

Nombas ScriptEase ISDK/Java 5.01 151

case statements which are valid in ScriptEase.
switch(i)

function QuadrupleInPlace(&j)
{
 j += 4;
}

The following calls to QuadrupleInPlace() are valid in ScriptEase, but the values
passed as arguments are not changed after QuadrupleInPlace() is called. Why?
None of the arguments being passed are lvalues.
QuadrupleInPlace(8);
QuadrupleInPlace(i+1);
QuadrupleInPlace(8+1);

Pointer operator * and address
operator &
No pointers. None. The * symbol never means pointer in ScriptEase, which
might cause seasoned C programmers to gasp in disbelief. But the situation turns
out not to be such a big deal. The pointer operator is easily replaced. For
example, *var can be replaced by var[0].

Because it is common in C to use address arithmetic on string, ScriptEase
providces the CString object, which provides most of the array and address
functionaliity of a C string pointer. The following function displays the string in
the variable s. In the first display line shows:
abcde

The second display line, which uses address arithmetic "s+2" shows:
cde

function main(argc, argv)
{
 var s = new CString("abcde");
 Screen.writeln(s);
 Screen.writeln(s+2);
}

Remember that in functions, all variables, except primitive data types, are passed
by reference. ScriptEase adds the address operator & for primitive data types. If
you want to pass a primitive data type by reference in a JavaScript function, use
the address operator in the parameter list. For example,
function SetNumbers(&n1, n2, &n3, &n4)
{
 n1 = n2 = n3 = n4 = 5;
}

Case statements
Case statements in a switch statement may be constants, variables, or other
statements that can be evaluated to a value. The following switch statement has

{
 case 4:
 case foe():
 case "thorax":
 case Math.sqrt(foe()):
 case (PILLBOX * 3 - 2):
 default:
}

As described in the section on literal strings above, if either a switch expression
or a case expression is a literal string, then any comparisons are based on the
logic of is, as if the comparisons were
!Clib.strcmp(switch_expr, case_expr).

Initialization code which is external to

Clib.strcmp(), that

functions
All code not inside a function block is interpreted before main() is called and
can be thought of as initialization code. When a script has initialization code
outside of functions and code inside of functions, it shares characteristics of both
batch and program scripts. Thus, the following ScriptEase code:
Clib.printf("first ");

function main()
{
 Clib.printf("third.");
}

Clib.printf("second ");

results in the following output:
first second third.

Unnecessary tokens
If symbols are redundant, they are usually unnecessary in ScriptEase which
allows more flexibility in writing scripts and is less onerous for users not trained
in C. Semicolons that end statements are usually redundant and do not do
anything extra when a script is interpreted. C programmers are trained to use
semicolons to end statements, a practice that can be followed in ScriptEase.
Indeed, some programmers think that the use of semicolons in ScriptEase and
JavaScript is a good to be pursued. Many people who are not trained in C wonder
at the use of redundant semicolons and are sometimes confused by their use. The
use of semicolons is personal. If a programmer wants to use them, then he
should, but if he does not want to, then he should not.

In ScriptEase the two statements, "foo()" and "foo();" are identical. It does
not hurt to use semicolons, especially when used with return statements, such as
"return;". But widespread or regular use of semicolons simply is not
necessary. Similarly, parentheses, "(" and ")", are often unnecessary. For
example, the following fragment is valid and results in both of the variables, n
and x, being equal to 7.
var n = 1 + 2 * 3 var x = 2 * 3 + 1

Nombas ScriptEase ISDK/Java 5.01 152

Nombas ScriptEase ISDK/Java 5.01 153

such changes. C code is on the left and can be replaced by the ScriptEase code on
the right.

The following fragment is identical and is clearer, but it requires more typing
because of the addition of redundant tokens.
var n = 1 + (2 * 3); var x = (2 * 3) + 1;

The fragments could be rewritten to be:
var n = 1 + 2 * 3
var x = 2 * 3 + 1

and:
var n = 1 + (2 * 3);
var x = (2 * 3) + 1;

Which fragment is better? The answer depends on personal taste. Efforts to
standardize programming styles over the last three decades have been abysmal
failures, not unlike efforts to control the Internet.

Macros
Function macros are not supported. Since speed is not of primary importance in a
scripting language, a macro gains little over a function call. Macros simply
become functions.

Token replacement macros
The #define preprocessor directive, which can be thought of and used as a macro,
is supported by ScriptEase. As an example, the following token replacement is
recognized and implemented during the preprocessing phase of script
interpretation.
#define NULL 0

Back quote strings
Back quotes are not used at all for strings in the C language. The back quote
character, `, also known as a back- tick or grave accent, may be used in
ScriptEase in place of double or single quotes to specify strings. However, strings
that are delimited by back quotes do not translate escape sequences. For example,
the following two lines describe the same file name:
"c:\\autoexec.bat" // traditional C method, which is also
 // valid in ScriptEase
`c:\autoexec.bat` // alternative ScriptEase method

Converting existing C code to
ScriptEase
Converting existing C code to ScriptEase is mostly a process of deleting
unnecessary text. Type declarations, such as int, float, struct, char, and
[], should be deleted. The following two columns give examples of how to make

C ScriptEase
int i; var i; // or nothing
int foo = 3; var foo = 3;
struct var st; // no struct type
{ // Simply use st.row
 int row; // and st.col
 int col; // when needed.
}
char name[] = "George"; var name = "George";
int goo(int a, char *s, int c); var goo(a, buf, c);
int zoo[] = {1, 2, 3}; var zoo = {1, 2, 3};

Another step in converting C to ScriptEase is to search for pointer and address
operators, * and &. Since the * operator and & operator work together when the
address of a variable is passed to a function, these operators are unnecessary in
the C portion of ScriptEase. If code has * operators in it, they usually refer to the
base value of a pointer address. A statement like "*foo = 4" can be replaced by
"foo[0] = 4".

 Finally, the - > operator in C which is used with may be replaced by
a period for values passed by address and then by reference.

structures

Nombas ScriptEase ISDK/Java 5.01 154

Nombas ScriptEase ISDK/Java 5.01 155

will not be allowed to call any insecure functions. In this function, you explicitly
specify which insecure functions the child will be allowed to call. You do this by

Security
As a scripting language, ScriptEase provides the power to completely control a
computer system. But there are times when this power can be dangerous. Many
applications, such as those using distributed scripting, might need to run scripts
that you do not want to have access to all of the power of ScriptEase. You do not
want these scripts to delete files on your machine, read and transmit important
data to a remote machine, execute arbitrary system programs, or any other such
activities. ScriptEase security allows you to limit scripts so they cannot do these
things.

ScriptEase security works by dividing functions on the system into secure
functions, those which can perform no dangerous actions, and insecure
functions, those which can perform dangerous activities. When you execute a
script, you can attach a security manager to it. This manager will determine
which insecure functions can be called.

If the script tries to call an insecure function which the manager does not allow, it
will not call the function but will generate a security error. By using ScriptEase
security, you can run scripts you trust and give them full access to dangerous
functions, such as Clib.system() and Clib.remove(), while denying access
to these same functions to other scripts you do not trust.

Writing a Security Manager
Whenever you wish to interpret a script, via the API using jseInterpret() or
in a script using SElib.interpret(), you can attach a security manager to the
child script that you are running. As long as that child script calls other functions
only within that script, it is allowed to do so. If it tries to call an insecure
function, your security gets called. Obviously, insecure wrapper functions are
always checked.

In the case of a script using SElib.interpret() to interpret a child script, that
child may be able to try to call functions in the parent. Since the security you
added only applies to the child script, the functions in your original script are also
considered insecure to the child. The child must get permission to call them
exactly like it would need to get permission to call an insecure wrapper function
directly.

You can think of your security manager as a big wall with a heavily guarded
door. As long as the script stays on its side of the wall, it is fine. The parent script
and all wrapper functions are on the other side of the wall. If the child script
wants to get access to them, it must convince the guards to let it through.

Let's look at the pieces that make up these security guards.

jseSecurityInit
This function is the main security function. It is run before the script that it is
protecting is run, and it sets up the security the child is going to be run under. It
specifies which functions the child will be allowed to call. By default, the child

calling the setSecurity() method, which is a method of all ScriptEase
functions.

In case that is confusing, a quick example of a jseSecurityInit function
should clear it up:
function jseSecurityInit(security_var)
{
 Clib.remove.setSecurity(jseSecureAllow);
}

This particular security initialization function is written in ScriptEase script.
However, you can also implement all of these functions using the ScriptEase API
and wrapper functions. We will implement the examples as scripts for clarity.
The first thing you notice about the function is that it takes a parameter, we have
named it security_var. We did not use it in this example. This parameter is
the "security variable" described below."

The body of the function usually lists which functions are to be allowed. Notice
that we call the setSecurity() method of the particular function we want to
allow. This method takes one parameter, the security state of the function.
jseSecureAllow specifies that this function is allowed to be called.

There are two other values we could have used instead. The value
jseSecureReject causes calls to the function to fail. This is the default for all
functions, so it is usually redundant to specify it. However, if setSecurity() is
called more than once for the same function, the last call takes precedence. You
can use this value to undo allowing access to a particular function.

The final value is jseSecureGuard, which says that any time this function is
called, we must first call the jseSecurityGuard function to determine if the
call will be allowed. This function is described below.

Note: The setSecurity() method can only be called in a security initialization
function. Trying to call it at other times generates errors.

jseSecurityTerm
Whenever you have an initialization function, you have a corresponding
termination function. Like jseSecurityInit, this function gets a single
parameter, the security variable (described below.) This function is rarely
needed, and you can simply not specify it most of the time. It is included so that
you can clean up the security variable before exiting. You do not need to unset
the setSecurity() calls done, as the engine knows that they go away when
they are no longer used. The security termination function looks like this:
function jseSecurityTerm(security_var)
{
 /* do any necessary cleanup */
}

This function is not usually called until the end of the program (not just the end
of the script.) Why is this? For ISDK developers, if you have read the advanced
concepts chapter, you know that all of the functions in a jseInterpret() stick
around in the global object, even after the jseInterpret() call itself is

Nombas ScriptEase ISDK/Java 5.01 156

Nombas ScriptEase ISDK/Java 5.01 157

function after the two parameters it always gets. The first parameter to the called
function is the third to security guard, the second we receive as our fourth, and so

finished. This is why you can load functions using jseInterpret() and later
call them. Whatever security they had when they were created is not forgotten.

All functions remember the security in effect when they were created, and that
applies if they are again called later. So, the security termination function is not
actually called until all of the functions have gone away, which happens at the
end of the program when the ScriptEase engine cleans up everything.

jseSecurityGuard
Usually it is enough to specify which functions you want to allow to be called in
the jseSecurityInit function and leave it at that. There can be cases in which
you want to allow a function to be called with certain parameters but reject it
with others. For instance, you may want to limit creating sockets to certain ports
or limit opening files to certain filenames. You specify jseSecureGuard for the
setSecurity() options for these functions, and before they can be called, your
jseSecurityGuard function will first be called to validate this call.

Here is an example:
function jseSecurityGuard(security_var, func, filename)
{
 if(func==Clib.fopen)
 {
 /* get the full path so the user can't trick us with
 * something like: 'c:\\temp\\..\\windows\\win.ini'
 */
 var actualname = SElib.fullpath(filename);

 /* We only want to allow files in this directory
 *to be opened.
 */
 return Clib.strnicmp("c:\\temp\\",actualname,8)==0;
 }
 else
 {
 return false;
 }
}

This function, like the other two, gets the security variable as its first parameter.
Again, we will describe that shortly. The second parameter is the actual function
being called. In this example, we compare it to Clib.fopen() so that we can
validate a call to Clib.fopen(). The security guard function must return true
to allow the call or false to disallow it. In this case, we return false if it is not
Clib.fopen(). Presumably, we only label Clib.fopen() as
jseSecureGuard, so only Clib.fopen() will be using this guard function.

We include the else clause because it is always a good idea to cover all bases. If
it is something we do not expect, we just say no. This is good programming
practice in general. If the parameters are not what you expect, even if you think it
is impossible for them not to be, still do something sensible even if that turns out
not to be the case.

Notice that this function has a third parameter, filename. All of the parameters
that are being passed to the called function are also passed to the security guard

on. This allows us to examine the parameters that the function will get when
deciding if we want to allow the call. In fact, there would be little point in not
examining the parameters. If we are always going to reject or accept a particular
call regardless of the parameters, we can instead just set that up in the
jseSecurityInit function.

 Perceptive readers will note that Clib.fopen() actually takes two parameters,
but we have only named one of them. In JavaScript, you can pass extra
parameters to script functions, more than are named in the parameter list. These
parameters are still there and can be accessed using the arguments object. In
this case, filename is the same as arguments[2], and we could have referred
to it that way. The file mode parameter to Clib.fopen() will also be passed to
us. We can refer to it as arguments[3], or we can name it in the parameter list
if we need to check it as well.

This example checks the name and only allows file access in the C:\temp\
directory. We could limit it in any way we choose, this is just one possibility.

securityVariable
We mentioned above that each function gets a security variable passed to it. Each
security manager has a single variable associated with it. You can specify this
when you specify your security functions (see below for specifying security).
Alternately, if you do not, a blank ScriptEase object is created (as if calling new
Object()) and used. This variable cannot be accessed by the script being run,
but it is passed to each security function whenever it is called. This allows you to
store data needed to implement your security and keep it safe from the script
being run.

Specifying Security
The ScriptEase API call jseInterpret() has among its settings
jseNewSecurity. If you turn this on, then the script being run will have
security applied to it. If you leave it off, no security applies and all functions can
be called. The four security items we just finished discussing correspond to the
four fields of the jseExternalLinkParameters structure of the same name.
Before you interpret the script, you use jseGetExternalLinkParameters()
to get the parameters structure, fill in these fields, then call jseInterpret()
with the jseNewSecurity flag turned on. You must fill in the
jseSecurityInit function. If you do not, the jseNewSecurity flag will be
ignored.

Since the parameters are jseVariables, you set them to any function you like. You
can use jseCreateWrapperFunction() to create a wrapper function to do the
security tasks. In the example above, we used script examples. ScriptEase
Desktop implements security this way. The three functions are put in a script.
You tell ScriptEase Desktop the name of the script using the command line
parameter /secure=<security script name>. ScriptEase Desktop
interprets that script first, picks out the security functions, and uses them when it
interprets the script you are really interested in. The functions in the security
script must be given the names we described above.

Nombas ScriptEase ISDK/Java 5.01 158

When you interpret a script from within a script, using SElib.interpret(),
you can also specify the security for that child script. See the manual description
of you do this.

Wrapper Functions And Security
SElib.interpret() for details on how

Wrapper functions are insecure because they are labeled that way. When you
write your own wrapper functions and add them using jseAddLibrary(), you
get to label them as either secure or insecure. Remember, if there is any possible
way the function could be misused, make it insecure. If you are in doubt about
whether a particular function should be labeled secure or insecure, choose
insecure.

When you are writing a wrapper function, it is possible for it to use
jseCallFunction() or jseInterpret() to execute more code. These calls
are affected by security. This allows security to propagate. For instance, the
ECMAScript function eval() executes a text string as script code exactly like
the text string appeared directly in the script. In this case, the wrapper acts just as
a pass through, and the code it executes should follow all of the standard security
rules. In fact, the ECMAScript eval() function itself is secure; whatever text it
executes has the same security as what was already executing. ScriptEase uses
this model when you use these two API calls. As a result, the following behavior
applies:

When calling a function using jseCallFunction(), the call is treated as if the
wrapper function's caller was making the call. This means that the calling script
function will need to get approval to call the new function. Typically, a wrapper
function that just turns around and uses jseCallFunction() is itself secure.

jseInterpret() has different behavior depending on the wrapper function
itself. If the wrapper function is insecure, then the script run with
jseInterpret() starts with no security. If the wrapper function is secure, then
jseInterpret() starts with the same security as the calling function.

So, for instance, ECMAScript eval() is secure as we already mentioned. Thus,
when it runs a new script, that script has the existing security restrictions still on
it. If the function was labeled insecure, then it has already passed a security check
to be able to call it, and it can continue to do dangerous things, so any scripts it
interprets are likewise at this high level of security. jseInterpret() allows
security to be added using the jseNewSecurity flag. This is on top of whatever
security it already has as specified above.

Sample Script
Here is a sample ScriptEase Desktop security script. If you use it, then the
desktop scripts will not be allowed to use any insecure functions except a few
file-related ones. In addition, Clib.fopen() will only be allowed to open files
in the C:\temp\ directory.
function jseSecurityInit(security_var)
{
 /* allow basic file manipulations, but nothing fancy, and
 * make sure to examine all open calls very carefully.

Nombas ScriptEase ISDK/Java 5.01 159

 */
 Clib.fopen.setSecurity(jseSecureGuard);
 Clib.fclose.setSecurity(jseSecureAllow);
 Clib.fprintf.setSecurity(jseSecureAllow);
 Clib.fread.setSecurity(jseSecureAllow);
 Clib.fwrite.setSecurity(jseSecureAllow);
}

function jseSecurityGuard(security_var, func, filename)
{
 /* we only guard the fopen call, so this should be it */
 Clib.assert(security_var==Clib.fopen);

 /* get the full path so the user can't trick us with something
 * like: 'c:\\temp\\..\\windows\\win.ini'
 */
 var actualname = SElib.fullpath(filename);

 /* We only want to allow files in this directory to be opened.
 */
 return Clib.strnicmp("c:\\temp\\",actualname,8)==0;
}

Nombas ScriptEase ISDK/Java 5.01 160

Internal Objects

See:

• Global object
• Array object
• Blob Object
• Boolean Object
• Buffer Object
• Clib Object
• Date Object
• Dos Object
• Function Object
• Math Object
• Number Object
• Object Object
• RegExp Object
• SElib Object
• String Object
• Unix Object

Nombas ScriptEase ISDK/Java 5.01 161

Nombas ScriptEase ISDK/Java 5.01 163

SYNTAX
DESCRIPTION: This property refers to the number of parameters passed to the

Global object
The properties and methods of the global object may be thought of as global
variables and functions. The object identifier global is not required when
invoking a global method or function. Indeed, the object name generally is not
used. For example, the following two if statements are identical, but the first
one illustrates how global functions are usually invoked.
if (defined(name))
 Screen.writeln("name is defined");

if (global.defined(name))
 Screen.writeln("name is defined");

The following two lines of code are also equivalent.
var aString = ToString(123)
var aString = global.ToString(123)

Remember, global variables are members of the global object. To access global
properties, you do not need to use an object name. The exception to this rule
occurs when you are in a function that has a local variable with the same name as
a global variable. In such a case, you must use the global keyword to reference
the global variable.

Most of the global methods, functions, described in this section are defined in
the ECMAScript standards. A few are unique additions to ScriptEase. In other
words, they are not part of the ECMAScript standard, but they are useful. Avoid
using the unique functions in a script if it will be used with a JavaScript
interpreter that does not support these few unique functions.

Conversion or casting
Though ScriptEase does well in automatic data conversion, there are times when
the types of variables or data must be specified and controlled. Each of the
following casting functions, the functions below that begin with "To", has one
parameter, which is a variable or piece of data, to be converted to or cast as the
data type specified in the name of the function. For example, the following
fragment creates two variables.
var aString = ToString(123);
var aNumber = ToNumber("123");

The first variable aString is created as a string from the number 123 converted to
or cast as a string. The second variable aNumber is created as a number from the
string "123" converted to or cast as a number. Since aString had already been
created with the value "123", the second line could also have been:
var aNumber = ToNumber(aString);

The type of the variable or piece of data passed as a parameter affects the returns
of some of these functions.

global._argc
: _argc

main() function of a script. The name of the script is always the
first parameter, so if _argc == 1, then the script received no
arguments. See the or more information on
argc and the main() function. General programming practice
uses argc, a parameter to the main()function rather than
_argc.

main() function f

main() function fo

SEE: main() function, global._argv
EXAMPLE: function main(argc, argv)

{
 // At this point, unless deliberately changed
 // by special programming, _argc == argc
}

global._argv
SYNTAX: _argv
DESCRIPTION: This property is an array of strings. Each string is a parameter

passed to the main() function. The value of argv[0] is always
the name of the script being called. The first parameter passed to
the script is in argv[1]. See the r more
information on argc, argv, and the main() function. General
programming practice uses argv, a parameter to the
main()function rather than _argv.

SEE: main() function, global._argc

global object methods/functions
global.defined()
SYNTAX: defined(value)
WHERE: value - a value or variable to check to see if it is defined.
RETURN: boolean - true if the value has been defined, else false
DESCRIPTION: This function tests whether a variable, object property, or value

has been defined. The function returns true if a value has been
defined, or else returns false. The function defined() may be
used during script execution and during preprocessing. When
used in preprocessing with the directive #if, the function
defined() is similar to the directive #ifdef, but is more
powerful. The following fragment illustrates three uses of
defined().

SEE: global.undefine(), in operator, undefined
EXAMPLE: var t = 1;

#if defined(_WIN32_)
 Screen.writeln("in Win32");
 if (defined(t))
 Screen.writeln("t is defined");
 if (!defined(t.t))
 Screen.writeln("t.t is not defined");
#endif

Nombas ScriptEase ISDK/Java 5.01 164

// The first use of defined() checks whether a value
// is available to the preprocessor
// to determine which platform is running the script.
// The second use checks a variable "t".
// The third use checks an object "t.t"

global.escape()
SYNTAX: escape(str)
WHERE: str - with special characters that need to be handled specially,

that is, escaped.
RETURN: string - with special characters escaped or fixed so that the string

may be used in special ways, such as being a URL.
DESCRIPTION: The escape() method receives a string and escapes the

special characters so that the string may be used with a
URL. This escaping conversion may be called encoding.
All uppercase and lowercase letters, numbers, and the
special symbols, @ * + - . /, remain in the string. All other
characters are replaced by their respective unicode
sequence, a hexadecimal escape sequence. This method is
the reverse of

SEE: global.unescape(), String escape()
EXAMPLE: escape("Hello there!");

// Returns "Hello%20there%21"

 global.unescape().

global.eval()
SYNTAX: eval(expression)
WHERE: expression - a valid expression to be parsed and treated as if it

were code or script.
RETURN: value - the result of the evaluation of expression as code.
DESCRIPTION: Evaluates whatever is represented by the parameter expression.

If expression is not a string, it will be returned. For example,
calling eval(5) returns the value 5.

If expression is a string, the interpreter tries to interpret the string
as if it were JavaScript code. If successful, the method returns
the last variable with which was working, for example, the return
variable. If the method is not successful, it returns the special
value, undefined.

SEE: SElib.interpret()
EXAMPLE: var a = "who";

 // Displays the string as is
Screen.writeln('a == "who"');
 // Evaluates the contents of the string as code,
 // and displays "true",
 // the result of the evaluation
Screen.writeln(eval('a == "who"'));

global.isFinite()

Nombas ScriptEase ISDK/Java 5.01 165

SYNTAX: isFinite(number)
WHERE: number - to check if it is a finite number.
RETURN: boolean - if the parameter is or can be converted to a number,

else false.
DESCRIPTION: This method returns true if the parameter, number, is or can be

converted to a number. If the parameter evaluates as NaN,
Number.POSITIVE_INFINITY, or
Number.NEGATIVE_INFINITY, the method returns false.

SEE: global.isNaN()
EXAMPLE: if (isFinite(99)) Screen.writeln("A number");

global.isNaN()
SYNTAX: isNaN(number)
WHERE: number - a value to if it is not a number.
RETURN: boolean - true if number is not a number, else false.
DESCRIPTION: This method returns true if the parameter, number, evaluates to

NaN, "Not a Number". Otherwise it returns false.
SEE: global.isFinite()
EXAMPLE: if (isNan(99)) Screen.writeln("Not a number");

global.getArrayLength()
SYNTAX: getArrayLength(array[, minIndex])
WHERE: array - an automatic array.

minIndex - the minimum index to use.
RETURN: number - the length of an array.
DESCRIPTION: This function should be used with dynamically created arrays,

that is, with arrays that were not created using the new
operator and constructor. When working with arrays created
using the new Array() operator and constructor, use the
length property of the Array object. The length property is
not available for dynamically created arrays which must use the
functions, global.getArrayLength() and

when working with array lengths.

The getArrayLength() function returns the length of a
dynamic array, which is one more than the highest index of an
array, if the first element of the array is at index 0, which is most
common. If the parameter minIndex is passed, then it is used to
set to the minimum index, which will be zero or less. You can
use this function to get the length of an array that was not created
with the Array() constructor function.

This function and its counterpart, setArrayLength(), are
intended for use with dynamically created arrays, that is, arrays
not created with the Array() constructor function. Use the

Array()

global.setArrayLength(),

Nombas ScriptEase ISDK/Java 5.01 166

Array length

global.setAttributes() for a

global.setAttributes() for more

global.parseInt() except that it reads

property to get the length of arrays created with the
constructor function and not getArrayLength().

SEE: global.setArrayLength(), Array length
EXAMPLE: // automatic object array

var arr;
arr[0] = "zero";
arr[1] = 1;
arr[2] = 2;
Screen.writeln(getArrayLength(arr)); // 3

 // JavaScript Array object
var arr = ["zero", 1, 2]
Screen.writeln(arr.length); // 3

global.getAttributes()
SYNTAX: getAttributes(variable)
WHERE: variable - a variable identifier, name.
RETURN: number - representing the attributes set for a variable. If no

attributes are set, the return is 0. See
list of predefined constants for the attributes that a variable may
have.

DESCRIPTION: Gets and returns the variable attributes for the parameter
variable. Variable attributes may be set using the function
setAttributes(). See
information and descriptions of the attributes of variables that
can be set.

SEE: global.setAttributes()

global.parseFloat()
SYNTAX: parseFloat(str)
WHERE: str - to be converted to a decimal float.
RETURN: number - the float to which the string converts, else NaN.
DESCRIPTION: This method is similar to

decimal numbers with fractional parts. In other words, the first
period, ".", in the parameter string is considered to be a decimal
point, and any following digits are the fractional part of the
number. The method parseFloat() does not take a second
parameter.

SEE: global.parseInt()
EXAMPLE: var i = parseInt("9.3");

global.parseInt()
SYNTAX: parseInt(str[, radix])
WHERE: str - to be converted to an integer.

radix - the number base to use, default is 10.

Nombas ScriptEase ISDK/Java 5.01 167

Nombas ScriptEase ISDK/Java 5.01 168

/********************************

RETURN: number - the integer to which string converts, else NaN.
DESCRIPTION: This method converts an alphanumeric string to an integer

number. The first parameter, str, is the string to be converted,
and the second parameter, radix, is an optional number indicating
which base to use for the number. If the radix parameter is not
supplied, the method defaults to base 10, which is decimal. If the
first digit of string is a zero, radix defaults to base 8, which is
octal. If the first digit is zero followed by an "x", that is, "0x",
radix defaults to base 16, which is hexadecimal.

White space characters at the beginning of the string are ignored.
The first non-white space character must be either a digit or a
minus sign (-). All numeric characters following the string will
be read, up to the first non-numeric character, and the result will
be converted into a number, expressed in the base specified by
the radix variable. All characters including and following the
first non-numeric character are ignored. If the string is unable to
be converted to a number, the special value NaN is returned.

SEE: global.parseFloat()
EXAMPLE: var i = parseInt("9");

var i = parseInt("9.3");
// In both cases, i == 9

global.setArrayLength()
SYNTAX: setArrayLength(array[, minIndex[, length]])
WHERE: array - may be an array, buffer, or string. Though there are

multiple ways to set length on these data types,
setArrayLength() may be used on all three.

minIndex - the minimum index to use. Default is 0.

length - the length of the array to set.
RETURN: void.
DESCRIPTION: This function sets the first index and length of an array. Any

elements outside the bounds set by MinIndex and length are lost,
that is, become undefined. If only two arguments are passed to
setArrayLength(), the second argument is length and the
minimum index of the newly sized array is 0. If three arguments
are passed to setArrayLength(), the second argument, which
must be 0 or less, is the minimum index of the newly sized array,
and the third argument is the length.

SEE: global.getArrayLength(), Array length, Blob.size()
EXAMPLE: #include <string.jsh>

var arr = [4,5,6,7];
Screen.writeln(getArrayLength(arr));
setArrayLength(arr, 5);
// arr is now [4,5,6,7,,];

Nombas ScriptEase ISDK/Java 5.01 169

combining them with the or operator. For example, the flag
setting READ_ONLY | DONT_ENUM sets both of these attributes

 The examples below illustrate using
 setArrayLength() with:
 arrays
 strings
 buffers

 When appropriate alternatives exist for setting
 length, they are shown as comments.

 These examples are not 100% exhaustive, but show
 most ways to use setArrayLength().
********************************/

// Two ways to create an array
// with 5 undefined elements
var a1 = new Array();
setArrayLength(a1, 5);
//a1.length = 5 // Does the same

var a2 = [];
setArrayLength(a2, 5);
//a2.length = 5 // Does the same

// Two ways to create a string
// of five "\0" characters
var s1 = "\0".repeat(5);

var s2 = "";
setArrayLength(s2, 5);

// Three ways to create a buffer
// of five "\0" characters
var b1 = new Buffer(s1);

var b2 = new Buffer(5);

var b3 = new Buffer(5);
setArrayLength(b3, 5);
//Blob.size(b3, 5); // Does the same
//b3.length = 5; // Does the same

global.setAttributes()
SYNTAX: setAttributes(variable, attributes)
WHERE: variable - a variable identifier, name.

attributes - the attribute or attributes to be set for a variable. If
more than one attribute is being set, use the or operator, "|", to
combine them.

RETURN: void.
DESCRIPTION: This function sets the variable attributes for the parameter

variable using the parameter attributes. Variables in ScriptEase
may have various attributes set that affect the behavior of
variables. This function has no return.

The following list describes the attributes that may be set for
variables. Multiple attributes may be set for variables by

Nombas ScriptEase ISDK/Java 5.01 170

converted by this function.

• Boolean

for one variable.

• DONT_DELETE
This variable may not be deleted. If the delete operator is
used with a variable, nothing is done.

• DONT_ENUM
This variable is not enumerated when using a for/in loop.

• IMPLICIT_PARENTS
This attribute applies only to local functions and allows a
scope chain to be altered based on the __parent__ property
of the "this" variable. If this flag is set, if the __parent__
property is present, and if a variable is not found in the local
variable context, activation object, of a function, then the
parents of the "this" variable are searched backwards before
searching the global object. The example below illustrates
the effect of this flag.

• IMPLICIT_THIS
This attribute applies only to local functions. If this flag is
set, then the "this" variable is inserted into a scope chain
before the activation object. For example, if variable TestVar
is not found in a local variable context, activation object, the
interpreter searches the current "this" variable of a function.

• READ_ONLY
This variable is read-only. Any attempt to write to or change
this variable fails.

SEE: global.getAttributes()
EXAMPLE: // The following fragment illustrates the use

// of setAttributes() and the behavior affected
// by the IMPLICIT_PARENTS flag.
function foo()
{
 value = 5;
}
setAttributes(foo, IMPLICIT_PARENTS)

var a;
a.value = 4;
var b;
b.__parent__ = a;
b.foo = foo;
b.foo();

// After this code is run, a.value is set to 5.

global.ToBoolean()
SYNTAX: ToBoolean(value)
WHERE: value - to be cast as a boolean.
RETURN: boolean - conversion of value.
DESCRIPTION: The following list indicates how different data types are

same as value
• Buffer

same as for String
• null

false
• Number

false, if value is 0, +0, -0 or NaN, else true
• Object

true
• String

false if empty string, "", else true
• undefined

false

global.ToBuffer()
SYNTAX: ToBuffer(value)
WHERE: value - to be cast as a buffer.
RETURN: buffer - conversion of value.
DESCRIPTION: This function converts value to a buffer in a manner similar to

 of characters is a
sequence of ASCII bytes and not a unicode string.

SEE: global.ToBytes()

global.ToString() except that the resulting array

global.ToBuffer() in that th

global.ToInteger() except

global.ToBytes()
SYNTAX: ToBytes(value)
WHERE: value - to be cast as a buffer.
RETURN: buffer - conversion of value.
DESCRIPTION: This function converts value to a buffer and differs from

e conversion is actually a raw transfer
of data to a buffer. The raw transfer does not convert unicode
values to corresponding ASCII values. For example, the unicode
string "Hit" is stored in a buffer as "\0H\0\i\0t", that is, as
the hexadecimal sequence: 00 48 00 69 00 74.

SEE: global.ToBuffer()

global.ToInt32()
SYNTAX: ToInt32(value)
WHERE: value - to be cast as a signed 32-bit integer.
RETURN: number - conversion of value.
DESCRIPTION: This function is the same as that if the

return is an integer, it is in the range of - 231 through 231 - 1.
SEE: global.ToInteger(), global.ToNumber()

Nombas ScriptEase ISDK/Java 5.01 171

global.ToInteger()
SYNTAX: ToInteger(value)
WHERE: value - to be cast as an integer.
RETURN: number - conversion of value.
DESCRIPTION: This function converts value to an integer type. First, call

NaN, return +0. If result is +0, -0,
+Infinity or -Infinity, return result. Else return floor(abs(result))
with the appropriate sign. For example, the value -4.8 is
converted to -4.

SEE: global.ToInt32(), global.ToNumber()

global.ToNumber(). If result is

global.ToNumber()
SYNTAX: ToNumber(value)
WHERE: value - to be cast as a number.
RETURN: number - conversion of value.
DESCRIPTION: The following table lists how different data types are converted

by this function.

• Boolean
+0, if value is false, else 1

• Buffer
same as for String

• null
+0

• Number
same as value

• Object
first, call ToPrimitive(), then call ToNumber() and return
result

• String
number, if successful, else NaN

• undefined
NaN

SEE: global.ToInteger(), global.ToInt32()

global.ToObject()
SYNTAX: ToObject(value)
WHERE: value - to be cast as an object.
RETURN: object - conversion of value.
DESCRIPTION: The following table lists how different data types are converted

by this function.

• Boolean
new Boolean object with value

• null

Nombas ScriptEase ISDK/Java 5.01 172

generate runtime error
• Number

new Number object with value
• Object

same as parameter
• String

new String object with value
• undefined

generate runtime error

SEE: global.ToPrimitive()

global.ToPrimitive
SYNTAX: ToPrimitive(value)
WHERE: value - to be cast as a primitive.
RETURN: value - conversion of value to one of the primitive data types.
DESCRIPTION: This function does conversions only for parameters of type

Object. An internal default value of the Object is returned.
SEE: global.ToObject()

global.ToSource()
SYNTAX: ToSource(value)
WHERE: value - a variable or value to convert to a source string that will

reproduce value when the string is evaluated or interpreted.
RETURN: string - a string representation of value, which can be evaluated

or interpreted.
DESCRIPTION: A variable or value may be represented by a string comprised of

JavaScript statements which, when evaluated or interpreted,
reproduce the variable or value. The source string may be
evaluated by by metimes
convenient or powerful to use source strings, for example, in the
Data object the

Though the source string may be read by humans, it is daunting.
Remember, ToSource() is designed for interpretation by the
ScriptEase interpreters, not by users.

The example below compares source strings created by the
global.ToSource() function and the
method. In these examples, the source strings are identical,
which is not guaranteed always to be so. But, no matter which
one is used, the source strings can be evaluated or interpreted.

SEE: Object toSource(), global.eval(), SElib.interpret()
EXAMPLE: // An Array

var a = [1, '2', 3];

Screen.writeln(ToSource(a));

 global.eval() or SElib.interpret(). It is so

DSP object.

Object toSource()

Nombas ScriptEase ISDK/Java 5.01 173

Nombas ScriptEase ISDK/Java 5.01 174

first, call ToPrimitive(), then call ToString() and return result

Screen.writeln();
Screen.writeln(a.toSource());
Screen.writeln();
/********************************
Displays:

((new Function("var tmp1 = [1,\"2\",3]; tmp1[\"0\"] =
1;
tmp1[\"1\"] = \"2\"; tmp1[\"2\"] = 3; return
tmp1;"))())

((new Function("var tmp1 = [1,\"2\",3]; tmp1[\"0\"] =
1;
tmp1[\"1\"] = \"2\"; tmp1[\"2\"] = 3; return
tmp1;"))())
********************************/

// An Object
var o = {one:1, two:'2', three:3};

Screen.writeln(ToSource(o));
Screen.writeln();
Screen.writeln(o.toSource());
Screen.writeln();
/********************************
Displays:

((new Function("var tmp1 = new Object();
tmp1[\"three\"] = 3;
tmp1[\"one\"] = 1; tmp1[\"two\"] = \"2\"; return
tmp1;"))())

((new Function("var tmp1 = new Object();
tmp1[\"three\"] = 3;
tmp1[\"one\"] = 1; tmp1[\"two\"] = \"2\"; return
tmp1;"))())
********************************/

global.ToString()
SYNTAX: ToString(value)
WHERE: value - to be cast as a string.
RETURN: string - conversion of value.
DESCRIPTION: The following table lists how different data types are converted

by is this function.

• Boolean
"false", if value is false, else "true"

• null
"null"

• Number
if value is NaN, return "NaN". If +0 or -0, return "0". If
Infinity, return "Infinity". If a number, return a string
representing the number. If a number is negative, return "-"
concatenated with the string representation of the number.

• Object

• String
same as value

• undefined
"undefined"

SEE: global.ToPrimitive(), global.ToNumber()

global.ToUint16()
SYNTAX: ToUint16(value)
WHERE: value - to be cast as a 16 bit unsigned integer.
RETURN: number - conversion of value.
DESCRIPTION: This function is the same as that if the

return is an integer, it is in the range of 0 through 216 - 1.
SEE: global.ToUint32(), global.ToInteger()

global.ToInteger() except

global.ToInteger() except

global.escape() m

global.defined() returns

global.ToUint32()
SYNTAX: ToUint32(value)
WHERE: value - to be cast as a 32 bit unsigned integer.
RETURN: number - conversion of value.
DESCRIPTION: This function is the same as that if the

return is an integer, it is in the range of 232 - 1.
SEE: global.ToInt32(), global.ToInteger()

global.unescape()
SYNTAX: unescape(str)
WHERE: str - holding escape characters.
RETURN: string - with escape characters replaced by appropriate

characters.
DESCRIPTION: This method is the reverse of the ethod and

removes escape sequences from a string and replaces them with
the relevant characters. That is, an encoded string is decoded.

SEE: global.escape(), String unescape()
EXAMPLE: unescape("Hello%20there%21");

// Returns "Hello there!"

global.undefine()
SYNTAX: undefine(value)
WHERE: value - value, variable, or property to be undefined.
RETURN: void.
DESCRIPTION: This function undefines a variable, Object property, or value. If a

value was previously defined so that its use with the function
true, then after using undefine()

Nombas ScriptEase ISDK/Java 5.01 175

with the value, defined() returns false. Undefining a value is
different than setting a value to null.

The may be used only with properties of objects
and elements of arrays and is more complete than undefine().
Two other techniques, using void, are equivalent
to undefine(). The following three techniques for undefining
test are equivalent:
var test = 111;

undefine(test);
test = undefined;
test = void test;

delete operator

undefined and

SEE: global.defined(), delete operator, undefined
EXAMPLE: // In the following fragment, the variable n

// is defined with the number value of 2 and
// then undefined.
var n = 2;
undefine(n);

// In the following fragment an object o
// is created and a property o.one is defined.
// The property is then undefined but
// the object o remains defined.
var o = new Object;
o.one = 1;
undefine(o.one);

Nombas ScriptEase ISDK/Java 5.01 176

Array object
An Array object is an object in JavaScript and is in the underlying ECMAScript
standard. Be careful not to confuse an array variable that has been constructed as
an instance of the Array object with the automatic or dynamic arrays of
ScriptEase. ScriptEase offers automatic arrays in addition to the Array object of
ECMAScript. The purpose is to ease the programming task by providing another
easy to use tool for scripters. The current section is about Array objects.

An Array is a special class of object that refers to its properties with numbers
rather than with variable names. Properties of an Array object are called elements
of the array. The number used to identify an element, called an index, is written
in brackets following an array name. Array indices must be either numbers or
strings.

Array elements can be of any data type. The elements in an array do not all need
to be of the same type, and there is no limit to the number of elements an array
may have.

The following statements demonstrate assigning values to arrays.
var array = new Array();
array[0] = "fish";
array[1] = "fowl";
array["joe"] = new Rectangle(3,4);
array[foo] = "creeping things"
array[goo + 1] = "etc."

The variables foo and goo must be either numbers or strings.

Since arrays use a number to identify the data they contain, they provide an easy
way to work with sequential data. For example, suppose you wanted to keep
track of how many jellybeans you ate each day, so you can graph your jellybean
consumption at the end of the month. Arrays provide an ideal solution for storing
such data.
var April = new Array();
April[1] = 233;
April[2] = 344;
April[3] = 155;
April[4] = 32;

Now you have all your data stored conveniently in one variable. You can find out
how many jellybeans you ate on day x by checking the value of April[x]:
for(var x = 1; x < 32; x++)
 Screen.write("On April " + x + " I ate " + April[x] +
 " jellybeans.\n");

Arrays usually start at index [0], not index [1]. Note that arrays do not have to be
continuous, that is, you can have an array with elements at indices 0 and 2 but
none at 1.

SEE: array.jsh - arrays and objects

Nombas ScriptEase ISDK/Java 5.01 177

Creating arrays

Like other objects, arrays are created using the new operator and the Array
constructor function. There are three possible ways to use this function to create
an array. The simplest is to call the function with no parameters:
var a = new Array();

This line initializes variable a as an array with no elements. The parentheses are
optional when creating a new array, if there are no arguments. If you wish to
create an array of a predefined size, pass variable a the size as a parameter of the

ay with a length of the size
passed.
var b = new Array(31);

In this case, an array with length 31 is created.

Finally, you can pass a list of elements to the Array()function, which creates an
array containing all of the parameters passed. For example:
var c = new Array(5, 4, 3, 2, 1, "blast off");

creates an array with a length of 6. c[0] is set to 5, c[1] is set to 4, and so on up to
c[5], which is set to the string "blast off". Note that the first element of the array
is array[0], not array[1].

Arrays may also be created dynamically. By referring to a variable with an index
in brackets, a variable is created as or converted to an array. The array that is
created is an automatic or dynamic array which is different than an instance of an

created as described in this section. Automatic arrays, created as
described in this paragraph, are unable to use the methods and properties
described below, so it is recommended that you use, in most circumstances, the
new Array() constructor function to create arrays.

Initializers for arrays and objects
Variables may be initialized as objects and arrays using lists inside of "{}" and
"[]". By using these initializers, instances of Objects and Arrays may be created
without using the new constructor. Objects may be initialized using syntax
similar to the following:
var o = {a:1, b:2, c:3};

This line creates a new object with the properties a, b, and c set to the values
shown. The properties may be used with normal object syntax, for example, o.a
== 1.

Arrays may be initialized using syntax similar to the following:
var a = [1, 2, 3];

This line creates a new array with three elements set to 1, 2, and 3. The elements
may be used with normal array syntax, for example, a[0] == 1.

The distinction between Object and Array initializer might be a bit confusing
when using a line with syntax similar to the following:
var a = {1, 2, 3};

Array() function. The following line creates an arr

Array object

Nombas ScriptEase ISDK/Java 5.01 178

Nombas ScriptEase ISDK/Java 5.01 179

ant[3] = 6;

var bee = new Array();

This line also creates a new array with three elements set to 1, 2, and 3. The line
differs from the first line, Object initializer, in that there are no property
identifiers and differs from the second line, Array initializer, in that it uses "{}"
instead of "[]". In fact, the second and third lines produce the same results. The
elements may be used with normal array syntax, for example, a[0] == 1.

The following code fragment shows the differences.
var o = {a:1, b:2, c:3};
Screen.writeln(typeof o +" | "+ o._class +" | "+ o);

var a = [1, 2, 3];
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

var a= {1, 2, 3};
Screen.writeln(typeof a +" | "+ a._class +" | "+ a);

The display from this code is:
object | Object | [object Object]
object | Array | 1,2,3
object | Array | 1,2,3

As shown in the first display line, the variable o is created and initialized as an
Object. The second and third lines both initialize the variable a as an Array.
Notice that in all cases the typeof the variable is object, but the class, which
corresponds to the particular object and which is reflected in the _class
property, shows which specific object is created and initialized.

Array object instance properties
Array length
SYNTAX: array.length
DESCRIPTION: The length property returns one more than the largest index

of the array. Note that this value does not necessarily
represent the actual number of elements in an array, since
elements do not have to be contiguous.

By changing the value of the length property, you can
remove array elements. For example, if you change
ant.length to 2, ant will only have the first two members,
and the values stored at the other indices will be lost. If we
set bee.length to 2, then bee will consist of two members:
bee[0], with a value of 88, and bee[1], with an
undefined value.

SEE: Array(), global.getArrayLength(), global.setArrayLength()
EXAMPLE: // Suppose we had two arrays "ant" and "bee",

// with the following elements:

var ant = new Array();
ant[0] = 3;
ant[1] = 4;
ant[2] = 5;

bee[0] = 88;
bee[3] = 99;

// The length property of both ant and bee
// is equal to 4, even though ant has twice
// as many actual elements as bee does.

Array object instance methods
Array()
SYNTAX: new Array(length)

new Array([element1, ...])
WHERE: length - If this is a number, then it is the length of the array to be

created. Otherwise, it is the element of a single-element array to
be created.

elementN - list of elements to be in the new Array object being
created.

RETURN: object - an he length specified or an Array
object with the elements specified.

DESCRIPTION: The array returned from this function is an empty array whose
length is equal to the length parameter. If length is not a
number, then the length of the new array is set to 1, and the first
element is set to the length parameter. Note that this can also
be called as a function, without the new operator.

The alternate form of the Array constructor initializes the
elements of the new array with the arguments passed to the
function. The arguments are inserted in order into the array,
starting with element 0. The length of the new array is set to the
total number of arguments. If no arguments are supplied, then an
empty array of length 0 is created.

SEE: Automatic array allocation
EXAMPLE: var a = new Array(5);

var a = new Array(1,"two",three);

Array object of t

Array object,

Array concat()
SYNTAX: array.concat([element1, ...])
WHERE: elementN - list of elements to be concatenated to this Array

object.
RETURN: object - a new array consisting of the elements of the current

object, with any additional arguments appended.
DESCRIPTION: The return array is first constructed to consist of the elements of

the current object. If the current object is not an
then the object is converted to a string and inserted as the first
element of the newly created array. This method then cycles
through all of the arguments, and if they are arrays then the
elements of the array are appended to the end of the return array,
including empty elements. If an argument is not an array, then it
is first converted to a string and appended as the last element of

Nombas ScriptEase ISDK/Java 5.01 180

the array. The length of the newly created array is adjusted to
reflect the new length. Note that the original object remains
unaltered.

SEE: String concat()
EXAMPLE: var a = new Array(1,2);

var b = a.concat(3);

Array join()
SYNTAX: array.join([separator])
WHERE: separator - a value to be converted to a string and used to

separate the list of array elements. The default is an empty string.
RETURN: string - string consisting of the elements, delimited by separator,

of an array.
DESCRIPTION: The elements of the current object, from 0 to the length of the

object, are sequentially converted to strings and appended to the
return string. In between each element, the separator is added. If
separator is not supplied, then the single-character string "," is
used. The string conversion is the standard conversion, except
the undefined and null elements are converted to the empty
string "".

The Array join() method creates a string of all of array
elements. The join() method has an optional parameter, a
string which represents the character or characters that will
separate the array elements. By default, the array elements will
be separated by a comma. For example:
var a = new Array(3, 5, 6, 3);
var string = a.join();

will set the value of "string" to "3,5,6,3". You can use another
string to separate the array elements by passing it as an optional
parameter to the join() method. For example,
var a = new Array(3, 5, 6, 3);
var string = a.join("*/*");

creates the string "3*/*5*/*6*/*3".
SEE: Array toString()
EXAMPLE: // The following code:

var array = new Array("one", 2, 3, undefined);
Screen.writeln(array.join("::"));

// Will print out the string "one::2::3::".

Array pop()
SYNTAX: array.pop()
RETURN: value - the last element of the current ment

is removed from the array after being returned.
Array object. The ele

Nombas ScriptEase ISDK/Java 5.01 181

DESCRIPTION: This method first gets the length of the current object. If the
length is undefined or 0, then undefined is returned.
Otherwise, the element at this index is returned. This element is
then deleted, and the length of current object is decreased by one.
The pop() method works on the end of an array, whereas, the

method works on the beginning. Array shift()

Array object

 Array object is 0, then the current

SEE: Array push()
EXAMPLE: // The following code:

var array = new Array("four");
Screen.writeln(array.pop());
Screen.writeln(array.pop());

// Will first print out the string "four", and
// then print out "undefined",
// which is the result of converting
// the undefined value to a string.
// The array will be empty after these calls.

Array push()
SYNTAX: array.push([element1, ...])
WHERE: elementN - a list of elements to append to the end of an array.
RETURN: number - the length of the new array.
DESCRIPTION: This method appends the arguments to the end of this array, in

the order that they appear. The length of the current
is adjusted to reflect the change.

SEE: Array pop()
EXAMPLE: // The following code:

var array = new Array(1, 2);
array.push(3, 4);
Screen.writeln(array);

// Will print the array converted
// to the string "1,2,3,4".

Array reverse()
SYNTAX: array.reverse()
RETURN: object - a new array consisting of the elements in the current

Array object in reverse order.
DESCRIPTION: If the length of the current

Array object is simply returned. Otherwise, a new Array object is
created, and the elements of the current Array object are put into
this new array in reverse order, preserving any empty or
undefined elements.

EXAMPLE: var a = new Array(1,2,3);
var b = a.reverse();

// The following code:
var array = new Array;
array[0] = "ant";

Nombas ScriptEase ISDK/Java 5.01 182

array[1] = "bee";
array[2] = "wasp";
array.reverse();

//produces the following array:

array[0] == "wasp"
array[1] == "bee"
array[2] == "ant"

Array shift()
SYNTAX: array.shift()
RETURN: value - the first element of the current Array object. The element

is removed from the array after being returned.
DESCRIPTION: If the length of the current undefined is

returned. Otherwise, the first element is returned. This element
is deleted from the array, and any remaining elements are shifted
down to fill the gap that was created. The shift() method
works on the beginning of an array, whereas, the
method works on the end.

SEE: Array unshift(), Array pop()
EXAMPLE: //The following code:

var array = new Array(1, 2, 3);
Screen.writeln(array.shift());
Screen.writeln(array);

// First prints out "1",
// and then the contents of the array,
// which converts to the string "2,3".

 Array object is 0, then

Array pop()

Array slice()
SYNTAX: array.slice(start[, end])
WHERE: start - the element offset to start from.

end - the element offset to end at.
RETURN: object - a new array containing the elements of the current object

from start up to, but not including, element end.
DESCRIPTION: This method creates a subset of the current array. If end is not

supplied, then the length of the current object is used instead. If
either start or end is negative, then it is treated as an offset
from the end of the array, and the value length+start or
length+end is used instead. If either is beyond the length of
the array, then the length is used instead. If either is less than 0
after adjusting for negative values, then the value 0 is used
instead. The elements are then copied into the newly created
array, starting at start and proceeding to (but not including)
end.

SEE: String substring()
EXAMPLE: // The following code:

Nombas ScriptEase ISDK/Java 5.01 183

var array = new Array(1, 2, 3, 4);
Screen.writeln(array.slice(1, -1));

// Print out the elements from 1 up to 4,
// which results in the string "2,3".

Array sort()
SYNTAX: array.sort([compareFunction])
WHERE: compareFunction - identifier for a function which expects two

parameters x and y, and returns a negative value if x < y, zero if
x = y, or a positive value if x > y.

RETURN: object - this after being sorted.
DESCRIPTION: This method sorts the elements of the array. The sort is not

necessarily stable (that is, elements which compare equal do not
necessarily remain in their original order). The comparison of
elements is done based on the supplied compareFunction. If
compareFunction is not supplied, then the elements are
converted to strings and compared. Non-existent elements are
always greater than any other element, and consequently are
sorted to the end of the array. Undefined values are also always
greater than any defined element, and appear at the end of the
Array before any empty values. Once these two tests are
performed, then the appropriate comparison is done.

If a compare function is supplied, the array elements are sorted
according to the return value of the compare function. If a and b
are two elements being compared, then:

• If compareFunction(a, b) is less than zero, sort b to a
lower index than a.

• If compareFunction(a, b) returns zero, leave a and b
unchanged relative to each other.

• If compareFunction(a, b) is greater than zero, sort b to
a higher index than a.

By specifying the following function as a sort function, you will
get the desired result when comparing numbers:
function compareNumbers(a, b)
{
 return a � b
}

SEE: Clib strcmp()
EXAMPLE: // Consider the following code,

// which sorts based on numerical values,
// rather than the default string comparison.

function compare(x, y)
{
 x = ToNumber(x);
 y = ToNumber(y);

 if(x < y)

Array object

Nombas ScriptEase ISDK/Java 5.01 184

 return -1;
 else if (x == y)
 return 0;
 else
 return 1;
}

 var array = new Array(3, undefined, "4", -1);
 array.sort(compare);
 Screen.writeln(array);

// Prints out the sorted array,
// which is "-1,3,4,,".
// Notice the undefined value
// at the end of the array.

Array splice()
SYNTAX: array.splice(start, deleteCount[, element1,

...])
WHERE: start - the index at which to splice in the items. If this is

negative, then (length+start) is used instead, and if it beyond the
end of the array, then the length of the array is used.

deletecount - the number of items to remove from the array.

elementN - a list of elements to insert into the array in place of
the ones which were deleted.

RETURN: object - an array consisting of the elements which were removed
from the current

DESCRIPTION: This method splices in any supplied elements in place of any
elements deleted. Beginning at index start, deleteCount
elements are first deleted from the array and inserted into the
newly created return array in the same order. The elements of the
current object are then adjusted to make room for the all of the
items passed to this method. The remaining arguments are then
inserted sequentially in the space created in the current object.

SEE: Array push()
EXAMPLE: // The following code:

var array = new Array(1, 2, 3, 4, 5);
Screen.writeln(array.splice(1, 2, 6, 7, 8);
Screen.writeln(array);

// Will print "2,3" and then "1,6,7,8,4,5".//
// The array has been modified to include
// the extra items in place of those
// that were deleted.

Array object.

Array object.

Array join() was

Array toString()
SYNTAX: array.toString()
RETURN: string - string representation of an
DESCRIPTION: This method behaves exactly the same as if

called on the current object with no arguments. The result is a

Nombas ScriptEase ISDK/Java 5.01 185

string consisting of the string representation of the array
elements (except for null and undefined, which are empty
strings) separated by commas.

SEE: Array join()
EXAMPLE: // The following code:

var array = new Array(1, "two", , null, false);
Screen.writeln(array.toString());

// Will print out the string "1,two,,,false".
// Note that this method is rarely called,
// rather the function ToString() is used,
// which implicitly calls this method.

Array unshift()
SYNTAX: array.unshift([element1, ...])
WHERE: elementN - a list of items to insert at the beginning of the array.
RETURN: number - the length of the new array after inserting the items.
DESCRIPTION: Any arguments are inserted at the beginning of the array, such

that their order within the array is the same as the order in which
they appear in the argument list. Note that this method is the
opposite of which adds the items to the end of the
array.

SEE: Array shift(), Array push()
EXAMPLE: var a = new Array(2,3);

var b = a.unshift(1);

Array push(),

Nombas ScriptEase ISDK/Java 5.01 186

Blob Object
This section describes Blobs, Binary Large Objects.

The methods in this section are preceded with the object name Blob, since
individual instances of the Blob object are not created. For example,
Blob.get() is the syntax to use to get data from a Blob. Blob and Buffer
variables overlap. The Buffer is the newer construct, and the Blob is retained
mostly for compatibility with previous versions of ScriptEase. When necessary to
work with data in memory, use a Buffer object if possible.

SEE: Buffer object, Win32 structure definitions

Blob object static methods
Blob.get()
SYNTAX: Blob.get(BlobVar, offset, DataType)

Blob.get(BlobVar, offset, bufferLen)
Blob.get(BlobVar, offset,
DataStructureDefinition)

WHERE: BlobVar - binary large object variable to use.

offset - the offset or position in the Blob from which to work.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of a structure (object)
variable.

RETURN: value - the data retrieved according to the defining parameters.
DESCRIPTION: This method reads data from a specified location of a Binary

Large Object, a Blob and is the companion function to
meter BlobVar specifies the Blob to use.

The parameter offset specifies where, in the Blob, to get data.
The last parameter specifies the format of the data in the Blob
and, hence, determines the type of the value returned which is
the data read from the Blob.

Valid values for DataType are:
UWORD8, SWORD8, UWORD16, SWORD16, UWORD24, SWORD24,
UWORD32, SWORD32, FLOAT32, FLOAT64, FLOAT80

See more
information on these DataType values.

SEE: Blob put(), Blob size(), _BigEndianMode, Buffer object

Blob.put(). The para

Clib.fread() or blobDescriptor object, below, for

Blob.put()
SYNTAX: Blob.put(BlobVar[, offset], variable, DataType)

Blob.put(BlobVar[, offset], buffer, bufferLen)
Blob.put(BlobVar[, offset], SrcStruct,

Nombas ScriptEase ISDK/Java 5.01 187

DataStructureDefinition)
WHERE: BlobVar - binary large object variable to use.

offset - the offset or position in the Blob from which to work.

variable - variable with data to put into a Blob.

buffer - buffer with data to put into a Blob.

SrcStruct - structure (object) with data to put into a Blob.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of an object (structure)
variable.

RETURN: number - the byte offset to the next byte following the data that
was just inserted into a Blob. If at the end of a Blob, then return
the value that equals Blob.size(Blob).

DESCRIPTION: This method puts data into a specified location of a Binary Large
Object, Blob and, along with cess
to memory within a variable. The contents of such a variable
may be viewed as a packed structure. Data can be placed at any
location within a Blob. The parameter BlobVar specifies the
Blob to use. The parameter offset specifies where, in the Blob, to
write data. The third parameter is the data to write. The last
parameter specifies the format of the data in the Blob.

Blob.put() returns the byte offset for the next byte following
the section where data was just put. If the data is put at the end of
the Blob, then the return is equivalent to the size of the Blob.

If offset is not supplied, then the data is put at the end of the
Blob, or at offset 0 if the Blob is not yet defined.

The data in v is converted to the specified DataType and then
copied into the bytes specified by offset.

If DataType is not the length of a byte buffer, then it must be one
of these types:
UWORD8, SWORD8, UWORD16, SWORD16, UWORD24, SWORD24,
UWORD32, SWORD32, FLOAT32, FLOAT64, FLOAT80

See more
information on these DataType values.

SEE: Blob get(), Blob size(), _BigEndianMode, Buffer object
EXAMPLE: // If you were sending a pointer to data

// in an external C library and knew
// that the library expected the data
// in a packed DOS structure of the form:

struct foo
{
 signed char a;

Blob.get(), allows for direct ac

Clib.fread() or blobDescriptor object, below, for

Nombas ScriptEase ISDK/Java 5.01 188

 unsigned int b;
 double c;
};

// and if you were building this structure
// from three corresponding variables,
// then such a building function might look
// like the following:

function BuildFooBlob(a, b, c)
{
 var offset = Blob.put(foo, 0, a, SWORD8);
 offset = Blob.put(foo, offset, b, UWORD16);
 Blob.put(foo, offset, c, FLOAT64);
 return foo;
}

// or, if an offset were not supplied:

BuildFooBlob(a, b, c)
{
 Blob.put(foo, a, SWORD8);
 Blob.put(foo, b, UWORD16);
 Blob.put(foo, c, FLOAT64);
 return foo;
}

Blob.size()
SYNTAX: Blob.size(BlobVar[, SetSize])

Blob.size(DataType)
Blob.size(bufferLen)
Blob.size(DataStructureDefinition)

WHERE: BlobVar - binary large object variable to use.

SetSize - size to which to set BlobVar.

DataType - the type of data with which to work.

bufferLen - the length of data to work with as a buffer or byte
array.

DataStructureDefinition - definition of a structure (object)
variable.

RETURN: number - bytes in a Blob variable. If SetSize is passed, then that
value is returned.

DESCRIPTION: This method determines the size of a Binary Large Object, Blob.
The parameter BlobVar specifies the Blob to use. If SetSize is
provided, then the Blob BlobVar is altered to this size or created
with this size.

If DataType, bufferLen, or DataStructureDefinition are used,
Blob.size() returns the size of a Blob that would contain the
type of data item used in by
cases, these parameters specify the type to be used for converting
ScriptEase data to and from a Blob.

Blob.size returns the size of a Blob, which is the number of bytes
in BlobVar. If SetSize is supplied, then the return is SetSize.

 Blob.get() or Blob.put(). In these

Nombas ScriptEase ISDK/Java 5.01 189

SEE: Blob get(), Blob put(), _BigEndianMode, Buffer object

blobDescriptor object
When an object (structure) needs to be sent to a process other than the ScriptEase
interpreter, such as to a Windows API function, a blobDescriptor object must
be created that describes the order and type of data in the object to be sent. This
description tells how the properties of the object are stored in memory and used
with functions such as

A blobDescriptor has the same data properties as the object it describes. Each
property must be assigned a value that specifies how much memory is required
for the data held by that property. Consider the following object.
Rectangle(width, height)
{
 this.width = width;
 this.height = height;
}

The following code creates a blobDescriptor object that describes the
Rectangle object defined above:
var bd = new blobDescriptor();

bd.width = UWORD32;
bd.height = UWORD32;

You can now pass bd as a blobDescriptor parameter to functions, (such as
ight require one.

The values assigned to the properties depend on what the receiving function
expects. In the example above, the function that is called expects to receive an
object that contains two 32-bit words or data values. If you write a
blobDescriptor for a function that expects to receive an object containing two
16-bit words, assign the two properties a value of UWORD16.

The following values may be used for blobDescriptors.
UWORD8 Stored as a byte
SWORD8 Stored as an integer
UWORD16 Stored as an integer
SWORD16 Stored as an integer
UWORD24 Stored as an integer
SWORD24 Stored as an integer
UWORD32 Stored as an integer
SWORD32 Stored as an integer
FLOAT32 Stored as a float
FLOAT64 Stored as a float
FLOAT80 Stored as a float (not available in Win32)

If a blobDescriptor describes an object property that is a string, the
corresponding property should be assigned a numeric value that is larger than the
length of the longest string the property may hold. Object methods usually may
be omitted from a blobDescriptor.

Clib.fread() and SElib.dynamicLink().

SElib.dynamicLink(), Clib.fread(), and Clib.fwrite(), which m

Nombas ScriptEase ISDK/Java 5.01 190

See Win32 structure definitions.

blobDescriptor example
The Win32 API function GetOpenFileName is being used for this example. The
syntax, in the Win32 API documentation, for this function is:
BOOL GetOpenFileName(LPOPENFILENAME lpofn);

The ScriptEase syntax for calling the Win32 API is:
SElib.dynamicLink(library, procedure, convention
 [, [desc,] param …])

The first three parameters in the ScriptEase syntax are standard for all calls to the
Win32 API and are not discussed here. See
a complete discussion. In the current section, we are only dealing a structure
parameter since the lpofn parameter in the GetOpenFileName API function is a
pointer to a structure. Other parameters, not discussed here, such as, integers and
double words, are handled in a straightforward way.

An actual call to the GetOpenFileName function might look like the following:
var rtn;
rtn = SElib.dynamicLink("COMDLG32", "GetOpenFileNameA", STDCALL,
 ofnDesc, ofn);

We are concerned with the parameters: ofnDesc and ofn. The original function
only required one parameter, lpofn, but we are passing two parameters.
(Remember that the first three parameters: library, procedure, and
convention, are parameters for SElib.dynamicLink and that the parameters
to API functions begin after the first three.) Why two parameters? Because ofn
is a structure and ScriptEase requires a description of the structure. Hence,
ofnDesc is a ofn is a structure, and, in ScriptEase, a
structure is considered a binary large object.

Lets look at the OpenFileName structure that is defined in the Win32 API and
required by the GetOpenFileName function. The structure is defined as:
typedef struct tagOFN {// ofn
 DWORD lStructSize;
 HWND hwndOwner;
 HINSTANCE hInstance;
 LPCTSTR lpstrFilter;
 LPTSTR lpstrCustomFilter;
 DWORD nMaxCustFilter;
 DWORD nFilterIndex;
 LPTSTR lpstrFile;
 DWORD nMaxFile;
 LPTSTR lpstrFileTitle;
 DWORD nMaxFileTitle;
 LPCTSTR lpstrInitialDir;
 LPCTSTR lpstrTitle;
 DWORD Flags;
 WORD nFileOffset;
 WORD nFileExtension;
 LPCTSTR lpstrDefExt;
 DWORD lCustData;
 LPOFNHOOKPROC lpfnHook;

SElib.dynamicLink() - for Win32 for

blobDescriptor object and

Nombas ScriptEase ISDK/Java 5.01 191

 LPCTSTR lpTemplateName;
} OPENFILENAME;

In ScriptEase, the blobDescriptor for the OpenFileName structure above
could look like the following:
var ofnDesc = new blobDescriptor();

ofnDesc.lStructSize = UWORD32;
ofnDesc.hwndOwner = UWORD32;
ofnDesc.hInstance = UWORD32;
ofnDesc.lpstrFilter = UWORD32;
ofnDesc.lpstrCustomFilter = UWORD32;
ofnDesc.nMaxCustFilter = UWORD32;
ofnDesc.nFilterIndex = UWORD32;
ofnDesc.lpstrFile = UWORD32;
ofnDesc.nMaxFile = UWORD32;
ofnDesc.lpstrFileTitle = UWORD32;
ofnDesc.nMaxFileTitle = UWORD32;
ofnDesc.lpstrInitialDir = UWORD32;
ofnDesc.lpstrTitle = UWORD32;
ofnDesc.Flags = UWORD32;
ofnDesc.nFileOffset = UWORD16;
ofnDesc.nFileExtension = UWORD16;
ofnDesc.lpstrDefExt = UWORD32;
ofnDesc.lCustData = UWORD32;
ofnDesc.lpfnHook = UWORD32;
ofnDesc.lpTemplateName = UWORD32;

As you can see, the ScriptEase blobDescriptor functions like a structure
definition in another language and, specifically, like struct in C. The
OpenFileName shown above is used with typedef for a struct, which might
be a more useful comparison than just a structure definition. In any case, the
similarity between structures and blobDescriptors is evident. Each property of the
blobDescriptor object describes or determines how much memory is used by
an element of a structure. For example, the first element of the Win32 API
OpenFileName structure is lStructSize of type DWORD. In ScriptEase, the
corresponding first property in ofnDesc is lStructSize and is defined as
UWORD32. Both DWORD in the Win32 API and UWORD32 in ScriptEase designate
32 bits of memory to hold data. Thus, the memory requirements, for a structure,
in the Win32 API and in ScriptEase are coordinated.

Notice that the original structure element name is lStructSize and the object
property name lStructSize are the same. They did not need to be. The
property names in a blobDescriptor object can be any names of your
choosing. It is the size designations, such as, UWORD32, that are important. This
blobDescriptor is the parameter desc in the syntax statement for
SElib.dynamicLink().

Now we need to define the parameter param that is described. (Remember, desc
is required only if the following param is a structure.) In our current example,
ofn is the structure that is passed as param following the ofnDesc which is
passed as desc. How might ofn be built since ScriptEase no longer has structure
data types? Objects may be used as structures with object properties being
equivalent to structure elements. So the following lines of code could be used:

Nombas ScriptEase ISDK/Java 5.01 192

#include "comdlg32.jsh"

#define MAXFILESIZE 65

var ofn = new Object();
 // Size of the ofn structure
ofn.lStructSize = Blob.size(ofnDesc);

 // Handle of owner, a ScriptEase screen in this example
ofn.hwndOwner = Screen.handle();

 // Set a buffer to pass and receive a filespec
var fileSpec;
fileSpec = new Buffer(MAXFILESIZE);
fileSpec.putString(`c:\bat*.bat`);
fileSpec = fileSpec.toString();
 // Actually pass a pointer to this buffer
ofn.lpstrFile = SElib.pointer(fileSpec);
 // Set the maxsize for a filespec to pass and received
ofn.nMaxFile = MAXFILESIZE - 1;

 // Do the API call and get the function return
var rtn;
rtn = SElib.dynamicLink("COMDLG32", "GetOpenFileNameA", STDCALL,
 ofnDesc, ofn);

This code fragment would create a common open file dialog in a directory
c:\bat and would show files with extensions of bat. The last statement is the
SElib.dynamicLink() call. The object/structure ofn is passed, corresponding
to the lpofn parameter in the original Win32 API syntax. The ofnDesc
blobDescriptor is passed to describe ofn to ScriptEase so that ScriptEase may
communicate properly with the Win32 API.

Notice two things about the ofn object/structure.

• The property names match the properties in the blobDescriptor ofnDesc that
describes the ofn object/structure.

• Not all of the properties of the ofn object/structure needed to be initialized to
values. We created a simple open dialog that did not need any data except the
properties/elements that we defined. Often, it is not necessary to define data
elements that are passed to an API function, if the data is not used. Be careful
though. If you are not sure about whether or not to initialize all elements, it is
a safe practice to initialize them to default values specified by API
documentation.

Another thing of interest in this code fragment is how it handles string data. The
lpstrFile property/element is used to pass a string to and receive a string from
the GetOpenFileNameA API function. The method shown here is one way,
among other techniques to handle string data. The API OpenFileName structure
requires a point to a string buffer, not the string itself. Therefore, this fragment
creates a buffer filespec of the proper size. It then puts the string with a file
specification into the buffer and then converts the buffer to a string. ScriptEase
strings may contain "\0" characters. The ethod creates a
string of the same length as the buffer and includes all of the "\0" characters
after the string `c:\bat*.bat`. Then the element lpstrFile is assigned a
pointer to the string filespec, which started its existence as a Buffer object.
The file name selected in the open dialog will be returned in the filespec
string/buffer. We have been discussing the following lines:

Buffer toString() m

Nombas ScriptEase ISDK/Java 5.01 193

var fileSpec;
fileSpec = new Buffer(MAXFILESIZE);
fileSpec.putString(`c:\bat*.bat`);
fileSpec = fileSpec.toString();
 // Actually pass a pointer to this buffer
ofn.lpstrFile = SElib.pointer(fileSpec);

We could have accomplished the task of passing and receiving string data with
the following lines (which are similar to the ones above):
var fileSpec;
fileSpec = new Buffer(MAXFILESIZE);
fileSpec.putString(`c:\bat*.bat`);
 // Actually pass a pointer to this buffer
ofn.lpstrFile = SElib.pointer(fileSpec.data);

The main difference is that the string data is in a buffer when passed and
returned. To work with the returned string data, the buffer must be converted to a
string if you want to use string methods and functions with it.

Nombas ScriptEase ISDK/Java 5.01 194

Boolean Object

Boolean object instance methods
Boolean()
SYNTAX: new Boolean(value)
WHERE: value - a value to be converted to a boolean.
RETURN: object - a Boolean object with the parameter value converted to a

boolean value.
DESCRIPTION: This function creates a meter

value converted to a boolean value. If the function is called
without the new constructor, then the return is simply the
parameter value converted to a boolean.

SEE: Boolean toString()
EXAMPLE: var name = "Joe";

var b = new Boolean(name == "Joe");
// The Boolean object "b" is now true.

Boolean object that has the para

Boolean object or prim

Boolean.toString()
SYNTAX: boolean.toString()
RETURN: string - "true" or "false" according to the value of the Boolean

object.
DESCRIPTION: This toString() method returns a string corresponding to the

value of a itive data type.
SEE: Boolean toString(), boolean type
EXAMPLE: var name = "Joe";

var b = new Boolean(name === "Joe");
var bb = false;
Screen.writeln(b.toString()); // "true"
Screen.writeln(bb.toString()); // "false"

Nombas ScriptEase ISDK/Java 5.01 195

Buffer Object
The Buffer object provides a way to manipulate data at a very basic level. It is
needed whenever the relative location of data in memory is important. Any type
of data may be stored in a Buffer object. A new Buffer object may be created
from scratch, from a string, another Buffer object, or from most any data type or
object (see

(See the helper file buffer.jsh for enhancements to the Buffer object.)

ScriptEase 5.00 introduced an important change in buffers. Prior to version 5.00
ScriptEase JavaScript had a buffer data type, as well as, a Buffer object.
Beginning with ScriptEase 5.00, buffer data types no longer exist, only the
Buffer object. The scripts distributed with ScriptEase Desktop have been updated
to reflect the changes, but users might have some personal scripts that need
changing. So, some key differences in working with buffers as objects only,
without a unique data type, are discussed now.

First, many (probably most) script statements, using buffers, do need to be
changed. All of the Buffer and Blob methods still work as they did before. The
primary difference is in the use of the the new
constructor, the use of the data property in a Buffer object, and the use of the
length and size properties.

Previously, the Buffer() function returned a buffer data type and the new
Buffer() constructor returned a Buffer object. The data property of the Buffer
object could be used to access the actual buffer data in the object. The length
property could be used with a buffer data type to get the length of a buffer. Now
both Buffer() and new Buffer() return a Buffer object, and the data
property no longer exists. Plus, only the size property may be used to get the
size or length of a buffer. The following fragments illustrate these differences.

Prior to ScriptEase 5.00
var b1 = Buffer("abc"); // b1 is buffer data type
var b2 = new Buffer("abc"); // b2 is Buffer object
Screen.writeln(b1); // abc
Screen.writeln(b1.data); // abc
Screen.writeln(b1.length); // 3
Screen.writeln(b2.length); // 3
Screen.writeln(b2); // abc
Screen.writeln(b2.data); // abc
Screen.writeln(b1.size); // 3
Screen.writeln(b2.size); // 3

Starting with ScriptEase 5.00
var b1 = Buffer("abc"); // b1 is Buffer object
var b2 = new Buffer("abc"); // b2 is Buffer object
Screen.writeln(b1); // abc
Screen.writeln(b1.data); // undefined
Screen.writeln(b1.length); // undefined
Screen.writeln(b2.length); // undefined
Screen.writeln(b2); // abc
Screen.writeln(b2.data); // undefined
Screen.writeln(b1.size); // 3
Screen.writeln(b2.size); // 3

global.ToBuffer()).

Buffer() function without

Nombas ScriptEase ISDK/Java 5.01 197

Most ScriptEase functions and methods are now smart enough to handle Buffer
objects as they once did buffer data types, but small changes might be needed in
some places. For example, previously, some SElib.dynamicLink() calls required
a buffer data type. But now a Buffer object may be used. So if you have code
(prior to ScriptEase 5.00) like:
var buf = Buffer(256); // creates a buffer data type
SElib.dynamicLink("user32", "GetClassNameA", STDCALL,
 this.handle, buf, buf.length);
this.className = buf.getString();
return this.className;

With code starting after ScriptEase 5.00, the fragment above should work with
the one correction, length to size, as shown in bold.
var buf = Buffer(256); // creates a Buffer object
SElib.dynamicLink("user32", "GetClassNameA", STDCALL,
 this.handle, buf, buf.size);
this.className = buf.getString();
return this.className;

The example above is taken from the Window.prototype.getClassName()
instance method definition in winobj.jsh. To illustrate changes due to the use of
the data property, we take our example from the
Window.prototype.getClientRect() instance method defined in
winobj.jsh. Prior to ScriptEase 5.00 it was defined as:
var rtn;
var Rect = new Buffer(4+4+4+4); // hold 4 integers of 4 bytes

if (rtn = SElib.dynamicLink("user32", "GetClientRect", STDCALL,
 this.handle, Rect.data))
{
 this.client.left = Rect.getValue(4);
 this.client.top = Rect.getValue(4);
 this.client.right = Rect.getValue(4);
 this.client.bottom = Rect.getValue(4);
}

In ScriptEase 5.00 it needs to be corrected in one place: the removal of the data
property.
return rtn != NULL;

var rtn;
var Rect = new Buffer(4+4+4+4); // hold 4 integers of 4 bytes

if (rtn = SElib.dynamicLink("user32", "GetClientRect", STDCALL,
 this.handle, Rect))
{
 this.client.left = Rect.getValue(4);
 this.client.top = Rect.getValue(4);
 this.client.right = Rect.getValue(4);
 this.client.bottom = Rect.getValue(4);
}

return rtn != NULL;

Nombas ScriptEase ISDK/Java 5.01 198

SEE: Blob object

Buffer object instance properties
Buffer bigEndian
SYNTAX: buffer.bigEndian
DESCRIPTION: This property is a boolean flag specifying whether to use

bigEndian byte ordering when calling
n a buffer is created, but

may be changed at any time. This property defaults to the state of
the underlying OS and processor.

SEE: Buffer unicode, Buffer()
EXAMPLE: /********************************

The default behavior for a Windows 2000
using an i386 type of processor results
in the following buffer or 6 bytes:
 65 00 66 00 67 00
********************************/
var i;
var b = new Buffer("ABC", true);

/********************************
With bigEndian set, as in the following,
the buffer is:
 00 65 00 66 00 67
********************************/
var i;
var b = new Buffer("ABC", true, true);

Buffer getValue() and
Buffer putValue(). This value is set whe

Buffer object. This property m

Buffer cursor
SYNTAX: buffer.cursor
DESCRIPTION: The current position within a buffer. This value is always

between 0 and .size. It can be assigned to as well. If a user
attempts to move the cursor beyond the end of a buffer, then the
buffer is extended to accommodate the new position, and filled
with NULL, "\0", bytes. If a user attempts to set the cursor to less
than 0, then it is set to the beginning of the buffer, to position 0.

SEE: Buffer bigEndian, Buffer size
EXAMPLE: var b = new Buffer("@ABCDE");

// now b.cursor == 0
b.cursor = 3;
Screen.writeln(b.getValue()); // 67 - ASCII for "C"

Buffer size
SYNTAX: buffer.size
DESCRIPTION: The size of the ay be assigned

to, such as foo.size = 5. If a user changes the size of the
buffer to something larger, then it is filled with NULL bytes.
If the user sets the Buffer size to a value smaller than the

Nombas ScriptEase ISDK/Java 5.01 199

current position of the
moved to the end of the new buffer.

Buffer cursor, then the cursor is

Buffer getString() a Buffer putString().

Buffer getValue() and
Buffer putValue() m

Buffer cursor propert
Buffer putValue()

Buffer getValue().

SEE: Buffer cursor
EXAMPLE: var n = buffer.size;

Buffer unicode
SYNTAX: buffer.unicode
DESCRIPTION: This property is a boolean flag specifying whether to use unicode

strings when calling nd
This value is set when the buffer is created, but may be changed
at any time. This property defaults to the unicode status of the
underlying ScriptEase engine.

When the Buffer toString() method is used with a Unicode
buffer, an ASCII based string, of type string, is returned.

The size of an Unicode buffer is usually twice the size of an
ASCII based, or byte based, buffer. For example,
var b1 = new Buffer("abc");
var b2 = new Buffer("abc", true);

Result in the following:
b1.size == 3
b2.size == 6;

SEE: Buffer bigEndian, Buffer()
EXAMPLE: var b1 = new Buffer("abc", true);

// b1.unicode == true;

Buffer[] Array
SYNTAX: buffer[offset]
RETURN: number - the value in a buffer at the index or offset specified.

If a value is being assigned to this position, the value assigned is
returned.

DESCRIPTION: This is an array- like version of the
ethods, which works only with bytes. A

user may either get or set these values, such as goo =
foo[5] or foo[5] = goo. Every get/put operation uses
byte types, that is, SWORD8. If offset is less than 0, then 0 is
used. If offset is beyond the end of a buffer, the size of the
buffer is extended with NULL bytes to accommodate it.

Every time an index value is used, the y
for an object is set to the next index, as with
and

SEE: Buffer getValue(), Buffer putValue()
EXAMPLE: var b = new Buffer("ABC");

// b.cursor == 0
Screen.writeln(b[1]); // 66 - ASCII code for "B"

Nombas ScriptEase ISDK/Java 5.01 200

// now b.cursor == 2
b[0] = 68; // "DBC"
// now b.cursor == 1

Buffer object instance methods
Buffer()
SYNTAX: new Buffer([size[, unicode[, bigEndian]]])

new Buffer(string[, unicode[, bigEndian]]])
new Buffer(buffer[, unicode[, bigEndian]]])
new Buffer(bufferObject)

WHERE: size - size of buffer to be created.

string - string of characters from which to create a buffer.

buffer - buffer of characters from which to create another buffer.

bufferObject - buffer to be duplicated.

unicode - boolean flag for the initial state of the
property of this buffer.

bigEndian - numeric description of the initial state of the
operty of this buffer.

RETURN: object - the new Buffer object created.
DESCRIPTION: To create a ntax as shown by the following:

new Buffer([size[, unicode[, bigEndian]]]);

A line of code following this syntax creates a new Buffer object.
If size is specified, then the new buffer is created with the
specified size, filled with null bytes. If no size is specified, then
the buffer is created with a size of 0, though it can be extended
dynamically later. The unicode parameter is an optional boolean
flag describing the initial state of the .unicode flag of the object.
Similarly, bigEndian describes the initial state of the bigEndian
parameter of the buffer. If unspecified, these parameters default
to the values described below.
new Buffer(string[, unicode[, bigEndian]]]);

A line of code following this syntax creates a new Buffer object
from the string provided. If string is a unicode string (unicode is
enabled within the application), then the buffer is created as a
unicode string. This behavior can be overridden by specifying
true or false with the optional boolean unicode parameter. If
this parameter is set to false, then the buffer is created as an
ASCII string, regardless of whether or not the original string was
in unicode or not. Similarly, specifying true will ensure that the
buffer is created as a unicode string. The size of the buffer is the
length of the string (twice the length if it is unicode). This
constructor does not add a terminating null byte at the end of
the string. The bigEndian flag behaves the same way as in the
first constructor.

Buffer unicode

Buffer
bigEndian pr

Buffer object, use sy

Nombas ScriptEase ISDK/Java 5.01 201

new Buffer(buffer[, unicode[, bigEndian]])

A line of code following this syntax creates a new Buffer object
from the buffer provided. The contents of the buffer are copied
as is into the new Buffer object. The unicode and bigEndian
parameters do not affect this conversion, though they do set the
relevant flags for future use.
new Buffer(bufferObject);

A line of code following this syntax creates a new Buffer object
from another Buffer object. Everything is duplicated exactly
from the other bufferObject, including the
and the

All of the Buffer construction calls above may be done without
the new constructor starting with ScriptEase 5.00.

Buffer cursor location
Buffer size.

Buffer cursor propert

SEE: Blob object

Buffer getString()
SYNTAX: buffer.getString([length])
WHERE: length - number of characters to get from the buffer.
RETURN: string - starting from the current cursor location and continuing

for length bytes. If no length is specified, then the method reads
until a NULL byte is encountered or the end of the buffer is
reached.

The y is updated to the position after the
string returned.

DESCRIPTION: The string is read according to the value of the .unicode flag of
the buffer. A terminating NULL byte is not added, even if a length
parameter is not provided.

SEE: Buffer putString()
EXAMPLE: foo = new Buffer("abcd");

foo.cursor = 1;
goo = foo.getString(2);
//goo is now "bc"

Buffer compare()
SYNTAX: buffer.compare(buffer2)
WHERE: buffer2 - buffer to compare against.
RETURN: negative if buffer < buffer2,

zero if buffer == buffer2
positive if buffer > buffer2

DESCRIPTION: This function is identical to calling
Buffer.compare(buffer,buffer2).

SEE: Buffer(), Buffer.compare (), Buffer.equal (), Buffer equal()
EXAMPLE: // The following code:

var bufa = Buffer("ab");

Nombas ScriptEase ISDK/Java 5.01 202

var bufb = new Buffer("ab\0");
var cmp = bufa.compare(bufb)
// will set the variable cmp to be < 0

Buffer equal()
SYNTAX: buffer.equal(buffer2)
WHERE: buffer2 - buffer to compare against.
RETURN: true if two buffers are equal, else false
DESCRIPTION: This function is identical to calling

Buffer.equal(buffer,buffer2).
SEE: Buffer(), Buffer equal(), Buffer.compare (), Buffer compare()
EXAMPLE: // The following code:

var bufa = Buffer("ab");
var bufb = new Buffer("ab\0");
var cmp = bufa.equal(bufb)
// will set the variable cmp to be false

Buffer getValue()
SYNTAX: buffer.getValue([valueSize[, valueType]])
WHERE: valueSize - a positive number describing the number of bytes to

be used and defaults to 1. The following are acceptable values: 1,
2, 3, 4, 8, and 10

valueType - One of the following types: "signed",
"unsigned", or "float". The default type is: "signed."

RETURN: number - from the position, specified by the cursor property, in
a

DESCRIPTION: This call is similar to the except that
it gets a value instead of puts a value.

SEE: Buffer putValue(), Buffer[] Array
EXAMPLE: /*

To explicitly put a value at a specific location
while preserving the cursor location,
do something similar to the following.
*/

 // Save the old cursor location
var oldCursor = foo.cursor;
 // Set to new location
foo.cursor = 20;
 // Get goo at offset 20
bar = foo.getValue(goo);
 // Restore cursor location
foo.cursor = oldCursor

//Please see Buffer.putValue
// for a more complete description.

Buffer object.

Buffer putValue() function,

Buffer putString()
SYNTAX: buffer.putString(string)
WHERE: string - Any string.

Nombas ScriptEase ISDK/Java 5.01 203

RETURN: void.
DESCRIPTION: This method puts a string into the

cursor position. If the .unicode flag is set within the Buffer
object, then the string is put as a unicode string, otherwise it is
put as an ASCII string. The cursor is incremented by the length
of the string (or twice the length if it is put as a unicode string).
Note that terminating null byte is not added at end of the string.

EXAMPLE: // To put a null terminated string,
// the following can be done.

 // Put the string into the buffer
foo.putString("Hello");
 // Add terminating null byte
foo.putValue(0);

Buffer object at the current

Buffer putValue()
SYNTAX: buffer.putValue(value[, valueSize[, valueType]])
WHERE: value - the value, a number, to be put into the buffer at the

position indicated by the cursor property.

valueSize - a positive number describing the number of bytes to
be used and defaults to 1. The following are acceptable values:
1,2,3,4,8, and 10

valueType - One of the following types: "signed",
"unsigned", or "float". The default type is: "signed."

RETURN: void

The value is put into buffer at the current cursor position, and
the cursor value is automatically incremented by the size of the
value to reflect this addition.

DESCRIPTION: This method puts the specified value into a buffer. The value
must be a number. The parameter valueSize or both
valueSize and valueType may be passed as additional
parameters. The parameter valueSize is a positive number
describing the number of bytes to be used and defaults to 1.
Acceptable values for valueSize are 1, 2, 3, 4, 8, and 10,
providing that it does not conflict with the optional valueType
flag. (See listing below.)

The parameter valueType must be one of the following:
"signed", "unsigned", or "float". It defaults to "signed."
The valueType parameter describes the type of data to be read.
Combined with valueSize, any type of data can be put. The
following list describes the acceptable combinations of
valueSize and valueType:
valueSize valueType
1 signed, unsigned
2 signed, unsigned
3 signed, unsigned
4 signed, unsigned, float
8 float

Nombas ScriptEase ISDK/Java 5.01 204

10 float (Not supported on every system)

Any other combination will cause an error. The value is put into
buffer at the current cursor position, and the cursor value is
automatically incremented by the size of the value to reflect this
addition.

SEE: Buffer getValue(), Buffer[] Array
EXAMPLE: /*

To explicitly put a value at a specific location
while preserving the cursor location,
do something similar to the following.
*/

var oldCursor = foo.cursor;
 // Save the old cursor location
foo.cursor = 20;
 // Set to new location
foo.putValue(goo);
 // Put goo at offset 20
foo.cursor = oldCursor
// Restore cursor location

/*.
The value is put into the buffer with byte-ordering
according to the current setting of the .bigEndian
flag. Note that when putting float values as a
smaller size, such as 4, some significant figures
are lost. A value such as "1.4" will actually be
converted to something to the effect
of "1.39999974". This is sufficiently
insignificant to ignore, but note
that the following does not hold true.
.*/

foo.putValue(1.4,4,"float");
foo.cursor -= 4;
if(foo.getValue(4,"float") != 1.4)
 // This is not necessarily true due
 // to significant figure loss.

/*.
This situation can be prevented by using 8 or 10
as a valueSize instead of 4. A valueSize of 4
may still be used for floating point values,
but be aware that some loss of significant figures
may occur (though it may not be enough
to affect most calculations).
.*/

Buffer subBuffer()
SYNTAX: buffer.subBuffer(begin, end)
WHERE: begin - start of offset

end - end of offset (up to but not including this point)
RETURN: object - another

positions specified by the parameters: begin and end.
DESCRIPTION: If the parameter begin is less than 0, then it is treated as 0, the

Buffer object consisting of the data between the

Nombas ScriptEase ISDK/Java 5.01 205

start of the buffer. If the parameter end is beyond the end of the
buffer, then the new sub-buffer is extended with NULL bytes. The
original buffer is not altered.

SEE: String subString()
EXAMPLE: foo = new Buffer("abcd");

bar = foo.subBuffer(1,3);
// bar is now the string "bc"
// "a" was at position 0, "b" at position 1, etc.
// The parameter "3"
// or "nEnd" is the position to go up to,
// but NOT to be included in the string.

Buffer toString()
SYNTAX: buffer.toString()
RETURN: string - a string equivalent of the current state of the buffer, with

all characters, including "\0".
DESCRIPTION: Any conversion to or from unicode is done according to the

.unicode flag of the object.
SEE: Buffer getString()
EXAMPLE: foo = new Buffer("hello");

bar = foo.toString(void);
//bar is now the string "hello"

Buffer object static methods
Buffer.compare ()
SYNTAX: Buffer.compare(buffer1,buffer2)
WHERE: buffer1,buffer2 - Two buffer objects to be compared.
RETURN: negative if buffer1 < buffer2,

zero if buffer1 == buffer2
positive if buffer1 > buffer2

DESCRIPTION: There is no insensitive compare, Buffer.comparei(), since buffers
are not strings.To compare buffers as strings, use the toString()
or valueOf() methods and make string comparisons. By using
these methods, ASCII and Unicode buffers, holding string data,
may be compared.

SEE: Buffer(), Buffer compare(), Buffer.equal (), Buffer equal()
EXAMPLE: // The following code:

var bufa = Buffer("ab");
var bufb = new Buffer("ab\0");
var cmp = Buffer.compare(bufa,bufb)
// will set the variable cmp to be < 0

Buffer.equal ()
SYNTAX: Buffer.equal(buffer1,buffer2)
WHERE: buffer1,buffer2 - Two buffer objects to be compared.
RETURN: true if two buffers are equal, else false

Nombas ScriptEase ISDK/Java 5.01 206

DESCRIPTION: There is no insensitive compare, Buffer equali(), since buffers
are not strings. To compare buffers as strings, use the toString()

or valueOf() methods and make string comparisons. By using
these methods, ASCII and Unicode buffers, holding string data,
may be compared.

SEE: Buffer(), Buffer equal(), Buffer.compare (), Buffer compare()
EXAMPLE: // The following code:

var bufa = Buffer("ab");
var bufb = new Buffer("ab\0");
var cmp = Buffer.equal(bufa,bufb)
// will set the variable cmp to be false

Nombas ScriptEase ISDK/Java 5.01 207

Clib Object
platform: All operating systems; all versions of SE

The Clib object contains functions that are a part of the standard C library.
Methods to access files, strings, and characters are all part of the Clib object.

Some of the functions in the Clib Object overlap the methods in JavaScript. In
most cases, the newer JavaScript methods should be preferred over the older C
functions. However, there are times, such as when working with routines that
expect null terminated strings, that the Clib methods make more sense and are
more consistent in a section of a script.

Clib functions with equivalent methods in JavaScript are noted as such. Since
ScriptEase, JavaScript and the ECMAScript standard are developing and
growing, generally, a programmer should favor the JavaScript methods over
equivalent methods in the Clib object.

The methods in this section are preceded with the Object name Clib, since
individual instances of the Clib Object are not created. For example,
the syntax to use to exit a script.

Console I/O functions
Console I/0 functions are not available for ScriptEase WebServer Edition

Clib.printf()
SYNTAX: Clib.printf(formatString[, variables ...])

 Clib.exit() is

WHERE: formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
RETURN: number - characters written, or a negative number if there is an

error.
DESCRIPTION: This method writes output to the standard output device

according to the format string and returns a number equal to the
number of characters written, or a negative number if there is an
error. The format string can contain character combinations
indicating how following parameters are to be treated. Characters
are printed as read to standard output until a percent character,
%, is reached. % indicates that a value is to be printed from the
parameters following the format string. Each subsequent
parameter specification takes from the next parameter in the list
following format. A parameter specification has the following
form in which square brackets indicate optional fields and angled
brackets indicate required fields:

%[flags][width][.precision]<type>

flags may be:

• -
Left justification in the field with blank padding; else right
justifies with zero or blank padding

• +

Nombas ScriptEase ISDK/Java 5.01 209

Nombas ScriptEase ISDK/Java 5.01 210

• x

Force numbers to begin with a plus (+) or minus (-)
• blank

Negative values begin with a minus (-); positive values
begin with a blank

• #
Convert using the following alternate form, depending on
output data type:
• c, s, d, i, u

No effect
• o

0 (zero) is prepended to non- zero output
• x, X

0x, or 0X, are prepended to output
• f, e, E

Output includes decimal even if no digits follow decimal
• g, G

Same as e or E but trailing zeros are not removed

width may be:

• n
(n is a number e.g., 14) At least n characters are output,
padded with blanks

• 0n
At least n characters are output, padded on the left with zeros

• *
The next value in the argument list is an integer specifying
the output width

• .precision
If precision is specified, then it must begin with a period (.),
and may be as follows:

• 0
For floating point type, no decimal point is output

• n
n characters or n decimal places (floating point) are
output

• *
The next value in the argument list is an integer
specifying the precision width

type may be:

• d, i
signed integer

• u
unsigned integer

• o
octal integer x

Nombas ScriptEase ISDK/Java 5.01 211

password[gg] = letter;
}

hexadecimal integer with 0- 9 and a, b, c, d, e, f
• X

hexadecimal integer with 0- 9 and A, B, C, D, E, F
• f

floating point of the form [-]dddd.dddd
• e

floating point of the form [-]d.ddde+dd or [-]d.ddde- dd
• E

floating point of the form [-]d.dddE+dd or [-]d.dddE- dd
• g

floating point of f or e type, depending on precision
• G

floating point of For E type, depending on precision
• c

character (e.g. 'a', 'b', '8')
• s

string

To include the % character as a character in the format string, you
must use two % characters together, %%, to prevent the computer
from trying to interpret it as one of the above forms.

SEE: Clib.sprintf()
EXAMPLE: //Each of the following lines shows

// a printf example followed by what would show
// on the output in boldface:

Clib.printf("Hello world!")
// Hello world!
Clib.printf("I count: %d %d %d.",1,2,3)
// I count: 1 2 3
var a = 1;
var b = 2;
Clib.printf("%d %d %d", a, b, a +b)
// 1 2 3

Clib.getch()
SYNTAX: Clib.getch()
RETURN: number - character value of the key pressed.
DESCRIPTION: This method works exactly like getche(), but does not echo the

returned key to the screen. For example, the following code has
you enter a password; each time you enter a letter an asterisk is
written to the screen:

SEE: Clib.getchar()
EXAMPLE: var password;

for (var gg = 0; ;gg++)
{
var letter = Clib.getch();
if (letter == '\n') continue;
Clib.putc('*').

Clib.getchar()
SYNTAX: Clib.getchar()
RETURN: number - character value of the key pressed.
DESCRIPTION: This method returns the next character from stdin. Usually, this

is the keyboard, but you may redefine it to something else. This
method will wait for <Enter> to be pressed after the key, and
will then return two values: the key pressed, and then the value
of the enter key.

SEE: Clib.getche()

Clib.getche()
SYNTAX: Clib.getche()
RETURN: number - character value of the key pressed.
DESCRIPTION: This method waits until a key is pressed and returns the character

value of that key. The character will be printed (echoed) to the
screen. Some key presses, such as extended keys and function
keys, may generate multiple Clib.getche() return values. If a
key was pressed before calling the function but never cleared
from the keyboard buffer, that value will be returned instead of
the next pressed key. This is not a common occurrence but can
happen. To see whether there are any key values pending in the
keyboard buffer, use

SEE: Clib.getch()

Clib.kbhit().

Clib.gets()
SYNTAX: Clib.gets(str)
RETURN: str - buffer to hold the same string that is returned.
RETURN: string - an entire string from the keyboard, or null if there was

an error.
DESCRIPTION: This method reads an entire string from the keyboard and returns

it (or null if there was an error). The function will read all
characters up to a newline character or EOF. If a newline
character is read, it will not be included in the string.

SEE: Clib.getchar()
EXAMPLE: var s = Clib.gets()

Clib.kbhit()
SYNTAX: Clib.kbhit()
RETURN: boolean - true if there are any keystrokes waiting, false if not.
DESCRIPTION: This method checks to see whether there are any keystrokes

waiting to be processed, returning true if there are and false if
there are not.

Nombas ScriptEase ISDK/Java 5.01 212

SEE: Clib.getche()

Clib.putchar()
SYNTAX: Clib.putchar(chr)
WHERE: chr - character to write to the stream stdout.
RETURN: number - character written on success, else EOF.
DESCRIPTION: This method writes chr to the stream defined by stdout (usually

the screen). If successful, it will return the character it just wrote;
if not, it will return EOF.

This method is identical to Clib.fputc(chr, stdout).
SEE: Clib.puts(), Clib.fputc()

Clib.puts()
SYNTAX: Clib.puts(str)
WHERE: str - string to write to the stream stdout.
RETURN: number - a positive number on success, else EOF.
DESCRIPTION: Writes a string to stdout, followed by a newline character. Will

not write the final null character of null terminated strings.
Returns EOF if there is an error writing the string; otherwise it
returns a positive number.

This method is the same as Clib.fputs(str, stdout)
except that a newline character is written after the string.

SEE: Clib.putchar(), Clib.puts()

Clib.scanf()
SYNTAX: Clib.scanf(formatString, variables[, ...])
WHERE: formatString - specifies how to read and store data in variables.

variables - list of variables to hold data input according to
formatString.

RETURN: number - input items assigned.
DESCRIPTION: This flexible method reads input from the screen, extracts data

from it by matching the string to a format string (as described
below), and stores the data in the variables which follow the
format string. It returns the number of input items assigned; this
number may be fewer than the number of parameters requested if
there was a matching failure. The format string contains
character combinations that specify the type of data expected.
The format string specifies the admissible input sequences, and
how the input is to be converted to be assigned to the variable
number of arguments passed to this function.

Nombas ScriptEase ISDK/Java 5.01 213

Characters are matched against the input as read and as it
matches a portion of the format string until a % character is

reached. % indicates that a value is to be read and stored to
subsequent parameters following the format string. Each
subsequent parameter after the format string gets the next parsed
value takes from the next parameter in the list following format.
A parameter specification takes this form (square brackets
indicate optional fields, angled brackets indicate required fields):

%[*][width]<type>

*, width, and type may be:

• *
suppress assigning this value to any parameter

• width
maximum number of characters to read; fewer will be read if
white space or nonconvertible character

• type
may be one of the following:

• d, D, i, I
signed integer

• u, U
unsigned integer

• o, O
octal integer

• x, X
hexadecimal integer

• f, e, E, g, G
floating point number

• c
character; if width was specified then this will be an
array of characters of the specified length

• s
string

• [abc]
string consisting of all characters within brackets; where
A- Z represents range "A" to "Z"

• [^abc]
string consisting of all character NOT within brackets.

Modifies any number of parameters following the format string,
setting the parameters to data according to the specifications of
the format string.

SEE: Clib.vscanf()

Clib.vprintf()
SYNTAX: Clib.vprintf(formatString, valist)
WHERE: formatString - string that specifies the final format.

Nombas ScriptEase ISDK/Java 5.01 214

valist - a variable list of arguments to be used according to

formatString.
RETURN: number - number of characters written on success, else a

negative number.
DESCRIPTION: This method displays formatted output on the standard output

stream, screen, using a variable number of arguments. This
method is similar to Clib.printf() except that it takes a
variable argument list using valist.

See ore information. The
method Clib.vprintf() returns the number of characters written on
success, else a negative number on error.

The example function acts just like a Clib.printf() statement
except that it beeps, displays a message, beeps again, and waits a
second before returning. This method could be a wrapper for the
Clib.printf() method to display urgent messages.

SEE: Clib.printf(), Clib.va_start()
EXAMPLE: function UrgentPrintf(FormatString[arg1 ...])

{
 // create variable arg list
 Clib.va_start(valist, FormatString);
 Screen.write("\a"); // audible beep
 // printf original statement
 var ret = Clib.vprintf(FormatString, valist);
 Screen.write("\a"); // beep again
 SElib.suspend(1000); // wait before returning
 Clib.va_end(valist); // end using valist
 return(ret); // return as printf would }
}

Clib.printf() and Clib.va_start() for m

Clib.scanf() and Clib.va_start() for

Clib.vscanf() m

Clib.vscanf()
SYNTAX: Clib.vscanf(formatString, valist)
WHERE: formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: number - input items assigned. This number may be fewer than
the number of parameters requested if there is a matching failure
during input.

DESCRIPTION: This method gets formatted input from the standard input stream,
the keyboard, using a variable number of arguments. This
method is similar to Clib.scanf() except that it takes a
variable argument list. See
more information.

The method odifies any number of parameters
following formatString, setting the parameters to data according
to the specifications of the format string.

This method returns the number of input items assigned. This
number may be fewer than the number of parameters requested if
there is a matching failure during input.

Nombas ScriptEase ISDK/Java 5.01 215

The example function behaves like Clib.scanf(), including
taking a variable number of input arguments, except that it beeps
and tries again if there are zero matches:

SEE: Clib.scanf()
EXAMPLE: function Must_scanf(FormatString[,arg1 ...)

{
 Clib.va_start(valist, FormatString);
 // creates variable arg list
 do
 { // mimic original scanf() call
 var count = Clib.vscanf(FormatString,
 valist);
 if (0 == count) // if no match, beep
 Screen.write("\a");
 } while(0 == count);
 // if not match, try again
 Clib.va_end(valist);
 // end using valist (optional)
 return(count);
 // return as scanf() would
}

Time functions
The presents time in two distinct ways: as an
integral value (the number of seconds passed since January 1, 1970) and as a
Time object with properties for the day, month, year, etc. This Time object is
distinct from the standard JavaScript Date object. You cannot use Date object
properties with a Time object or vice versa.

In the methods below, timeObj represents a variable in the Time object format,
while timeInt represents an integral time value.

Clib.asctime()
SYNTAX: Clib.asctime(timeObj)

Clib object (like the Date object) re

Clib.localtime(). The stri

WHERE: timeObj - time variable in the Time object format.
RETURN: string - the date and time extracted from a Time object, as

returned by Clib.localtime().
DESCRIPTION: Returns a string representing the date and time extracted from a

Time object, as returned by ng will have
this format:
Mon Jul 19 09:14:22 1993

Clib.clock()
SYNTAX: Clib.clock()
RETURN: number - the current processor tick count.
DESCRIPTION: Returns the current processor tick count. Clock value starts at 0

when ScriptEase program begins and is incremented
CLOCKS_PER_SEC times per second.

Nombas ScriptEase ISDK/Java 5.01 216

Clib.ctime()
SYNTAX: Clib.ctime(timeInt)
WHERE: timeInt - an integer time value.
RETURN: string - the date and time extracted from a Time object, as

returned by
DESCRIPTION: This method is equivalent to: Clib.asctime(

Clib.localtime(time)), where timeInt is a date_time
value as returned by the

 Clib.localtime().

Clib.time() function.

Clib.time() function.

Clib.time()

Clib.localtime() for a descr

Clib.time() function).

Clib object. It has the following i

Clib.difftime()
SYNTAX: Clib.difftime(timeInt0, timeInt1)
WHERE: timeInt0 - an integer time value.

timeInt1 - an integer time value.
RETURN: number - difference between two times, in seconds.
DESCRIPTION: This method returns the difference in seconds between two

times. timeInt0 and timeInt1 are integral time values as returned
by the

Clib.gmtime()
SYNTAX: Clib.gmtime(timeInt)
WHERE: timeInt - an integer time value.
RETURN: object - a time object reflecting the value timeInt (as returned by

the Clib.time().
DESCRIPTION: Takes the integer timeInt (as returned by the

function) and converts it to a Time object representing the
current date and time expressed as Greenwich mean time. See

iption of the returned object.
SEE: Clib.mktime(), Date Object, Date toGMTString()

Clib.localtime()
SYNTAX: Clib.localtime(timeInt)
WHERE: timeInt - an integer time value.
RETURN: object - a time object reflecting the value timeInt (as returned by

the
DESCRIPTION: This method returns the value timeInt (as returned by the time()

function) as a Time object. Note that the Time object differs
from the Date object, although they contain the same data. The
Time object is for use with the other date and time functions in
the nteger properties:

• .tm_sec
second after the minute (from 0)

• .tm_min

Nombas ScriptEase ISDK/Java 5.01 217

minutes after the hour (from 0)
• .tm_hour

hour of the day (from 0)
• .tm_mday

day of the month (from 1)
• .tm_mon

month of the year (from 0)
• .tm_year

years since 1900 (from 0)
• .tm_wday

days since Sunday (from 0)
• .tm_yday

day of the year (from 0)
• .tm_isdst

daylight-savings-time flag

The following function prints the current date and time on the
screen and returns the day of the year, where Jan 1 is the 1st day
of the year.

SEE: Clib.mktime(), Date Object, Date toDateString(), Date
toLocaleDateString()

EXAMPLE: // Show today's date
// Return day of the year in USA format
ShowToday()
{
 // get current time structure
 var tm = Clib.localtime(Clib.time());
 // display the date in USA format
 Clib.printf("Date: %02d/%02d/%02d ",
 tm.tm_mon+1,
 tm.tm_mday, tm.tm_year % 100);
 // hour to run from 12 to 11, not 0 to 23
 var hour = tm.tm_hour % 12;
 if (hour == 0)
 hour = 12;
 // print current time
 Clib.printf("Time: % 2d:%02d:%02d\n", hour,
 tm.tm_min,
 tm.tm_sec);
 // return day of year, Jan. 1 is day 1
 return(tm.tm_yday + 1);
}

Clib.mktime()
SYNTAX: Clib.mktime(timeObj)
WHERE: timeObj - time variable in the Time object format.
RETURN: number - time integer, or -1 if time cannot be converted or

represented.
DESCRIPTION: This method converts timeObj (an object as returned by

at returned by
integer). All undefined elements of timeObj will be set to 0
before the conversion. It returns -1 if time cannot be converted or

Clib.localtime()) to the time form Clib.time() (an

Nombas ScriptEase ISDK/Java 5.01 218

represented.

In other words, while Clib.localtime() converts from a time
integer to a Time object, Clib.mktime() converts from a Time
object to a time integer.

Clib.strftime()
SYNTAX: Clib.strftime(str, formatString, timeObj)
WHERE: str - a variable to receive the formatted time string.

formatString - string that specifies the final format.

timeObj - time variable in the Time object format.
RETURN: string - a string that describes the date and/or time and stores it in

the variable string.
DESCRIPTION: This method creates a string that describes the date and or time

and stores it in the variable str. The parameter formatString
describes what the string will look like, and timeObj is a time
object as returned by

These following conversion characters are used with
Clib.strftime() to indicate time and date output:

• %a
abbreviated weekday name (Sun)

• %A
full weekday name (Sunday)

• %b
abbreviated month name (Dec)

• %B
full month name (December)

• %c
date and time (Dec 2 06:55:15 1979)

• %d
two- digit day of the month (02)

• %H
two- digit hour of the 24- hour day (06)

• %I
two- digit hour of the 12- hour day (06)

• %j
three- digit day of the year from 001 (335)

• %m
two- digit month of the year from 01 (12)

• %M
two- digit minute of the hour (55)

• %p
AM or PM (AM)

• %S
two- digit seconds of the minute (15)

• %U

 Clib.localtime().

Nombas ScriptEase ISDK/Java 5.01 219

Nombas ScriptEase ISDK/Java 5.01 220

the operating system.

two- digit week of year, Sunday is first day of week (48)
• %w

day of the week where Sunday is 0 (0)
• %W

two- digit week of year, Monday is first day of week (47)
• %x

the date (Dec 2 1979)
• %X

the time (06:55:15)
• %y

two- digit year of the century (79)
• %Y

the year (1979)
• %Z

name of the time zone, if known (EST)
• %%

the per cent character (%)

EXAMPLE: // displays the full day name and month name
// of the current day
Clib.strftime(TimeBuf,
 "Today is: %A, the month is: %B",
 Clib.localtime(time()));
Clib.puts(TimeBuf);

Clib.time()
SYNTAX: Clib.time([t])
WHERE: t - variable to receive the time returned.
RETURN: number - integer representation of the current time.
DESCRIPTION: Returns an integer representation of the current time. The format

of the time is not specifically defined except that it represents the
current time, to the system's best approximation, and can be used
in many other time related functions. If t is supplied then it will
be set to equal the returned value.

Script execution
Clib.abort()
SYNTAX: Clib.abort([AbortAll])
WHERE: AbortAll - boolean flag as to whether to abort all levels of

ScriptEase execution.
RETURN: number - EXIT_FAILURE to the operating system.
DESCRIPTION: This method terminates a program, usually when a specified

error occurs. This method causes abnormal program termination
and should only be called on a fatal error. This method exits,
without returning to the caller, and returns EXIT_FAILURE to

If the boolean AbortAll is true, this method aborts through all
levels of ScriptEase interpretation. If you are in multiple levels
of) aborts through all
SElib.interpret() levels.

SElib.interpret(), .abort(

SEE: Clib.assert()

Clib.assert()
SYNTAX: Clib.assert(test)
WHERE: test - boolean flag to determine if the current file name and line

number will be displayed and if the script will abort.
RETURN: void.
DESCRIPTION: If boolean evaluates to false this function will print the file

name and line number to stderr and abort. If the assertion
evaluates to true then the program continues. Clib.assert()
is typically used as a debugging technique to test assumptions
before executing code based on those assumptions. Unlike C, the
ScriptEase implementation of assert does not depend upon
NDEBUG being defined or undefined; it is always active.

SEE: Clib.abort()
EXAMPLE: // The Inverse() function below returns

// the inverse of the input number (1/x):
function Inverse(x)
{
 assert(0 != x);
 return 1 / x;
}

Clib.atexit()
SYNTAX: Clib.atexit(function)
WHERE: function - a function to be called when a script is exited. Use the

actual function name or ID and not a string.
RETURN: void.
DESCRIPTION: This method registers a function to be called when the script

ends. The variable string passed to this function is the name of a
function to be called.

SEE: Clib.exit()
EXAMPLE: Screen.writeln("Starting the script");

Clib.atexit(Finished);
/*
 Not:
 Clib.atexit("Finished");
*/

function Finished()
{
 Screen.writeln("Exiting the script");
} // Finished

Nombas ScriptEase ISDK/Java 5.01 221

Clib.exit()
SYNTAX: Clib.exit(code)
WHERE: code - status number to return to the operating system.
RETURN: number - the status code of the exit is returned to the operating

system from which a script was called.
DESCRIPTION: This method causes normal program termination. It calls all

functions registered with Clib.atexit(), flushes and closes
all open file streams, updates environment variables if applicable
to this version of ScriptEase, and returns control to the OS
environment with the return code of status.

SEE: Clib.atexit()

Clib.system()
SYNTAX: Clib.system([P_SWAP,] commandString)
WHERE: P_SWAP - in DOS version, determines whether the ScriptEase

interpreter is swapped out of normal memory.

commandString - the command string to be executed, a
command as would be entered at a command prompt.

RETURN: value - the value returned by a command processor.
DESCRIPTION: Passes commandString to the command processor and returns

whatever value was returned by the command processor.
commandString may be a formatted string followed by variables
according to the rules defined in

• DOS
In the DOS version of ScriptEase, if the special argument
P_SWAP is used then SeDos.exe is swapped to
EMS/XMS/INT15 memory or disk while the system
command is executed. This leaves almost all available
memory for executing the command. See
discussion of P_SWAP.

• DOS32
The 32 bit protected mode version of DOS ignores the first
parameter if it is not a string; in other words, P_SWAP is
ignored.

SEE: SElib.spawn()

Clib.sprintf().

SElib.spawn() for a

Error
Clib.errno
SYNTAX: Clib.errno
DESCRIPTION: The property errno stores diagnostic message information when

a function fails to execute correctly. Many functions in the Clib
and SElib objects set errno to non-zero in case of error to provide
information about the error that is more specific. ScriptEase

Nombas ScriptEase ISDK/Java 5.01 222

implements errno as a macro to the internal function _errno().
This property can be accessed with Clib.perror() or
Clib.strerror().

Clib.fopen().

SEE: Clib.perror()

Clib.clearerr()
SYNTAX: Clib.clearerr(filePointer)
WHERE: filePointer - pointer to file for which error information is to be

cleared.
RETURN: void.
DESCRIPTION: This method clears the error status and resents the end-of-file

flags for the file associated with filePointer. There is no return
value.

SEE: Clib.ferror()

Clib.ferror()
SYNTAX: Clib.ferror(filePointer)
WHERE: filePointer - pointer to file for which error information is to be

retrieved.
RETURN: number - 0 on no file error, else the current error value

associated with a file operation.
DESCRIPTION: The parameter filePointer is a file pointer as returned by

This method tests and returns the error indicator for
stream file. Returns 0 if no error, otherwise returns the error
value.

SEE: Clib.clearerr()

Clib.perror()
SYNTAX: Clib.perror([errmsg])
WHERE: errmsg - a message to describe an error condition.
RETURN: string - error message that describes the error indicated by

Clib.errno.
DESCRIPTION: Prints and returns an error message that describes the error

defined by Clib.errno. This method is identical to calling
Clib.strerror(Clib.errno). If a string variable is supplied
it will be set to the string returned.

SEE: Clib.ferror()

Clib.strerror()
SYNTAX: Clib.strerror(errno)
WHERE: errno - an error number to convert to a descriptive string.

Nombas ScriptEase ISDK/Java 5.01 223

Nombas ScriptEase ISDK/Java 5.01 224

• t

RETURN: string - an error number converted to a descriptive string.
DESCRIPTION: When some functions fail to execute properly, they store a

number in the .errno property. The number corresponds to the
type of error encountered. This method converts the error
number to a descriptive string and returns it.

SEE: Clib.perror()
EXAMPLE: // Opens a file for reading, and if it cannot

// open the file then it prints a descriptive
// message and exits the program.

function MustOpen(filename)
{
 var fh = fopen(filename, "r");
 if (fh == null)
 {
 Clib.printf("Error:%s\n",
 Clib.strerror(errno));
 Clib.exit(EXIT_FAILURE);
 }
 return(fh);
}

File I/O
Clib.fopen()
SYNTAX: Clib.fopen(filename, mode)
WHERE: filename - a string with a filename to open.

mode - how or for what operations the file will be opened.
RETURN: number - a file pointer to the file opened, null in case of failure.
DESCRIPTION: This method opens the file specified by filename for file

operations specified by mode, returning a file pointer to the file
opened. null is returned in case of failure.

The parameter filename is a string. It may be any valid file name,
excluding wildcard characters.

The parameter mode is a string composed of one or more of the
following characters. For example, "r" or "rt"

• r
open file for reading; file must already exist

• w
open file for writing; create if doesn't exist; if file exists then
truncate to zero length

• a
open file for append; create if doesn't exist; set for writing at
end- of- file

• b
binary mode; if b is not specified then open file in text mode
(end- of- line translation)

text mode
• +

open for update (reading and writing)

When a file is successfully opened, its error status is cleared and
a buffer is initialized for automatic buffering of reads and writes
to the file.

SEE: Clib.fclose(), Clib.flock()
EXAMPLE: // Open the text file "ReadMe"

// for text mode reading, and
// display each line in the file.

var fp = Clib.fopen("ReadMe", "r");
if (fp == null)
 Clib.printf(
 "\aError opening file for reading.\n")
else
 while (null != (line=Clib.fgets(fp)))
 {
 Clib.fputs(line, stdout)
 }
Clib.fclose(fp);

Clib.fclose()
SYNTAX: Clib.fclose(filePointer)
WHERE: filePointer - pointer to file to close.
RETURN: number - 0 on success, else EOF.
DESCRIPTION: The parameter filePointer is a file pointer as returned by

This method flushes the file buffers of a stream and
closes the file. The file pointer ceases to be valid after this call.
Returns zero if successful, otherwise returns EOF.

SEE: Clib.fopen(), Clib.flock()

Clib.fopen().

Clib.fopen().

Clib.feof()
SYNTAX: Clib.feof(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: number - 0 if at end of file, else a non-zero number.
DESCRIPTION: The parameter filePointer is a file pointer as returned by

This method returns an integer which is non-zero if
the file cursor is at the end of the file, and 0 if it is NOT at the
end of the file.

SEE: Clib.fopen()

Clib.fflush()
SYNTAX: Clib.fflush(filePointer)
WHERE: filePointer - pointer to file to use.

Nombas ScriptEase ISDK/Java 5.01 225

RETURN: number - 0 on success, else EOF.
DESCRIPTION: Causes any unwritten buffered data to be written to filePointer. If

filePointer is null then flushes buffers in all open files. Returns
zero if successful; otherwise EOF.

SEE: Clib.fclose()

Clib.fgetc()
SYNTAX: Clib.fgetc(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: number - EOF if there is a read error or the file cursor is at the

end of the file. If there is a read error then
indicate the error condition.

DESCRIPTION: This method returns the next character in the file stream
indicated by filePointer as a byte converted to an integer.

SEE: Clib.gets()

Clib.ferror() will

Clib.errno.

Clib.fsetpos(). The

Clib.fgetpos()
SYNTAX: Clib.fgetpos(filePointer, pos)
WHERE: filePointer - pointer to file to use.

pos - variable to hold the current file position.
RETURN: number - 0 on success, else non-zero and stores an error value in

DESCRIPTION: This method stores the current position of the file stream
filePointer for future restoration using file
position will be stored in the variable pos; use it with
Clib.fsetpos() to restore the cursor to its position.

SEE: Clib.fsetpos()

Clib.fgets()
SYNTAX: Clib.fgets([length,] filePointer)
WHERE: length - maximum length of string.

filePointer - pointer to file to use.
RETURN: string - the characters in a file from the current file cursor to the

next newline character on success, else null.
DESCRIPTION: This method returns a string consisting of the characters in a file

from the current file cursor to the next newline character. The
newline will be returned as part of the string. If there is an error
or the end of the file is reached, null will be returned.

A second syntax of this function takes a number as its first
parameter. This number is the maximum length of the string to
be returned if no newline character was encountered.

Nombas ScriptEase ISDK/Java 5.01 226

SEE: Clib.fgetc()

Clib.fprintf()
SYNTAX: Clib.fprintf(filePointer, formatString[,

variables ...])
WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
RETURN: number - characters written on success, else a negative number.
DESCRIPTION: This flexible function writes a formatted string to the file

associated with filePointer. The second parameter, formatString,
is a string of the same pattern as

SEE: Clib.printf()

Clib.sprintf() and Clib.rsprintf().

Clib.fputc()
SYNTAX: Clib.fputc(chr, filePointer)
WHERE: chr - character to write to file.

filePointer - pointer to file to use.
RETURN: number - character written on success, else EOF.
DESCRIPTION: If chr is a string, the first character of the string will be written to

the file indicated by filePointer. If chr is a number, the character
corresponding to its unicode value will be added.

SEE: Clib.fputs()

Clib.fputs()
SYNTAX: Clib.fputs(str, filePointer)
WHERE: str - string to write to file.

filePointer - pointer to file to use.
RETURN: number - non-negative number on success, else EOF.
DESCRIPTION: This method writes the value of str to the file indicated by

filePointer. Returns EOF if write error, else returns a non-
negative value.

SEE: Clib.fputc()

Clib.fread()
SYNTAX: Clib.fread(dstVar, varDescription, filePointer)
WHERE: dstVar - variable to hold data read from file.

varDescription - description of the data to read, that is, how and
how much.

Nombas ScriptEase ISDK/Java 5.01 227

Nombas ScriptEase ISDK/Java 5.01 228

bytes in memory. In JavaScript, this is not necessarily the case.

filePointer - pointer to file to use.
RETURN: number - elements read on success, 0 on failure.
DESCRIPTION: This method reads data from an open file and stores it in dstVar.

If it does not yet exist, dstVar will be created. varDescription is a
variable that describes the how and how much data is to be read:
if dstVar is a buffer, it will be the length of the buffer; if dstVar
is an object, varDescription must be an object descriptor; and if
dstVar is to hold a single datum then varDescription must be one
of the following.

• UWORD8
Stored as a byte in dstVar

• SWORD8
Stored as an integer in dstVar

• UWORD16
Stored as an integer in dstVar

• SWORD16
Stored as an integer in dstVar

• UWORD24
Stored as an integer in dstVar

• SWORD24
Stored as an integer in dstVar

• UWORD32
Stored as an integer in dstVar

• SWORD32
Stored as an integer in dstVar

• FLOAT32
Stored as a float in dstVar

• FLOAT64
Stored as a float in dstVar

• FLOAT80
Stored as a float in dstVar (not available in Win32)

In all cases, this function returns the number of elements read.
For dstVar being a buffer, this would be the number of bytes
read, up to length specified in varDescription. For dstVar being
an object, this method returns 1 if the data is read or 0 if read
error or end- of- file is encountered.

For example, the definition of an object might be:
ClientDef.Sex = UWORD8;
ClientDef.MaritalStatus = UWORD8;
ClientDef._Unused1 = UWORD16;
ClientDef.FirstName = 30; ClientDef.LastName = 40;
ClientDef.Initial = UWORD8;

The ScriptEase version of Clib.fread() differs from the
standard C version in that the standard C library is set up for
reading arrays of numeric values or structures into consecutive

Data types will be read from the file in a byte- order described by
the current value of the _BigEndianMode global variable.

SEE: Clib.fopen(), Clib.fwrite()
EXAMPLE: // To read the 16�bit integer "i",

// the 32�bit float "f", and
// then 10 byte buffer "buf"
// from the open file "fp"
// use code like the following.

if (!Clib.fread(i,SWORD16,fp) ||
 !Clib.fread(f,FLOAT32,fp) ||
 (10 != Clib.fread(buf,10,fp)))
{
 Clib.printf("Error reading from file.\n");
 Clib.abort();
}

Clib.freopen()
SYNTAX: Clib.freopen(filename, mode, filePointer)
WHERE: filename - a string with a filename to open.

mode - how or for what operations the file will be opened.

filePointer - pointer to file to use.
RETURN: number - file pointer on success, else null.
DESCRIPTION: This method closes the file associated with filePointer, ignoring

any close errors, opens filename according to mode, as with
and reassociates filePointer with the new file

specification. This method is commonly used to redirect one of
the pre-defined file handles (stdout, stderr, or stdin) to or
from a file.

The method returns a copy of the modified filePointer, or null
if it fails.

The example code calls ScriptEase for DOS with no parameters,
which causes a help screen to be printed, and redirects stdout
to a file cenvi.out so that cenvi.out will contain the text of the
ScriptEase help screens.

SEE: Clib.fopen()
EXAMPLE: if (null == Clib.freopen("cenvi.out", "w", stdout))

 Clib.printf("Error redirecting stdout\a\n")
else
 Clib.system("SEDOS");

Clib.fopen(),

Clib.fscanf()
SYNTAX: Clib.fscanf(filePointer, formatString[,

variables ...])
WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.

Nombas ScriptEase ISDK/Java 5.01 229

RETURN: number - input items assigned on success, else EOF.
DESCRIPTION: This flexible function reads input from the file indicated by

filePointer and stores in parameters following formatString
according the character combinations in the format string, which
indicate how the file data is to be read and stored. The file must
be open, with read access. It returns the number of input items
assigned. This number may be fewer than the number of
parameters requested if there was a matching failure. If there is
an input failure, before the conversion occurs, this function
returns EOF.

See iption of this format string. The
parameters following the format string will be set to data
according to the specifications of the format string.

SEE: Clib.scanf()
EXAMPLE: // Given the following text file, weight.dat:

// Crow, Barney 180
// Claus, Santa 306
// Mouse, Mickey 2
// the following code:

var fp = Clib.fopen("weight.dat", "r");
var FormatString = "%[,] %*c %s %d\n";
while (3 == Clib.fscanf(fp, FormatString,
 LastName, Firstame, weight))
 Clib.printf("%s %s weighs %d pounds.\n",
 FirstName, LastName, weight);
Clib.fclose(fp);

// results in the following output:
// Barney Crow weighs 180 pounds.
// Santa Claus weighs 306 pounds.
// Mickey Mouse weighs 2 pounds.

Clib.scanf() for a descr

Clib.fseek()
SYNTAX: Clib.fseek(filePointer, offset[, mode])
WHERE: filePointer - pointer to file to use.

offset - number of bytes past or offset from the point indicated
by mode.

mode - file position to use as a starting point. Default is
SEEK_SET and may be one of the following:

• SEEK_CUR
seek is relative to the current position of the file

• SEEK_END
position is relative from the end of the file

• SEEK_SET
position is relative to the beginning of the file

RETURN: number - 0 on success, else non-zero.
DESCRIPTION: Set the position of the file pointer of the open file stream

filePointer. The parameter offset is a number indicating how

Nombas ScriptEase ISDK/Java 5.01 230

many bytes the new position will be past the starting point
indicated by mode.

If mode is not supplied then absolute offset from the beginning
of file, SEEK_SET, is assumed. For text files, not opened in
binary mode, the file position may not correspond exactly to the
byte offset in the file.

SEE: Clib.fsetpos(), Clib.ftell()

Clib.fsetpos()
SYNTAX: Clib.fsetpos(filePointer, pos)
WHERE: filePointer - pointer to file to use.

pos - position in file to set.
RETURN: number - zero on success, otherwise returns non-zero and stores

an error value in Clib.errno.
DESCRIPTION: This method sets the current file stream pointer to the value

defined by pos, which must be a value obtained from a previous
call to same open file. Returns zero for
success, otherwise returns non- zero and stores an error value in

SEE: Clib.fseek()

Clib.fgetpos() on the

Clib.errno.

Clib.errno.

Clib.ftell()
SYNTAX: Clib.ftell(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: number - current value of the file position indicator, or -1 if there

is an error, in which case an error value will be stored in
Clib.errno.

DESCRIPTION: This method sets the position offset of the file pointer of an open
file stream from the beginning of the file. For text files, not
opened in binary mode, the file position may not correspond
exactly to the byte offset in the file. Returns the current value of
the file position indicator, or -1 if there is an error, in which case
an error value will be stored in

SEE: Clib.fseek()

Clib.fwrite()
SYNTAX: Clib.fwrite(srcVar, varDescription, filePointer)
WHERE: srcVar - variable to hold data to write to file.

varDescription - description of the data to write, that is, how and
how much.

filePointer - pointer to file to use.
RETURN: number - elements written on success, else 0 if a write error

Nombas ScriptEase ISDK/Java 5.01 231

occurs.
DESCRIPTION: This method writes the data in srcVar to the file indicated by

filePointer and returns the number of elements written. 0 will be
returned if a write error occurs. Use more
information about the error. varDescription is a variable that
describes the how and how much data is to be read. If srcVar is a
buffer, it will be the length of the buffer. If srcVar is an object,
varDescription must be an object descriptor. If srcVar is to hold
a single datum then varDescription must be one of the values
listed in the description for

The ScriptEase version of Clib.fwrite() differs from the
standard C version in that the standard C library is set up for
writing arrays of numeric values or structures from consecutive
bytes in memory. This is not necessarily the case in JavaScript.

SEE: Clib.fread()
EXAMPLE: // To write the 16_bit integer "i",

// the 32_bit float "f", and
// then 10_byte buffer "buf" into open file "fp",
// use the following code.

if (!Clib.fwrite(i, SWORD16, fp) ||
 !Clib.fwrite(f, FLOAT32, fp) ||
 (10 != fwrite(buf, 10, fp)))
{
 Clib.printf("Error writing to file.\n");
 Clib.abort();
}

Clib.ferror() to get

Clib.fread().

Clib.fgetc(). It returns the next

Clib.ferror() will indicate the error

Clib.getc()
SYNTAX: Clib.getc(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: number - on success, the next character, as an unsigned byte

converted to an integer, in a file. Else EOF if a read error or at the
end of file.

DESCRIPTION: This method is identical to
character in a file as an unsigned byte converted to an integer.
Returns EOF if there is a read error or if at the end of the file. If
there is a read error then
condition.

SEE: Clib.gets()

Clib.putc()
SYNTAX: Clib.putc(chr, filePointer)
WHERE: chr - character to write to file.

filePointer - pointer to file to use.
RETURN: number - character written on success, else EOF on write error.
DESCRIPTION: This method writes the character chr, converted to a byte, to an

Nombas ScriptEase ISDK/Java 5.01 232

output file stream. This method is identical to
returns chr on success and EOF on a write error.

Clib.fputc(). It

SEE: Clib.fputc()

Clib.remove()
SYNTAX: Clib.remove(filename)
WHERE: filename - the name of the file to delete from a disk.
RETURN: number - 0 on success, else non-zero.
DESCRIPTION: Delete a file with the filename provided.
SEE: Clib.rename(), Clib.fopen()

Clib.rename()
SYNTAX: Clib.rename(oldFilename, newFilename)
WHERE: oldFilename - current name of file on disk to be renamed.

newFilename - new name for file on disk.
RETURN: number - 0 on success, else non-zero.
DESCRIPTION: This method renames oldFilename to newFilename. Both

oldFilename and newFilename are strings. Returns zero if
successful and non-zero for failure.

SEE: Clib.remove()

Clib.rewind()
SYNTAX: Clib.rewind(filePointer)
WHERE: filePointer - pointer to file to use.
RETURN: void.
DESCRIPTION: This method sets the file cursor to the beginning of file. This call

is the same as Clib.fseek(filePointer, 0, SEEK_SET)
except that it also clears the error indicator for this stream.

SEE: Clib.fseek()

Clib.tmpfile()
SYNTAX: Clib.tmpfile()
RETURN: number - on success, a file pointer to a temporary binary file that

will automatically be removed when it is closed or when the
program exits, else null on failure.

DESCRIPTION: This method returns the file pointer of a temporary binary file
that will automatically be removed when it is closed or when the
program exits. Returns null if the function fails.

SEE: Clib.tmpnam()

Nombas ScriptEase ISDK/Java 5.01 233

Nombas ScriptEase ISDK/Java 5.01 234

directory for a script.

Clib.tmpnam()
SYNTAX: Clib.tmpnam([str])
WHERE: str - a variable to hold the name of a temporary file.
RETURN: string - a valid and unique filename.
DESCRIPTION: This method creates a string that is a valid file name that is not

the same as the name of any existing file and not the same as any
filename returned by this function during execution of this
program. If str is supplied it will be set to the string returned by
this function.

SEE: Clib.tmpfile()

Clib.ungetc()
SYNTAX: Clib.ungetc(chr, filePointer)
WHERE: chr - character to write to file.

filePointer - pointer to file to use.
RETURN: number - on success, the character put back into a file stream,

else EOF.
DESCRIPTION: This method pushes character chr back into an input stream.

When chr is put back, it is converted to a byte and is again in an
input stream for subsequent retrieval. Only one character is
guaranteed to be pushed back. The method returns chr on
success, else EOF on failure.

SEE: Clib.getc()

Directory
Clib.chdir()
SYNTAX: Clib.chdir(dirpath)
WHERE: dirpath - directory specification to which to change.
RETURN: number - 0 on success, else -1.
DESCRIPTION: This method changes the directory for a script from its current

directory to the directory specified in the parameter dirpath. The
specified directory may be an absolute or relative path
specification.

SEE: Clib.getcwd()

Clib.getcwd()
SYNTAX: Clib.getcwd()
RETURN: string - complete path of the current working directory for a

script.
DESCRIPTION: This method returns the complete path of the current working

SEE: Clib.chdir()

Clib.flock()
SYNTAX: Clib.flock(filePointer, lockFlag)
WHERE: filePointer - pointer to file to use.

lockFlag - determines which locking operation to perform on a
file. The flags are:

• LOCK_EX
File lock exclusive (equivalent to LOCK_SH in Windows)

• LOCK_SH
File lock share (equivalent to LOCK_EX in Windows)

• LOCK_NB
File lock non-blocking (bitwise or with LOCK_EX or
LOCK_SH)

• LOCK_UN
File unlock

RETURN: number - 0 on success, else -1 on failure.
DESCRIPTION: This method allows a file to be locked or unlocked, which is a

capability that is often important in a multi-tasking operating
system.

The ability to lock and unlock access to a file varies among
operating systems. For normal usage on most systems, the
operating system handles all necessary locking and
administration of sharing privileges for files. However, if a
scripter needs extra control over files, ScriptEase provides the
ability. For example, a script might use files to hold data while it
is running but does not need to keep the files open during all
phases of script execution. By locking and unlocking such files,
a scripter ensures that these files are not altered while a script is
running.

SEE: Clib.fopen(), Clib.fclose()
EXAMPLE: // The following fragment opens a file and

// then locks it for exclusive use without blocking
// further execution of the script.

var fp = Clib.fopen("myfile", "r");
Clib.flock(fp, LOCK_EX | LOCK_NB);
 // Use the file
Clib.flock(fp, LOCK_UN);
Clib.fclose(fp);

Clib.mkdir()
SYNTAX: Clib.mkdir(dirpath)
WHERE: dirpath - directory specification to make.

Nombas ScriptEase ISDK/Java 5.01 235

RETURN: number - 0 on success, else -1.
DESCRIPTION: This method creates the directory specified in the parameter

Nombas ScriptEase ISDK/Java 5.01 236

{
 {"Marge", "salad"},

dirpath. The specified directory may be an absolute or relative
path specification.

SEE: Clib.rmdir(), Clib.chdir()

Clib.rmdir()
SYNTAX: Clib.rmdir(dirpath)
WHERE: dirpath - directory specification to delete.
RETURN: number - 0 on success, else -1.
DESCRIPTION: This method deletes the directory specified by the parameter

dirpath.
SEE: Clib.mkdir(), Clib.remove()

Sorting
Clib.bsearch()
SYNTAX: Clib.bsearch(key, array[, elementCount],

 compareFunction)
WHERE: key - value for which to search.

array - beginning of array to search.

elementCount - number of elements to search. Default is the
entire array.

compareFunction - function used to compare key with each
element searched in the array.

RETURN: value - the element in an array if found, else null if not found.
DESCRIPTION: This method looks for an array variable that matches the key,

returning it if found and null if not. It will only search through
positive array members (array members with negative indices
will be ignored). The compareFunction must receive the key
variable as its first argument and a variable from the array as its
second argument. If elementCount is not supplied then it will
search the entire array. The elementCount is limited to 64K for
16-bit version of ScriptEase.

SEE: Clib.qsort()
EXAMPLE: // This example creates a two dimensional array

// that pairs a name with a favorite food.
// A name is searched for. The name and paired
// food is displayed.

var Found;
var Key;
var list;

 // create array of names and favorite food
var list =

 {"Lisa", "tofu"},
 {"Homer", "sugar"},
 {"Bart", "anything"},
 {"Itchy", "cats"},
 {"Scratchy", "anything from the garbage"}
};
 // sort the list
Clib.qsort(list, ListCompareFunction);

Key[0] = "marge";
 // search for the name Marge in the list
Found = Clib.bsearch(Key, list, ListCompareFunction);
 // display name, or not found

if (Found != null)
 Clib.printf("%s's favorite food is %s\n",
 Found[0], Found[1])
else
 Clib.puts("Could not find name in list.");

 // This compare function is used to sort
 // the array and to find a name.
 // The sort and search are case insensitive.
function ListCompareFunction(Item1, Item2)
{
 return Clib.strcmpi(Item1[0], Item2[0]);
}

Clib.qsort()
SYNTAX: Clib.qsort(array[, elementCount],

 compareFunction)
WHERE: array - array to sort.

elementCount - number of elements to sort. Default is the entire
array.

compareFunction - function used to compare key with each
element searched in the array.

RETURN: void.
DESCRIPTION: This method sorts elements in an array, starting from index 0 to

elementCount- 1. If elementCount is not supplied, then it will
sort the entire array. This method differs from the
method in that it can sort automatically created arrays, whereas
Array sort() only works with arrays explicitly created with a
new Array() statement.

The value of elementCount is limited to 64K
SEE: Clib.bsearch(), Array()
EXAMPLE: // Create a list of color names,

// sort the list in reverse alphabetical order,
// case insensitive, and display the list.

 // initialize an array of colors
var colors = {"yellow", "Blue", "GREEN", "purple",
 "RED", "BLACK", "white", "orange"};

 // sort the list ReverseColorSorter function

Array sort()

Nombas ScriptEase ISDK/Java 5.01 237

Nombas ScriptEase ISDK/Java 5.01 238

SYNTAX: Clib.putenv(variableName, stringValue)

Clib.qsort(colors, ReverseColorSorter);

 // display the sorted colors
for (var i = 0; i < getArrayLength(colors); i++)
 Clib.puts(colors[i]);

function ReverseColorSorter(color1,color2)
 // do a simple case insensitive string
 // comparison, and reverse the results too
{
 var CompareResult = Clib.stricmp(color1,color2)
 return -CompareResult;
}

// The output is:
// yellow
// white
// RED
// purple
// orange
// GREEN
// Blue
// BLACK

Environment variables
Clib.getenv()
SYNTAX: Clib.getenv([variableName])
WHERE: variableName - the name of an environment variable.
RETURN: string - a string representation of the value of an environment

variable on success. If no variableName is passed, an array of all
environment variable names. On failure, returns null.

DESCRIPTION: If the parameter variableName is supplied, this method returns
the value of a similarly named environment variable as a string,
if the variable exists, and null if VariableName does not exist.
If no name is supplied. then it returns an array of all environment
variable names, ending with a null element.

SEE: Clib.putenv()
EXAMPLE: // Print the existing environment variables,

// in "EVAR=Value" format,
// sorted alphabetically.

 // get array of all environment variable names
var EnvList = Clib.getenv();
 // sort array alphabetically
Clib.qsort(EnvList, getArrayLength(EnvList),
 Clib.stricmp);
 // display each element in ENV=VALUE format
for (var lIdx = 0; EnvList[lIdx]; lIdx++)
 Clib.printf("%s=%s\n", EnvList[lIdx],
 Clib.getenv(EnvList[lIdx]));

Clib.putenv()

WHERE: variableName - the name of an environment variable.

stringValue - new value for environment variable variableName.
RETURN: number - 0 on success, else -1.
DESCRIPTION: This method sets the environment variable variableName to the

value of stringValue. If stringValue is null then variableName
is removed from the environment. For those operating systems in
which ScriptEase can alter the parent environment (DOS or OS/2
when invoked with SD.bat or SEset.cmd) the variable setting will
still be valid when ScriptEase exits; otherwise, the variable
change applies only to the ScriptEase code and to child processes
of the ScriptEase program. Returns - 1 if there is an error, else 0.

SEE: Clib.getenv()

Character classification
JavaScript does not have a true character type. For the character classification
routines, a chr is actually a single character string. Thus, actual programming
usage is very much like C. For example, in the following fragment both

work properly.
var t = Clib.isalnum('a');
Screen.writeln(t);

var s = 'a';
var t = Clib.isalnum(s);
Screen.writeln(t);

This fragment displays the following.
true
true

In the following fragment, both ements cause errors since the
arguments to them are strings with more than one character.
var t = Clib.isalnum('ab');
Screen.writeln(t);

var s = 'ab';
var t = Clib.isalnum(s);
Screen.writeln(t);

All character classification methods return booleans: true or false.

Clib.isalnum()
SYNTAX: Clib.isalnum(chr)

Clib.isalnum() statements

Clib.isalnum() stat

WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: A-Z, a-z, or 0-9. Else false.
DESCRIPTION: Returns true if chr is a character in one of the following sets:

A-Z, a-z, or 0-9.

Nombas ScriptEase ISDK/Java 5.01 239

Clib.isalpha()
SYNTAX: Clib.isalpha(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: A-Z or a-z. Else false.
DESCRIPTION: Returns true if chr is an alphabetic character in one of the

following sets of characters: A-Z or a-z.

Clib.isascii()
SYNTAX: Clib.isascii(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in ASCII: 0-127.
DESCRIPTION: Returns true if chr is an ASCII character in the following set of

codes: 0-127.

Clib.iscntrl()
SYNTAX: Clib.iscntrl(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in ASCII: 0-31 or 127.
DESCRIPTION: Returns true if chr is a control character in the set of ASCII

characters. Control characters are in one of the following sets of
codes: 0-31 or 127.

Clib.isdigit()
SYNTAX: Clib.isdigit(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: 0-9.
DESCRIPTION: Returns true if chr is a decimal digit in the following set of

characters: 0-9.

Clib.isgraph()
SYNTAX: Clib.isgraph(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is a printable character.
DESCRIPTION: Returns true if chr is a printable character excluding the space

character " ", code 32.

Clib.islower()
SYNTAX: Clib.islower(chr)
WHERE: chr - a character, a single character string.

Nombas ScriptEase ISDK/Java 5.01 240

RETURN: boolean - true if chr is in: a-z.

Nombas ScriptEase ISDK/Java 5.01 241

following sets of characters: 0-9, A-F, or a-f.

DESCRIPTION: Returns true if chr is a lowercase character in the following set
of characters: a- z

Clib.isprint()
SYNTAX: Clib.isprint(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr a printable ASCII code in: 32-126.
DESCRIPTION: Returns true if chr is a printable character in the following set

of codes: 32-126.

Clib.ispunct()
SYNTAX: Clib.ispunct(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - if chr is a punctuation character code in: 32-47, 58-63,

91-96, or 123-126.
DESCRIPTION: Returns true if chr is a punctuation character in one of the

following sets of codes: 32-47, 58-63, 91-96, or 123-126.

Clib.isspace()
SYNTAX: Clib.isspace(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is a white space in ASCII: 9, 10, 11, 12,

13, or 32.
DESCRIPTION: Returns true if chr is a white space character, that is, one of the

following codes: 9, 10, 11, 12, 13, or 32 (horizontal tab, new
line, vertical tab, form feed, carriage return, or space).

Clib.isupper()
SYNTAX: Clib.isupper(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: A-Z.
DESCRIPTION: Returns true if chr is an uppercase character in the following

set of characters: A- Z.

Clib.isxdigit()
SYNTAX: Clib.isxdigit(chr)
WHERE: chr - a character, a single character string.
RETURN: boolean - true if chr is in: 0-9, A-F, or a-f.
DESCRIPTION: Returns true if chr is a hexadecimal digit in one of the

String manipulation
Clib.rsprintf()
SYNTAX: Clib.rsprintf(formatString[, variables ...])
WHERE: formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
RETURN: string - formatted according to formatString using any variables

passed.
DESCRIPTION: This method returns a formatted string. It is similar to

except that a string is returned instead of printed.
SEE: Clib.printf()
EXAMPLE: // If in a script you had a line:

Clib.printf("%s has seen %s %d times.\n", name,
 movie, timesSeen);

// and you wanted to pass the resulting string
// as a parameter to a function, you could do it
// as follows.

func(Clib.rsprintf("%s has seen %s %d times.\n",
 name, movie, timesSeen));

// The following lines of code achieve
// the same result, that is, create
// a string variable named word that contains
// the string "Who is #1?".

var word
word = Clib.rsprintf("Who is #%d?", 3-2);
Clib.sprintf(word, "Who is #%d?", 3-2);

Clib.printf(),

Clib.sprintf() and Clib.va_start() for m
Clib.rvsprintf() returns a string specified by for

Clib.rvsprintf()
SYNTAX: Clib.rvsprintf(formatString, valist)
WHERE: formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: string - specified by formatString on success, else EOF on error.
DESCRIPTION: This method returns formatted output using the variable

argument list represented by the parameter valist, a Blob. This
method is similar to Clib.sprintf() except that it takes a
variable argu ment list and returns a formatted string based on
the arguments, rather than storing it in a string buffer. See

ore information. The
method matString
on success, else EOF on error.

SEE: Clib.sprintf(), Clib.vprintf()

Nombas ScriptEase ISDK/Java 5.01 242

Clib.sscanf()
SYNTAX: Clib.sscanf(str, formatString[, variables ...])
WHERE: str - string holding the data to read into variables according to

formatString.

formatString - specifies how to read and store data in variables.

variables - list of variables to hold data input according to
formatString.

RETURN: number - input items assigned. May be lower than the number of
items requested if there is a matching failure.

DESCRIPTION: This flexible method reads data from a string and stores it in
variables passed as parameters following formatString. The
parameter formatString specifies how data is read and stored in
variables. See atString.

Clib.scanf() reads data from the standard input stream,
whereas this method, a string.

SEE: Clib.scanf(), Clib.fscanf(), Clib.vscanf()

 Clib.scanf() for details about form

Clib.sscanf() reads data from

Clib.printf() for a com

Clib.sprintf()
SYNTAX: Clib.sprintf(str, formatString[, variables ...])
WHERE: str - to hold the formatted output.

formatString - string that specifies the final format.

variables - values to be converted to and formatted as a string.
RETURN: number - characters written to string on success, else EOF on

failure.
DESCRIPTION: This method writes output to the string variable specified by str

according to formatString, and returns the number of characters
written or EOF if there was an error. The parameter formatString
may contain character combinations indicating how following
parameters are to be written. The parameter str need not be
previously defined. It will be created large enough to hold the
result.

The format string may contain character combinations indicating
how following parameters are to be treated. Characters are
handled normally until a percent character, %, is reached. The
percent % indicates that a value is to be written from the variables
following the format string. See plete
description of formatString.

SEE: Clib.printf()
EXAMPLE: // Each of the following lines shows

// a sprintf example followed
// by the resulting string.

Clib.sprintf(testString, "I count: %d %d %d.",1,2,3)

// "I count: 1 2 3"

Nombas ScriptEase ISDK/Java 5.01 243

Nombas ScriptEase ISDK/Java 5.01 244

Clib.printf("str = %s\n", str);
Screen.writeln("substr = " + substr);

var a = 1;
var b = 2;
Clib.sprintf(testString, "%d %d %d", a, b, a+b)

// "1 2 3"

Clib.strcat()
SYNTAX: Clib.strcat(dstStr, srcStr)
WHERE: dstStr - destination string to which to add srcStr and to hold the

final result.

srcStr - source string to append to dstStr.
RETURN: string - the resulting string from concatenating dstStr and srcStr.
DESCRIPTION: This method appends srcStr string onto the end of dstStr string.

The dstStr string is made big enough to hold srcStr, and a
terminating null byte. In ScriptEase, a string copy is safe, so
that you can copy from one part of a string to another part of
itself.

The return is the value of dstStr, that is, a variable pointing to the
dstStr array starting at dstStr[0].

SEE: Clib.strcpy(), Clib.memcpy()
EXAMPLE: // The result of the following code is:

// Giant == "Fee Fie Foe Fum"

var Giant = "Fee";
 // add Fie
Clib.strcat(Giant, " Fie");
 // add Foe
Clib.strcat(Giant, " Foe");
 // add Fum
Clib.strcat(Giant, " Fum");

Clib.strchr()
SYNTAX: Clib.strchr(str, chr)
WHERE: str - string to search for a character.

chr - character to search for.
RETURN: string - beginning at the point in string where chr is found, else

null if is not found..
DESCRIPTION: This method searches the parameter str for the character chr. It

returns a variable indicating the first occurrence of chr in str, else
it returns null if chr is not found in str.

SEE: Clib.strstr(), String indexOf()
EXAMPLE: // The following code fragment:

var str = "I can't stand soggy cereal."
var substr = Clib.strchr(str, 's');

Nombas ScriptEase ISDK/Java 5.01 245

dstStr array starting at dstStr[0].

// results in the following output.
// str = I can't stand soggy cereal.
// substr = stand soggy cereal.

Clib.strcmp()
SYNTAX: Clib.strcmp(str1, str2)
WHERE: str1 - first string to compare.

str2 - second string to compare
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- sensitive comparison of the characters
of str1 with str2 until there is a mismatch or a terminating null
byte is reached.

SEE: Clib.strcmpi(), Clib.stricmp(), ==, ===

Clib.strcmpi()
SYNTAX: Clib.strcmpi(str1, str2)
WHERE: str1 - first string to compare.

str2 - second string to compare
RETURN: • < 0 if str1 is less than str2

• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- insensitive comparison of the
characters of str1 with str2 until there is a mismatch or a
terminating null byte is reached.

SEE: Clib.strcmp(), Clib.stricmp(), ==, ===

Clib.strcpy()
SYNTAX: Clib.strcpy(dstStr, srcStr)
WHERE: dstStr - destination string to which the source string will be

copied.

srcStr - source string to copy to destination string.
RETURN: string - the value of dstStr after the copy process.
DESCRIPTION: This method copies bytes from srcStr to dstStr, up to and

including the terminat ing null character. If dstStr is not already
defined, then it is defined as a string. It is safe to copy from one
part of a string to another part of the same string.

The return is the value of dstStr, that is, a variable pointing to the

SEE: Clib.strncpy(), =

Clib.strcspn()
SYNTAX: Clib.strcspn(str, chrSet)
WHERE: str - string to be searched.

chrSet - set of characters to search for.
RETURN: number - offset into str to a found character on success, else the

length of str.
DESCRIPTION: This method searches the parameter string for any of the

characters in the string chrSet and returns the offset of that
character. If no matching characters are found, it returns the
length of the string. This method is similar to
except that Clib.strcspn() returns the offset number, or
index, for the first character found, while Clib.strpbrk.()
returns the string beginning at that character.

SEE: Clib.strpbrk()
EXAMPLE: // The following fragment demonstrates

// the difference between Clib.strcspn() and
// Clib.strpbrk().

var string =
 "There's more than one way to skin a cat.";
var rStrpbrk = Clib.strpbrk(string, "dxb8w9k!");
var rStrcspn = Clib.strcspn(string, "dxb8w9k!");
Clib.printf("The string is: %s\n", string);
Clib.printf("\nstrpbrk returns a string: %s\n",
 rStrpbrk);
Clib.printf("\nstrcspn returns an integer: %d\n",
 rStrcspn);
Clib.printf("string +strcspn = %s\n", string +
 rStrcspn); Clib.getch();

// And results in the following output:
// The string is:
// There's more than one way to skin a cat.
// strpbrk returns a string: way to skin a cat.
// strcspn returns an integer: 22
// string +strcspn = way to skin a cat

Clib.strpbrk(),

Clib.stricmp()
SYNTAX: Clib.stricmp(str1, str2)
WHERE: str1 - first string to compare.

str2 - second string to compare
RETURN: • < 0 if str1 is less than str2

• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method does a case- insensitive comparison of the
characters of str1 with str2 until there is a mismatch or a
terminating null byte is reached.

Nombas ScriptEase ISDK/Java 5.01 246

SEE: Clib.strcmp(), Clib.strcmpi(), ==, ===

Clib.strlen()
SYNTAX: Clib.strlen(str)
WHERE: str - string to find length of.
RETURN: number - the number of characters in str, not including the

terminating null character.
DESCRIPTION: This method returns the length of parameter str. The length

property of JavaScript strings is similar. The difference between
Clib.strlen(str) and that length counts
null characters as part of a string, whereas Clib.strlen()
considers them markers indicating the end of the string and does
not include them or any characters which follow them as part of
a string.

The return is the number of characters, bytes, in str, starting from
the character at str[0] and ending before the terminating null
byte.

SEE: String length

String length is

Clib.strlwr()
SYNTAX: Clib.strlwr(str)
WHERE: str - string in which to change case of characters to lowercase.
RETURN: string - the value of str after conversion of case.
DESCRIPTION: This method converts all uppercase letters in str to lowercase,

starting at str[0] and ending before the terminating null byte.
The return is the value of str, that is, a variable pointing to the
start of str at str[0].

SEE: Clib.strupr(), String toLowerCase()

Clib.strncat()
SYNTAX: Clib.strncat(dstStr, srcStr, maxLen)
WHERE: dstStr - destination string to which to add srcStr and to hold the

final result.

srcStr - source string to append to dstStr.

maxLen - maximum number of characters to append from srcStr.
RETURN: string - the value of the destination string after the source string

characters have been appended.
DESCRIPTION: This method appends up to maxLen bytes of srcStr onto the end

of dstStr. Characters following a null byte in srcStr are not
copied. The dstStr array is made big enough to hold:
Clib.min(Clib.strlen(srcStr),maxLen)

Nombas ScriptEase ISDK/Java 5.01 247

Nombas ScriptEase ISDK/Java 5.01 248

WHERE: dstStr - destination string to which the source string will be

characters and a terminating null character. The final value of
dstStr is returned.

SEE: Clib.strcat()

Clib.strncmp()
SYNTAX: Clib.strncmp(str1, str2, maxLen)
WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or the terminating null byte is reached.
The comparison is case-sensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

SEE: Clib.strncmpi(), Clib.strnicmp(), ==, ===

Clib.strncmpi()
SYNTAX: Clib.strncmpi(str1, str2, maxLen)
WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or the terminating null byte is reached.
The comparison is case-insensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

SEE: Clib.strncmp(), Clib.strnicmp(), ==, ===

Clib.strncpy()
SYNTAX: Clib.strncpy(dstStr, srcStr, maxLen)

copied.

srcStr - source string to copy to destination string.

maxLen - maximum number of characters to copy.
RETURN: string - the value of dstStr after the copy process.
DESCRIPTION: This method copies:

Clib.min(Clib.strlen(srcStr)+1, MaxLen)

characters from srcStr to dstStr. If dstStr is not already defined
then this method defines it as a string. The destination string is
padded with null characters, if maxLen is greater than the
length of srcStr, and a null character is appended to dstStr if
maxLen characters are copied. It is safe to copy from one part of
a string to another part of the same string. Returns the value of
dstStr; that is, a variable into the destination array based at
dstStr[0].

SEE: Clib.strcpy()

Clib.strnicmp()
SYNTAX: Clib.strnicmp(str1, str2, maxLen)
WHERE: str1 - first string to compare.

str2 - second string to compare

maxLen - maximum number of characters to use for comparison.
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares up to maxLen bytes of str1 against str2
until there is a mismatch or the terminating null byte is reached.
The comparison is case-insensitive. The comparison ends when
maxLen bytes have been compared or when a terminating null
byte has been compared, whichever comes first.

SEE: Clib.strncmp(), Clib.strncmpi(), ==, ===

Clib.strpbrk()
SYNTAX: Clib.strpbrk(str, chrSet)
WHERE: str - string to be searched.

chrSet - set of characters to search for.
RETURN: string - beginning with the character in chrSet that was found,

else null.

Nombas ScriptEase ISDK/Java 5.01 249

DESCRIPTION: This method searches str for any of the characters in chrSet, and
returns the string based at the found character. Returns null if

no character from chrSet is found.

ber and Clib.strpbrk() returns a
string.
Clib.strcspn() returns a num

SEE: Clib.strcspn()
EXAMPLE: // See Clib.strcspn() for an example

// using this function.

Clib.strrchr()
SYNTAX: Clib.strrchr(str, chr)
WHERE: str - string to search.

chr - character to search for.
RETURN: string - beginning with the first character found from the right,

else null.
DESCRIPTION: This method searches a string for the last occurrence of chr. The

search is in the reverse direction, from the right, for chr in a
string. The method returns a variable indicating the last
occurrence of chr in a string, else it returns null if chr is not
found in str.

SEE: Clib.strchr()
EXAMPLE: // The following code:

var str = "I can't stand soggy cereal."
var substr = Clib.strrchr(str, 's');
Clib.printf("str = %s\n", str);
Screen.writeln("substr = " + substr);

// Results in the following output.
// str = I can't stand soggy cereal.
// substr = soggy cereal.

Clib.strspn()
SYNTAX: Clib.strspn(str, chrSet)
WHERE: str - string to be searched.

chrSet - set of characters to search for.
RETURN: number - the offset or index into str of the first character that is

not in chrSet.
DESCRIPTION: This method searches a string for any characters that are not in

chrSet, and returns the offset of the first instance of such a
character. If all characters in str are also in chrSet, the return is
the length of string.

SEE: Clib.strcspn()

Clib.strstr()
SYNTAX: Clib.strstr(srcStr, findStr)
WHERE: srcStr - a string to search.

Nombas ScriptEase ISDK/Java 5.01 250

findStr - a string to find.
RETURN: string - beginning in srcStr with the first character in findStr that

was found, else null.
DESCRIPTION: This method searches srcStr, starting at srcStr[0], for the first

occurrence of findStr. The search is case-sensitive. The method
returns a variable indicating the beginning of the first occurrence
of findStr in srcStr, else it returns null if findStr is not found in
srcStr.

SEE: Clib.strchr(), Clib.strstri()
EXAMPLE: // The following code fragment:

function main()
{
 var Phrase = CString("To be or not to be? beep!";
 do
 {
 Screen.writeln(Phrase);
 Phrase = Clib.strstr(Phrase + 1, "be");
 } while (Phrase != null);
}
// results in the following output.
// To be or not to be? beep!
// be or not to be? beep!
// be? beep!
// beep!

Clib.strstri()
SYNTAX: Clib.strstri(srcStr, findStr)
WHERE: srcStr - a string to search.

findStr - a string to find.
RETURN: string - beginning in srcStr with the first character in findStr that

was found, else null.
DESCRIPTION: This method searches srcStr, starting at srcStr[0], for the first

occurrence of findStr. The search is case-insensitive. The method
returns a variable indicating the beginning of the first occurrence
of findStr in srcStr, else it returns null if findStr is not found in
srcStr.

SEE: Clib.strstr()

Clib.strtod()
SYNTAX: Clib.strtod(str[, endStr])
WHERE: str - string to be converted to a number.

endStr - the part of str after the characters that were actually
parsed.

RETURN: number - the first part of str converted to a double precision
number.

Nombas ScriptEase ISDK/Java 5.01 251

DESCRIPTION: This method converts the string str into a number and optionally

Nombas ScriptEase ISDK/Java 5.01 252

first use the syntax form in which the new string, not null, is

returns a partial string that begins beyond the characters parsed
by this method. White space characters are skipped at the start of
str, and the string characters are converted to a float as long as
they match the following format.

 [sign][digits][.][digits][format[sign]digits]

The parameter endStr is not compared against null, as it is in
standard C implementations, and is optional. If the parameter
endStr is supplied, then endStr is set to a string beginning at the
first character that was not used in converting.

The return is the first part of str, converted to a floating-point
num ber.

SEE: Clib.strtok()
EXAMPLE: // The following strings, are examples

// that can be converted.
// "1"
// "1.8"
// "-400.456e-20"
// ".67e50"
// "2.5E+50"

Clib.strtok()
SYNTAX: Clib.strtok(srcStr, delimiterStr)
WHERE: srcStr - source string consisting of delimited tokens.

delimiterStr - string of delimiter characters that separate tokens.
RETURN: string - a token, a substring, in srcStr, else null if there is not a

token or if there are no more tokens.
DESCRIPTION: This method is unusual. The parameter srcStr is a string that

consists of text tokens, substrings, separated by delimiter
characters found in delimiterStr. The parameter srcStr may be
altered during the first and subsequent calls to Clib.strtok().

On the first call to Clib.strtok(), srcStr points to the string
to tokenize and delimiterStr is a set of characters which are used
to separate tokens in the source string. The first call, such as:
token = Clib.strtok(srcStr, delimiterStr)

returns a variable pointing to the srcStr array and based at the
first character of the first token in srcStr. On subsequent calls,
such as
token = Clib.strtok(null, delimiterStr)

the first argument is null and Clib.strtok() will continue
through srcStr returning subsequent tokens.

The initial variable receiving tokens must remain valid
throughout following calls that use null. If the variable is
changed in any way, a subsequent use of Clib.strtok() must

Nombas ScriptEase ISDK/Java 5.01 253

number.

passed as a first parameter.

This method returns null if there are no more tokens; otherwise
returns srcStr array variable based at the next token in srcStr.

SEE: Clib.strstr()
EXAMPLE: // The following code:

var source =
 " Little John,,,Eats ?? crackers;;;! ";
var token = Clib.strtok(source,", ");
while(null != token)
{
 Clib.puts(token);
 token = Clib.strtok(null,";?, ");
}

// produces the following list of tokens.
// Little
// John
// Eats
// crackers
// !

Clib.strtol()
SYNTAX: Clib.strtol(str[, endStr[, radix]])
WHERE: str - string to be converted to a number.

endStr - the part of str after the characters that were actually
parsed.

radix - the number base for the conversion.
RETURN: number - the first part of str converted to a long integer number.
DESCRIPTION: This method converts the string str into a number and optionally

returns a string starting beyond the characters parsed in the
method. White space characters are skipped at the start of str,
and the string characters are converted to an integer as long as
they match the following format.

 [sign][0][x][digits]

The parameter endStr is not compared against null, as it is in
standard C implementations and is optional. The parameter radix
specifies the base for conversion. For example, base 10 would
use decimal digits zero through nine, 0 - 9, and base 16 would
use hexadecimal digits zero through nine, 0 - 9, uppercase letters
"A" through "F", A - F, or lowercase letters "a" through "f", a - f.
If radix is zero or is not supplied, then the radix is automatically
determined based on the first characters of str.

If the parameter endStr is supplied, then endStr is set to a string
beginning at the first character that was not used in converting.
The return is the first part of str, converted to a floating-point

SEE: Clib.strtod()
EXAMPLE: // As examples, the following strings//

/ can be converted.
// "1"
// "12"
// "-400"
// "0xFACE"

Clib.strupr()
SYNTAX: Clib.strupr(str)
WHERE: str - string in which to change case of characters to uppercase.
RETURN: string - the value of str after conversion of case.
DESCRIPTION: This method converts all lowercase letters in str to uppercase,

starting at str[0] and ending before the terminating null byte.
The return is the value of str, that is, a variable pointing to the
start of str at str[0].

SEE: Clib.strlwr(), String toUpperCase()

Clib.toascii()
SYNTAX: Clib.toascii(chr)
WHERE: chr - character to be converted.
RETURN:
DESCRIPTION: This method translates chr to ASCII format, to seven bits. The

translation is done by clearing all but the lowest 7 bits. The
return is chr converted to ASCII. Remember that JavaScript has
no true character type, thus, this method considers a single
character string to be a chr.

SEE: Clib.toascii(), Clib.tolower(), Clib.toupper(), String
toLowerCase(), String toLowerCase(), String invertCase()

Clib.tolower()
SYNTAX: Clib.tolower(chr)
WHERE: chr - character to be converted.
RETURN:
DESCRIPTION: If chr is an uppercase alphabetic character, then this method

returns chr converted to lowercase alphabetic, otherwise it
returns chr unaltered. Remember that JavaScript has no true
character type, thus, this method considers a single character
string to be a chr.

SEE: Clib.toascii(), Clib.tolower(), Clib.toupper(), String
toLowerCase(), String toLowerCase(), String invertCase()

Nombas ScriptEase ISDK/Java 5.01 254

Clib.toupper()
SYNTAX: Clib.toupper(chr)

WHERE: chr - character to be converted.
RETURN:
DESCRIPTION: If chr is a lowercase alphabetic character, then this method

returns chr converted to uppercase alphabetic, otherwise it
returns chr unaltered. Remember that JavaScript has no true
character type, thus, this method considers a single character
string to be a chr.

SEE: Clib.toascii(), Clib.tolower(), Clib.toupper(), String
toLowerCase(), String toLowerCase(), String invertCase()

Clib.vsprintf()
SYNTAX: Clib.vsprintf(str, formatString, valist)
WHERE: str - to hold the formatted output.

formatString - string that specifies the final format.

valist - a variable list of arguments to be used according to
formatString.

RETURN: number - characters written to str, not including the terminating
null character, on success, else EOF on error.

DESCRIPTION: This method puts formatted output into str, a string, using a
variable number of arguments, specified by valist. The parameter
formatString specifies the format of the data put into the string.
This method is similar to xcept that it takes a
variable argu ment list.

The method returns the number of characters written to buffer,
not including the terminating null byte, on success, else EOF on
error.

SEE: Clib.sprintf(), Clib.va_start()

Clib.sprintf() e

Memory manipulation
Clib.memchr()
SYNTAX: Clib.memchr(buf, chr[, maxLen])
WHERE: buf - buffer or byte array to search.

chr - character to search for.

maxLen - maximum number of bytes to search.
RETURN: buffer - beginning in array with the character found, else null if

not found.
DESCRIPTION: This method searches a buffer, a byte array, or a Blob, and

returns a variable indicating or beginning with the first
occurrence of chr. If the parameter maxLen is not specified, the
method searches the entire array from element zero.

SEE: Clib.strchr()

Nombas ScriptEase ISDK/Java 5.01 255

Clib.memcmp()
SYNTAX: Clib.memcmp(buf1, buf2[, maxLen])
WHERE: buf1 - first buffer or byte array to use in comparison.

buf2 - second buffer or byte array to use in comparison.

maxLen - maximum number of characters to compare.
RETURN: number - negative, zero, or positive according to the following

rules:

• < 0 if str1 is less than str2
• = 0 if str1 is the same as str2
• > 0 if str1 is greater than str2

DESCRIPTION: This method compares the first maxLen bytes of buf1 and buf2.
If the parameter maxLen is not specified, then maxLen is the
smaller of the lengths of buf1 and buf2. If maxLen is specified
and one of the arrays is shorter than the specified length, then
ScriptEase treats length of the shorter array as being maxLen.

The example function checks to see if the shorter string is the
same as the beginning of the longer string. This method differs
from returns true if passed
the strings "foo" and "foobar", since it only compares characters
up to the end of the shorter string.

SEE: Clib.strcmp()
EXAMPLE: function MyStrCmp(string1, string2)

{
 var len = Clib.min(string1.length,
 string2.length);
 return(Clib.memcmp(string1, string2, len) == 0);
}

 Clib.strcmp() in that this function

Clib.memmove().

Clib.memcpy()
SYNTAX: Clib.memcpy(dstBuf, srcBuf[, maxLen])
WHERE: dstBuf - destination buffer to which the source buffer will be

copied.

srcBuf - source buffer to copy to destination buffer.

maxLen - maximum number of characters to copy.
RETURN: buffer - the final destination buffer.
DESCRIPTION: This method copies the number of bytes specified by maxLen

from srcBuf to dstBuf. If dstBuf is not already defined, then it is
defined as a buffer. If the parameter maxLen is not supplied, then
all of the bytes in srcBuf are copied to dstBuf.

ScriptEase insures protection from data overwrite, so in
ScriptEase the Clib.memcpy() method is the same as

SEE: Clib.strncpy(), Clib.memmove()

Nombas ScriptEase ISDK/Java 5.01 256

Clib.memmove()
SYNTAX: Clib.memmove(dstBuf, srcBuf[, maxLen])
WHERE: dstBuf - destination buffer to which the source buffer will be

copied.

srcBuf - source buffer to copy to destination buffer.

maxLen - maximum number of characters to copy.
RETURN: buffer - the final destination buffer.
DESCRIPTION: This method copies the number of bytes specified by maxLen

from srcBuf to dstBuf. If dstBuf is not already defined, then it is
defined as a buffer. If the parameter maxLen is not supplied, then
all of the bytes in srcBuf are copied to dstBuf.

ScriptEase insures protection from data overwrite, so in
ScriptEase the ethod is the same as
Clib.memmove().

SEE: Clib.strncpy(), Clib.memcpy()

Clib.memcpy() m

Clib.memset()
SYNTAX: Clib.memset(buf, chr[, maxLen])
WHERE: buf - a byte array or buffer.

chr - character to set in buf.

maxLen - number of bytes in buf to set to chr.
RETURN: buffer - buf with the appropriate number of bytes set to chr.
DESCRIPTION: This method sets the first number, as specified by maxLen, of

bytes of buf to character chr. If buf is not already defined, then it
is defined as a buffer of size maxLen. If the length of buf is less
than the number of bytes specified by maxLen, then buf is grown
to be big enough for maxLen bytes. If the parameter maxLen is
not supplied, then maxLen is the size of buf, starting at index 0.

SEE: Clib.memchr()

Math
Clib.abs()
SYNTAX: Clib.abs(x)
WHERE: x - number to work with.
RETURN: number - absolute value of x.
DESCRIPTION: This method returns the absolute, non-negative, value of x.
SEE: Clib.labs(), Clib.fabs()

Clib.acos()

Nombas ScriptEase ISDK/Java 5.01 257

SYNTAX: Clib.acos(x)
WHERE: x - number to work with.
RETURN: number - arc cosine of x.
DESCRIPTION: This method returns the arc cosine of x in the range of 0 to pi

radians.
SEE: Clib.cos()

Clib.asin()
SYNTAX: Clib.asin(x)
WHERE: x - number to work with.
RETURN: number - arc sine of x.
DESCRIPTION: This method returns the arc sine of x in the range of -pi/2 to pi/2

radians.
SEE: Clib.sin()

Clib.atan()
SYNTAX: Clib.atan(x)
WHERE: x - number to work with.
RETURN: number - arc tangent of x.
DESCRIPTION: This method returns the arc tangent of x in the range of -pi/2 to

pi/2 radians.
SEE: Clib.tan()

Clib.atan2()
SYNTAX: Clib.atan2(x, y)
WHERE: x - number to work with, numerator.

y - number to work with, denominator.
RETURN: number - arc tangent of x/y.
DESCRIPTION: This method returns the arc tangent of x/y, in the range of -pi to

+pi radians.
SEE: Clib.atan()

Clib.atof()
SYNTAX: Clib.atof(str)
WHERE: str - string to convert to a number.
RETURN: number - str converted.
DESCRIPTION: This method converts the ASCII string str to a floating-point

value, if str can be converted.

Nombas ScriptEase ISDK/Java 5.01 258

SEE: Clib.atol()

Clib.atoi()
SYNTAX: Clib.atoi(str)
WHERE: str - string to convert to a number.
RETURN: number - str converted.
DESCRIPTION: This method converts the ASCII string str to an integer, if str can

be converted.
SEE: Clib.atol()

Clib.atol()
SYNTAX: Clib.atol(str)
WHERE: str - string to convert to a number.
RETURN: number - str converted.
DESCRIPTION: This method converts the ASCII string str to a long integer, if str

can be converted. This method is the same as the
method, since longs and integers are the same in ScriptEase.

SEE: Clib.atoi()

Clib.atoi()

Clib.ceil()
SYNTAX: Clib.ceil(x)
WHERE: x - number to work with.
RETURN: number - smallest integer greater than x.
DESCRIPTION: This method returns the smallest integer value not less than x.
SEE: Clib.floor()

Clib.cos()
SYNTAX: Clib.cos(x)
WHERE: x - number to work with.
RETURN: number - cosine of x.
DESCRIPTION: This method returns the cosine of x in radians.
SEE: Clib.acos(), Clib.cosh()

Clib.cosh()
SYNTAX: Clib.cosh(x)
WHERE: x - number to work with.
RETURN: number - hyperbolic cosine of x.
DESCRIPTION: This method returns the hyperbolic cosine of x.
SEE: Clib.cos()

Nombas ScriptEase ISDK/Java 5.01 259

Clib.div()
SYNTAX: Clib.div(x, y)
WHERE: x - number to work with, numerator.

y - number to work with, denominator.
RETURN: object - a structure with the results of division in the following

two properties:
.quot quotient
.rem remainder

DESCRIPTION: This method performs integer division and returns a quotient and

remainder in an object, a structure. Since integers and long
integers are the same in ScriptEase, Clib.div() is the same as

elements
or properties.

SEE: Clib.ldiv()

Clib.ldiv(). The value returned is a structure with two

Clib.exp()
SYNTAX: Clib.exp(x)
WHERE: x - number to work with.
RETURN: x - exponential value of x.
DESCRIPTION: This method returns the exponential value of x.
SEE: Clib.frexp(), Clib.ldexp(), Clib.pow()

Clib.fabs()
SYNTAX: Clib.fabs(x)
WHERE: x - number to work with.
RETURN: number - absolute value of x, a float.
DESCRIPTION: This method returns the absolute, non-negative, value of a float

x.
SEE: Clib.abs()

Clib.floor()
SYNTAX: Clib.floor(x)
WHERE: x - number to work with.
RETURN: number - largest integer not greater than x.
DESCRIPTION: This method returns the largest integer value not greater than x.
SEE: Clib.ceil()

Clib.fmod()
SYNTAX: Clib.fmod(x, y)
WHERE: x - number to work with, numerator.

Nombas ScriptEase ISDK/Java 5.01 260

y - number to work with, denominator.
RETURN: This method returns the remainder of x/y.
DESCRIPTION: This method returns the remainder of x/y, that is, the modulus of

two floats..
SEE: Clib.modf(), Clib.div()
EXAMPLE:

Clib.frexp()
SYNTAX: Clib.frexp(x, exp)
WHERE: x - number to work with.

exp - exponent used with a mantissa.
RETURN: number - mantissa with and absolute value between 0.5 and 1.0.

If x is 0, return 0.
DESCRIPTION: This method breaks x into a normalized mantissa between 0.5

and 1.0 and calculates an integer exponent of 2 such that x ==
mantissa * 2 ^ exponent. The return is normalized
mantissa between 0.5 and 1.0, or 0. The exponent used is in x.
See

SEE: Clib.exp(), Clib.ldexp(), Clib.pow()

Clib.ldexp().

Clib.abs().

Clib.frexp() and calculates a

Clib.labs()
SYNTAX: Clib.labs(x)
WHERE: x - number to work with.
RETURN: number - absolute value of a long integer.
DESCRIPTION: This method returns the absolute, non-negative, value of an

integer.

Since integers and long integers are the same in ScriptEase,
Clib.labs() is the same as

SEE: Clib.abs(), Clib.fabs()

Clib.ldexp()
SYNTAX: Clib.ldexp(mantissa, exp)
WHERE: mantissa - mantissa to work with

exp - exponent used with a mantissa.
RETURN: number - mantissa * 2 ^ exp.
DESCRIPTION: This method is the inverse of

floating point number using the following equation:

mantissa * 2 raised to the power of exp.
SEE: Clib.frexp(), Clib.exp()

Nombas ScriptEase ISDK/Java 5.01 261

Clib.ldiv()
SYNTAX: Clib.ldiv(x, y)
WHERE: x - number to work with, numerator.

y - number to work with, denominator.
RETURN: object - a structure with the results of division in the following

two properties:
.quot quotient
.rem remainder

DESCRIPTION: This method performs integer division and returns a quotient and
remainder in an object, a structure. Since integers and long
integers are the same in ScriptEase, ame as
Clib.ldiv(). The value returned is a structure with two
elements or properties.

SEE: Clib.div()

Clib.div() is the s

Clib.log()
SYNTAX: Clib.log(x)
WHERE: x - number to work with.
RETURN: number - natural logarithm of x.
DESCRIPTION: This method returns the natural logarithm of x.
SEE: Clib.exp(), Clib.log10(), Clib.pow()

Clib.log10()
SYNTAX: Clib.log10(x)
WHERE: x - number to work with.
RETURN: number - base ten logarithm of x.
DESCRIPTION: This method returns the base ten logarithm of x.
SEE: Clib.log()

Clib.max()
SYNTAX: Clib.max(x[, ...])
WHERE: x - number or list of numbers to work with.
RETURN: number - maximum number passed.
DESCRIPTION: This method is similar to the standard C macro, max(), with the

differences that only one variable must be supplied and any
number of other variables may be supplied for the comparison.

SEE: Clib.min()

Clib.min()
SYNTAX: Clib.min(x[, ...])
WHERE: x - number or list of numbers to work with.

Nombas ScriptEase ISDK/Java 5.01 262

RETURN: number - minimum number passed.
DESCRIPTION: This method is similar to the standard C macro, min(), with the

differences that only one variable must be supplied and any
number of other vari ables may be supplied for comparison.

SEE: Clib.max()

Clib.modf()
SYNTAX: Clib.modf(x, i)
WHERE: x - float to work with.

i - variable to receive the integral part of x.
RETURN: number - signed fractional part of x.
DESCRIPTION: This method splits a floating point number x into integer and

fractional parts, where the integer and frac tion both have the
same sign as x. The method sets the parameter i to the integer
part of x and returns the fractional part of x.

SEE: Clib.fmod(), Clib.ldiv()

Clib.pow()
SYNTAX: Clib.pow(x, exp)
WHERE: x - number to raise to a power.

exp - exponent of x, power to which to raise x.
RETURN: number - x ^ exp.
DESCRIPTION: This method returns x to the power of y.
SEE: Clib.exp()

Clib.rand()
SYNTAX: Clib.rand()
RETURN: number - random number between 0 and RAND_MAX, inclusive.
DESCRIPTION: This method returns pseudo-random number between 0 and

RAND_MAX, inclusive. The sequence of pseudo-random numbers
is affected by the initial generator seed and by earlier calls to
Clib.rand(). See ation about the initial
generator seed.

SEE: Clib.srand(), RAND_MAX

Clib.srand() for inform

Clib.sin()
SYNTAX: Clib.sin(x)
WHERE: x - number to work with.
RETURN: number - sine of x.
DESCRIPTION: This method returns the sine of x in radians.

Nombas ScriptEase ISDK/Java 5.01 263

SEE: Clib.asin(), Clib.sinh()

Clib.sinh()
SYNTAX: Clib.sinh(x)
WHERE: x - number to work with.
RETURN: number - hyperbolic sine of x.
DESCRIPTION: This method returns the hyperbolic sine of the float x.
SEE: Clib.sin()

Clib.sqrt()
SYNTAX: Clib.sqrt(x)
WHERE: x - number to work with.
RETURN: number - square root of x.
DESCRIPTION: This method returns the square root of x.
SEE: Clib.exp(), Clib.pow()

Clib.srand()
SYNTAX: Clib.srand(seed)
WHERE: seed - number with which to seed a random number generator.
RETURN: void.
DESCRIPTION: This method initializes a random number generator using the

parameter seed. If seed is not supplied, then a random seed is
generated in a manner that is specific to different operating
systems. Use this method first when generating a sequence of
random numbers.

SEE: Clib.rand()

Clib.tan()
SYNTAX: Clib.tan(x)
WHERE: x - number to work with.
RETURN: number - tangent of x.
DESCRIPTION: This method returns the tangent of x in radians.
SEE: Clib.atan(), Clib.tanh()

Clib.tanh()
SYNTAX: Clib.tanh(x)
WHERE: x - number to work with.
RETURN: number - hyperbolic tangent of x.

Nombas ScriptEase ISDK/Java 5.01 264

DESCRIPTION: This method calculates and returns the hyperbolic tangent of the

parameter x, a float.
SEE: Clib.tan()

Variable argument lists
Clib.va_arg()
SYNTAX: Clib.va_arg([valist[, offset])

Clib.va_arg(offset)
Clib.va_arg()

WHERE: valist - a variable list of arguments passed to a function.

offset - index of a particular argument.
RETURN: value - parameter being retrieved. If no parameters, the number

of parameters.
DESCRIPTION: The method Clib.va_arg() provides an alternate way to

retrieve a function's parameters. It's most often used when the
number of parameters passed to the function is not constant.
This method covers the same territory as the

vided for those who prefer C functions for
handling variable arguments.

When called with no parameters, it returns the number of
parameters passed to the current function. If an offset is supplied,
it returns the input variable at index: offset. Clib.va_arg(0) is
the first parameter passed, Clib.va_arg(1) the second, etc. It
is a fatal error to retrieve an argument offset beyond the number
of parameters in the function or the valist.

The valist form, with an optional offset, uses a valist variable
that has been previously initialized with
call to Clib.va_arg(valist) returns the next parameter
passed to a function. If an offset is passed in the variable at that
offset from the original starting place of the valist will be
returned.

SEE: Clib.va_start(), Clib.va_end(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

EXAMPLE: // The following script:

function main()
{
 lips(0, 1, 2, 3, 4)
}

lips()
{
 Clib.va_start(valist)
 Clib.printf("va_arg(0) = %d\n", va_arg(0));
 Clib.printf("va_arg(1) = %d\n", va_arg(1));
 Clib.printf("va_arg(valist) = %d\n",
 va_arg(valist));
 Clib.printf("va_arg(valist, 2) = %d\n",
 va_arg(valist, 2));
 Clib.printf("va_arg(valist, 2) = %d\n",

Function property
arguments[] and is pro

Clib.va_start(). Each

Nombas ScriptEase ISDK/Java 5.01 265

 va_arg(valist, 2));
 Clib.printf("va_arg(valist) = %d\n",
 va_arg(valist));
 Clib.getch()
}

// produces the following output:
// va_arg(0) = 0
// va_arg(1) = 1
// va_arg(valist) = 0
// va_arg(valist, 2) = 3
// va_arg(valist, 2) = 3
// va_arg(valist) = 1

Clib.va_end()
SYNTAX: Clib.va_end(valist)
WHERE: valist - a variable list of arguments passed to a function.
RETURN: void.
DESCRIPTION: Terminates a variable arguments list. This method makes valist

invalid. Many implementations of C require the calling of this
function. ScriptEase does not. But, since people may expect it,
ScriptEase provides it.

SEE: Clib.va_arg(), Clib.va_start(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

Clib.va_start()
SYNTAX: Clib.va_start(valist[, inputVar])
WHERE: valist - a variable list of arguments passed to a function.
RETURN: number - calls to Clib.va_arg(), that is, the number of variables

in valist.

inputVar - an optional initial parameter for the variable
parameter list.

DESCRIPTION: This method initializes valist for a function with a variable
number of arguments. After the first call to this function,
subsequent calls to be used to get the rest of
the parameters in sequence.

The parameter inputVar must be one of the parameters defined
on the function line of a function. The first argument returned by
the first call to Clib.va_arg() will be the variable passed after
inputVar. If inputVar is not provided, then the first parameter
passed to a function will be the first one returned by
Clib.va_arg(valist).

SEE: Clib.va_end(), Clib.va_start(), Clib.vfprintf(), Clib.vfscanf(),
Clib.vprintf(), Clib.vscanf(), Clib.vsprintf(), Clib.vsscanf()

EXAMPLE: // The following example uses and accepts
// a variable number of strings and
// concatenates them all together.

Clib.va_arg() may

Nombas ScriptEase ISDK/Java 5.01 266

function MultiStrcat(Result, InitialString);
 // Append any number of strings to InitialString.
 // e.g., MultiStrcat(Result,
 // "C:\\","FOO",".","CMD")
{
 Clib.strcpy(Result,""); // initialize result;
 var Count = Clib.va_start(ArgList, InitialString);
 for (var i = 0; i < Count; i++)
 Result, va_arg(ArgList));
}

Clib.vfprintf()
SYNTAX: Clib.vfprintf(filePointer, formatString[,

 valist])
WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

valist - a variable list of arguments to be formatted according to
formatString.

RETURN: number - characters written, else a negative number on error.
DESCRIPTION: This method formats a string with a variable number of

arguments and prints it to the file specified by filePointer. It
returns the number of characters written, or a negative number if
there was an output error.

SEE: Clib.fprintf(), Clib.sprintf()

Clib.vfscanf()
SYNTAX: Clib.vfscanf(filePointer, formatString[,

 valist])
WHERE: filePointer - pointer to file to use.

formatString - string that specifies the final format.

valist - a variable list of variables to hold data input according to
formatString.

RETURN: number - input fields successfully scanned, converted, and
stored, else EOF.

DESCRIPTION: This method is similar to Clib.fscanf() except that it takes a
variable argument list. See ore details.

SEE: Clib.va_arg(), Clib.fscanf()

Clib.fscanf() for m

Clib.vsscanf()
SYNTAX: Clib.vsscanf(str, formatString, valist)
WHERE: str - string holding the data to read into variables according to

formatString.

formatString - specifies how to read and store data in variables.

valist - a variable list of variables to hold data according to

Nombas ScriptEase ISDK/Java 5.01 267

formatString.
RETURN: number - input fields successfully scanned, converted, and

stored, else EOF.
DESCRIPTION: This method is similar to xcept that it takes a

variable argument list. The parameters following the format
string will be assigned values according to the specifications of
the format string.

The function returns the number of input items assigned. This
number may be fewer than the number of parameters requested if
there was a matching failure.

SEE: Clib.va_arg(), Clib.sscanf()

Clib.sscanf() e

Nombas ScriptEase ISDK/Java 5.01 268

Date Object
ScriptEase shines in its ability to work with dates and provides two
different systems for working with them. One is the standard Date object
of JavaScript and the other is part of the Clib object which implements
powerful routines from C. Two methods,

at of one system to the format of the
other. The standard JavaScript Date object is described in this section.

To create a Date object which is set to the current date and time, use the
new operator, as you would with any object.
var currentDate = new Date();

There are several ways to create a Date object which is set to a date and time.
The following lines all demonstrate ways to get and set dates and times. See

.
var aDate = new Date(milliseconds);
var bDate = new Date(datestring);
var cDate = new Date(year, month, day);
var dDate = new Date(year, month, day, hour, minute, second,
millisecond);

The first syntax returns a date and time represented by the number of
milliseconds since midnight, January 1, 1970. This representation in milliseconds
is a standard way of representing dates and times that makes it easy to calculate
the amount of time between one date and another. Generally, you do not create
dates in this way. Instead, you convert them to milliseconds format before doing
calculations.

The second syntax accepts a string representing a date and optional time. The
format of such a datestring is:
month day, year hours:minutes:seconds

For example, the following string:
"Friday 13, 1995 13:13:15"

specifies the date, Friday 13, 1995, and the time, one thirteen and 15 seconds
p.m., which, expressed in 24 hour time, is 13:13 hours and 15 seconds. The time
specification is optional and if included, the seconds specification is optional.

The third and fourth syntaxes are self- explanatory. All parameters passed to
them are integers.

• year
If a year is in the twentieth century, the 1900s, you need only supply the final
two digits. Otherwise four digits must be supplied.

• month
A month is specified as a number from 0 to 11. January is 0, and December
is 11.

• day
A day of the month is specified as a number from 1 to 31. The first day of a
month is 1 and the last is 28, 29, 30, or 31.

Date.fromSystem() and Date
toSystem(), convert dates in the form

Date() for a summary

Nombas ScriptEase ISDK/Java 5.01 269

• hour
An hour is specified as a number from 0 to 23. Midnight is 0, and 11 p.m. is
23.

• minute
A minute is specified as a number from 0 to 59. The first minute of an hour is
0, and the last is 59.

• second
A second is specified as a number from 0 to 59. The first second of a minute
is 0, and the last is 59.

For example, the following line of code:
var aDate = new Date(1492, 9, 12)

creates a Date object containing the date, October 12, 1492.

ScriptEase has a rich and full set of methods to work with dates and times. A
programmer has a very complete set of tools to use when including date and time
routines in a script. The has methods for working with date and
times that extend the power of ScriptEase beyond standard JavaScript.

The following list of methods has brief descriptions of the methods of the Date
object. Instance methods are shown with a period, ".", in the SYNTAX: line. A
specific instance of a variable should be put in front of the period to call a
method. For example, the Date object aDate was created above, and, to call the

call would be: aDate.getDate(). Static methods
have "Date." at their beginnings since these methods are called with literal calls,
such as Date.parse(). These methods are part of the Date object itself instead
of instances of the Date object.

Date object instance methods
Date()
SYNTAX: new Date()

new Date(milliseconds)
new Date(string)
new Date(year, month[, day[, hour[,
 minute[, second[, millisecond]]]]])

Clib object also

Date getDate() method, the

 Date.parse().

Date.parse().

Date setMonth().

Date setDate().

Date setHours().

Date setMinutes().

WHERE: milliseconds - number of milliseconds since midnight January 1,
1970 GMT, as returned by

string - a string with date information. The string should be in the
following format: Friday, October 31, 1998 15:30:00
GMT, or a substring of this format. The string accepted by
Date() is the same as for

year - four digit year, see Date setYear(). If year is passed
alone, it is recognized as milliseconds.

month - number, 0 - 11, month of year, see

day - number, 1 - 31, day of month, see

hour - number, 0 - 24, hour of day, see

minute - number, 0 - 59, minute of hour, see

Nombas ScriptEase ISDK/Java 5.01 270

second - number, 0 - 59, second of minute, see

millisecond - number, 0 - 999, millisecond of second, see

Date
setSeconds().

Date
setMilliseconds().

Date.fromSystem() and Date toSystem() methods
Date Object

Date object. The first day

Date object. Sunda

RETURN: object - a Date object set according to the arguments passed. If
no arguments are passed, then the current date and time are set.

DESCRIPTION: ScriptEase JavaScript has a rich set of methods for working with
dates and times. The JavaScript Date object is a variable type
that is different from the Clib date and time methods. The

allow
conversion from and to the C style methods. See the
for a complete description of the Date() function.

If the new operator is used, for example, new Date(1999, 2),
then a Date object is created using any parameters passed to the
Date() constructor. However, if the new operator is not used,
then all parameters are ignored and Date() returns a string
representation of the current date and time, for example, "Wed
Sep 4 11:54:16 2002".

SEE: Date Object, Date toSystem(), Date.fromSystem(), Date object
instance methods, Date object static methods, Clib.time(),
Clib.gmtime(), Clib.localtime(), Clib.mktime()

EXAMPLE: var d = new Date() // date in a Date object
// d == Mon Aug 20 16:29:53 2001 // ie, current
// typeof(d) == object
// d._class == Date
var d = Date() // date as a String
// d == Mon Aug 20 16:29:53 2001 // ie, current
// typeof(d) == string
// d._class == String
var d = new Date().getDay()
// d == 1 // which is Monday

Date getDate()
SYNTAX: date.getDate()
RETURN: number - a day of a month.
DESCRIPTION: This method returns the day of the month, as a number from 1 to

31, of a of a month is 1, and the last is
28, 29, 30, or 31.

Date getDay()
SYNTAX: date.getDay()
RETURN: number - a day in a week.
DESCRIPTION: This method returns the day of the week, as a number from 0 to

6, of a y is 0, and Saturday is 6.

Date getFullYear()

Nombas ScriptEase ISDK/Java 5.01 271

SYNTAX: date.getFullYear()
RETURN: number - four digit year.
DESCRIPTION: This method returns the year, as a number with four digits, of a

Date object.

Date object. Midnigh

Date object. The first millisecond in a second is 0, and t

Date object. The first

Date object. January

Date object. The first seco

Date object.

Date getHours()
SYNTAX: date.getHours()
RETURN: number - an hour in a day.
DESCRIPTION: This method returns the hour, as a number from 0 to 23, of a

t is 0, and 11 p.m. is 23.

Date getMilliseconds()
SYNTAX: date.getMilliseconds()
RETURN: number - a millisecond in a second.
DESCRIPTION: This method returns the millisecond, as a number from 0 to 999,

of a he
last is 999.

Date getMinutes()
SYNTAX: date.getMinutes()
RETURN: number - a minute in an hour.
DESCRIPTION: This method returns the minute, as a number from 0 to 59, of a

minute of an hour is 0, and the last is 59.

Date getMonth()
SYNTAX: date.getMonth()
RETURN: number - of a month in a year.
DESCRIPTION: This method returns the month, as a number from 0 to 11, of a

 is 0, and December is 11.

Date getSeconds()
SYNTAX: date.getSeconds()
RETURN: number - a second in a minute.
DESCRIPTION: This method returns the second, as number from 0 to 59, of a

nd of a minute is 0, and the last is 59.

Date getTime()
SYNTAX: date.getTime()
RETURN: number - the milliseconds representation of a
DESCRIPTION: Gets time information in the form of an integer representing the

number of milliseconds from midnight on January 1, 1970,

Nombas ScriptEase ISDK/Java 5.01 272

GMT, to the date and time specified by a Date object.

Date getTimezoneOffset()
SYNTAX: date.getTimezoneOffset()
RETURN: number - minutes.
DESCRIPTION: This method returns the difference, in minutes, between

Greenwich Mean Time (GMT) and local time.

Date getUTCDate()
SYNTAX: date.getUTCDate()
RETURN: number - a day of a month.
DESCRIPTION: This method returns the UTC day of the month, as a number

from 1 to 31, of a of a month is 1, and
the last is 28, 29, 30, or 31.

Date object. The first day

Date object. Sunda

Date object.

Date object. Midnig

Date object. The first

Date getUTCDay()
SYNTAX: date.getUTCDay()
RETURN: number - a day in a week.
DESCRIPTION: This method returns the day of the week, as a number from 0 to

6, of a y is 0, and Saturday is 6.

Date getUTCFullYear()
SYNTAX: date.getUTCFullYear()
RETURN: number - four digit year.
DESCRIPTION: This method returns the UTC year, as a number with four digits,

of a

Date getUTCHours()
SYNTAX: date.getUTCHours()
RETURN: number - an hour in a day.
DESCRIPTION: This method returns the UTC hour, as a number from 0 to 23, of

a ht is 0, and 11 p.m. is 23.

Date getUTCMilliseconds()
SYNTAX: date.getUTCMilliseconds()
RETURN: number - a millisecond in a second.
DESCRIPTION: This method returns the UTC millisecond, as a number from 0 to

999, of a millisecond in a second is 0, and
the last is 999.

Date getUTCMinutes()

Nombas ScriptEase ISDK/Java 5.01 273

SYNTAX: date.getUTCMinutes()
RETURN: number - a minute in an hour.
DESCRIPTION: This method returns the UTC minute, as a number from 0 to 59,

of a hour is 0, and the last is
59.

Date object. The first minute of an

Date object. The first second

Date object.

Date
object to the

Date object to the para

Date setMonth().

Date getUTCMonth()
SYNTAX: date.getUTCMonth()
RETURN: number - of a month in a year.
DESCRIPTION: number - of a month in a year.

Date getUTCSeconds()
SYNTAX: date.getUTCSeconds()
RETURN: number - a second in a minute.
DESCRIPTION: This method returns the UTC second, as number from 0 to 59, of

a of a minute is 0, and the last is 59.

Date getYear()
SYNTAX: date.getYear()
RETURN: number - two digit year.
DESCRIPTION: This method returns the year, as a number with two digits, of a

Date setDate()
SYNTAX: date.setDate(day)
WHERE: day - a day in a month.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the day, as a number from 1 to 31, of a

parameter day. The first day of a month is 1, and the
last is 28, 29, 30, or 31.

Date setFullYear()
SYNTAX: date.setFullYear(year[, month[, date]])
WHERE: year - a four digit year.

month - a month in a year.

day - a day in a month.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the year of a meter year.

The parameter year is expressed with four digits.

The parameter month is the same as for

Nombas ScriptEase ISDK/Java 5.01 274

The parameter day is the same as for Date setDate().

Date
object to the

Date setMinutes().

Date setSeconds().

Date
setMilliseconds().

Date object t

Date
object to the

Date setSeconds().

Date
setMilliseconds().

Date setHours()
SYNTAX: Date.setHours(hour[, minute[, second[,

 millisecond]]])
WHERE: hour - an hour in a day.

minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the hour, as a number from 0 to 23, of a

parameter hours. Midnight is 0, and 11 p.m. is 23.

The parameter minute is the same as for

The parameter second is the same as for

The parameter milliseconds is the same as for

Date setMilliseconds()
SYNTAX: date.setMilliseconds(millisecond)
WHERE: millisecond - a millisecond in a minute.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the millisecond, as a number from 0 to 59, of a

o the parameter millisecond. The first millisecond in
a second is 0, and the last is 999.

Date setMinutes()
SYNTAX: date.setMinutes(minute[, second[, millisecond]])
WHERE: minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the minute, as a number from 0 to 59, of a

parameter minute. The first minute of an hour is 0,
and the last is 59.

The parameter second is the same as for

The parameter milliseconds is the same as for

Date setMonth()
SYNTAX: Date.setMonth(month[, day])

Nombas ScriptEase ISDK/Java 5.01 275

WHERE: month - a month in a year.

day - a day in a month.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the month, as a number from 0 to 11, of a

parameter month. January is 0, and December is 11.

The parameter day is the same as for

Date
object to the

Date setDate().

Date
object to the

Date
setMilliseconds().

Date object to the date and time specified by

Date object to the parameter day

Date setSeconds()
SYNTAX: date.setSeconds(second[, millisecond])
WHERE: second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the second, as a number from 0 to 59, of a

parameter second. The first second of a minute is 0,
and the last is 59.

The parameter milliseconds is the same as for

Date setTime()
SYNTAX: date.setTime(millisecond)
WHERE: millisecond - the time in milliseconds.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets a

the parameter milliseconds which is the number of milliseconds
from midnight on January 1, 1970, GMT.

Date setUTCDate()
SYNTAX: date.setUTCDate(day)
WHERE: day - a day in a month.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the UTC day, as a number from 1 to 31, of a

. The first day of a month is 1,
and the last is 28, 29, 30, or 31.

Date setUTCFullYear()
SYNTAX: date.setUTCFullYear(year[, month[, date]])
WHERE: year - a four digit year.

month - a month in a year.

day - a day in a month.

Nombas ScriptEase ISDK/Java 5.01 276

RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the UTC year of a

year. The parameter year is expressed with four digits.

The parameter month is the same as for

The parameter day is the same as for

Date object to the parameter

Date setUTCMonth().

Date setUTCDate().

Date object to the parameter hours. Mid

Date setUTCMinutes().

Date setUTCSeconds().

Date
setUTCMilliseconds().

Date object to the

Date object to the parameter

Date setUTCHours()
SYNTAX: Date.setUTCHours(hour[, minute[, second[,

 millisecond]]])
WHERE: hour - an hour in a day.

minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the UTC hour, as a number from 0 to 23, of a

night is 0, and 11 p.m. is
23.

The parameter minute is the same as for

The parameter second is the same as for

The parameter milliseconds is the same as for

Date setUTCMilliseconds()
SYNTAX: date.setUTCMilliseconds(millisecond)
WHERE: millisecond - a millisecond in a minute.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the UTC millisecond, as a number from 0 to

59, of a parameter millisecond. The first
millisecond in a second is 0, and the last is 999.

Date setUTCMinutes()
SYNTAX: date.setUTCMinutes(minute[, second[,

 millisecond]])
WHERE: minute - a minute in an hour.

second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the UTC minute, as a number from 0 to 59, of a

minute. The first minute of an hour
is 0, and the last is 59.

Nombas ScriptEase ISDK/Java 5.01 277

The parameter second is the same as for

The parameter milliseconds is the same as for

Date setUTCSeconds().

Date
setUTCMilliseconds().

Date object to the parameter

Date setUTCDate().

Date object t

Date
setUTCMilliseconds().

Date object to the para

Date setUTCMonth()
SYNTAX: Date.setUTCMonth(month[, day])
WHERE: month - a month in a year.

day - a day in a month.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the UTC month, as a number from 0 to 11, of a

month. January is 0, and December
is 11.

The parameter day is the same as for

Date setUTCSeconds()
SYNTAX: date.setUTCSeconds(second[, millisecond])
WHERE: second - a second in a minute.

millisecond - a millisecond in a second.
RETURN: number - time in milliseconds.
DESCRIPTION: This method sets the UTC second, as a number from 0 to 59, of a

o the parameter second. The first second of a minute
is 0, and the last is 59.

The parameter milliseconds is the same as for

Date setYear()
SYNTAX: date.setYear(year)
WHERE: year - four digit year, unless in the 1900s in which case it may be

a two digit year.
RETURN: number - time in milliseconds as set.
DESCRIPTION: This method sets the year of a meter year.

The parameter year may be expressed with two digits for a year
in the twentieth century, the 1900s. Four digits are necessary for
any other century.

Date toDateString()
SYNTAX: date.toDateString()
RETURN: string - representation of the date portion of the current object.
DESCRIPTION: Returns the Date portion of the current date as a string. This

string is formatted to read "Month Day, Year", for example,
"May 1, 2000". This method uses the local time, not UTC time.

Nombas ScriptEase ISDK/Java 5.01 278

SEE: Date toString(), Date toTimeString(), Date toLocaleDateString()
EXAMPLE: var d = new Date();

var s = d.toDateString();

Date toGMTString()
SYNTAX: date.toGMTString()
RETURN: string - string representation of the GMT date and time.
DESCRIPTION: This method converts a on

Greenwich Mean Time.
EXAMPLE: var d = new Date();

Screen.writeln(d.toGMTString());

// The fragment above would produce something like:
// Mon May 1 15:48:38 2000 GMT

Date object to a string, based

 Date
toDateString(). This functi

 Date
toString().

 Date
toTimeString(). This funct

Date toLocaleDateString()
SYNTAX: date.toLocaleDateString()
RETURN: string - locale-sensitive string representation of the date portion

of the current date.
DESCRIPTION: This function behaves in exactly the same manner as

on is designed to take in the current
locale when formatting the string. Locale reflects the time zone
of a user.

SEE: Date toString(), Date toLocaleTimeString(), Date
toLocaleString()

EXAMPLE: var d = new Date();
var s = d.toLocaleDateString();

Date toLocaleString()
SYNTAX: date.toLocaleString()
RETURN: string - locale-sensitive string representation of the current date.
DESCRIPTION: This function behaves in exactly the same manner as

 This function is designed to take in the current locale
when formatting the string, though this functionality is currently
unimplemented. Locale reflects the time zone of a user.

SEE: Date toString(), Date toLocaleTimeString(), Date
toLocaleDateString()

EXAMPLE: var d = new Date();
var s = d.toLocaleString();

Date toLocaleTimeString()
SYNTAX: date.toLocaleTimeString()
RETURN: string - locale-sensitive string representation of the time portion

of the current date.
DESCRIPTION: This function behaves in exactly the same manner as

ion is designed to take in the current

Nombas ScriptEase ISDK/Java 5.01 279

locale when formatting the string. Locale reflects the time zone
of a user.

Date toString()
SYNTAX: date.toString()
RETURN: string - representation of the date and time data in a
DESCRIPTION: Converts the date and time information in a Date object to a

string in a form such as: "Mon May 1 09:24:38 2000"
SEE: Date toDateString(), Date toLocaleString(), Date toTimeString()
EXAMPLE: var d = new Date();

var s = d.toString();

Date object.

Date object date and time

Clib.time() method.

Date.fromSystem() method.

Date
object.

Date toSystem()
SYNTAX: date.toSystem()
RETURN: number - the value converted to the

system date and time.
DESCRIPTION: This method converts a Date object to a system time format

which is the same as that returned by the To
create a Date object from a variable in system time format, see
the

Date toTimeString()
SYNTAX: date.toTimeString()
RETURN: string - representation of the Time portion of the current object.
DESCRIPTION: This function returns the time portion of the current date as a

string. This string is formatted to read "Hours:Minutes:Seconds",
as in "16:43:23". This function uses the local time, rather than
the UTC time.

SEE: Date toString(), Date toDateString(), Date toLocaleDateString()
EXAMPLE: var d = new Date();

var s = d.toTimeString();

Date toUTCString()
SYNTAX: date.toUTCString()
RETURN: string - representation of the UTC date and time data in a

DESCRIPTION: Converts the UTC date and time information in a Date object to
a string in a form such as: "Mon May 1 09:24:38 2000"

SEE: Date toDateString(), Date toLocaleString(), Date toTimeString()
EXAMPLE: var d = new Date();

var s = d.toString();

Date valueOf()
SYNTAX: date.valueOf()

Nombas ScriptEase ISDK/Java 5.01 280

RETURN: number - the value of the date and time information in a Date
object.

DESCRIPTION: The numeric representation of a
SEE: Date toString()

Date object.

Date object has three special m
Date.fromSystem(), Date.parse(),

Date.UTC().

Clib.time()

Date object.

Date object. The

Date toGMTString() m

Date object static methods
The ethods that are called from the object
itself, rather than from an instance of it:
and

Date.fromSystem()
SYNTAX: Date.fromSystem(time)
WHERE: time - time in system data format, the same format as returned by

RETURN: object - Date object with the time passed.
DESCRIPTION: This method converts the parameter time, which is in the same

format as returned by the Clib.time(), to a standard
JavaScript

EXAMPLE: // To create a Date object
// from date information obtained using
// Clib, use code similar to:

var SysDate = Clib.time();
var ObjDate = Date.fromSystem(SysDate);

// To convert a Date object to system format
// that can be used by
// the methods of the Clib object,
// use code similar to:

var SysDate = ObjDate.toSystem();

Date.parse()
SYNTAX: Date.parse(datestring)
WHERE: datestring - A string representing the date and time to be passed
RETURN: number - milliseconds between the datestring and midnight ,

January 1, 1970 GMT.
DESCRIPTION: This method converts the string datestring to a

string should be in the following format: Friday, October
31, 1998 15:30:00, or a substring of this format. The full
format is returned by the ethod, by email
and by Internet applications. The day of the week, time zone,
time specification or seconds field may be omitted.

SEE: Date object, Date setTime(), Date toGMTString(), Date.UTC
EXAMPLE: //The following code sets the date to March 2, 1992

var theDate = Date.parse("March 2, 1992")
//Note:
var theDate = Date.parse(datestring);

Nombas ScriptEase ISDK/Java 5.01 281

//is equivalent to:
var theDate = new Date(datestring);
// The following are valid, but not exhaustive
var ms;
ms = Date.parse(new Date().toGMTString());
ms = Date.parse("Mon Aug 20 14:41:01 2001 GMT");
ms = Date.parse("Mon Aug 20 14:41:01 2001");
ms = Date.parse("Mon Aug 20 14:41:01 2001");
ms = Date.parse("August 20 09:35:50 2001");
ms = Date.parse("Aug 20 09:35:50 2001");
ms = Date.parse("August 20, 2001");
ms = Date.parse("August 20 2001");
ms = Date.parse("Aug 20, 2001");
ms = Date.parse("Aug 20 2001");

Date.UTC()
SYNTAX: Date.UTC(year, month, day[, hours[, minutes[,

 seconds[, milliseconds]]]])
WHERE: year - A year, represented in four or two-digit format after 1900.

NOTE: For year 2000 compliance, this year MUST be
represented in four-digit format

month - A number between 0 (January) and 11 (December)
representing the month

day - A number between 1 and 31 representing the day of the
month. Note that Month uses 1 as its lowest value whereas many
other arguments use 0

hours - A number between 0 (midnight) and 23 (11 PM)
representing the hours

minutes - A number between 0 (one minute) and 59 (59 minutes)
representing the minutes. This is an optional argument which
may be omitted if Seconds and Minutes are omitted as well.

seconds - A number between 0 and 59 representing the seconds.
This parameter is optional.

milliseconds - A number between 0 and 999 which represents the
milliseconds. This is an optional parameter.

RETURN: number - milliseconds from midnight, January 1, 1970, to the
date and time specified.

DESCRIPTION: The method interprets its parameters as a date. The parameters
are interpreted as referring to Greenwich Mean Time (GMT).

SEE: Date object, Date.parse(), Date setTime()
EXAMPLE: // The following code creates a Date object

// using UTC time:
foo = new Date(Date.UTC(1998, 3, 9, 1, 0, 0, 8))

Nombas ScriptEase ISDK/Java 5.01 282

Dos Object
platform: DOS, Win16

The methods in this section are specific to the DOS or WIN16 versions of
ScriptEase. Most of these routines allow a programmer to have more power than
is generally acknowledged as safe under the scripting guidelines of general
ScriptEase. Be cautious when you use these commands. They allow much
latitude in what may be done at a very low programming level with little or no
built-in protections.

The methods in this section are preceded with the Object name Dos, since
individual instances of the Dos Object are not created. In other words, the Dos
object has only static methods. For example, Dos.inport(portid) is the
syntax to use to read a byte from a hardware port. Remember to prepend "Dos."
to the method names as shown in this section.

Dos object static methods
Dos.address()
SYNTAX: Dos.address(segment, offset)
WHERE: segment - segment portion of memory address.

offset - offset portion of memory address.
RETURN: number - memory address, a segment:offset address suitable for

use in calls such as
DESCRIPTION: Convert segment:offset pointer into memory address.
SEE: Dos.offset(), Dos.segment()

SElib.peek() and SElib.poke().

Dos.asm()
SYNTAX: Dos.asm(buf[, ax[, bx[, cx[, dx[, si[, di[,

 ds[, es]]]]]]]])
WHERE: buf - a byte buffer.

ax, bx, cx, dx, si, di, ds, es - registers.
RETURN: number - long value for whatever is in DX:AX when buf returns.
DESCRIPTION: Make a far call to the routine that you have coded into buf. ax,

bx, cx, dx, si, di, ds, and es are optional; if some or all are
supplied, then the ax, bx, cx, etc... will be set to these values
when the code at buf is called. The code in buf will be executed
with a far call to that address, and is responsible for returning via
retf or other means. The ScriptEase calling code will restore
ALL registers except ss, sp, ax, bx, cx, and dx. If es or ds are
supplied, then they must be valid values or 0, if 0 then the
current value will be used.

EXAMPLE: // The following example uses 80x86 assembly code
// to rotate memory bits:

 // return value of byte b rotate count byte

Nombas ScriptEase ISDK/Java 5.01 283

Nombas ScriptEase ISDK/Java 5.01 284

not explicitly specified. The possible defined input values are ax,

function RotateByteRight(b, count)
{
 assert(0 <= b && b <= 0xFF);
 assert(0 <= count && count <= 8)
 return asm(`\xD2\xC8\xCB',b,0,count,0);

 // assembly code for would look as follows:
 // ror al, cl D2C8
 // retf CB
}

Dos.inport()
SYNTAX: Dos.inport(portid)
WHERE: portid - port from which to read.
RETURN: number - byte of data from a hardware port.
DESCRIPTION: Read byte from a hardware port: portid.
SEE: Dos.inportw()

Dos.inportw()
SYNTAX: Dos.inportw(portid)
WHERE: portid - port from which to read.
RETURN: number - 16 bit word of data from a hardware port.
DESCRIPTION: Read a word (16 bit) from hardware port: portid. Value read is

unsigned (not negative).
SEE: Dos.inport()

Dos.interrupt()
SYNTAX: Dos.interrupt(interrupt, regIn[, regOut])
WHERE: interrupt - DOS interrupt number.

regIn - an object/structure with properties/elements that
correspond to the registers of an 8086 processor. The registers
will be set to these values when the method is called.

regOut - an object/structure with properties/elements that will be
set to the corresponding registers of the processor when the
function is exited.

RETURN: boolean - since many interrupts set the carry flag for error, this
function returns false if the carry flag is set, else true.

DESCRIPTION: Executes an 8086 interrupt. Set registers, call 8086 interrupt
function, and then get the return values of the registers. The
parameters regIn and regOut are structures containing the
elements corresponding to the registers on an 8086. On input,
those structure members that are defined will be set, and those
that are not defined will be set to zero, with the exception of the
segment registers (es and ds) which retain their current values if

ah, al, bx, bh, bl, cx, ch, cl, dx, dh, dl, bp, si, di, ds, and es. All
Fields of the output reg structure are the same, with the addition
of the FLAGS member, and all are set before returning. If regOut
is not supplied, then the return registers and FLAGS register will
be set for regIn on return from the interrupt call.

The parameter regOut is set to the register values upon return
from Interrupt. If regOut is not supplied then regIn is set to
contain the register values upon return from Interrupt.

EXAMPLE: // The following example calls the DOS interrupt
// service 0x2C to read the clock:

 // display DOS time as accurately as it is read
PrintDOStime()
{
 reg.ah = 0x2C;
 interrupt(0x21,reg);
 printf("%2d:%02d:%02d",reg.ch,reg.cl,reg.dh);
}

Dos.offset()
SYNTAX: Dos.offset(buf)

Dos.offset(address)
WHERE: buf - a byte buffer.

address - address in memory.
RETURN: number - offset of buffer such that 8086 would recognize the

address segment::buffer as pointing to the first byte of buf.
DESCRIPTION: Dos.offset() return the segment and

offset of the data at index 0 of buf, which must be a byte array.
The buffer must be big enough for whatever purpose it is used,
and no changes may be made to the size of buf after these values
are determined since changing the size of buf might change its
absolute address. If the address versions are used, then address is
assumed to be a far pointer to data, and segment will be the high
word while address will be the low word. See
converting segment and offset into a single address.

SEE: Dos.offset(), Dos.address()

Dos.segment() and

Dos.address() for

Dos.outport()
SYNTAX: Dos.outport(portid, value)
WHERE: portid - port to which to send value.

value - a byte of data to send to the port identified by portid.
RETURN: void.
DESCRIPTION: Write a byte value to hardware port: portid.

Dos.outportw()
SYNTAX: Dos.outportw(portid, value)

Nombas ScriptEase ISDK/Java 5.01 285

WHERE: portid - port to which to send value.

value - a 16-bit word of data to send to the port identified by
portid.

RETURN: void.
DESCRIPTION: Write a 16-bit word value to hardware port: portid.

Dos.segment()
SYNTAX: Dos.segment(buf)

Dos.segment(address)
WHERE: buf - a byte buffer.

address - address in memory.
RETURN: number - segment of buffer such that 8086 would recognize the

address segment::buffer as pointing to the first byte of buf.
DESCRIPTION: Dos.segment() and ment and offset

of the data at index 0 of buf, which must be a byte array. The
buffer must be big enough for whatever purpose it is used, and
no changes may be made to the size of buf after these values are
determined since changing the size of buf might change its
absolute address. If the address versions are used, then address is
assumed to be a far pointer to data, and segment will be the high
word while address will be the low word. See
converting segment and offset into a single address.

SEE: Dos.offset(), Dos.address()

Dos.offset() return the seg

Dos.address() for

Nombas ScriptEase ISDK/Java 5.01 286

Nombas ScriptEase ISDK/Java 5.01 287

 ("Screen.writeln(this.value)");
myFunction.prototype.print = printFunction;

Function Object
The Function object is one of three ways to define and use objects in ScriptEase.
The three ways to work with objects are:

• Use the function keyword and define a function in a normal way:
function myFunc(x) {return x + 4;}

• Construct a new Function object:
var myFunc = new Function("x", "return x + 4;");

• Define and assign a function literal:
var myFunc = function(x) {return x + 4;}

All three of three of these ways of defining and using functions produce the same
result, x + 4. The differences are in definition and use of functions. Each way has
a strength that is very powerful in some circumstances, power that allows
elegance in programming. The methods and discussion in this segment on the
Function object deal with the second way shown above, the construction of a new
Function object.

Function object instance methods
Function()
SYNTAX: new Function(params[, ...], body)
WHERE: params - one or a list of parameters for the function.

body - the body of the function as a string.
RETURN: object - a new function object with the specified parameters and

body that can later be executed just like any other function.
DESCRIPTION: The parameters passed to the function can be in one of two

formats. All parameters are strings representing parameter
names, although multiple parameter names can be grouped
together with commas. These two options can be combined as
well. For example, new Function("a", "b", "c",
"return") is the same as new Function("a, b", "c",
"return"). The body of the function is parsed just as any other
function would be. If there is an error parsing either the
parameter list or the function body, a runtime error is generated.
If this function is later called as a constructor, then a new object
is created whose internal _prototype property is equal to the
prototype property of the new function object. Note that this
function can also be called directly, without the new operator.

EXAMPLE: // The following will create a new Function object
// and provide some properties
// through the prototype property.

var myFunction = new Function("a", "b",
 "this.value = a + b");
var printFunction = new Function

var foo = new myFunction(4, 5);
foo.print();

// This code will print out the value "9",
// which was the value stored in foo when it was
// created with the myFunction constructor.

Function apply()
SYNTAX: function.apply([thisObj[, arguments])
WHERE: thisObj - object that will be used as the "this" variable while

calling this function. If this is not supplied, then the global
object is used instead.

arguments - array of arguments to pass to the function as an
Array object or a list in the form of [arg1, arg2[, ...]]. The
brackets "[]" around a list of arguments are required. Note that
the similar method ceive the same
arguments as a list. Compare the following ways of passing
arguments:
 // Uses an Array object
function.apply(this, argArray)
 // Uses brackets
function.apply(this,[arg1,arg2])
 // Uses argument list
function.call(this,arg1,arg2)

RETURN: variable - the result of calling the function object with the
specified "this" variable and arguments.

DESCRIPTION: This method is similar to calling the function directly, only the
user is able to pass a variable to use as the "this" variable, and
the arguments to the function are passed as an array. If
arguments is not supplied, then no arguments are passed to the
function. If the arguments parameter is not a valid Array
object or list of arguments inside of brackets "[]", then a runtime
error is generated.

SEE: Function(), Function call()
EXAMPLE: var myFunction = new Function("a,b","return a + b");

var args = new Array(4,5);
myFunction.apply(global, args);
 //or
myFunction.apply(global, [4,5]);

// This code sample will return 9, which is
// the result of calling myFunction with
// the arguments 4 and 5, from the args array.

Function call() can re

Function call()
SYNTAX: function.call([thisObj[, arguments[, ...]]])
WHERE: thisObj - An object that will be used as the "this" variable while

calling this function. If this is not supplied, then the global
object is used instead.

arguments - list of arguments to pass to the function. Note that

Nombas ScriptEase ISDK/Java 5.01 288

the similar method receive the same
arguments as an array. Compare the following ways of passing
arguments:
 // Uses an Array object
function.apply(this, argArray)
 // Uses brackets
function.apply(this,[arg1,arg2])
 // Uses argument list
function.call(this,arg1,arg2)

Function apply() can

global.ToString().

RETURN: variable - the result of calling the function object with the
specified "this" variable and arguments.

DESCRIPTION: This method is almost identical to calling the function directly,
only the user is able to supply the "this" variable that the function
will use. Otherwise, it is the same.

SEE: Function(), Function.apply()
EXAMPLE: // The following code:

var myFunction = new Function("arg",
 "return this.a + arg");
var obj = { a:4 };
myFunction.call(obj, 5);

// This code fragment returns the value 9,
// which is the result of fetching this.a
// from the current object (which is obj) and
// adding the first parameter passed, which is 5.

Function toString()
SYNTAX: function.toString()
RETURN: string - a representation of the function.
DESCRIPTION: This method attempts to generate the same code that built the

function. Any spacing, semicolons, newlines, etc., are
implementation-dependent. This method tries to make the output
as human-readable as possible. Note that the function name is
always "anonymous", because the function itself is unnamed,
even though the function object has a name. Also, note that this
function is very rarely called directly, rather it is called implicitly
through conversions such as

EXAMPLE: var myFunction = new Function("a", "b",
 "this.value = a + b");
Screen.writeln(myFunction);

// This fragment will print the following
// to the screen:

 function anonymous(a, b)
 {
 this .value = a + b
 }

Nombas ScriptEase ISDK/Java 5.01 289

Math Object
The Math object in ScriptEase has a full and powerful set of methods and
properties for mathematical operations. A programmer has a rich set of
mathematical tools for the task of doing mathematical calculations in a
script.

The methods in this section are preceded with the Object name Math,
since individual instances of the Math Object are not created. For
example, Math.abs() is the syntax to use to get the absolute value of a
number.

Math object static properties
Math.E
SYNTAX: Math.E
DESCRIPTION: The number value for e, the base of natural logarithms. This

value is represented internally as approximately
2.7182818284590452354.

EXAMPLE: var n = Math.E;

Math.LN10
SYNTAX: Math.LN10
DESCRIPTION: The number value for the natural logarithm of 10. This value is

represented internally as approximately 2.302585092994046.
EXAMPLE: var n = Math.LN10;

Math.LN2
SYNTAX: Math.LN2
DESCRIPTION: The number value for the natural logarithm of 2. This value is

represented internally as approximately 0.6931471805599453.
EXAMPLE: var n = Math.LN2;

Math.LOG2E
SYNTAX: Math.LOG2E
DESCRIPTION: The number value for the base 2 logarithm of e, the base of the

natural logarithms. This value is represented internally as
approximately 1.4426950408889634. The value of Math.LOG2E
is approximately the reciprocal of the value of

EXAMPLE: var n = Math.LOG2E;

Math.LN2.

Math.LOG10E
SYNTAX: Math.LOG10E
DESCRIPTION: The number value for the base 10 logarithm of e, the base of the

natural logarithms. This value is represented internally as
approximately 0.4342944819032518. The value of
Math.LOG10E is approximately the reciprocal of the value of

Nombas ScriptEase ISDK/Java 5.01 291

Math.LN10

Math.SQRT2.

EXAMPLE: var n = Math.LOG10E

Math.PI
SYNTAX: Math.PI
DESCRIPTION: The number value for pi, the ratio of the circumference of a

circle to its diameter. This value is represented internally as
approximately 3.14159265358979323846.

EXAMPLE: var n = Math.PI;

Math.SQRT1_2
SYNTAX: Math.SQRT1_2
DESCRIPTION: The number value for the square root of 2, which is represented

internally as approximately 0.7071067811865476. The value of
Math.SQRT1_2 is approximately the reciprocal of the value of

EXAMPLE: var n = Math.SQRT1_2;

Math.SQRT2
SYNTAX: Math.SQRT2
DESCRIPTION: The number value for the square root of 2, which is represented

internally as approximately 1.4142135623730951.
EXAMPLE: var n = Math.SQRT2;

Math object static methods
Math.abs()
SYNTAX: Math.abs(x)
WHERE: x - a number.
RETURN: number - the absolute value of x. Returns NaN if x cannot be

converted to a number.
DESCRIPTION: Computes the absolute value of a number.
EXAMPLE: //The function returns the absolute value

// of the number -2 (i.e.
//the return value is 2):
var n = Math.abs(-2);

Math.acos()
SYNTAX: Math.acos(x)
WHERE: x - a number between 1 and -1.
RETURN: number - the arc cosine of x.
DESCRIPTION: The return value is expressed in radians and ranges from 0 to pi.

Returns NaN if x cannot be converted to a number, is greater than
1, or is less than -1.

EXAMPLE: function compute_acos(x)

Nombas ScriptEase ISDK/Java 5.01 292

Nombas ScriptEase ISDK/Java 5.01 293

signs of the arguments are used to determine the quadrant of the

{
 return Math.acos(x)
}

// If you pass -1 to the function compute_acos(),
// the return is the
// value of pi (approximately 3.1415...),
// if you pass 3 the
// return is NaN since 3 is out
// of the range of Math.acos.

Math.asin()
SYNTAX: Math.asin(x)
WHERE: x - a number between 1.0 and -1.0
RETURN: number - implementation-dependent approximation of the arc

sine of the argument.
DESCRIPTION: The return value is expressed in radians and ranges from -pi/2

to +pi/2. Returns NaN if x cannot be converted to a number, is
greater than 1, or less than -1.

EXAMPLE: function compute_asin(x)
{
 return Math.asin(x)
}
//If you pass -1 to the function compute_acos(),
//the return is the
//value of -pi/2 , if you pass 3 the return is
//NaN since 3 is out of Math.acos's range.

Math.atan()
SYNTAX: Math.atan(x)
WHERE: x - any number.
RETURN: number - an implementation-dependent approximation of the

arctangent of the argument.
DESCRIPTION: The return value is expressed in radians and ranges from -pi/2

to +pi/2.
EXAMPLE: //The arctangent of x is returned

//in the following function:
function compute_arctangent(x)
{
 return Math.arctangent(x)
}

Math.atan2()
SYNTAX: Math.atan2(x, y)
WHERE: x - x coordinate of the point.

x - y coordinate of the point.
RETURN: number - an implementation-dependent approximation to the arc

tangent of the quotient, y/x, of the arguments y and x, where the

result.
DESCRIPTION: It is intentional and traditional for the two-argument arc tangent

function that the argument named y be first and the argument
named x be second. The return value is expressed in radians and
ranges from -pi to +pi.

EXAMPLE: //The arctangent of the quotient y/x
//is returned in the
//following function:
function compute_arctangent_of_quotient(x, y)
{
 return Math.arctangent2(x, y)
}

Math.ceil()
SYNTAX: Math.ceil(x)
WHERE: x - any number or numeric expression.
RETURN: number - the smallest number that is not less than the argument

and is equal to a mathematical integer.
DESCRIPTION: If the argument is already an integer, the result is the argument

itself. Returns NaN if x cannot be converted to a number.
EXAMPLE: //The smallest number that is

//not less than the argument and is
//equal to a mathematical integer is returned
//in the following function:
function compute_small_arg_eq_to_int(x)
{
 return Math.ceil(x)
}

Math.cos()
SYNTAX: Math.cos()
WHERE: x - an angle, measured in radians.
RETURN: number - an implementation-dependent approximation of the

cosine of the argument
DESCRIPTION: The argument is expressed in radians. Returns NaN if x cannot be

converted to a number. In order to convert degrees to radians you
must multiply by 2pi/360.

EXAMPLE: //The cosine of x is returned
//in the following function:
function compute_cos(x)
{
 return Math.cos(x)
}

Math.exp()
SYNTAX: Math.exp(x)
WHERE: x - either a number or a numeric expression to be used as an

exponent

Nombas ScriptEase ISDK/Java 5.01 294

RETURN: number - an implementation-dependent approximation of the

Nombas ScriptEase ISDK/Java 5.01 295

SYNTAX: Math.max(x, y)

exponential function of the argument.
DESCRIPTION: For example returns e raised to the power of the x, where e is the

base of the natural logarithms. Returns NaN if x cannot be
converted to a number.

EXAMPLE: //The exponent of x is returned
//in the following function:
function compute_exp(x)
{
 return Math.exp(x)
}

Math.floor()
SYNTAX: Math.floor(x)
WHERE: x - a number.
RETURN: number - the greatest number value that is not greater than the

argument and is equal to a mathematical integer.
DESCRIPTION: If the argument is already an integer, the return value is the

argument itself.
EXAMPLE: //The floor of x is returned

//in the following function:
function compute_floor(x)
{
 return Math.floor(x)
}
//If 6.78 is passed to compute_floor,
//7 will be returned. If 89.1
//is passed, 90 will be returned.

Math.log()
SYNTAX: Math.log(x)
WHERE: x - a number.greater than zero.
RETURN: number - an implementation-dependent approximation of the

natural logarithm of x.
DESCRIPTION: If a negative number is passed to Math.log(), the return is NaN
EXAMPLE: //The natural log of x is returned

//in the following function:
function compute_log(x)
{
 return Math.log(x)
}
//If the argument is less than 0 or NaN,
//the result is NaN
//If the argument is +0 or -0,
//the result is -infinity
//If the argument is 1, the result is +0
//If the argument is +infinity,
//the result is +infinity

Math.max()

Nombas ScriptEase ISDK/Java 5.01 296

//an imaginary or complex number,
//the return is NaN

WHERE: x - a number.

y - a number.
RETURN: number - the larger of x and y.
DESCRIPTION: Returns NaN if either argument cannot be converted to a number.
EXAMPLE: //The larger of x and y is returned

//in the following function:
function compute_max(x, y)
{
 return Math.max(x, y)
}
//If x = a and y = 4 the return is NaN
//If x > y the return is x
//If y > x the return is y

Math.min()
SYNTAX: Math.min(x, y)
WHERE: x - a number.

y - a number.
RETURN: number - the smaller of x and y. Returns NaN if either argument

cannot be converted to a number.
DESCRIPTION: Returns NaN if either argument cannot be converted to a number.
EXAMPLE: //The smaller of x and y is returned

//in the following function:
function compute_min(x, y)
{
 return Math.min(x, y)
}
//If x = a and y = 4 the return is NaN
//If x > y the return is y
//If y > x the return is x

Math.pow()
SYNTAX: Math.pow(x, y)
WHERE: x - The number which will be raised to the power of Y

y - The number which X will be raised to
RETURN: number - the value of x to the power of y.
DESCRIPTION: If the result of Math.pow() is an imaginary or complex number,

NaN will be returned. Please note that if Math.pow()
unexpectedly returns infinity, it may be because the floating-
point value has experienced overflow.

EXAMPLE: //x to the power of y is returned
//in the following function:
function compute_x_to_power_of_y(x, y)
{
 return Math.pow(x, y)
}
//If the result of Math.pow is

Nombas ScriptEase ISDK/Java 5.01 297

WHERE

//If y is NaN, the result is NaN
//If y is +0 or -0, the result is 1,
//even if x is NaN
//If x = 2 and y = 3 the return value is 8

Math.random()
SYNTAX: Math.random()
RETURN: number - a number which is positive and pseudo-random and

which is greater than or equal to 0 but less than 1.
DESCRIPTION: Calling this method numerous times will result in an established

pattern (the sequence of numbers will be the same each time).
This method takes no arguments. Seeding is not yet possible.

SEE: Clib.rand()
EXAMPLE: //Return a random number:

function compute_rand_numb()
{
 return Math.rand()
}

Math.round()
SYNTAX: Math.round(x)
WHERE: x - a number.
RETURN: number - value that is closest to the argument and is equal to a

mathematical integer. X is rounded up if its fractional part is
equal to or greater than 0.5 and is rounded down if less than 0.5.

DESCRIPTION: The value of Math.round(x) is the same as the value of
Math.floor(x+0.5), except when x is *0 or is less than 0 but
greater than or equal to -0.5; for these cases Math.round(x)
returns *0, but Math.floor(x+0.5) returns +0.

SEE: Math.floor()
EXAMPLE: //Return a mathematical integer:

function compute_int(x)
{
 return Math.round(x)
}
//If the argument is NaN, the result is NaN
//If the argument is already an integer
//such as any of the
//following values: -0, +0, 4, 9, 8;
//then the result is the
//argument itself.
//If the argument is .2, then the result is 0.
//If the argument is 3.5, then the result is 4
//Note: Math.round(3.5) returns 4,
//but Math.round(-3.5) returns -3.

Math.sin()
SYNTAX: Math.sin(x)

: x - an angle in radians.

Nombas ScriptEase ISDK/Java 5.01 298

//the result is NaN

RETURN: number - the sine of x, expressed in radians.
DESCRIPTION: Returns NaN if x cannot be converted to a number. In order to

convert degrees to radians you must multiply by 2pi/360.
EXAMPLE: //Return the sine of x:

function compute_sin(x)
{
 return Math.sin(x)
}
//If the argument is NaN, the result is NaN
//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity or -infinity,
//the result is NaN

Math.sqrt()
SYNTAX: Math.sqrt(x)
WHERE: x - a number or numeric expression greater than or equal to zero.
RETURN: number - the square root of x.
DESCRIPTION: Returns NaN if x is a negative number or cannot be converted to

a number.
SEE: Math.exp()
EXAMPLE: //Return the square root of x:

function compute_square_root(x)
{
 return Math.sqrt(x)
}
//If the argument is NaN, the result is NaN
//If the argument is less than 0,
//the result is NaN
//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity,
//the result is +infinity

Math.tan()
SYNTAX: Math.tan(x)
WHERE: x - an angle measured in radians.
RETURN: number - the tangent of x, expressed in radians.
DESCRIPTION: Returns NaN if x cannot be converted to a number. In order to

convert degrees to radians you must multiply by 2pi/360.
EXAMPLE: //Return the tangent of x:

function compute_tan(x)
{
 return Math.tan(x)
}
//If the argument is NaN, the result is NaN
//If the argument is +0, the result is +0
//If the argument is -0, the result is -0
//If the argument is +infinity or -infinity,

Number Object
platform: All OS, All version of SE

Number object instance methods
Number toExponential()
SYNTAX: number.toExponential(fractionDigits)
WHERE: fractionDigits - the digits after the significand's decimal point.
RETURN: string - A string representation of this number in exponential

notation.
DESCRIPTION: This method returns a string containing the number represented

in exponential notation with one digit before the significand's
decimal point and fractionDigits digits after the significand's
decimal point.

Number toFixed()
SYNTAX: number.toFixed(fractionDigits)
WHERE: fractionDigits - the digits after the decimal point.
RETURN: string - A string representation of this number in fixed-point

notation.
DESCRIPTION: This method returns a string containing the number represented

in fixed-point notation with fractionDigits digits after the
decimal point.

Number toLocaleString()
SYNTAX: number.toLocaleString()
RETURN: string - a string representation of this number.
DESCRIPTION: This method behaves like

number to a string in a manner specific to the current locale.
Such things as placement of decimals and comma separators are
affected.

SEE: Number toString()
EXAMPLE: var n = 8.9;

var s = n.toLocaleString();

Number toString() and converts a

Number toPrecision()
SYNTAX: number.toPrecision(precision)
WHERE: precision - significant digits in fixed notation, or digits after the

significand's decimal point in exponential notation.
RETURN: string - A string representation of this number in either

exponential notation or in fixed notation.
DESCRIPTION: This method returns a string containing the number represented

in either in exponential notation with one digit before the

Nombas ScriptEase ISDK/Java 5.01 299

significand's decimal point and precision-1 digits after the
significand's decimal point or in fixed notation with precision
significant digits.

Number toString()
SYNTAX: number.toString([radix])
WHERE: radix - an optional radix, base number, determining the string

representation of this number.
RETURN: string - a string representation of this number.
DESCRIPTION: This method behaves similarly to

converts a number to a string using a standard format for
numbers. If the radix is specified, the string will have digits
representing that number base.

SEE: Number toLocaleString()
EXAMPLE: var n = 8.9;

var s = n.toString(); // "8.9"

var a = 16;
Screen.writeln(a.toString()); //"16"
Screen.writeln(a.toString(10)); //"16"
Screen.writeln(a.toString(16)); //"10"
Screen.writeln(a.toString(15)); //"11"
Screen.writeln(a.toString(8)); //"20"
Screen.writeln(a.toString(2)); //"10000"

 Number toLocaleString() and

Nombas ScriptEase ISDK/Java 5.01 300

Nombas ScriptEase ISDK/Java 5.01 301

Note that the property may be accessed as:
 o.mystring

Object Object
platform: All OS, All version of SE

Object object instance methods
Object()
SYNTAX: new Object([value])
WHERE: value - a value or variable, usually a primitive, to convert to an

object.
RETURN: object - a new top level object.
DESCRIPTION: Create a new top level object. I a value is passed, convert the

value to an object, else create a new object. The examples
below illustrate several ways to use Object() and how to
accomplish similar things using different strategies.

If Object() is invoked as a function instead of as a constructor
(that is, without new), it performs a type conversion on value.
That is, it returns value as data type Object.

SEE: Internal objects
EXAMPLE: /***************************************

First we create var s as a string data type.
Then we will convert s to an object data type,
namely, to a String object.
***************************************/
// Create s as data type string
var s = 'my string';
// Display the data type 'string'
Screen.writeln(typeof s);
// Display 'my string'
Screen.writeln(s);

// Convert s to data type object (String object)
var o = new Object(s);
// Display the data type 'object'
Screen.writeln(typeof o);
// Display 'my string'
Screen.writeln(o);

/***************************************
Next we create var so as a String object --
in one statement.
***************************************/
// Create so as a String object in one statement
var so = new String('my string');
// Display the data type 'object'
Screen.writeln(typeof so);
// Display 'my string'
Screen.writeln(so);

/***************************************
Next we create var o as an Object object data type.
We add the property o.mystring.

Nombas ScriptEase ISDK/Java 5.01 302

false
_prototype property of the object and if at any point the

 or
 o['mystring']
***************************************/
// Create a new top level object
var o = new Object();
// Add the property mystring
o.mystring = 'my string';
// Display the data type 'object'
Screen.writeln(typeof o);
// Display 'my string'
Screen.writeln(o.mystring);
// Display 'my string'
Screen.writeln(o['mystring']);

Object hasOwnProperty()
SYNTAX: object.hasOwnProperty(propertyName)
WHERE: property - a string with the name of the property about which to

query.
RETURN: boolean - indicating whether or not the current object has a

property of the specified name.
DESCRIPTION: This method determines if the object has a property with the

name propertyName. To return true, the property must be an
instance property created for this instance of an object and may
not be an inheritable or prototype property. This is almost the
same as testing defined(object[propertyName]), except
that undefined values are different from non-existent values,
and the internal _hasProperty() method of the object may be
called.

EXAMPLE: function Atest()
{
 this.name = "";
} // Test

Atest.prototype.city = "Fort Worth";

var t = new Atest();

Screen.writeln(t.city); // Fort
Worth

Screen.writeln(t.hasOwnProperty("name")); // true
Screen.writeln(t.hasOwnProperty("city")); // false

Object isPrototypeOf()
SYNTAX: object.isPrototypeOf(variable)
WHERE: variable - the object to test.
RETURN: boolean - true if variable is an object and the current object is

present in the prototype chain of the object, otherwise it returns
false.

DESCRIPTION: If variable is not an object, then this method immediately returns
. Otherwise, the method recursively searches the internal

current object is equal to one of these prototype properties, then
the method returns true.

Object propertyIsEnumerable()
SYNTAX: object.propertyIsEnumerable(propertyName)
WHERE: property - name of the property about which to query.
RETURN: boolean - true if the current object has an enumerable property

of the specified name, otherwise false.
DESCRIPTION: If the current object has no property of the specified name, then

false is immediately returned. If the property has the
DontEnum attribute set, then false is returned. Otherwise,
true is returned.

EXAMPLE: function Atest()
{
 this.name = "";
} // Test

Atest.prototype.city = "Fort Worth";

var t = new Atest();

// Fort Worth
Screen.writeln(t.city);

// true
Screen.writeln(t.propertyIsEnumerable("name"));
// true
Screen.writeln(t.propertyIsEnumerable("city"));

Object toLocaleString()
SYNTAX: object.toLocaleString()
RETURN: string - a string representation of this object.
DESCRIPTION: This method is intended to provide a default

toLocaleString() method for all objects. It behaves exactly
as if toString() had been called on the original object.

SEE: Object toString()

Object toSource()
SYNTAX: object.toSource()
RETURN: string - a string representation of this object, which can be

evaluated or interpreted.
DESCRIPTION: An object may be represented by a string comprised of

JavaScript statements which, when evaluated or interpreted,
reproduce the object. The source string may be evaluated by

by metimes convenient
or powerful to use source strings, for example, in the Data object
the

Though the source string may be read by humans, it is daunting.

global.eval() or SElib.interpret(). It is so

DSP object.

Nombas ScriptEase ISDK/Java 5.01 303

Remember, toSource() is designed for interpretation by the
ScriptEase interpreters, not by users.

The example below compares source strings created by the
Object toSource() method and the
function. In these examples, the source strings are identical,
which is not guaranteed always to be so. But, no matter which
one is used, the source strings can be evaluated or interpreted.

global.ToSource()

SEE: Global.ToSource(), global.eval(), SElib.interpret()
EXAMPLE: // An Array

var a = [1, '2', 3];

Screen.writeln(a.toSource());
Screen.writeln();
Screen.writeln(ToSource(a));
Screen.writeln();
/********************************
Displays:

((new Function("var tmp1 = [1,\"2\",3]; tmp1[\"0\"] =
1;
tmp1[\"1\"] = \"2\"; tmp1[\"2\"] = 3; return
tmp1;"))())

((new Function("var tmp1 = [1,\"2\",3]; tmp1[\"0\"] =
1;
tmp1[\"1\"] = \"2\"; tmp1[\"2\"] = 3; return
tmp1;"))())
********************************/

// An Object
var o = {one:1, two:'2', three:3};

Screen.writeln(o.toSource());
Screen.writeln();
Screen.writeln(ToSource(o));
Screen.writeln();
/********************************
Displays:

((new Function("var tmp1 = new Object();
tmp1[\"three\"] = 3;
tmp1[\"one\"] = 1; tmp1[\"two\"] = \"2\"; return
tmp1;"))())

((new Function("var tmp1 = new Object();
tmp1[\"three\"] = 3;
tmp1[\"one\"] = 1; tmp1[\"two\"] = \"2\"; return
tmp1;"))())
********************************/

Object toString()
SYNTAX: object.toString()
RETURN: string - a string representation of this object.
DESCRIPTION: When this method is called, the internal class property, _class,

is retrieved from the current object. A string is then constructed
whose contents are "[object classname]", where classname is the

Nombas ScriptEase ISDK/Java 5.01 304

value of the property from the current object. Note that this
function is rarely called directly, rather it is called implicitly
through such functions as global.ToString().

SEE: Object toLocaleString()

Object valueOf()
SYNTAX: object.valueOf()
RETURN: object - the value of this object
DESCRIPTION: Generally, this method returns the object itself. However, if

object is a wrapper for a host object, the host object may be
returned. Such wrappers for host objects may be created with the
Object constructor.

SEE: Object toSource(), Object()

Nombas ScriptEase ISDK/Java 5.01 305

RegExp Object
Regular expressions do not seem very regular to average people. Regular
expressions are used to search text and strings, searches that are very powerful if
a person makes the effort to learn how to use them. Simple searches may be done
like the following:
var str = "one two three";
str.indexOf("two"); // == 4

The ethod searches str for "two" and returns the beginning
position of "two", which is 4. What if you wanted to find "t" and "o" with or
without any characters in between, an "o" only at the beginning of a string, or an
"e" only at the end of a string? Before answering, lets consider wildcards.

Most computer users are familiar with wildcards in searching, especially since
they may be used in finding files. For example, the DOS command:
dir t*o.bat

will list all files that begin with "t" and end "o" in the filename and that have an
extension of "bat". JavaScript does not use wildcards to extend search capability.
Instead, ECMAScript, the standard for JavaScript, has implemented regular
expression searches that do everything that wildcards do and much, much more.
Regular expressions follow the PERL standard, though the syntax has been made
easier to read. Anyone who can use regular expressions in PERL already knows
how to use JavaScript regular expressions. For advanced information on regular
expressions, there are many books in the PERL community, in addition to
JavaScript books, that explain regular expressions.

Now lets answer the question about how to find the three cases mentioned above.
var str = "one two three";
var pat = /t.*o/;
str.search(pat); // == 4

This fragment illustrates one way to use regular expressions to find "t" followed
by "o" with any number of characters between them. Two things are different.
One the variable pat which is assigned /t.*o/. The slashes indicate the
beginning and end of a regular expression pattern, similar to how quotation
marks indicate a string. The a method of the String
object that uses a regular expression pattern to search a string, similar to the
String indexOf() method. In fact, they both return 4, the start position of "two",
in these examples.

The methods for searching using regular expression
patterns. The three methods are:
String match()
String replace()
String search()

The methods in the RegExp object, for using regular expressions, are explained
below in this section. Before we move on to the cases of an "o" at the start or an
"e" at the end of a string, consider the current example a little further. What do
the slashes "/ . . . /" do? First, they define a regular expression pattern. Second,

String indexOf() m

String search() method is

String object has three

Nombas ScriptEase ISDK/Java 5.01 307

they create a RegExp object. In our example, the quotes cause str to be a String
object, and the slashes cause pat to be a RegExp object. Thus, pat may be used
with RegExp methods and with the three String methods that use regular
expression patterns.
var str = "one two three";
var pat = /t.*o/;
pat.test(str); // == true

By using a method, such as test(), of the RegExp object, the string to be
searched becomes the argument rather than the pattern to search for, as with the
string methods. The method simply returns true or false
indicating whether the pattern is found in the string.
var str = "one two three";
var pat = /t.*o/;
str.match(pat); // == an Array with pertinent info
pat.exec(str); // == an Array with pertinent info

The y similar, often the
same, results in an Array. The return may vary depending on exactly which
attributes, discussed later, are set for a regular expression.

To find an "o" only at the start of a string, use something like:
var str = "one two three";
var pat = /^o/;
str.search(pat); // == 0

The caret "^" has a special meaning, namely, the start of a string or line. It
anchors the characters that follow to the start of a string or line and is one of the
special anchor characters.

To find an "e" only at the end of a string, use something like:
var str = "one two three";
var pat = /e$/;
str.search(pat); // == 12

The dollar sign "$" has a special meaning, namely, the end of a string or line. It
anchors the characters that follow to the end of a string or line and is one of the
special anchor characters.

Note that there is a very important distinction between searching for pattern
matches using the String methods and using the RegExp methods. The RegExp
methods execute much faster, but the String methods are often quicker to
program. So, if you need to do intensive searching in which a single regular
expression pattern is used many times in a loop, use the RegExp methods. If you
just need to do a few searches, use the String methods. Every time a RegExp
object is constructed using new, the pattern is compiled into a form that can be
executed very quickly. Every time a new pattern is compiled using the

method, a pattern executes much faster. Other than the difference in
speed and script writing time, the choice of which methods to use depends on
personal preferences and the particular tasks at hand.

In general, the RegExp object allows the use of regular expression patterns in
searches of strings or text. The syntax follows the ECMAScript standard, which
may be thought of as a large and powerful subset of PERL regular expressions.

RegExp test()

String match() and RegExp exec() methods return ver

RegExp
compile()

Nombas ScriptEase ISDK/Java 5.01 308

Regular expression syntax
The general form for defining a regular expression pattern is:
/characters/attributes

Assume that we are searching the string "THEY, the three men, left". The
following are valid regular expression patterns followed by a description of what
they find:
/the three/ // "the three"
/THE THREE/ig // "the three"
/th/ // "th" in "the"
/th/igm // "th" in "THEY", "the", and "three"

The slashes delimit the characters that define a regular expression. Everything
between the slashes is part of a regular expression, just as everything between
quotation marks is part of a string. Three letters may occur after the second slash
that are not part of the regular expression. Instead, they define attributes of the
regular expression. Any one, two, or three of the letters may be used, that is, any
one or more of the attributes may be defined. Thus, a regular expression has three
elements: literals, characters, and attributes.

Regular expression literals
Regular expression literals delimit a regular expression pattern. The literals are a
slash "/" at the beginning of some characters and a slash "/" at the end of the
characters. These regular expression literals operate in the same way as quotation
marks do for string literals. The following two lines of code accomplish the same
thing, namely, they define and create an instance of a
var re = /^THEY/;
var re = new RegExp("^THEY");

and so do the following two lines:
var re = /^THEY/i;
var re = new RegExp("^THEY", "i");

Regular expression characters
Each character or special character in a regular expression represents one
character. Though some special characters, such as, the range of lowercase
characters represented by [a-z], may have multiple matches, only one at a time
is matched. Thus, [a-z] will only find one of these 26 characters at one position
in a string being searched. Just as strings have special characters, namely, escape
sequences, regular expression patterns have various kinds of special characters
and metacharacters that are explained below.

Regular expression attributes
The following table lists allowable attribute characters and their effects on a
regular expression. No other characters are allowed as attributes.

Character Attribute meaning
g Do a global match. Allow the finding of all matches in a string

using the RegExp and String methods and properties that allow
global operations. The instance property global is set to true.

Example: /pattern/g

RegExp object:

Nombas ScriptEase ISDK/Java 5.01 309

Nombas ScriptEase ISDK/Java 5.01 310

[^] any one not in a character class [^a-m]
[\b] one backspace character my[\b]word

i Do case insensitive matches. The instance property ignoreCase is
set to true.

Example: /pattern/i
m Work with multiple lines in a string. When working with multiple

lines the "^" and "$" anchor characters will match the start and end
of a string and the start and end of lines within the string. The
newline character "\n" in a string indicates the end of a line and
hence lines in a string. The instance property multiline is set to
true.

Example: /pattern/m

Attributes are the characters allowed after the end slash "/" in a regular
expression pattern. The following regular expressions illustrate the use of
attributes.
var pat = /^The/i; // any form of "the" at start of a string
var pat = /the/g; // all occurrences of "the" may be found
var pat = /test$/m; // first "test" at the end of any line
var pat = /test$/igm; // all forms of "test" at end of all lines
 // The following four examples do the same as the first four
var pat = new RegExp("^The", "i");
var pat = new RegExp("the", "g");
var pat = new RegExp("test$", "m");
var pat = new RegExp("test$", "igm");

Regular expression special characters
Regular expressions have many special characters, which are also known as
metacharacters, with special meanings in a regular expression pattern. Some are
simple escape sequences, such as, a newline "\n", with the same meaning as the
same escape sequence in strings. But, regular expressions have many more
special characters that add much power to working with strings and text, much
more power than is initially recognized by people being introduced to regular
expressions. For anyone who works with strings and text, the effort to become
proficient with regular expression parsing is more than worthwhile.

Regular expression summary
Search pattern
? zero or one of previous, {0,1} be?t
* zero or more of previous, maximal, {0,} b.*t
? zero or more of previous, minimal, {0,}? b.?t
+ one or more of previous, maximal, {1,} b.+t
+? one or more of previous, minimal, {1,}? b.+?t
{n} n times of previous be{n}t
{n,} n or more times of previous, maximal b.{n,}t
{n,}? n or more times of previous, minimal b.{n,}?t
{n,m} n to m times of previous be{1,2}t
. any character b.t
[] any one character in a class [a-m]

\d any one digit, [0-9] file\d
\D any one not digit, [^0-9] file\D
\s any one white space character, [\t\n\r\f\v] my\sword
\S any one not white space character, [^ \t\n\r\f\v] my \sord
\w any one word character, [a-zA-Z0-9_] my big\w
\W any one not word character, [^a-zA-Z0-9_] my\Wbig
^ anchor to start of string ^string
$ anchor to end of string string$
\b anchor to word boundary \bbig
\B anchor to not word boundary \Bbig
| or (bat)|(bet)
\n group n (bat)a\1
() group my(.?)fil
(?:) group without capture my(?:.?)fil
(?=) group without capture with positive look ahead my(?=.?)fil
(?!) group without capture with negative look ahead my(?!.?)fil
\f form feed character string\f
\n newline string\n
\r carriage return character string\r
\t horizontal tab character one\tfour
\v vertical tab character one\vtwo
\/ / character \/fil
\\ \ character \\fil
\. . character fil\.bak
* * character one*two
\+ + character \+fil
\? ? character when\?
\| | character one\|two
\((character \(fil\)
\)) character \(fil\)
\[[character \[fil\]
\]] character \[fil\]
\{ { character \{fil\}
\} } character \{fil\}
\C a character itself. Seldom used. b\at
\cC a control character one\cIfour
\x## character by hexadecimal code \x41
\### character by octal code \101

Replace pattern
$n group n in search pattern, $1, $2, . . . $9 big$1
$+ last group in search pattern big$+
$` text before matched pattern big$`
$' text after matched pattern big$'
$& text of matched pattern big$&
\$ $ character big\$

Nombas ScriptEase ISDK/Java 5.01 311

Regular expression repetition characters

Nombas ScriptEase ISDK/Java 5.01 312

+? Match one or more occurrences of the previous character or sub
pattern. A minimal match, that is, match as few characters as will

Notice that the character "?" pulls double duty. When used as the only repetition
specifier, "?" means to match zero or more occurrences of the previous character.
For example, /a?/ matches one or more "a" characters in sequence. When used
as the second character of a repetition specifier, as in "*?", "+?", and "{n,}?", a
question mark "?" indicates a minimal match. What is meant by a minimal
match?

Well obviously, it is the counterpart to a maximal match, which is the default for
JavaScript and PERL regular expressions. A maximal match will include the
maximum number of characters in a text that will qualify to match a regular
expression pattern. For example, in the string "one two three", the pattern
/o.*e/ will match the text "one two three". Why? The pattern says to
match text that begins with the character "o" followed by zero or more of any
characters up to the character "e". Since the default is a maximal match, the
whole string is matched since it begins with "o" and ends with "e". Often, this
maximal match behavior is not what is expected or desired.

Now consider a similar match using the minimal character. The string is still
"one two three", but the pattern becomes /o.*?e/. Notice that the only
difference is the addition of a question mark "?" as the second repetition
character after the "*". The text matched this time is "one", which is the
minimal number of characters that match the conditions of the regular expression
pattern.

So, it might be a good habit to begin reading regular expression patterns with a
maximal and minimal vocabulary. As an example, lets spell out how we could
read the two patterns in the current example.

• "o.*e" - match text that begin with "o" and has the maximum number of
characters possible until the last "e" is encountered.

• "o.*?e" - match text that begins with "o" and has the minimum number of
characters possible until the first "e" is encountered.

Sometimes a maximal match is called a greedy match and a minimal match is
called a non-greedy match.

Repetition How many characters matched
? Match zero or one occurrence of the previous character or sub

pattern. Same as {0,1}
* Match zero or more occurrences of the previous character or sub

pattern. A maximal match, that is, match as many characters as will
fulfill the regular expression. Same as {0,}

*? Match zero or more occurrences of the previous character or sub
pattern. A minimal match, that is, match as few characters as will
fulfill the regular expression. Same as {0,}?

+ Match one or more occurrences of the previous character or sub
pattern. A maximal match, that is, match as many characters as will
fulfill the regular expression. Same as {1,}

Nombas ScriptEase ISDK/Java 5.01 313

below.)

fulfill the regular expression. Same as {1,}?
{n} Match n occurrences of the previous character or sub pattern.
{n,} Match n or more occurrences of the previous character or sub

pattern. A maximal match, that is, match as many characters as will
fulfill the regular expression.

{n,}? Match n or more occurrences of the previous character or sub
pattern. A minimal match, that is, match as few characters as will
fulfill the regular expression.

{n, m} Match the previous character or sub pattern at least n times but not
more than m times.

Regular expression character classes
Class Character matched
. Any character except newline, [^\n]
[...] Any one of the characters between the brackets
[^...] Any one character not one of the characters between the brackets
[\b] A backspace character (special syntax because of the \b boundary)
\d Any digit, [0-9]
\D Any character not a digit, [^0-9]
\s Any white space character, [\t\n\r\f\v]
\S Any non-white space character, [^ \t\n\r\f\v]
\w Any word character, [a-zA-Z0-9_]
\W Any non-word character, [^a-zA-Z0-9_]

Regular expression anchor characters
Anchor characters indicate that the following or preceding characters must be
next to a special position in a string. The characters next to anchor characters are
included in a match, not the anchor characters themselves. For example, in the
string "The big cat and the small cat", the regular expression /cat$/ will match
the "cat" at the end of the string, and the match will include only the three
characters "cat". The "$" is an anchor character indicating the end of a string (or
line if a multiline search is being done).

The following table lists the anchor characters, metacharacters, and their
meanings.

Character Anchor meaning
^ The beginning of a string (or line if doing a multiline search). (See

\A below.)

Example: /^The/
$ The end of a string (or line if doing a multiline search). (See \Z

Nombas ScriptEase ISDK/Java 5.01 314

For example, /ScriptEase (?=Desktop|ISDK)/ matches
"ScriptEase " in "ScriptEase Desktop" or "ScriptEase ISDK", but

Example: /cat$/
\A Matches the beginning of a string only. (See $ above.)
\b A word boundary. Match any character that is not considered to be

a valid character for a word in programming. The character class
"\W", not a word character, is similar. There are two differences.
One, "\b" also matches a backspace. Two, "\W" is included in a
match, since it is regular expression character, but "\b" is not
included in a match.

Example: /\bthe\b/
\B Not a word boundary. The character class "\w" is similar. The most

notable difference is that "\w" is included in a match, and "\B" is
not.

Example: /l\B/
\Z Matches the end of a string only. (See ^ above.)

Regular expression reference characters
Character Meaning
| Or. Match the character or sub pattern on the left or the character

or sub pattern on the right.
\n Reference to group. Match the same characters, not the regular

expression itself, matched by group n. Groups are sub patterns that
are contained in parentheses. Groups may be nested. Groups are
numbered according to the order in which the left parenthesis of a
group appears in a regular expression.

(...) Group with capture. Characters inside of parentheses are handled
as a single unit or sub pattern in specified ways, such as with the
first two explanations, | and \n, in this table. The characters that
are actually matched are captured and may be used later in an
expression (as with \n) or in a replacement expression (as with
$n). For example, if the string "one two three two one" and the
pattern /(o.e).+(w.+?e)/ are used, then the back references $1
or \1 use the text "one".

(?:...) Group without capture. Matches the same text as (...), but the
text matched is not captured or saved and is not available for later
use using \n or $n. The overhead of not capturing matched text
becomes important in faster execution time for searches involving
loops and many iterations. Also, some expressions and
replacements can be easier to read and use with fewer numbered
back references with which to keep up. For example, if the string
"one two three two one" and the pattern /(?:o.e).+(w.+?e)/
are used, then the back references $1 or \1 use the text "wo thre".

(?=...) Positive look ahead group without capture. The position of the
match is at the beginning of the text that matches the sub pattern.

Nombas ScriptEase ISDK/Java 5.01 315

\### A character represented by its code in octal. For example, \012 is a

not "ScriptEase " in "ScriptEase Web Server". When a search
continues, it begins after "ScriptEase ", not after "Desktop" or
"ISDK". That is, the search continues after the last text matched,
not after the text that matches the look ahead sub pattern.

(?!...) Negative look ahead group without capture. The position of the
match is at the beginning of the text not matching the sub pattern.
For example, /ScriptEase (?!Desktop|ISDK)/ matches
"ScriptEase " in "ScriptEase Web Server", but not "ScriptEase " in
"ScriptEase Desktop" or "ScriptEase ISDK". When a search
continues, it begins after "ScriptEase ", not after "Desktop" or
"ISDK". That is, the search continues after the last text matched,
not after the text that matches the look ahead sub pattern.

Regular expression escape sequences
Sequence Character represented
\f Form feed, \cL, \x0C, \014
\n Line feed, newline, \cJ, \x0A, \012
\r Carriage return, \cM, \x0D, \015
\t Horizontal tab, \cI, \x09, \011
\v Vertical tab, \cK, \x0B, \013
\/ The character: /
\\ The character: \
\. The character: .
* The character: *
\+ The character: +
\? The character: ?
\| The character: |
\(The character: (
\) The character:)
\[The character: [
\] The character:]
\{ The character: {
\} The character: }
\C A character itself, if not one of the above. Seldom, if ever, used.
\cC A control character. For example, \cL is a form feed (^L or Ctrl-

L), same as \f.
\x## A character represented by its code in hexadecimal. For example,

\x0A is a newline, same as \n, and \x41 is "A".

newline, same as \n, and \101 is "A".

Regular expression replacement characters
All of the special characters that have been discussed so far pertain to regular
expression patterns, that is, to finding and matching strings and patterns in a
target string. If all you want to do is find text, then you do not need to know
about regular expression replacement characters. However, most people not only
want to do powerful searches, but they also want to make powerful replacements
of found text. This section describes special characters that are used in
replacement strings and that are related to special characters used in search
patterns.

Expression Meaning
$1, $2 ... $9 The text that is matched by sub patterns inside of

parentheses. For example, $1 substitutes the text matched in
the first parenthesized group in a regular expression pattern.
See the groups, (...), (?:...), (?=...), and (?!...),
under

$+ The text matched by the last group, that is, parenthesized sub
pattern.

$` The text before, to the left of, the text matched by a pattern.
$' The text after, to the right of, the text matched by a pattern
$& The text matched by a pattern
\$ A literal dollar sign, $.

Regular expression precedence
The patterns, characters, and metacharacters of regular expressions comprise a
sub language for working with strings. Some of the metacharacters can be
understood as operators, and, like operators in all programming languages, there
is an order of precedence. The following tables list regular expression operators
in the order of their precedence.

Operator Descriptions
\ Escape

(), (?:), (?=), (?!), [] Groups and sets

*, +, ?, {n}, {n,}, {n,m} Repetition

^, $, \metacharacter Anchors and metacharacters
| Alternation

RegExp object instance properties
RegExp global
SYNTAX: regexp.global

regular expression reference characters.

RegExp object. It is DESCRIPTION: A read-only property of an instance of a
true if "g" is an attribute in the regular expression pattern being

Nombas ScriptEase ISDK/Java 5.01 316

used.

Read-only property. Use RegExp compile() to change.
SEE: Regular expression attributes
EXAMPLE: var pat = /^Begin/g;

//or
var pat = new RegExp("^Begin", "g");

RegExp ignoreCase
SYNTAX: regexp.ignoreCase
DESCRIPTION: A read-only property of an instance of a

true if "i" is an attribute in the regular expression pattern being
used.

Read-only property. Use RegExp compile() to change.
SEE: Regular expression attributes
EXAMPLE: var pat = /^Begin/i;

//or
var pat = new RegExp("^Begin", "i");

RegExp object. It is

RegExp exec() and RegExp test() use and set the

RegExp object. It is

RegExp lastIndex
SYNTAX: regexp.lastIndex
DESCRIPTION: The character position after the last pattern match and which is

the basis for subsequent matches when finding multiple matches
in a string. That is, in the next search, lastIndex is the starting
position. This property is used only in global mode after being
set by using the "g" attribute when defining or compiling a
search pattern.
lastIndex property. If a match is not found by one of them,
then lastIndex is set to 0. Since the property is read/write, you
may set the property at any time to any position.

Read/write property.
SEE: RegExp exec(), String match()
EXAMPLE: var str = "one tao three tio one";

var pat = /t.o/g;
pat.exec(str);
 // pat.lastIndex == 7

RegExp multiline
SYNTAX: regexp.multiline
DESCRIPTION: A read-only property of an instance of a

true if "m" is an attribute in the regular expression pattern being
used. There is no static (or global) RegExp multiline property
in ScriptEase JavaScript since the presence of one is based on
old technology and is confusing now that an instance property
exists.

This property determines whether a pattern search is done in a
multiline mode. When a pattern is defined, the multiline

Nombas ScriptEase ISDK/Java 5.01 317

attribute may be set, for example, /^t/m. A pattern definition
such as this one, sets the instance property regexp.multiline
to true.

Read-only property. Use RegExp compile() to change.

RegExp compile() to change.

String match() and RegExp exec() return array

String match()

SEE: Regular expression attributes
EXAMPLE: // In all these examples, pat.multiline is set

// to true. If there were no "m" in the attributes,
// then pat.multiline would be set to false.
var pat = /^Begin/m;
//or
var pat = new RegExp("^Begin", "igm");
//or
var pat = /^Begin/m;
//or
var pat = new RegExp("^Begin", "igm");

RegExp source
SYNTAX: regexp.source
DESCRIPTION: The regular expression pattern being used to find matches in a

string, not including the attributes.

Read-only property. Use
SEE: Regular expression syntax
EXAMPLE: var str = "one tao three tio one";

var pat = /t.o/g;
pat.exec(str);
 // pat.source == "t.o"

RegExp returned array properties
Some methods, s in which various
elements and properties are set that provide more information about the last
regular expression search. The properties that might be set are described in this
section, not the contents of the array elements.

index (RegExp)
SYNTAX: returnedArray.index
DESCRIPTION: When is called and the "g" is not used in the

regular expression, String match() returns an array with two
extra properties, index and input. The property index has the
start position of the match in the target string.

SEE: input (RegExp), RegExp exec(), String match()
EXAMPLE: var str = "one tao three tio one";

var pat = /(t.o)\s(t.r)/g;
var rtn = pat.exec(str);
 // rtn[0] == "tao thr"
 // rtn[1] == "tao"
 // rtn[2] == "thr"
 // rtn.index == 4
 // rtn.input == "one tao three tio one"

Nombas ScriptEase ISDK/Java 5.01 318

input (RegExp)
SYNTAX: returnedArray.input
DESCRIPTION: When called and the "g" is not used in the

regular expression, String match() returns an array with two
extra properties, index and input. The property input has a
copy of the target string.

SEE: index (RegExp), RegExp exec(), String match()
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)\s(t.r)/g;
var rtn = pat.exec(str);
 // rtn[0] == "two thr"
 // rtn[1] == "two"
 // rtn[2] == "thr"
 // rtn.index == 4
 // rtn.input == "one two three two one"

String match()is

RegExp object.

RegExp object instance methods
RegExp()
SYNTAX: new RegExp([pattern[, attributes]])
WHERE: pattern - a string containing a regular expression pattern to use

with this

attributes - a string with the attributes for this RegExp object.
RETURN: object - a new regular expression object, or null on error.
DESCRIPTION: Creates a new regular expression object using the search pattern

and options if they are specified.

If the attributes string is passed, it must contain one or more of
the following characters or be an empty string "":

i - sets the ignoreCase property to true
g - sets the global property to true
m - set the multiline property to true

SEE: Regular expression syntax, String match(), String replace(),
String search()

EXAMPLE: // no options
var regobj = new RegExp("r*t", "");
// ignore case
var regobj = new RegExp("r*t", "i");
// global search
var regobj = new RegExp("r*t", "g");
// set both to be true
var regobj = new RegExp("r*t", "ig");

RegExp compile()
SYNTAX: regexp.compile(pattern[, attributes])
WHERE: pattern - a string with a new regular expression pattern to use

with this RegExp object.

attributes - a string with the new attributes for this RegExp

Nombas ScriptEase ISDK/Java 5.01 319

object.
RETURN: void.
DESCRIPTION: This method changes the pattern and attributes to use with the

current instance of a
object may be used repeatedly by changing it with this method.

If the attributes string is supplied, it must contain one or more of
the following characters or be an empty string "":

i - sets the ignoreCase property to true
g - sets the global property to true
m - set the multiline property to true

SEE: RegExp(), Regular expression syntax
EXAMPLE: var regobj = new RegExp("now");

// use this RegExp object
regobj.compile("r*t");
// use it some more
regobj.compile("t.+o", "ig");
// use it some more

RegExp object. An instance of a RegExp

RegExp.input,

 String match()

RegExp exec()
SYNTAX: regexp.exec([str])
WHERE: str - a string on which to perform a regular expression match.

Default is RegExp.input.
RETURN: array - an array with various elements and properties set

depending on the attributes of a regular expression. Returns
null if no match is found.

DESCRIPTION: This method, of all the RegExp and String methods, is both the
most powerful and most complex. For many, probably most,
searches, other methods are quicker and easier to use. A string,
the target, to be searched is passed to exec() as a parameter. If
no string is passed, then which is a read/write
property, is used as the target string.

When executed without the global attribute, "g", being set, if a
match is found, element 0 of the returned array is the text
matched, element 1 is the text matched by the first sub pattern in
parentheses, element 2 the text matched by the second sub
pattern in parentheses, and so forth. These elements and their
numbers correspond to groups in regular expression patterns and
replacement expressions. The length property indicates how
many text matches are in the returned array. In addition, the
returned array has the index and input properties. The index
property has the start position of the first text matched, and the
input property has the target string that was searched. These
two properties are the same as those that are part of the returned
array from when used without its global attribute
being set.

When executed with the global attribute being set, the same

Nombas ScriptEase ISDK/Java 5.01 320

results as above are returned, but the behavior is more complex
which allows further operations. This method exec() begins
searching at the position, in the target string, specified by
this.lastIndex. After a match, this.lastIndex is set to
the position after the last character in the text matched. Thus, you
can easily loop through a string and find all matches of a pattern
in it. The property this.lastIndex is read/write and may be
set at anytime. When no more matches are found,
this.lastIndex is reset to 0.

Since s includes all information about a
match in its returned array, it is the best, perhaps only, way to get
all information about all matches in a string.

As with matches are made, appropriate

o forth are set, providing
more information about the matches.

RegExp exec() alway

String match(), if any
RegExp object static properties, such as RegExp.leftContext,
RegExp.rightContext, RegExp.$n, and s

RegExp object static properties,
RegExp.leftContext, RegExp.rightContext, RegExp.$n,

RegExp exec(), when a

SEE: String match(), RegExp object static properties
EXAMPLE: var str = "one two three tio one";

var pat = new RegExp("t.o", "g");

while ((rtn = pat.exec(str)) != null)
 Screen.writeln("Text = " + rtn[0] +
 " Pos = " + rtn.index +
 " End = " + pat.lastIndex);
// Display is:
// Text = two Pos = 4 End = 7
// Text = tio Pos = 14 End = 17

RegExp test()
SYNTAX: regexp.test([str])
WHERE: str - a string on which to perform a regular expression match.

Default is RegExp.input.
RETURN: boolean - true if there is a match, else false.
DESCRIPTION: Tests a string to see if there is a match for a regular expression

pattern.

This method is equivalent to regexp.exec(string)!=null.

If there is a match, appropriate
such as
and so forth, are set, providing more information about the
matches.

Though it is unusual, test() may be used in a special way
when the global attribute, "g", is set for a regular expression
pattern. Like with match is found, the
lastIndex property is set to the character position after the text
match. Thus, test() may be used repeatedly on a string, though
there are few reasons to do so. One reason would be if you only
wanted to know if a string had more than one match.

Nombas ScriptEase ISDK/Java 5.01 321

SEE: RegExp exec(), String match(), String search()
EXAMPLE: var rtn;

var str = "one two three tio one";
var pat = /t.o/;
 // rtn == true
rtn = pat.test(str);

RegExp object static properties
RegExp.$n
SYNTAX: RegExp.$n
DESCRIPTION: The text matched by the nth group, that is, the nth sub pattern in

parenthesis. The numbering corresponds to \n, back references
in patterns, and $n, substitutions in replacement patterns.

Read-only property.
SEE: Regular expression reference characters, regular expression

replacement characters
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)\s/
str.match(pat)
 // RegExp.$1 == "two"

RegExp.input
SYNTAX: RegExp.input
DESCRIPTION: If no string is passed to

RegExp.input is used as the target string. To be used as the
target string, it must be assigned a value. RegExp.input is
equivalent to RegExp.$_, for compatibility with PERL.

Read/write property.
SEE: RegExp exec(), RegExp test()
EXAMPLE: var pat = /(t.o/;

RegExp.input = "one two three two one";
pat.exec();
 // "two" is matched

RegExp exec() or to RegExp test(), then

RegExp.lastMatch
SYNTAX: RegExp.lastMatch
DESCRIPTION: This property has the text matched by the last pattern search. It is

the same text as in element 0 of the array returned by some
methods. RegExp.lastMatch is equivalent to RegExp["$&"],
for compatibility with PERL.

Read-only property.
SEE: RegExp exec(), String match(), RegExp returned array properties
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)/
pat.exec(str);
 // RegExp.lastMatch == "two"

Nombas ScriptEase ISDK/Java 5.01 322

RegExp.lastParen
SYNTAX: RegExp.lastParen
DESCRIPTION: This property has the text matched by the last group,

parenthesized sub pattern, in the last pattern search.
RegExp.lastParen is equivalent to RegExp["$+"], for
compatibility with PERL.

Read-only property.
SEE: RegExp.$n
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)+\s(t.r)/
pat.exec(str);
 // RegExp.lastParen == "thr"

RegExp.leftContext
SYNTAX: RegExp.leftContext
DESCRIPTION: This property has the text before, that is, to the left of, the text

matched by the last pattern search. RegExp.leftContext is
equivalent to RegExp["$`"], for compatibility with PERL.

Read-only property.
SEE: RegExp.lastMatch, RegExp.rightContext
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)/
pat.exec(str);
 // RegExp.leftContext == "one "

RegExp.rightContext
SYNTAX: RegExp.rightContext
DESCRIPTION: This property has the text after, that is, to the right of, the text

matched by the last pattern search. RegExp.leftContext is
equivalent to RegExp["$'"], for compatibility with PERL.

Read-only property.
SEE: RegExp.lastMatch, RegExp.leftContext
EXAMPLE: var str = "one two three two one";

var pat = /(t.o)/
pat.exec(str);
 // RegExp.leftContext == " three two one"

Nombas ScriptEase ISDK/Java 5.01 323

SElib Object
The methods in the SElib object extend the functionality of JavaScript. Whereas
the y providing functions from the
standard C library, the SElib extends power by allowing programmers to work
with such things as directories, files, memory, windows, messages, system
operations, and script execution. The methods in the SElib object are more like
the C functions in the Clib object than JavaScript functions.

When using the methods in this section, they are preceded with the Object name
SElib, since individual instances of the SElib object are not created. For example,
SElib.directory() is the syntax to use to get directory information in a
script.

SElib object static methods
SElib.baseWindowFunction()
SYNTAX: SElib.baseWindowFunction(hWnd, message, param1,

 param2)

Clib object extends the power of JavaScript b

SElib.makeWindow() or subclassed with
SElib.subclassWindow().

WHERE: hWnd - a number, a handle of the window receiving the
message.

message - a number, a Windows message ID.

param1 - the first parameter of the message ID.

param2 - the second parameter of the message ID.
RETURN: value - the value returned by the base window function. If the

parameter handle is not a window with a windowFunction
created with SElib.makeWindow() or is not a window
subclassed with SElib.subclassWindow(), then the return is
0.

DESCRIPTION: Calls the base procedure of a window created with a
windowFunction in

This method is normally used within a
ScriptEase window function to pass the window parameter to the
base procedure before handling it in your own code. Remember
that if your window function returns no value, ScriptEase will
call the base procedure automatically, which is the preferred
method.

SEE: SElib.makeWindow(), SElib.subclassWindow(), Window object
in winobj.jsh

SElib.bound()
SYNTAX: SElib.bound()
RETURN: boolean - true if the currently running script is bound using the

/bind command line option, else false.
DESCRIPTION: ScriptEase scripts may be compiled to standalone executable,

exe, files using the bind command line option. Sometimes it is

Nombas ScriptEase ISDK/Java 5.01 325

important to know if a script is being interpreted or being run as
a standalone executable. Binding a script is a step more than
compiling a script to be interpreted by a ScriptEase interpreter.
(See SElib.compileScript())

SElib.subclassWindow() or
SElib.makeWindow(). No

 SElib.subclassWindow(),

SEE: SElib.compileScript(), SElib.version(), Using Library Files
EXAMPLE: if (SElib.bound())

{
 Screen.writeln('Running a bound script');
 // Do this
}
else
{
 Screen.writeln('Running an unbound script');
 // Do that
}

SElib.breakWindow()
SYNTAX: SElib.breakWindow(hWnd)
WHERE: hWnd - a number, the handle of the window being released or

destroyed.
RETURN: boolean - true on success and the window is successfully

destroyed, released, or subclassed, else false on failure.
DESCRIPTION: For Win32 and Win16

Releases control of a window controlled by
 destroys a window previously

created with other windows are
affected. If hWnd is not a valid window handle, no action is
taken and true is returned.

When a window is destroyed all appropriate DestroyWindow()
functions, internal to the Windows API, are called. Any child
windows of a main window are destroyed before the main
window.

If hWnd is a window controlled by
then this method removes the WindowFunction for a window
from the message function loop.

If hWnd is not supplied, then all windows created with
SElib.makeWindow() are destroyed and all subclassing ends.

SEE: SElib.makeWindow()

SElib.compileScript()
SYNTAX: SElib.compileScript(codeToCompile[, isFile])
WHERE: codeToCompile - a string with ScriptEase statements or a

filename of a script file.

isFile - a boolean telling whether or not codeToCompile is a
filename or a string with statements. The default is false
indicating that codeToCompile is a string consisting of

Nombas ScriptEase ISDK/Java 5.01 326

ScriptEase statements.
RETURN: buffer - the compiled code in a ScriptEase buffer. Normally, this

buffer of compiled code is saved to a file.
DESCRIPTION: Compiles a ScriptEase script into executable code which is

normally written to a file with an extension of ".jsb" and referred
to as a ScriptEase binary file. This compiled code is the same
code that is created when the /bind option is used with the Pro
version of ScriptEase Desktop and the code is bound in an
executable ".exe" file.

Compiled code may be executed in two ways. First, the compiled
code may be passed to the
parameter. The SElib.interpret() method executes
compiled code in the same way that it does text script. Second, a
ScriptEase binary file may be executed by a ScriptEase
interpreter, such as sewin32.exe. This second way is the most
common way to execute compiled code. There are three basic
ways that a ScriptEase script file may be run:

• A text script, as typed by a programmer, may be called using
an interpreter program, such as sewin32.exe. The interpreter
reads the text and performs all the statements in it. Running a
script in this way results in the slowest overall execution
speed since the interpreter must preprocess, tokenize, and
run the file.

• A text script may be compiled using the
SElib.compileScript() method and written to a
ScriptEase binary file. A ScriptEase binary file may also be
called by an interpreter program, such as sewin32.exe. But
overall execution time is faster since the first two steps,
preprocessing and tokenizing, are already done by
SElib.compileScript(). The compiled code of a script
is the same as the compiled code of an executable file
produced using the /bind option of the Pro version.

• A text script can be compiled using the /bind option of the
Pro version. The script is compiled, into the same form as
when using SElib.compileScript() but is physically
attached to the pertinent executable part of an interpreter,
such as sewin32.exe. The compiled file is an executable file
with an extension of ".exe" and can be run as a stand-alone
program.

See the section on running a script in the manual or help file for
more information on executing ScriptEase scripts.

ScriptEase binary files are called in the same way as text scripts,
either ".jse" or ".jsh" files. Assume that a file named testobj.jse
has been compiled with SElib.compileScript() to
testobj.jsb. The invocations of either file by an interpreter do the
same thing. For example, both lines below accomplish the same

SElib.interpret() method as the Code

Nombas ScriptEase ISDK/Java 5.01 327

Nombas ScriptEase ISDK/Java 5.01 328

 var compiledScript = SElib.compileScript(infile,
true);

thing when run as a command line.
sewin32.exe testobj.jse sewin32.exe testobj.jsb

The second line using ".jsb" executes faster, in overall time, that
is, it begins executing more quickly.

In a like manner, assume that a file named testinc.jsh has been
compiled with SElib.compileScript() to testinc.jsb. Either
file may be included in a script using the preprocessor directive
#include. Both lines of script below accomplish the same
thing.
#include "testinc.jsh" #include "testinc.jsb"

The second line executes faster since the code in that file is
precompiled. This include example points to another difference
between the /bind option and the SElib.compileScript()
method. The /bind option results in a stand-alone executable file.
The SElib.compileScript() method allows the flexibility of
precompiling sections of code that may be used in other scripts
or of having a complete precompiled program. Complete
programs compiled by either method execute at the same speed,
at actual run time.

A compiled ScriptEase binary file may also be run from a script
by using the SElib.interpret() method, using the
INTERP_COMPILED_SCRIPT flag.

A ScriptEase binary file has 4 bits that identify it as a compiled
script and 16 bytes for a checksum to make sure that the file has
not been altered. Compiled scripts are implemented at a very low
level which allows ScriptEase binary files to be included in a
script, as already described. But, there is another benefit. A
programmer may use file extensions other than the default ".jsb".

ScriptEase comes with a script, compile.jse, which automates the
process of compiling a text script to a ScriptEase binary file.

SEE: SElib.interpret(), SElib.interpretInNewThread(), SElib.bound(),
sebind.jse, compile.jse

EXAMPLE: // Compile the script file, myscript.jse,
 // to the ScriptEase
 // binary file, myscript.jsb.
function main(argc, argv)
{
 // Filename of the script to compile
 var infile = "Myscript.jse";
 // Filename for the compiled code
 var outfile = "Myscript.jsb";

 // Compile the script file
 // into compiled code.
 // Argument true indicates that infile is a
filename

Nombas ScriptEase ISDK/Java 5.01 329

A file attribute may be excluded from array of files returned by
using the bitwise not operator, "~". For example, to exclude

 // If the returned buffer has code in it,
 // save it to a file.
 if(compiledScript != null)
 {
 var outfp = Clib.fopen(outfile, "w");
 if(outfp == null)
 {
 Clib.fprintf(stderr,
 "Could not open file \"%s\"\n",
 outfile);
 Clib.fclose(outfp);
 }
 else
 {
 Clib.fwrite(compiledScript,
 getArrayLength(compiledScript), outfp);
 Clib.fclose(outfp);
 }
 }
}

SElib.directory()
SYNTAX: SElib.directory([filespec[, subdirs[,

 includeAttr[, requireAttr]]]])
WHERE: filespec - string specification for files to find. The specification

must be consistent with the operating system being used and may
include wildcard characters. A file specification may include
path specifications, both full and partial.

subdirs - a boolean as to whether or not to include subdirectories
in file search. The default is false, which limits the search for
filespec to the current directory.

includeAttr - specify the file attributes to include in the file
search. Only files with one of the attributes specified will be
included in the array of file names and information retrieved.
Attribute flags that do not apply to an operating system are
ignored. If includeAttr is 0, only files with no attributes are
included. The default value is:
FATTR_RDONLY|FATTR_SUBDIR|
FATTR_ARCHIVE|FATTR_NORMAL

File attributes are set using the following values:
FATTR_RDONLY Read-only file
FATTR_HIDDEN Hidden file
FATTR_SYSTEM System file
FATTR_SUBDIR Directory
FATTR_ARCHIVE Archive file

More than one file attribute can be specified by using the bitwise
or operator, "|". For example, to find files with the hidden or
system attributes set, use the following expression:
FATTR_HIDDEN | FATTR_SYSTEM

Nombas ScriptEase ISDK/Java 5.01 330

 // in the current directory of a script.
function ListDirectory(FileSpec)

subdirectories, use the following expression:
~FATTR_SUBDIR

requireAttr - specify attributes that files are required to have to
be included in the array of file names and information retrieved.
Files must have at least these attributes. The difference between
the two file attributes specifications is that files must have at
least one of the attributes specified by includeAttr but must have
all the attributes specified by requireAttr. The default value is 0.

RETURN: array - an array of objects with information about the file names
retrieved. If no files or directories match the specifications of the
parameters, a null is returned. Each element of the array has the
following properties:
.name Full file name, including filespec path.
.attrib File flags, as defined in IncAttr, number.
.size Size of file, number in bytes, number.
.access Date and time of last file access, number.
.write Date and time of last write, number.
.create Date and time of file creation, number.

For example, if you use the following line of code:
var FileList = SElib.directory("*.*");

The information for the first file retrieved is accessed using:
FileList[0].name
FileList[0].attrib
FileList[0].size
FileList[0].access
FileList[0].write
FileList[0].create

The information for the second file is accessed using:
FileList[1].name
...

DESCRIPTION: Find files in a directory

 or subtree that match path and file specifications and have
specified file attributes set. Remember the directory names are
treated like file names and have the FATTR_SUBDIR attribute set.
Matching files and information about them are retrieved and
returned in an array of objects. These objects are also structures.

This method may be used in many ways. One way, besides the
obvious way of getting information about files, is to test for the
existence of a file or file specification. If the file specified does
not exist, the return is null.

SEE: SElib.fullpath(), SElib.splitFilename(), File object in fileobj.jsh
EXAMPLE: // The following routine lists

 // all files matching FileSpec,
 // except subdirectory entries,

{
 var FileList = SElib.directory(FileSpec, False,
 ~FATTR_SUBDIR)
 if (null == FileList)
 Clib.printf(
 "No files found for search spec \"%s\".\n",
 FileSpec)
 else
 {
 var FileCount = getArrayLength(FileList);
 for (var i = 0; i < FileCount; i++)
 Clib.printf(
 "%s\tsize = %d\tCreate date/time = %s\n",
 FileList[i].name, FileList[i].size,
 Clib.ctime(FileList[i].Create));
 }
}

SElib.doWindows()
SYNTAX: SElib.doWindows(immediateReturn)
WHERE: immediateReturn - if true return immediately, regardless of

messages. Default is false.
RETURN: boolean - true if any of the windows created with

SElib.makeWindow() or subclassed with
SElib.subclassWindow() are still open, that is, have not
received a WM_NCDESTROY message. Returns false if there
are no valid windows registered with the ScriptEase Window
Manager.

DESCRIPTION: For Win32 and Win16

Starts the ScriptEase Window Manager to activate whatever
windows have been created or subclassed with

windows are registered with the Window Manager. The Window
Manager controls the messages sent to the windows in its
registry and routes them to their respective window functions.

There should not be more than one copy of the Window Manager
running at a time. Generally, SElib.doWindows() is called
only once with a succession of windows. All windows created or
subclassed after a call to SElib.doWindows() are
automatically registered with the Window Manager.

The flags that define window messages are kept in the library
file, message.jsh.

If the optional parameter immediateReturn is true, the method
returns immediately, regardless of whether there are messages
for this application or not. Otherwise this method yields control
to other applications until a message has been processed, subject
to filtering by or
any window subclassed by this application.

The example below displays a standard Windows window. If
you click anywhere in the window, the string "You clicked me!"

SElib.makeWindow() or SElib.subclassWindow(). All such

SElib.messageFilter(), for this application or f

Nombas ScriptEase ISDK/Java 5.01 331

Nombas ScriptEase ISDK/Java 5.01 332

 // The following returns the full spec
 // of a parent dir
function CurDir()

is displayed briefly in the middle of the window. When the
window is closed, the script terminates.

SEE: SElib.makeWindow(), SElib.subclassWindow(), Window object
in winobj.jsh

EXAMPLE: #include <message.jsh>
#include <window.jsh>
function main()
{
 var hWnd = SElib.makeWindow(null, null,
 WindowFunction, "Display Windows' messages",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT,
 500, 350, null, 0);
 SElib.messageFilter(hWnd, WM_LBUTTONDOWN);
 while(SElib.doWindows()) ;
}

function WindowFunction(hWnd, msg, param1,
 param2, counter)
{
 if (msg == WM_LBUTTONDOWN)
 {
 var msgHwnd = SElib.makeWindow(hWnd,
 "static", null, "You clicked me!",
 WS_CHILD | WS_VISIBLE,
 200, 150, 100, 50, null, 0);
 SElib.suspend(1000);
 SElib.breakWindow(msgHwnd);
 }
}

SElib.fullpath()
SYNTAX: SElib.fullpath(pathspec)
WHERE: pathspec - a partial path specification.
RETURN: string - the pathspec filled out to its full path specification or

null if the path specification is invalid.
DESCRIPTION: Converts pathspec to a full and absolute path specification. The

file name part of the path specification is not affected and may
have wildcards. The drive and directory part of the path
specification is converted or fleshed out to a full and absolute
path.

The exact behavior of SElib.fullpath() depends on the
underlying operating system. Some results can vary when using
system specific path specifications.

SEE: SElib.directory(), SElib.splitFilename(), File object in fileobj.jsh
EXAMPLE: // The following returns the full spec

 // of current dir
function CurDir()
{
 return SElib.fullpath(".")
}

{
 return SElib.fullpath("..\")
}
 // The following works in DOS or OS/2
 // to test whether a drive
 // letter is valid
function ValidDrive(DriveLetter)
{
 Clib.sprintf(CurdirSpec, "%c:.", DriveLetter)
 return (null != SElib.fullpath(CurdirSpec))
}

SElib.getObjectProperties()
SYNTAX: SElib.getObjectProperties(object[,

 includeUndefined])
WHERE: object - an object from which to get its properties.

includeUndefined - a boolean, determines whether or not to
include properties with undefined values. The default is
false, that is, do not include properties with undefined
values.

RETURN: object - an array of strings which are the names of the properties
of the object. The array is terminated with a null, that is, the
last element is always null.

DESCRIPTION: Get the names of the properties of an object in an array of strings
in which each element is a property name and the last element is
null.

The parameter includeUndefined must be true to return
properties that are not defined. If includeUndefined is false,
then only properties that have defined data are included. The
default for includeUndefined is false.

The final member of the returned array returned is always null.
If the parameter object is not defined or contains no properties,
then the return is an array with a single element set to null.

SElib.getObjectProperties() is similar to the
ECMAScript op. The important difference is that a for/in
loop does not enumerate properties that have DONT_ENUM as part
of their attributes (
SElib.getObjectProperties() includes them in the array
that it returns.

SEE: for/in, Object propertyIsEnumerable()
EXAMPLE: var Point;

Point.row = 5;
Point.col = 8;
Point.height;
DisplayAllStructureMembers(Point);

function DisplayAllStructureMembers(ObjectVar)
{
 Screen.writeln("Object Properties:");
 var MemberList =

for/in lo

global.setAttributes()), whereas

Nombas ScriptEase ISDK/Java 5.01 333

SElib.getObjectProperties(ObjectVar);
 for (var i = 0; MemberList[i]; i++)
 Clib.printf(" %s\n", MemberList[i]);
}

// This fragment produces the following output.
// Object Properties:
// row
// col

SElib.inSecurity()
SYNTAX: SElib.inSecurity(infoVar)
WHERE: infoVar - variable to be passed to the ScriptEase security filter.

Your application and its security filter may use it however you
choose.

RETURN: boolean - true if there is a security filter, else false.
DESCRIPTION: Calls the security manager's initialization routine and is the only

way your application can directly interact with the security filter.
It is provided so you can reinitialize the security system,
probably to change the security level of a script.

Typically, you use this method when executing a particularly
insecure piece of code, such as a script received over a network,
to downgrade the security level, restoring it when the script
completes.

SElib.instance()
SYNTAX: SElib.instance()
RETURN: number - instance handle of the current ScriptEase session, that

is, for the current script.
DESCRIPTION: For Win32

Get the instance handle of the currently executing script. This
handle may be used with Windows API functions that use an
instance handle.

SEE: Screen.handle(), SElib.makeWindow(), icon.jsh, pickfile.jsh,
dropper.jse, iconmany.jse

EXAMPLE: var hScript = SElib.instance()

SElib.interpret()
SYNTAX: SElib.interpret(codeToInterpret[,

 howToInterpret[, security]])
WHERE: codeToInterpret - a string with ScriptEase code statements to be

interpreted as script statements or the file specification, path and
file name, of a script file. If the interpreted code receives
arguments, they are put at the end of the codeToInterpret string--
somewhat like a command line string.

Nombas ScriptEase ISDK/Java 5.01 334

howToInterpret - tells how to handle the interpreted code. The
following flag values may be combined using the bitwise or

operator, "|". The value must be 0 or one of the following
choices:

• INTERP_FILE
CodeToInterpret is the file name of a script, followed by any
arguments.

• INTERP_TEXT
CodeToInterpret is a string of source code with no
arguments attached.

• INTERP_LOAD
Load code into same function and variable space as the script
that is calling SElib.interpret(). All functions, and
variables are supplied to the code being called, which can
modify and use them. If the code being called has similarly
named functions or variables as the calling code, functions in
the called code replace those in the calling code.

• INTERP_NOINHERIT_LOCAL
Local variables are not inherited by the interpreted code.

• INTERP_NOINHERIT_GLOBAL
Global variables are not inherited by the interpreted code as
globals.

• INTERP_COMPILED_SCRIPT
Run a script compiled with SElib.compileScript().
This flag only works with the INTERP_TEXT flag.

INTERP_FILE and INTERP_TEXT are mutually exclusive. If
neither is supplied the interpreter decides whether
codeToInterpret is a file or string of code.

These flags tell the computer how to interpret the parameter
codeToInterpret. If one is not supplied, the computer parses the
string and determines the most appropriate way to interpret it.

security – the filename of the security script to run this
interpreted script using. This is exactly like the security script
passed to SEdesk using the "/secure="option, except it applies
only to the script you are about to interpret. Remember that
security is additive; any existing security is still in effect for the
interpreted script as well.

RETURN: value - the return of the interpreted code.
DESCRIPTION: Interprets a string as if it were script. More flexible than the

JavaScript
as a string and allows more control over how interpreted code
inherits variables from the script that calls
SElib.interpret(). By default, all variables in a script are
inherited as global variables.

There is no specific return for an error. To trap an error use the
try/catch error trapping statements.

The SElib.interpret() method may not be used with scripts

global.eval() function since it interprets a file as well

Nombas ScriptEase ISDK/Java 5.01 335

that have been compiled into executable files using the /bind
option of the Pro version of ScriptEase Desktop.

SEE: SElib.interpretInNewThread(), SElib.spawn()
EXAMPLE: // The following interpreted code displays "Hello

world"
SElib.interpret('Screen.writeln("Hello world")',
INTERP_TEXT);
 // The following interprets
 // the file jseedit.jse with
 // autoexec.bat as an argument to the script
SElib.interpret("jseedit.jse c:\\autoexec.bat",
 INTERP_FILE);

SElib.interpretInNewThread()
SYNTAX: SElib.interpretInNewThread(filename,

 codeToInterpret)
WHERE: filename - the name of a script file with ScriptEase code. Use

null if not interpreting a file.

codeToInterpret - a string variable with one or more ScriptEase
statements to interpret, if not using a file. If a file is being
interpreted, the string is used as command line arguments for the
script file being interpreted.

RETURN: number - the ID of the thread containing the new instance of
ScriptEase. Depending on the operating system, returns 0 or -1
on an error.

DESCRIPTION: For Win32 and OS/2, that is, for operating systems that support
multithreading. Not supported for operating systems that do not
support multithreading, such as DOS and 16-bit Windows.

This method creates a new thread within the current ScriptEase
process and interprets a script within that new thread. The new
script runs independently of the currently executing thread. This
method differs from that the calling thread
does not wait for the interpretation to finish and differs from

runs in the same memory
and process space as the currently running thread.

A script writer must ensure any synchronization among threads.
ScriptEase data and globals are on a per-thread basis.

If the parameter filename is not null, then it is the name of a
file to interpret, and the parameters, filename and
codeToInterpret are parsed as if being command line parameters
to a main() function.

If the parameter filename is null, then codeToInterpret is
treated as JavaScript code, a string with ScriptEase statements,
and is interpreted directly.

SEE: SElib.interpret(), SElib.spawn()
EXAMPLE: // See usage in threads.jse and httpd.jse

 SElib.interpret() in

SElib.spawn() in that the new thread

Nombas ScriptEase ISDK/Java 5.01 336

Nombas ScriptEase ISDK/Java 5.01 337

Together, col and row define the top left corner of the window.

SElib.makeWindow()
SYNTAX: SElib.makeWindow(parent, class, windowFunction,

 text, style, col, row,
 width, height,
 createParam, utilityVar)

WHERE: parent - window handle of the parent window of this window,
which would mean that this window is a subwindow. Pass null
if this window is being created on the desktop, without a specific
window being its parent. If null, the desktop is the parent.

class - a string or an object. If this parameter is a string, it must
be one of the pre-existing Windows classes:
button
combobox
edit
listbox
scrollbar
static

If this parameter is an object or structure it may have the
following properties:
.style Windows class style
.icon icon bitmap for minimized window
.cursor appearance when over this window
.background window background color

Properties that are not assigned values receive default values. In
general, the class defines the behavior of a window.

windowFunction - an identifier, the function that is called
whenever Windows sends a message to this window. Use null
if no function is to be called to intercept windows messages. In
the case of null, default functions for Windows are called. If
specified, the windowFunction should return a number or
nothing. Use the actual identifier of the function and not a string
with its name. For example, use MyWinFunction instead of
"MyWinFunction". The windowFunction is described in
greater detail in the description section.

text - the window title or caption that appears in the title bar. Use
null or "" if the window has no title.

style - the style of the window. Windows has many predefined
styles that may be joined into one style by using the bitwise or
operator, "|". Windows styles are defined with "WS_" at the
beginning. For example, WS_MAXIMIZEBOX |
WS_THICKFRAME would define a window that has a thick frame
and a maximize box. The "WS_" windows styles are standard
definitions used in Windows programming and may be found in
winobj.jsh or window.jsh.

col - the left most column of the window, expressed in pixels.

row - the top most row of the window, expressed in pixels.

Use CW_USEDEFAULT for col and row to let Windows set the
position.

width - the total width of the window, expressed in pixels.

height - the total height of the window, expressed in pixels. By
using col, row, width, and height, a window can be place
precisely on a screen.

createParam - normally set to null. If used, it may be a number
or object that is passed with the Windows WM_CREATE message
when creating a window.

utilityVar - any variable that a scripter chooses. This variable is
passed to the windowFunction when it receives a Windows
message. The windowFunction may alter the utilityVar. An
object or structure may be used, in which case many values may
be passed and altered as properties of the object. One practice is
to use an object to keep up with the properties of a window,
sometimes including its subwindows. This object is a good
vehicle for passing information.

RETURN: number - the handle of the window created on success, else
null.

DESCRIPTION: For Win32 and Win16

This method is the basic function for creating windows that will
be opened and managed by ScriptEase. This function provides
the basis for normal windows operations when windows created
by it are opened. This function registers the created window with
ScriptEase, so that when the .doWindows() method is executed,
this window will be properly managed.

If the class of the Window is unknown, it is registered as a new
class.

The windowFunction, a parameter of
function that is specified to intercept and handle all Windows
messages that are posted to this window, the window just created
by SElib.makeWindow(). The windowFunction will intercept
all messages sent its associated window which slows execution
of a script. Use it the messages that
are actually intercepted by the windowFunction. If the
windowFunction has a return value, it must be a number, which
seems limiting. But remember, that you may use utilityVar as a
variable for receiving information and for passing information.

The definition of a windowFunction must follow the following
format:
function MyWinFunction(hWnd, Message, Param1,
 Param2 [, utilityVar])
{
// Body of the window function
}

SElib.makeWindow(), is a

SElib.messageFilter() to lim

Nombas ScriptEase ISDK/Java 5.01 338

hWnd - a number, Window handle for the window that receives
these Windows messages. It is the handle of the window created
by SElib.makeWindow() that specified this function to receive
messages.

Message - a number, a message ID. Windows defines message
IDs and posts them to windows.

Param1 - a parameter that may accompany a message.

Param2 - a second parameter that may accompany a message.

utilityVar - an optional variable that is specified in the
SElib.makeWindow() call that created this window. This
variable is often an object/structure with several pieces of
information which may be altered. If it is, the changes are
available to other functions that may use the variable while

wing and managing the
windows under its control.
SElib.doWindows() is active and is sho

SElib.makeWindow() or SElib.subclassWindow().

SEE: SElib.doWindows()
EXAMPLE: var InfoStruct;

InfoStruct.width = 400;
InfoStruct.height = 300;

var hWnd = SElib.makeWindow
 (
 0, null, MyWinFunction,
 "My Window", WS_MAXIMIZEBOX,
 CW_USEDEFAULT, CW_USEDEFAULT,
 InfoStruct.width, InfoStruct.height,
 null, InfoStruct
);

function MyWinFunction(hWnd, Msg, Param1,
 Param2, UtilVar)
{
 // Body of function to process messages.
 // Notice that UtilVar receives InfoStruct
}

SElib.messageFilter()
SYNTAX: SElib.messageFilter(hWnd[, message[, ...]])
WHERE: hWnd - a number, the handle of a window created by

SElib.makeWindow() or subclassed with
SElib.subclassWindow().

message - one or more messages to be processed by the window
to which hWnd points.

RETURN: object - an array of messages being filtered prior to this call to
SElib.messageFilter(). Returns null if no messages are in
the filter, that is, all messages are passed through to ScriptEase
functions or if hWnd is not a handle for a window processed by

DESCRIPTION: For Win32 and Win16

Nombas ScriptEase ISDK/Java 5.01 339

Restricts the messages being processed by windows created with
SElib.makeWindow() or subclassed with
SElib.subclassWindow(). Scripts run much faster if
windows only process the messages that they act on, that is, just
the messages that they need. Initially, there are no message
filters so all messages are processed.

Calling this method with no parameters removes all message
filtering.

SEE: SElib.makeWindow(), SElib.subclassWindow()

SElib.multiTask()
SYNTAX: SElib.multiTask(on)
WHERE: on - a boolean determining whether multitasking is on or off.

Default is true.
RETURN: void.
DESCRIPTION: For Win16

Turns multitasking of programs on or off. Normally,
multitasking is enabled and should be turned off only for very
brief and critical sections of code. No messages are received by
the current program or any other program while multitasking is
off.

SElib.multiTask() is additive, meaning that if you call
SElib.multiTask(false) twice, then you must call
SElib.multiTask(true) twice before multitasking is
resumed.

The example below empties the clipboard. Multitasking is turned
off during this brief interval to ensure that no other program tries
to open the clipboard while this program is accessing it.

SEE: SElib.suspend()
EXAMPLE: SElib.multiTask(false);

SElib.dynamicLink("USER", "OPENCLIPBOARD", SWORD16,
 PASCAL, Screen.handle());
SElib.dynamicLink("USER", "EMPTYCLIPBOARD", SWORD16,
PASCAL);
SElib.dynamicLink("USER", "CLOSECLIPBOARD", SWORD16,
PASCAL);
SElib.multiTask(true);

SElib.peek()
SYNTAX: SElib.peek(address[, dataType])
WHERE: address - the address in memory from which to get data, that is, a

pointer to data in memory.

dataType - the type of data to get, or thought of in another way,
the number of bytes of data to get. UWORD8 is the default.

Nombas ScriptEase ISDK/Java 5.01 340

RETURN: value - returns the data specified by dataType

Nombas ScriptEase ISDK/Java 5.01 341

Thus, a pointer is valid only until a script modifies the variable
identified by varName or until the variable goes out of scope in a

DESCRIPTION: Reads or gets data from the position in memory to which the
parameter address points. The parameter dataType may have the
following values:
UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

These values specify the number of bytes to be read and
returned.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SEE: SElib.poke(), Blob get(), Clib.memchr(), Clib.fread()
EXAMPLE: var v = "Now";

 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"
Screen.writeln(v);

// See usage in clipbrd.jsh, com.jsh,
// dde.jsh, ddesrv.jsh, and winsock.jsh

SElib.pointer()
SYNTAX: SElib.pointer(varName)
WHERE: varName - the name or identifier of a variable
RETURN: number - the address of, a pointer to, the variable identified by

varName.
DESCRIPTION: Gets the address in memory of a variable. The pointer points to

the first byte of data in a variable. The variable may be a
primitive data type: byte, integer, or float, or it may be a single
dimension array of bytes, integers, or floats, which includes a
string. If the variable is an array, then the address returned points
to the first byte of the first element of the array. The parameter
varName may also identify a Blob variable since Blobs are
actually byte arrays. Other types of data are not allowed.

For computer architectures that distinguish between near and far
memory addresses, the value returned by SElib.pointer() is
a far address or pointer.

ScriptEase data is guaranteed to remain fixed at its memory
location only as long as that memory is not modified by a script.

Nombas ScriptEase ISDK/Java 5.01 342

understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this

script. Putting data in the memory occupied by varName after
such a change is dangerous. When data is put into the memory
occupied by varName, be careful not to put more data than will
fit in the memory that the variable actually occupies.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly
understand memory and the operations of these methods before
using them. ScriptEase does not trap errors caused by this
routine.

SEE: SElib.peek(), SElib.poke(), Clib.memchr(), Blob object
EXAMPLE: var v = "Now";

 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"
Screen.writeln(v);

// See usage in fileobj.jsh, batch.jsh,
// memsrch.jsh, touch.jsh, and pickfile.jsh

SElib.poke()
SYNTAX: SElib.poke(address, data[, dataType])
WHERE: address - the address in memory in which to put data, that is, a

pointer to data in memory.

data - data to write directly to memory. The data should match
the dataType.

dataType - the type of data to get, or thought of in another way,
the number of bytes of data to get. UWORD8 is the default.

RETURN: number - the address of the byte after the data just written to
memory.

DESCRIPTION: Writes data to the position in memory to which the parameter
address points. The data to be written must match the dataType.
The parameter dataType may have the following values:
UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

These values specify the number of bytes to be written to
memory.

Caution. Routines that work with memory directly, such as this
one, should be used with caution. A programmer should clearly

routine.
SEE: SElib.peek(), Blob put(), Clib.memchr(), Clib.fread()
EXAMPLE: var v = "Now";

 // Display "Now"
Screen.writeln(v);
 // Get the "N"
var vPtr = SElib.pointer(v);
 // Get the address of the first byte of v, "N"
var p = SElib.peek(vPtr);
 // Convert "N" to "P"
SElib.poke(vPtr,p+2);
 // Display "Pow"
Screen.writeln(v);

// See usage in bmp.jsh, clipbrd.jsh,
// dde.jsh, ddecli.jsh, and dropsrc.jsh

SElib.ShellFilterCharacter()
SYNTAX: SElib.ShellFilterCharacter(functionFilterCharacter,

 allKeys)
WHERE: functionFilterCharacter - identifier, the name of a ScriptEase

function to use to filter characters.

allKeys - boolean, specifies whether the functionFilterCharacter is
called for every keystroke or just for keys that are not ordinary
printable characters, such as function keys. The return of the method

corresponds to the difference in keys that allKeys
affects.

RETURN: void.
DESCRIPTION: Adds a character filter function to a ScriptEase shell. When

ScriptEase is running as a command shell, that is, when a ScriptEase
interpreter is executed with no arguments, this method allows the
installation of a function to be called when keystrokes are pressed.
For example, the autoload.jse script that ships with ScriptEase uses
this method to implement command line history and filename
completion.

The function, functionFilterCharacter, must conform to the
following:
function functionFilterCharacter(command,
 position, key, extended, alphaNumeric)

command - string, the current string on the shell command line. This
string is read/write and may be changed by this function.

position - number, the current cursor position within the command
string. This position may be altered by this function.

key - number, the key being pressed. This parameter may be altered
by the function. Set key to zero, 0, to ignore keyboard input.

extended - boolean, true if the current keystroke is an extended
keyboard character, that is, a function key, a keyboard combination,

Clib.isprint()

Nombas ScriptEase ISDK/Java 5.01 343

and so forth.

alphaNumeric - true if the current keystroke is an alphabetic or
numeric key. The return of the method to
alphaNumeric.

return - boolean, true if the command line must be redrawn or the
cursor position moved, based on the actions in this function.

Clib.isalnum() corresponds

SEE: SElib.ShellFilterCommand(), Clib.isalnum(), autoload.jse

SElib.ShellFilterCommand()
SYNTAX: SElib.ShellFilterCommand(functionFilterCommand)
WHERE: functionFilterCommand - identifier, the name of a function to

use to filter commands to a ScriptEase shell.
RETURN: void.
DESCRIPTION: Adds a command filter function to a ScriptEase shell. When

ScriptEase is running as a command shell, that is, when a
ScriptEase interpreter is executed with no arguments, this
method allows a function to be installed which is called when
commands are entered in a shell. For example, the autoload.jse
script that ships with ScriptEase uses this method to implement
commands, such as CD and TYPE.

The function, functionFilterCommand, must conform to the
following:
function functionFilterCommand(command)

command - a string, the current string on a shell command line.
This string is read/write and may be changed by the function. A
ScriptEase shell executes the command after returning from this
function. To prevent ScriptEase from executing any command
set command to a zero-length string, for example,
command[0]='\0', but not command="".

Before passing a command line to a filter function, ScriptEase
strips leading white space from the beginning and end of the
command string. Also, any redirection on a command line is not
seen by this function, since redirection is handled internally by
ScriptEase. For example, if a command line string is
"dir>dir.txt", then this function only sees the string "dir".

SEE: SElib.ShellFilterCommand(), autoload.jse

SElib.spawn()
SYNTAX: SElib.spawn(mode, execSpec[, arg[, ...]])
WHERE: mode - a number indicating how to spawn or execute the file

named by execSpec. The parameter mode may be one of the
following values though not all values are valid on all operating
systems:

Nombas ScriptEase ISDK/Java 5.01 344

Nombas ScriptEase ISDK/Java 5.01 345

processor is provided the amount of memory as indicated by

• P_WAIT Wait for a child program to complete before
continuing. (All platforms)

• P_NOWAIT A script continues to run while a child program
runs. In windows, a successful call with mode P_NOWAIT
returns the window handle of the spawned process.
(Windows and OS/2)

• P_SWAP Like P_WAIT, but swap out ScriptEase to create
more room for the child process. P_SWAP will free up as
much memory as possible by swapping ScriptEase to
EMS/XMS/INT15 memory or to disk (in TMP or TEMP or else
current directory) before executing the child process (thanks
to Ralf Brown for his excellent spawn library). (DOS only)

• P_OVERLAY The script exits and the child program is
executed in its place. (DOS 16-bit)

execSpec - a string with the path and filename of an executable
file or a ScriptEase script.

arg - one or more values to be passed as parameters to the file to
be executed.

RETURN: void - if the mode is P_OVERLAY.

number - if the mode is P_WAIT, the return is the exit code of the
child process, else it is -1.

number - if the mode is P_NOWAIT or P_SWAP, the return is the
identifier of the child process, else it is -1.

DESCRIPTION: Launches another application. The parameter mode determines
the behavior of the script after the spawn call, while execSpec is
the name of the process being spawned. Any arguments to the
spawned process follow execSpec.

The parameter execSpec may be the path and filename of an
executable file or the name of a ScriptEase script. If it is a script,
the spawned script runs from the same instance of ScriptEase as
the calling script. A spawned script does not cause another
instance of the interpreter to be launched. A script that has been
bound with the ScriptEase /bind function cannot be spawned
from the same instance as the calling script.

The parameter execSpec is automatically passed as argument 0.
ScriptEase implicitly converts all arguments to strings before
passing them to the child process.

SElib.spawn() searches for execSpec in the current directory
and then in the directories of the PATH environment variable. If
there is no extension in execSpec, SElib.spawn() searches for
file extensions in the following order: com, exe, bat, and cmd.

If a batch file is being spawned in 16-bit DOS and the
environment variable COMSPEC_ENV_SIZE exists, the command

COMSPEC_ENV_SIZE. If COMSPEC_ENV_SIZE does not exist,
the command processor receives only enough memory for
existing environment variables.

A return value of -1 results when dentify why
the function failed.

Clib.errno is set to i

SEE: SElib.interpret(), SElib.interpretInNewThread(), winexec.jsh
EXAMPLE: // The following fragment

 // calls a mortgage program,
 // mortgage.exe, which takes
 // three parameters, initial debt,
 // rate, and monthly payment, and
 // returns, in its exit code,
 // the number of months needed to pay the debt.
var months = SElib.spawn(P_WAIT,
 "MORTGAGE.EXE 300000 10.5 1000");
if (months < 0)
 Screen.writeln("Error spawning MORTGAGE");
else
 Clib.printf(
 "It takes %d months to pay off the mortgage\n",
 months);

 // The arguments could also
 // be passed to mortgage.exe as
 // separate variables, as in the following.
var months = SElib.spawn(P_WAIT,
 "MORTGAGE.EXE",300000,10.5,1000);

 // The arguments could be passed
 // to mortgage.exe in a
 // variable array, provided that
 // they are all of the same
 // data type, in this case strings.
var MortgageData;
MortgageData[0] = "300000";
MortgageData[1] = "10.5";
MortgageData[2] = "1000";
var ths = spawn(P_WAIT,
 "MORTGAGE.EXE", MortgageData);

SElib.splitFilename()
SYNTAX: SElib.splitFilename(filespec)
WHERE: filespec - string specification for a file. May be a full or partial

path specification.
RETURN: object - structure containing the drive and directory, file, and

extension information contained in filespec. The structure
returned has the following properties:
.dir directory name including leading drive
 spec and trailing slash (d:\dir1\dir2\)
.name root name of file only (filename)
.ext file extension with leading period (.ext)

The three properties returned are guaranteed not to be null.

The actual characters used, such as the slash, depend on the

Nombas ScriptEase ISDK/Java 5.01 346

operating system.
DESCRIPTION: Break up a file specification, full or partial path specification,

into its component parts: drive and directory, filename, and
extension. The filespec does not have to actually exist. This
method merely divides up the filespec, as passed, according to
the conventions of the operating system without checking to see
if a drive, directory, or filename actually exists.

SEE: SElib.fullpath(), File splitName(), File object in fileobj.jsh
EXAMPLE: // After splitting a filespec,

 // the following statement will
 // reconstruct it
var parts = SElib.splitFilename(MySpec);
var FileSpec = MySpec.dir + MySpec.name + MySpec.ext;

SElib.subclassWindow()
SYNTAX: SElib.subclassWindow(hWnd, windowFunction,

 utilityVar)
WHERE: hWnd - a number, the handle of an existing window to subclass.

windowFunction - an identifier, the function that is called
whenever Windows sends a message to this window. The
parameter windowFunction is the same as for
SElib.makeWindow().

utilityVar - any variable that a scripter chooses. This variable is
passed to the windowFunction when it receives a Windows
message. The parameter utilityVar is the same as for
SElib.makeWindow().

RETURN: boolean - true on success, else false if hWnd is invalid, was
created with SElib.makeWindow(), or is already subclassed.

DESCRIPTION: For Win32 and Win16

This method hooks the specified windowFunction into the
message loop for a window such that the function is called
before the window's default or previously-defined function.

The parameter hWnd is the window handle of an already existing
window to subclass.

The parameter windowFunction is the same as in the
ethod. Note that, as in the

SElib.makeWindow() method, if this method returns a value,
then the default or subclassed function is not called. If this
method returns no value, the call is passed on to the previous
function. This method may be used to subclass any Window that
is not already being managed by a windowFunction for this
ScriptEase instance. If a window was created with
SElib.makeWindow() or is already subclassed then this
method fails.

Note that this method may be used only once, with the window
handle returned by Screen.handle(). If you want to subclass the

SElib.makeWindow() m

Nombas ScriptEase ISDK/Java 5.01 347

main ScriptEase window, it is best to open another instance of
ScriptEase and subclass it rather than to subclass the instance
that is powering your script. Although it is possible to subclass
that window, if you try to do anything with it, you will likely get
caught in an infinite loop and hang. To undo the window
subclassing or remove a WindowFunction from the message
loop, use

A WindowFunction may modify UtilityVar.

In your function that handles messages for another process,
certain limits are set as to what you can do with system
resources. For example, an open file handle is invalid while
processing a message for another program, because Windows
maps file handles into a table for programs. To work around this
problem, you may send a message to one of your ScriptEase
windows to handle the processing. This action switches
Windows' tables to your program while handling that
SendMessage.

SElib.breakWindow().

SEE: SElib.makeWindow(), Window object in winobj.jsh

SElib.suspend()
SYNTAX: SElib.suspend(milliSeconds)
WHERE: milliSeconds - a number, the time in thousandths of a second to

suspend program execution.
RETURN: void.
DESCRIPTION: Suspends script or program execution for the time interval

specified in milliSeconds. The next statement in a script will
execute at the end of the delay.

True accuracy to the exact millisecond is not guaranteed and is
only closely approximated according to the accuracy provided by
the underlying operating system. This method allows a computer
to devote more time to other processes and can be used to give
the processor time to complete other tasks before calling the next
line in a script.

The example below spawns a copy of Windows Notepad, puts
the date and time into the document by simulating the selection
of Time/Date from the Edit menu, and then displays the line
"You asked for the time?". The SElib.suspend() method
gives the processor time to finish completing the menu command
before entering the text into Notepad. If Keystroke() were called
immediately after the call to MenuCommand(), the text would be
sent to Notepad while the menu item was still being selected and
would be garbled.

SEE: SElib.spawn(), Clib.ctime(), Date object
EXAMPLE: #include <menuctrl.jsh>

#include <keypush.jsh>
var hWnd = SElib.spawn(P_NOWAIT, "notepad.exe");

Nombas ScriptEase ISDK/Java 5.01 348

MenuCommand(hWnd, "Edit|Time");
SElib.suspend(300);
KeyStroke("\nYou asked for the time?");

SElib.version()
SYNTAX: SElib.version()
RETURN: object - an object with properties that provide information about

the version and operating system of the currently executing
ScriptEase interpreter. The object returned as the following
properties:
.os - string, identifying operating system
.se.engineVersion - number, major minor version
.se.versionString - string, sub minor version
.buildTime - string, date/time of build
.bindable - boolean, can bind to executable
.security - boolean, uses security features

DESCRIPTION: This method provides a variety of useful information about the
version of the currently executing ScriptEase interpreter.

The .os string will be something like:
DOS
DOS32
MAC
NWNLM
OS2
WINDOWS
WIN32.NTCON
WIN32.NTWIN
WIN32.95CON
WIN32.95WIN
UNIX

SEE: getSEver(), getSEversion(), predefined constants and values
VERSION_MAJOR, VERSION_MINOR, VERSION_STRING

EXAMPLE: var ver;
ver = SElib.version();
Screen.writeln(ver.os);
Screen.writeln(ver.se.engineVersion);
Screen.writeln(ver.se.versionString);
Screen.writeln(ver.buildTime);
// Displays something like:
// WIN32.95CON
// 440
// B
// Apr 26 2001 16:06:49

SElib.windowList()
SYNTAX: SElib.windowList(hWnd)
WHERE: hWnd - a number, the handle of the window for which to find its

child windows.
RETURN: object - an array of window handles for all the child windows of

hWnd.

Nombas ScriptEase ISDK/Java 5.01 349

DESCRIPTION: For Win32 and Win16

Get the handles of all child windows of the window designated
by hWnd. If hWnd is not passed, then get the handles of the
windows on the desktop which amount to all the parent
windows.

SEE: SElib.makeWindow(), Window object in winobj.jsh

SElib.dynamicLink()
Dynamic links for Win32, Win16, and OS/2

The dynamic link method, which varies in usage among the three platforms that
support it, allows flexibility when making calls to dynamic link libraries, DLLs,
and allows access to operating-system functions, API calls, not explicitly
provided by ScriptEase. If you know the proper conventions for a call, then you
can make an SElib.dynamicLink() call in a ScriptEase function to be used
for making a system call. Such a function is referred to as a wrapper, a function
in which a system call becomes available as a function call.

There are three versions of SElib.dynamicLink(): Win32, Win16, and OS/2.
These three versions differ slightly in the way they are called. So, if you wish to
use one function in a script that will be run on different platforms, you must
create an operating system filter using preprocessor directives: #if, #ifdef,
#elif, #else, and #endif.

Since these versions are different in the way that they call
SElib.dynamicLink(), they will be treated separately.

See Win32 structure definitions.

SElib.dynamicLink() - for Win32
SYNTAX: SElib.dynamicLink(library, procedure,

 convention[, [desc,] param …])
WHERE: library - a string, the name of the dynamic link library, DLL,

being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

convention - the calling convention to use when invoking or
using the procedure being called.
CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

desc - a blobDescriptor that describes the following param if
param is a structure. (See
blobDescriptor is only used in front of params that are structures
and is required for such params. A Blob (Binary Large Object)
and a Buffer are very similar in ScriptEase. The Blob is the type
that was used, in the early days of ScriptEase, to work with data
in sections of memory. The Buffer is the newer type. Structure
types may be created in Blobs or Buffers and blobDescriptors

blobDescriptor example.) A

Nombas ScriptEase ISDK/Java 5.01 350

may be used to describe the data in either type. So, in ScriptEase,
you will sometimes see blobDescriptor before a param of type
Blob or a param of type buffer. In either case, the blobDescriptor
is describing how data is stored in the param, even if the data is a
string.

param - a variable for a section of memory that holds data in the
form of a structure of elements or a buffer a string.

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

DESCRIPTION: For Win32

Calls a routine in a dynamic link library, DLL. The most
common use is to use various functions in the Windows API.

All values are passed as 32-bit values. If a parameter is
undefined when dynamicLink() is called, then it is assumed
that the parameter is a 32-bit value to be filled in, that is, the
address of a 32-bit data element is passed to the function, and
that function will set the value.

If a parameter is a structure, then it must be a structure that
defines the binary data types in memory to represent the
following variable. Before calling the DLL function, the
structure is copied to a binary buffer as described in
and
argument must precede the structured parameter, and this
descriptor argument is in addition to the parameter list for the
procedure being called. After calling the DLL function, the
binary data will be converted back into the data structure
according to the rules defined in
Data conversion is performed according to the current
_BigEndianMode setting.

SEE: Blob object, blobDescriptor example, Win32 structure
definitions, Clib.fread()

EXAMPLE: // The following calls
 // the Windows MessageBeep() function:
#define MESSAGE_BEEP_ORDINAL 104
SElib.dynamicLink("USER.EXE", MESSAGE_BEEP_ORDINAL,
 SWORD16, PASCAL,0);

 // The following displays a simple message box
 // and waits for user to press <Enter>.
#define MESSAGE_BOX_ORDINAL 1
#define MB_OK 0x0000
// Message box contains one push button: OK.
#define MB_TASKMODAL 0x2000
// Must respond to this message
SElib.dynamicLink("USER.EXE", MESSAGE_BOX_ORDINAL,
 SWORD16, PASCAL, null,
 "This is a simple message box",
 "Title of box", MB_OK | MB_TASKMODAL);

 // The following accomplishes
 // the same thing as above.

Blob.put()
Clib.fwrite(). When calling the DLL function, a descriptor

Blob.get() and Clib.fread().

Nombas ScriptEase ISDK/Java 5.01 351

#define MB_OK 0x0000
// Message box contains one push button: OK.
#define MB_TASKMODAL 0x2000
// Must respond to message
SElib.dynamicLink("USER", "MESSAGEBOX", SWORD16,
 PASCAL, null,
 "This is a simple message box",
 "Title of box", MB_OK | MB_TASKMODAL);

SElib.dynamicLink() - for Win16
SYNTAX: SElib.dynamicLink(library, procedure,

 returnType, convention[,
 [desc,] param …])

WHERE: library - a string, the name of the dynamic link library, DLL,
being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

returnType - a number, which tells ScriptEase what type of,
value the procedure returns, so that it can be properly converted
into an integer. The be one of the following:
UWORD8 SWORD8 UWORD16 SWORD16 UWORD24
SWORD24 UWORD32 SWORD32 FLOAT32 FLOAT64
FLOAT80 (FLOAT80 is not available in Win32)

convention - the calling convention to use when invoking or
using the procedure being called.
CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

desc - a blobDescriptor that describes the following param if
param is a structure. (See
blobDescriptor is only used in front of params that are structures
and is required for such params. A Blob (Binary Large Object)
and a Buffer are very similar in ScriptEase. The Blob is the type
that was used, in the early days of ScriptEase, to work with data
in sections of memory. The Buffer is the newer type. Structure
types may be created in Blobs or Buffers and blobDescriptors
may be used to describe the data in either type. So, in ScriptEase,
you will sometimes see blobDescriptor before a param of type
Blob or a param of type buffer. In either case, the blobDescriptor
is describing how data is stored in the param, even if the data is a
string.

param - a variable for a section of memory that holds data in the
form of a structure of elements or a buffer a string.

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

DESCRIPTION: For Win16

blobDescriptor example.) A

Nombas ScriptEase ISDK/Java 5.01 352

Calls a routine in a dynamic link library, DLL. The most
common use is to use various functions in the Windows API.

If a parameter is a Blob, a byte-array, or an undefined value, it
is passed as a far pointer. All other numeric values are passed as
16-bit values. If 32 bits are needed, the parameter must be passed
in parts, with the low word first and the high word second for
CDECL calls but the high word first and low word second for
PASCAL calls.

If a parameter is undefined when SElib.dynamicLink() is
called, then it is assumed that the parameter is a far pointer to be
filled in, that is, that the far address of a data element is passed to
the function and that function will set the value. If any parameter
is a structure, then it must be a structure that defines the binary
data types in memory to represent the following variable. Before
calling the DLL function, the structure will be copied to a binary
buffer as described in
the DLL function, the binary data is converted back into the data
structure according to the rules defined in nd

on is performed according to the
current _BigEndianMode setting.

Blob.put() and Clib.fwrite(). After calling

Blob.get() a
Clib.fread(). Data conversi

blobDescriptor example.) A

SEE: Blob object, blobDescriptor example, Win32 structure
definitions, Clib.fread()

SElib.dynamicLink() - for OS/2
SYNTAX: SElib.dynamicLink(library, procedure, bitSize,

 convention[, [desc,] param …])
WHERE: library - a string, the name of the dynamic link library, DLL,

being used, the one having the procedure being called.

procedure - a string or number, the name or ordinal number of a
routine in a dynamic link library to be used.

bitSize - indicates whether this call is 16-bit or 32-bit and may be
either of two defined values: BIT16 or BIT32.

convention - the calling convention to use when invoking or
using the procedure being called.
CDECL Push right parameter first.
 Caller pops parameters.
STDCALL Push right parameter first.
 Caller pops parameters.
PASCAL Push left parameter first.
 Callee pops parameters.

desc - a blobDescriptor that describes the following param if
param is a structure. (See
blobDescriptor is only used in front of params that are structures
and is required for such params. A Blob (Binary Large Object)
and a Buffer are very similar in ScriptEase. The Blob is the type
that was used, in the early days of ScriptEase, to work with data
in sections of memory. The Buffer is the newer type. Structure

Nombas ScriptEase ISDK/Java 5.01 353

types may be created in Blobs or Buffers and blobDescriptors
may be used to describe the data in either type. So, in ScriptEase,
you will sometimes see blobDescriptor before a param of type
Blob or a param of type buffer. In either case, the blobDescriptor
is describing how data is stored in the param, even if the data is a
string.

param - a variable for a section of memory that holds data in the
form of a structure of elements or a buffer a string.

RETURN: value - the value returned by the procedure being called, else
void if the procedure does not return a value.

DESCRIPTION: For OS/2

Calls a routine in a dynamic link library, DLL.

Any parameters required by a dynamically linked function
should be passed at the end of the parameters listed above, as
indicated by the ellipsis at the end of the parameter list. These
variables are interpreted as follows, depending on the operating
system.

For 32-bit functions, all values are passed as 32-bit values. For
16-bit functions, if the parameter is a Blob, a byte-array, or an
undefined value, then it is passed as a 16:16 segment:offset
pointer, otherwise all numeric values are passed as 16-bit values,
so if 32-bits are needed they must be passed in parts, with the
low word first and the high word second.

If a parameter is undefined when SElib.dynamicLink() is
called, then it is assumed that parameter is a 32-bit value to be
filled in, that is, that the address of a 32-bit data element is
passed to the function and that function will set the value. If any
parameter is a structure then it must be a structure that defines
the binary data types in memory to represent the following
variable. Before calling the DLL function, the structure is copied
to a binary buffer as described in
After calling the DLL function, the binary data is converted back
into the data structure according to the rules defined in
and ding to the
current _BigEndianMode setting.

An alternative syntax:

The OS/2 processor also allows you to call a function via a call
gate with the following syntax:
SElib.dynamicLink(callGate, bitSize, convention,
 ...)

Where callGate is the gate selector for a routine referenced
through a call gate.

SEE: Blob object, blobDescriptor example, Clib.fread()

Blob.put() and Clib.fwrite().

Blob.get()
Clib.fread(). Data conversion is performed accor

Nombas ScriptEase ISDK/Java 5.01 354

Nombas ScriptEase ISDK/Java 5.01 355

accent, as an alternative quote character to indicate that escape sequences are not

String Object
The String object is a data type and is a hybrid that shares characteristics of
primitive data types and of composite data types. The String is presented in this
section under two main headings in which the first describes its characteristics as
a primitive data type and the second describes its characteristics as an object.

String as data type
A string is an ordered series of characters. The most common use for strings is to
represent text. To indicate that text is a string, it is enclosed in quotation marks.
For example, the first statement below puts the string "hello" into the variable
hello. The second sets the variable word to have the same value as a previous
variable hello:
var hello = "hello";
var word = hello;

Escape sequences for characters
Some characters, such as a quotation mark, have special meaning to the
interpreter and must be indicated with special character combinations when used
in strings. This allows the interpreter to distinguish between a quotation mark
that is part of a string and a quotation mark that indicates the end of the string.
The table below lists the characters indicated by escape sequences:

\a Audible bell
\b Backspace
\f Formfeed
\n NewlineError! Reference source not found.
\r Carriage return
\t Horizontal Tab
\v Vertical tab
\' Single quote
\" Double quote
\\ Backslash character
\0 Null character (e.g., "\0"is the null character)
\### Octal number (0-7) (e.g., "033"is the escape character)
\x## Hex number (0-F) (e.g., "x1B"is the escape character)
\u#### Unicode number (0-F) (e.g., "u001B"is escape character)

Note that these escape sequences cannot be used within strings enclosed by back
quotes, which are explained below.

Single quote
You can declare a string with single quotes instead of double quotes. There is no
difference between the two in JavaScript, except that double quote strings are
used less commonly by many scripters.

Back quote
ScriptEase provides the back quote "`", also known as the back-tick or grave

Nombas ScriptEase ISDK/Java 5.01 356

SYNTAX: new String([value])

to be translated. Any special characters represented with a backslash followed by
a letter, such as "\n", cannot be used in back tick strings.

For example, the following lines show different ways to describe a single file
name:
"c:\\autoexec.bat" // traditional C method
'c:\\autoexec.bat' // traditional C method
`c:\autoexec.bat` // alternative ScriptEase method

Back quote strings are not supported in most versions of JavaScript. So if you are
planning to port your script to some other JavaScript interpreter, you should not
use them.

String as object
Strictly speaking, the String object is not truly an object. It is a hybrid of a
primitive data type and of an object. As an example of its hybrid nature, when
strings are assigned using the assignment operator, the equal sign, the assignment
is by value, that is, a copy of a string is actually transferred to a variable. Further,
when strings are passed as arguments to the parameters of functions, they are
passed by value. Objects, on the other hand, are assigned to variables and passed
to parameters by reference, that is, a variable or parameter points to or references
the original object.

Strings have both properties and methods which are listed in this section. These
properties and methods are discussed as if strings were pure objects. Strings have
instance properties and methods and are shown with a period, ".", at their
beginnings. A specific instance of a variable should be put in front of a period to
use a property or call a method. The exception to this usage is a static method
which actually uses the identifier String, instead of a variable created as an
instance of String. The following code fragment shows how to access the .length
property, as an example for calling a String property or method:
var TestStr = "123";
var TestLen = TestStr.length;

String properties

String object instance properties
String length
SYNTAX: string.length
DESCRIPTION: The length of a string, that is, the number of characters in a

string. JavaScript strings may contain the "\0" character.
SEE: String lastIndexOf()
EXAMPLE: var s = "a string";

var n = s.length;

String object instance methods
String()

Nombas ScriptEase ISDK/Java 5.01 357

of the current object and any subsequent arguments appended to

WHERE: value - value to be converted to a string as this string object.
RETURN: This method returns a new string object whose value is the

supplied value.
DESCRIPTION: If value is not supplied, then the empty string "" is used instead.

Otherwise, the value ToString(value) is used. Note that if
this function is called directly, without the new operator, then the
same construction is done, but the returned variable is converted
to a string, rather than being returned as an object.

SEE: RegExp()
EXAMPLE: var s = new String(123);

String charAt()
SYNTAX: string.charAt(position)
WHERE: position - offset within a string.
RETURN: string - character at position
DESCRIPTION: This method gets the character at the specified position. If no

character exists at location position, or if position is less
than 0, then NaN is returned.

SEE: String charCodeAt()
EXAMPLE: // To get the first character in a string,

// use as follows:

var string = "a string";
string.charAt(0);

// To get the last character in a string, use:
string.charAt(string.length - 1);

String charCodeAt()
SYNTAX: string.charCodeAt(index)
WHERE: position - index of the character the encoding of which is to be

returned.
RETURN: number - representing the unicode value of the character at

position index of a string. Returns NaN if there is no character at
the position.

SEE: String charAt(), String.fromCharCode()
DESCRIPTION: This method gets the nth character code from a string.

String concat()
SYNTAX: string.concat([string1, ...])
WHERE: stringN - A list of strings to append to the end of the current

object.
RETURN: This method returns a string value (not a string object) consisting

it.
DESCRIPTION: This method creates a new string whose contents are equal to the

current object. Each argument is then converted to a string using
 created string. This

value is then returned. Note that the original object remains
unaltered. The '+' operator performs the same function.

SEE: Array concat()
EXAMPLE: // The following line:

var proverb = "A rolling stone " + "gathers no moss."

// creates the variable proverb and
// assigns it the string
// "A rolling stone gathers no moss."
// If you try to concatenate a string with a number,
// the number is converted to a string.

 var newstring = 4 + "get it";

// This bit of code creates newstring as a string
// variable and assigns it the string
// "4get it".

// The use of the + operator is the standard way of
// creating long strings in JavaScript.
// In ScriptEase, the + operator is optional.
// For example, the following:

var badJoke = "I was in front of an Italian "
 "restaurant waiting to get in when this guy "
 "came up and asked me, \"Why did the "
 "Italians lose the war?\" I told him I had "
 "no idea. \"Because they ordered ziti"
 "instead of shells,\" he replied."

// creates a long string containing
// the entire bad joke.

global.ToString() and appended to the newly

String indexOf()
SYNTAX: string.indexOf(substring[, offset])
WHERE: substring - substring to search for within string.

offset - optional integer argument which specifies the position
within string at which the search is to start. Default is 0.

RETURN: number - index of the first appearance of a substring in a string,
else -1, if substring not found.

DESCRIPTION: String indexOf() searches the string for the string specified in
substring. The search begins at offset if offset is
specified; otherwise the search begins at the beginning of the
string. If substring is found, String indexOf() returns the
position of its first occurrence. Character positions within the
string are numbered in increments of one beginning with zero.

SEE: String charAt(), String lastIndexOf(), String substring()

Nombas ScriptEase ISDK/Java 5.01 358

EXAMPLE: var string = "what a string";
string.indexOf("a")

// returns the position, which is 2 in this example,
// of the first "a" appearing in the string.
// The method indexOf()may take an optional second
// parameter which is an integer indicating the index
// into a string where the method starts searching
// the string. For example:

var magicWord = "abracadabra";
var secondA = magicWord.indexOf("a", 1);

// returns 3, index of the first "a" to be found in
// the string when starting from the second letter of
// the string.
// Since the index of the first character is 0, the
// index of second character is 1.

String lastIndexOf()
SYNTAX: string.lastIndexOf(substring[, offset])
WHERE: substring - The substring that is to be searched for within string

offset - An optional integer argument which specifies the
position within string at which the search is to start. Default is 0.

RETURN: number - index of the last appearance of a substring in a string,
else -1, if substring not found.

SEE: String indexOf()
DESCRIPTION: This method is similar to

the last occurrence of a character in a string instead of the first.
String indexOf(), except that it finds

String localeCompare()
SYNTAX: string.localeCompare(compareStr)
WHERE: compareStr - a string with which to compare an instance string.
RETURN: number - indicating the relationship of two strings.

• < 0 if string is less than compareStr
• = 0 if string is the same as compareStr
• > 0 if string is greater than compareStr

DESCRIPTION: This method returns a number that represents the result of a
locale-sensitive string comparison of this object with that object.
The result is intended to order strings in the sort order specified
by the system default locale, and will be negative, zero, or
positive, depending on whether string comes before compareStr
in the sort order, the strings are equal, or string comes after
compareStr.

SEE: Clib.strcmpi(), Clib.stricmp()
EXAMPLE:

String match()

Nombas ScriptEase ISDK/Java 5.01 359

SYNTAX: string.match(pattern)
WHERE: pattern - a regular expression pattern to find or match in string.

May be a regular expression or a value, such as, a string, that
may be converted into a regular expression using the
constructor. For example, both of the following are equivalent:
var rtn = "one two three".match(/two/);
var rtn = "one two three".match("two");

RETURN: array - an array with various elements and properties set
depending on the attributes of a regular expression. Returns
null if no match is found.

DESCRIPTION: This method behaves differently depending on whether pattern
has the "g" attribute, that is, on whether the match is global.

If the match is not global, string is searched for the first match to
pattern. A null is returned if no match is found. If a match is
found, the return is an array with information about the match.
Element 0 has the text matched. Elements 1 and following have
the text matched by sub patterns in parentheses. The element
numbers correspond to group numbers in regular expression
reference characters and regular expression replacement
characters. The array has two extra properties: index and input.
The property index has the position of the first character of the
text matched, and input has the target string.

If the match is global, string is searched for all matches to
pattern. A null is returned if no match is found. If one or more
matches are found, the return is an array in which each element
has the text matched for each find. There are no index and
input properties. The length property of the array indicates
how many matches there were in the target string.

If any matches are made, appropriate RegExp object static
properties, such as RegExp.leftContext, RegExp.rightContext,
RegExp.$n, and so forth are set, providing more information
about the matches.

SEE: RegExp exec(), String replace(), String search(), Regular
expression replacement characters, RegExp object static
properties

EXAMPLE: // not global
var pat = /(t(.)o)/;
var str = "one two three tio one";
 // rtn == "two"
 // rtn[0] == "two"
 // rtn[1] == "two"
 // rtn[2] == "w"
 // rtn.index == 4
 // rtn.input == "one two three two one"
rtn = str.match(pat);

 // global
var pat = /(t(.)o)/g;
var str = "one two three tio one";
 // rtn[0] == "two"

RegExp()

Nombas ScriptEase ISDK/Java 5.01 360

Nombas ScriptEase ISDK/Java 5.01 361

The dollar sign character.

 // rtn[1] == "tio"
 // rtn.length == 2
rtn = str.match(pat);

String replace()
SYNTAX: string.replace(pattern, replexp)
WHERE: pattern - a regular expression pattern to find or match in string.

replexp - a replacement expression which may be a string, a
string with regular expression elements, or a function.

RETURN: string - the original string with replacements in it made
according to pattern and replexp.

DESCRIPTION: This string is searched using the regular expression pattern
defined by pattern. If a match is found, it is replaced by the
substring defined by replexp. The parameter replexp may be a:

• a simple string
• a string with special regular expression replacement

elements in it
• a function that returns a value that may be converted into

a string

If any replacements are done, appropriate RegExp object static
properties, such as RegExp.leftContext, RegExp.rightContext,
RegExp.$n, and so forth are set, providing more information
about the replacements.

The special characters that may be in a replacement expression
are (see regular expression replacement characters):

• $1, $2 ... $9
The text that is matched by regular expression patterns
inside of parentheses. For example, $1 will put the text
matched in the first parenthesized group in a regular
expression pattern. See (...) under regular expression
reference characters.

• $+
The text that is matched by the last regular expression
pattern inside of the last parentheses, that is, the last
group.

• $&
The text that is matched by a regular expression pattern.

• $`
The text to the left of the text matched by a regular
expression pattern.

• $'
The text to the right of the text matched by a regular
expression pattern.

• \$

SEE: String match(), String search(), Regular expression replacement
characters, RegExp object static properties

EXAMPLE: var rtn;
var str = "one two three two one";
var pat = /(two)/g;

 // rtn == "one zzz three zzz one"
rtn = str.replace(pat, "zzz");
 // rtn == "one twozzz three twozzz one";
rtn = str.replace(pat, "$1zzz");
 // rtn == "one 5 three 5 one"
rtn = str.replace(pat, five());
 // rtn == "one twotwo three twotwo one";
rtn = str.replace(pat, "$&$&);

function five()
{
 return 5;
}

String search()
SYNTAX: string.search(pattern)
WHERE: pattern - a regular expression pattern to find or match in string.
RETURN: number - the starting position of the first matched portion or

substring of the target string. Returns -1 if there is no match.
DESCRIPTION: This method returns a number indicating the offset within the

string where the pattern matched or -1 if there was no match. The
return is the same character position as returned by the simple
search using search() and indexOf()
return the same character position of a match or find. The
difference is that indexOf() is simple and search() is
powerful.

The search() method ignores a "g" attribute if it is part of the
regular expression pattern to be matched or found. That is,
search() cannot be used for global searches in a string.

After a search is done, the appropriate RegExp object static
properties are set.

SEE: String match(), String replace(), RegExp exec(), Regular
expression syntax, RegExp Object, RegExp object static
properties

EXAMPLE: var str = "one two three four five";
var pat = /th/;
str.search(pat); // == 8, start of th in three
str.search(/t/); // == 4, start of t in two
str.search(/Four/i); // == 14, start of four

String indexOf(). Both

String slice()
SYNTAX: string.slice(start[, end])
WHERE: start - index from which to start.

end - index at which to end.

Nombas ScriptEase ISDK/Java 5.01 362

RETURN: string - a substring (not a String object) consisting of the
characters.

SEE: String substring()
DESCRIPTION: This method is very similar to hat it returns

a substring from one index to another. The only difference is
that if either start or end is negative, then it is treated as
length + start or length + end. If either exceeds the
bounds of the string, then either 0 or the length of the string is
used instead.

String substring(), in t

 String substring() in two

String split()
SYNTAX: string.split([delimiterString])
WHERE: delimiterString - character, string or regular expression where the

string is split. If substring is not specified, an array will be
returned with the name of the string specified. Essentially this
will mean that the string is split character by character.

RETURN: object - if no delimiters are specified, returns an array with one
element which is the original string.

DESCRIPTION: This method splits a string into an array of strings based on the
delimiters in the parameter delimiterString. The parameter
delimiterString is optional and if supplied, determines where the
string is split.

SEE: Array join()
EXAMPLE: /*

For example, to create an array of all
of the words in a sentence, use code similar
to the following fragment:
*/

var sentence = "I am not a crook";
var wordArray = sentence.split(' ');

String substr()
SYNTAX: string.substr(start, length)
WHERE: start - integer specifying the position within the string to begin

the desired substring. If start is positive, the position is relative to
the beginning of the string. If start is negative, the position is
relative to the end of the string.

length - the length, in characters, of the substring to extract.
RETURN: string - a substring starting at position start and including the

next number of characters specified by length.
DESCRIPTION: This method gets a section of a string. The start parameter is the

first character in the new string. The length parameter determines
how many characters to include in the new substring.

This method, substr() differs from
basic ways. One, in substring() the start position cannot be

Nombas ScriptEase ISDK/Java 5.01 363

negative, that is, it must be 0 or greater. Two, the second
parameter in substring() indicates a position to go to, not the
length of the new substring.

SEE: String substring()
EXAMPLE: var str = ("0123456789");

str.substr(0, 5) // == "01234"
str.substr(2, 5) // == "23456"
str.substr(-4, 2) // == "56"

String substring()
SYNTAX: string.substring(start, end)
WHERE: start - integer specifying the position within the string to begin

the desired substring.

end - integer specifying the position within the string to end the
desired substring.

RETURN: string - a substring starting at position start and going to but not
including position end.

DESCRIPTION: This method retrieves a section of a string. The start parameter is
the index or position of the first character to include. The end
parameter marks the end of the string. The end position is the
index or position after the last character to be included. The
length of the substring retrieved is defined by end minus start.
Another way to think about the start and end positions is that end
equals start plus the length of the substring desired.

SEE: String charAt(), String indexOf(), String lastIndexOf(), String
slice(), String substr()

EXAMPLE: // For example, to get the first nine characters
// in string, use a Start position
// of 0 and add 9 to it, that is,
// "0 + 9", to get the End position
// which is 9. The following fragment illustrates.

var str = "0123456789";
str.substring(0, 5) // == "01234"
str.substring(2, 5) // == "234"
str.substring(0, 10) // == "0123456789"

String toLocaleLowerCase()
SYNTAX: string.toLocaleLowerCase()
RETURN: string - a copy of a string with each character converted to lower

case.
DESCRIPTION: This method behaves exactly the same as

It is designed to convert the string to lower case in a locale
sensitive manner, though this functionality is currently
unavailable. Once it is implemented, this function may behave
differently for some locales (such as Turkish), though for the
majority it will be identical to toLowerCase().

String toLowerCase().

Nombas ScriptEase ISDK/Java 5.01 364

SEE: String toLowerCase(), String toLocaleUpperCase()

String toLocaleUpperCase()
SYNTAX: string.toLocaleUpperCase()
RETURN: string - a copy of a string with each character converted to upper

case.
DESCRIPTION: This method behaves exactly the same as

It is designed to convert the string to upper case in a locale
sensitive manner, though this functionality is currently
unavailable. Once it is implemented, this function may behave
differently for some locales (such as Turkish), though for the
majority it will be identical to toUpperCase().

SEE: String toUpperCase(), String toLocaleLowerCase()

String toUpperCase().

String toLowerCase()
SYNTAX: string.toLowerCase()
RETURN: string - copy of a string with all of the letters changed to lower

case.
DESCRIPTION: This method changes the case of a string.
SEE: String toUpperCase(), String toLocaleLowerCase()
EXAMPLE: var string = new String("Hello, World!");

string.toLowerCase()

// This will return the string "hello, world!".

String toUpperCase()
SYNTAX: string.toUpperCase()
RETURN: string - a copy of a string with all of the letters changed to upper

case.
DESCRIPTION: This method changes the case of a string.
SEE: String toLowerCase(), String toLocaleUpperCase()
EXAMPLE: var string = new String("Hello, World!");

string.toUpperCase()

// This will return the string
// "HELLO, WORLD!".

String object static methods
String.fromCharCode()
SYNTAX: String.fromCharCode(chrCode[, ...])
WHERE: chrCode - character code, or list of codes, to be converted.
RETURN: string - string created from the character codes that are passed to

it as parameters.
DESCRIPTION: The identifier String is used with this static method, instead of a

variable name as with instance methods. The arguments passed

Nombas ScriptEase ISDK/Java 5.01 365

to this method are assumed to be unicode characters.
SEE: String(), String charCodeAt()
EXAMPLE: // The following code:

var string = String.fromCharCode(0x0041,0x0042)
// will set the variable string to be "AB".

Nombas ScriptEase ISDK/Java 5.01 366

Unix Object
platform: Unix OS, all versions of SE

Unix object static methods
Unix.fork()
SYNTAX: Unix.fork()
RETURN: number - 0 or a child process id. 0 is returned to the child

process, the id of the child process is returned to the parent.
DESCRIPTION: A call to this function creates two duplicate processes. The

processes are exact copies of the currently running process, so
both pick up execution from the next statement. Because these
processes are duplicates, they share identical all resources the
original one had at the time of fork()ing, but not any allocated
later. For instance, any open file handles or sockets are shared. If
both processes write to them, the output will be intermixed since
each write from either process advances the file pointer for both.

 wait for completion of a Child. Using
Unix.wait() or portant to prevent
annoying zombie processes from building up.

SEE: Unix.kill(), Unix.wait(), Unix.waitpid()
EXAMPLE: // Here is a simple example:

function main()
{
 var id = Unix.fork();

 if(id==0)
 {
 Clib.printf("Child here!\n");
 Clib.exit(0);
 }
 else
 {
 Clib.printf("started child process %d\n", id);
 }
}

Unix.wait() allows you to
Unix.waitpid() is im

Unix.kill()
SYNTAX: Unix.kill(pid, signal)
WHERE: pid - process to kill.

signal - the signal to send the process.
RETURN: number - 0 for success, -1 for error.
DESCRIPTION: This is simply a direct wrapper for the Unix kill command. To

get documentation on it for your particular Unix system, just
type 'man 2 kill'

SEE: Unix.fork()
EXAMPLE: // Typically you would use this to kill a child,

Nombas ScriptEase ISDK/Java 5.01 367

// for instance:

if(var id = Unix.fork())
{
 while(1)
 Clib.printf("I am an annoying child.\n");
}
else
{
 // child would be too annoying, so kill it
 Unix.kill(id,9); //9 is SIGKILL
 Unix.wait(var status); //wait until child is dead
 Clib.printf(
 "I hope DSS doesn't here about this...\n");
}

Unix.setgid()
SYNTAX: Unix.setgid(id)
WHERE: id - group id to set.
RETURN: number - 0 for success, -1 for error.
DESCRIPTION: Changes the group ID to the given ID, if allowed.
SEE: Unix.setuid()

Unix.setsid()
SYNTAX: Unix.setsid()
RETURN: number - 0 for success, -1 for error.
DESCRIPTION: Creates a new session with no terminal, most useful for having

commands that, when run, immediately have the terminal prompt
reappear, but continue to run in the background.

SEE: Unix.fork()
EXAMPLE: // A typical daemon program has a line like this:

#if defined(_UNIX_)
 Unix.setsid(); if(Unix.fork()) Clib.exit(0);
#endif

// which detaches the program from the terminal and
// continues. Notice, this for line means that
// only the child is running. Because the parent
// has exited and the child does not have the
// original file handles, the shell thinks
// the program is done and goes back to the prompt.

Unix.setuid()
SYNTAX: Unix.setuid(id)
WHERE: id - user id to set.
RETURN: number - 0 for success, -1 for error.
DESCRIPTION: Changes the user ID to the given ID, if allowed.

Nombas ScriptEase ISDK/Java 5.01 368

SEE: Unix.setgid()

Unix.wait()
SYNTAX: Unix.wait(status)
WHERE: status - status of the process.
RETURN: number - process id of the exiting child, else -1 for error.
DESCRIPTION: A call to Unix.wait() will suspend execution until a child

process terminates, then return the id of the particular child that
exited. The status parameter is filled in with the status code for
the process (this is the raw data exactly as returned by the
underlying C wait() call provided for Unix gurus who find this
information useful.) Any resources used by the Child are cleaned
up.

SEE: Unix.kill(), Unix.waitpid()
EXAMPLE: // Here is a simple example:

function main()
{
 var id = Unix.fork();

 if(id==0)
 {
 Clib.printf("Child here!\n");
 Clib.exit(0);
 }
 else
 {
 Clib.printf("started child process %d\n", id);
 Clib.assert(Unix.wait(var dontcare)==id);
 Clib.printf("child process is dead meat.\n");
 }
}

Unix.waitpid()
SYNTAX: Unix.waitpid(pid, status, flags)
WHERE: pid - child process interested in or -1 for any.

status - status of the process.

flags - WNOHANG or 0.
RETURN: number - process id of the exiting child, else -1 for error.
DESCRIPTION: Very similar to an specify which child

process you care about as well as some flags. The only flag
currently given a name is WNOHANG, which means that if no
child is ready to exit, the call returns immediately. Unix gurus
who need the full functionality can put the other possible flag
values here.

SEE: Unix.kill(), Unix.waitpid()
EXAMPLE: // This function is most useful in the main loop

// of a server daemon
// (see inn.jse, unix/daemon.jse samples.)
// By calling it each time through the loop such as:

 Unix.wait(), except you c

Nombas ScriptEase ISDK/Java 5.01 369

Unix.waitpid(-1,var status, WNOHANG);

// Child processes will get cleaned up and
// zombie processes will not stick around
// wasting resources.

Nombas ScriptEase ISDK/Java 5.01 370

Appendices

See:

• Appendix A Grouped Functions
• Appendix B Instance and Static Notation

Nombas ScriptEase ISDK/Java 5.01 371

Nombas ScriptEase ISDK/Java 5.01 373

Buffer size Size of a buffer object.

Appendix A: Grouped Functions
In the current section, the functions and methods of ScriptEase are organized
according to purpose and operation and not according to object. Some functions
and methods are specific to certain operating systems and do not exist in all
versions of ScriptEase. For example, SElib.subclassWindow() does not
apply to the DOS operating system.

Routines for arrays
For dynamic arrays
Clib qsort() Sort an array.

global.getArrayLength() Determines size of an array.
global.setArrayLength() Sets the size of an array.

For Array objects
Array concat() Concatenate to array.
Array join() Creates a string from array elements.
Array pop() Get last element of array.
Array push() Add element to end of array.
Array reverse() Reverses the order of elements of an array.
Array shift() Get first element of array.
Array slice() Get a subset of an array.
Array sort() Sorts array elements.
Array splice() Insert elements into array.
Array unshift() Add elements to start of array.

Array properties
Array length Returns the length of array.

array.jsh - arrays and objects
item.jsh - delimited strings/arrays

Routines for Buffers
Buffer methods
Buffer getString() Returns a string starting from the current cursor position.
Buffer getValue() Returns a value from a specified position.
Buffer putString() Puts a string into a buffer.
Buffer putValue() Puts a specified value into a buffer.
Buffer subBuffer() Returns a section of a buffer.
Buffer toString() Returns string equivalent of the current state of buffer.

Buffer properties
Buffer bigEndian Boolean flag for bigEndian byte ordering.
Buffer cursor Current position within a buffer.

Nombas ScriptEase ISDK/Java 5.01 374

global.ToBytes() Converts a value to a buffer, raw transfer.
global.ToInt32() Converts a value to a large Integer.

Buffer unicode Boolean flag for the use of unicode strings.

Routines for character classification
Clib.isalnum() Tests for alphanumeric character.
Clib.isalpha() Tests for alphabetic character.
Clib.isascii() Tests for ASCII coded character.
Clib.iscntrl() Tests for any control character.
Clib.isdigit() Tests for any decimal-digit character.
Clib.isgraph() Tests for any printing character except space.
Clib.islower() Tests for lower-case alphabetic letter.
Clib.isprint() Tests for any printing character.
Clib.ispunct() Tests for punctuation character.
Clib.isspace() Tests for white-space character.
Clib.isupper() Tests for upper-case alphabetic character.
Clib.isxdigit() Tests for hexadecimal-digit character.

Routines for console I/O
Clib.kbhit() Checks if a keyboard keystroke is available.
Clib.getch() Gets a character from the keyboard, no echo.
Clib.getchar() Gets character from standard input, keyboard.
Clib.getche() Gets character from the keyboard, with echo.
Clib.gets() Reads string from standard input, keyboard.
Clib.perror() Displays a message describing error in errno.
Clib.printf() Formatted output to standard output, screen.
Clib.putchar() Writes a character to standard output, screen.
Clib.puts() Writes a string to standard output, console.
Clib.scanf() Formatted input from standard input, keyboard.
Clib.vprintf() Formatted output to stdout, screen, variable args.
Clib.vscanf() Formatted input from stdin, keyboard, variable args.

dlgobj.jsh - Dialog object
getit.jsh - getItem and getLine
inout.jsh - routines for input/output
inputbox.jsh - input box
key.jsh - keys and keyboard
msgbox.jsh - message boxes

Routines for conversion/casting
global.escape() Escapes special characters in a string.
global.parseFloat() Converts a string to a Float.
global.parseInt() Converts a string to an Integer.
global.unescape() Removes escape sequences in a string.

global.ToBoolean() Converts a value to a Boolean.
global.ToBuffer() Converts a value to a buffer.

Nombas ScriptEase ISDK/Java 5.01 375

Date getHours() Returns the hour.
Date getMilliseconds() Returns the millisecond.

global.ToInteger() Converts a value to an Integer.
global.ToNumber() Converts a value to a Number.
global.ToObject() Converts a value to an Object.
global.ToPrimitive() Converts a value to a Primitive.
global.ToString() Converts a value to a String.
global.ToUint16() Converts a value to an unsigned Integer.
global.ToUint32() Converts a value to an unsigned large Integer.

array.jsh - arrays and objects

Routines for data/variables
Methods for data
Blob get() Reads data from specified location of a Blob.
Blob put() Writes data into specified location of a Blob.
Blob size() Determine size of a Blob.
blobDescriptor object Describe data in a Blob.

global.defined() Tests if variable has been defined.
global.getAttributes() Gets attributes of a variable.
global.isFinite() Determines if a value is finite.
global.isNaN() Determines if a value is Not a Number.
global.setAttributes() Sets attributes of a variable.
global.undefine() Makes a variable undefined.

SElib.getObjectProperties() Get name list of members of object/structure.

toString() Converts any variable to a string representation.
valueOf() Returns the value of any variable.

profobj.jsh - Profile object for ini files
regobj.jsh - Registry object

Routines for date/time
Clib.asctime() Converts data and time to an ASCII string.
Clib.clock() Gets processor time.
Clib.ctime() Converts date-time to an ASCII string.
Clib.difftime() Computes difference between two times.
Clib.gmtime() Converts data and time to GMT.
Clib.localtime() Converts date/time to a structure.
Clib.mktime() Converts time structure to calendar time.
Clib.strftime() Formatted write of date/time to a string.
Clib.time() Gets current time.

Date getDate() Returns the day of the month.
Date getDay() Returns the day of the week.
Date getFullYear() Returns the year with four digits.

Nombas ScriptEase ISDK/Java 5.01 376

Clib.ferror() Tests for error on a file stream.
Clib.perror() Prints an message describing error in errno.

Date getMinutes() Returns the minute.
Date getMonth() Returns the month.
Date getSeconds() Returns the second.
Date getTime() Returns date/time, milliseconds, in Date object.
Date getTimezoneOffset() Returns difference, in minutes, from GMT.
Date getUTCDate() Returns the UTC day of the month.
Date getUTCDay() Returns the UTC day of the week.
Date getUTCFullYear() Returns the UTC year with four digits.
Date getUTCHours() Returns the UTC hour.
Date getUTCMilliseconds() Returns the UTC millisecond.
Date getUTCMinutes() Returns the UTC minute.
Date getUTCMonth() Returns the UTC month.
Date getUTCSeconds() Returns the UTC second.
Date getYear() Returns the year with two digits.
Date setDate() Set day of the month.
Date setFullYear() Sets the year with four digits.
Date setHours() Sets the hour.
Date setMilliseconds() Sets the millisecond.
Date setMinutes() Sets the minute.
Date setMonth() Sets the month.
Date setSeconds() Sets the second.
Date setTime() Sets date/time, in milliseconds, in Date object.
Date setUTCDate() Sets the UTC day of the month.
Date setUTCFullYear() Sets the UTC year with four digits.
Date setUTCHours() Sets the UTC hour.
Date setUTCMilliseconds() Sets the UTC millisecond.
Date setUTCMinutes() Sets the UTC minute.
Date setUTCMonth() Sets the UTC month.
Date setUTCSeconds() Sets the UTC second.
Date setYear() Sets the year with two digits.
Date toDateString() Returns the date portion of current date as string.
Date toGMTString() Converts a Date object to a string.
Date toLocaleDateString() Same as date.toDateString using local time.
Date toLocaleString() Returns a string for local date and time.
Date toLocaleTimeString() Same as date.toTimeString using local time.
Date toSystem() Converts a Date object to a system time.
Date toTimeString() Returns the time portion of current date as string.
Date toUTCString()() Returns a string that represents the UTC date.

Date.fromSystem() Converts system time to Date object time.
Date.parse() Converts a Date string to a Date object.
Date.UTC() Returns date/time, milliseconds, use parameters.

datetime.jsh - date and time

Routines for diagnostic/error
Clib.clearerr() Clears end-of-file and error status for a file.
Clib.errno() Returns value of error condition.

Clib.strerror() Gets a string describing an error number.

Routines for directory, file, and OS
Clib.chdir() Changes directory.
Clib.flock() File locking.
Clib.getcwd() Gets current working directory.
Clib.mkdir() Makes a directory.
Clib.rmdir() Removes a directory.

Clib.getenv() Gets an environment string.
Clib.putenv() Sets an environment string.

SElib.directory() Searches directory listing for file spec.
SElib.fullPath() Converts partial path spec to full path name.
SElib.splitFileName() Gets directory, name, and extension parts of a file

specification.

Nombas ScriptEase ISDK/Java 5.01 377

Nombas ScriptEase ISDK/Java 5.01 379

optparms.jsh - get parameters

Routines for DOS
Dos.address() Set a memory address.
Dos.asm() Execute machine code in a memory location.
Dos.inport() Get byte from a hardware port.
Dos.inportw() Get word from a hardware port.
Dos.interrupt() Execute 8086 interrupt.
Dos.offset() Get offset of memory address.
Dos.outport() Write byte to hardware port.
Dos.outportw() Write word to hardware port
Dos.segment() Get segment of memory address.

Routines for execution control
Clib.abort() Terminates program, normally due to error.
Clib.assert() Test a condition and abort if it is false.
Clib.atexit() Sets function to be called at program exit.
Clib.exit() Normal program termination.
Clib.system() Passes a command to the command processor.

global.eval() Evaluate string as script code, like SElib.interpret.

SElib.baseWindowFunction() Call base procedure for a window.
SElib.breakWindow() Release control of a window.
SElib.compileScript() Compiles script into executable code.
SElib.doWindows() Start ScriptEase window manager.
SElib.dynamicLink() Make a call to the API.
SElib.inSecurity() Calls security manager initialization routine.
SElib.instance() Get instance handle of currently executing

script.
SElib.interpret() Interprets ScriptEase code or source file.
SElib.interpretInNewThread() Creates a new thread within a current process.
SElib.makeWindow() Create window to be managed.
SElib.messageFilter() Restrict messages to a window.
SElib.multiTask() Toggle multitasking on and off.
SElib.ShellFilterCharacter() Add character filter to ScriptEase shell.
SElib.ShellFilterCommand() Add command filter to ScriptEase shell.
SElib.spawn() Runs an external executable.
SElib.subclassWindow() Hooks a windowFunction in message loop.
SElib.suspend() Suspends program execution for a while.
SElib.windowList() Get handles of child windows.

exec.jsh - execute programs
getopt.jsh - get options
keypush.jsh - keyboard simulation
menuctrl.jsh - control menus
message.jsh - for windows
mouseclk.jsh - mouse simulation

Nombas ScriptEase ISDK/Java 5.01 380

Clib.atan2() Calculates the arc tangent of a fraction.
Clib.atof() Converts ASCII string to a floating-point number.

winexec.jsh - execute programs

Routines for file/stream I/O
Clib.fclose() Closes an open file.
Clib.feof() Tests if at end of file stream.
Clib.fflush() Flushes stream for open file(s).
Clib.fgetc() Gets a character from file stream.
Clib.fgetpos() Gets current position of a file stream.
Clib.fgets() Gets a string from an input stream.
Clib.fopen() Opens a file.
Clib.fprintf() Formatted output to a file stream.
Clib.fputc() Writes a character to a file stream.
Clib.fputs() Writes a string to a file stream.
Clib.fread() Reads data from a file.
Clib.freopen() Assigns new file spec to a file handle.
Clib.fscanf() Formatted input from a file stream.
Clib.fseek() Sets file position for an open file stream.
Clib.fsetpos() Sets position of a file stream.
Clib.ftell() Gets the current value of the file position.
Clib.fwrite() Writes data to a file.
Clib.getc() Gets a character from file stream.
Clib.putc() Writes a character to a file stream.
Clib.remove() Deletes a file.
Clib.rename() Renames a file.
Clib.rewind() Resets file position to beginning of file.
Clib.tmpfile() Creates a temporary binary file.
Clib.tmpnam() Gets a temporary file name.
Clib.ungetc() Pushes character back to input stream.
Clib.vfprintf() Formatted output to a file stream using variable args.
Clib.vfscanf() Formatted input from a file stream using variable args.

copyfile.jsh - copying files
fileobj.jsh - File objects

Routines for general use
profobj.jsh - Profile object for ini files
regobj.jsh - Registry object
seutil.jsh - ScriptEase header

Routines for math
Math methods
Clib.abs() Returns the absolute value of an integer.
Clib.acos() Calculates the arc cosine.
Clib.asin() Calculates the arc sine.
Clib.atan() Calculates the arc tangent.

Nombas ScriptEase ISDK/Java 5.01 381

Math.E Value of e, base for natural logarithms.
Math.LN10 Value for the natural logarithm of 10.

Clib.atoi() Converts ASCII string to an integer.
Clib.atol() Converts ASCII string to an integer.
Clib.ceil() Rounds up.
Clib.cos() Calculates the cosine.
Clib.cosh() Calculates the hyperbolic cosine.
Clib.div() Integer division, returns quotient & remainder.
Clib.exp()() Computes the exponential function.
Clib.fabs() Absolute value.
Clib.floor() Rounds down.
Clib.fmod() Modulus, calculate remainder.
Clib.frexp() Breaks into a mantissa and an exponential power of 2.
Clib.labs() Returns the absolute value of an integer.
Clib.ldexp() Calculates mantissa * 2 ^ exp.
Clib.ldiv() Integer division, returns quotient & remainder.
Clib.log() Calculates the natural logarithm.
Clib.log10() Calculates the base-ten logarithm.
Clib.max() Returns the largest of one or more values.
Clib.min() Returns the minimum of one or more values.
Clib.modf() Splits a value into integer and fractional parts.
Clib.pow() Calculates x to the power of y.
Clib.rand() Generates a random number.
Clib.sin() Calculates the sine.
Clib.sinh() Calculates the hyperbolic sine.
Clib.sqrt() Calculates the square root.
Clib.srand() Seeds random number generator.
Clib.tan() Calculates the tangent.
Clib.tanh() Calculates the hyperbolic tangent.

Math.abs() Returns the absolute value of an integer.
Math.acos() Calculates the arc cosine.
Math.asin() Calculates the arc sine.
Math.atan() Calculates the arc tangent.
Math.atan2() Calculates the arc tangent of a fraction.
Math.ceil() Rounds up.
Math.cos() Calculates the cosine.
Math.exp()() Computes the exponential function.
Math.floor() Rounds down.
Math.log() Calculates the natural logarithm.
Math.max() Returns the largest of one or more values.
Math.min() Returns the minimum of one or more values.
Math.pow() Calculates x to the power of y.
Math.random() Returns a random number.
Math.round() Rounds value up or down.
Math.sin() Calculates the sine.
Math.sqrt() Calculates the square root.
Math.tan() Calculates the tangent.

Math properties

Nombas ScriptEase ISDK/Java 5.01 382

String search() Regular expression search

Math.LN2 Value for the natural logarithm of 2.
Math.LOG2E Value for the base 2 logarithm of e.
Math.LOG10E Value for the base 10 logarithm of e.
Math.PI Value for pi.
Math.SQRT1_2 Value for the square root of 2.
Math.SQRT2 Value for the square root of 2.

Number.MAX_VALUE Largest number (positive)
Number.MIN_VALUE Smallest number (negative)
Number.NaN Not a Number
Number.NEGATIVE_INFINITY Number below MIN_VALUE
Number.POSITIVE_INFINITY Number above MAX_VALUE

Routines for memory manipulation
Clib.bsearch() Binary search in memory/array/buffer.

SElib.peek() Reads data from memory location.
SElib.pointer() Gets address of variable.
SElib.poke() Writes data to memory location.

Routines for miscellaneous
Clib.bsearch() Binary search for member of a sorted array.
Clib.qsort() Sorts an array, may use comparison function.

Routines for objects and functions
SElib.getObjectProperties() Get names of properties of an object.

Object hasOwnProperty() Determine if an object has a property.
Object isPrototypeOf() Determine if a property is part of prototype.
Object
propertyIsEnumerable()

Is the attribute of a property DONT_ENUM.

Object toLocaleString() Object to string using local settings.

array.jsh - arrays and objects

Function apply() Apply arguments array to a function.
Function call() Call function with argument list.

Routines for regular expressions
RegExp compile() Sets a regular expression for the object.
RegExp exec() Performs regular expression search.
RegExp test() Tests a regular expression search.
String match() Regular expression match
String replace() Regular expression search/replace

Nombas ScriptEase ISDK/Java 5.01 383

String slice() Get a substring from a string.
String split() Splits a string into an array of strings.

Routines for strings/byte arrays
Methods for strings
Clib.memchr() Searches a byte array.
Clib.memcmp() Compares two byte arrays.
Clib.memcpy() Copies from one byte array to another.
Clib.memmove() Moves from one byte array to another.
Clib.memset() Copies character to byte array.

Clib.rsprintf() Returns formatted string.
Clib.sprintf() Formatted output to a string.
Clib.sscanf() Formatted input from a string.
Clib.strcat() Concatenates strings.
Clib.strchr() Searches a string for a character.
Clib.strcmp() Compares two strings.
Clib.strcmpi() Case-insensitive compare of two strings.
Clib.strcpy() Copies one string to another.
Clib.strcspn() Searches string for first character in a set of characters.
Clib.stricmp() Case-insensitive compare of two strings.
Clib.strlen() Gets the length of a string.
Clib.strlwr() Converts a string to lowercase.
Clib.strncat() Concatenates bytes of one string to another.
Clib.strncmp() Compares part of two strings.
Clib.strncmpi() Case-insensitive compare of parts of two strings.
Clib.strncpy() Copies bytes from one string to another.
Clib.strnicmp() Case-insensitive compare of parts of two strings.
Clib.strpbrk() Searches string for character from a set of characters.
Clib.strrchr() Searches string for the last occurrence of a character.
Clib.strspn() Searches string for character not in a set of characters.
Clib.strstr() Searches a string for a substring.
Clib.strstri() Case insensitive version of Clib.strstr.
Clib.strtod() Converts a string to a floating-point value.
Clib.strtok() Searches a string for delimited tokens.
Clib.strtol() Converts a string to an integer value.
Clib.strupr() Converts a string to uppercase.

Clib.toascii() Converts to ASCII.
Clib.tolower() Converts to lowercase.
Clib.toupper() Converts to uppercase.

Clib.vsprintf() Formatted output to string using variable args.
Clib.vsscanf() Formatted input from a string.

String charAt() Returns a character in a string.
String charCodeAt() Returns a unicode character in a string.
String concat() Concatenate a string.
String indexOf() Returns index of first substring in a string.
String lastIndexOf() Returns index of last substring in a string.
String localeCompare() Compare string using local settings.

String substring() Retrieves a section of a string.
String toLocaleLowerCase() Returns lowercase string using local settings.
String toLocaleUpperCase() Returns uppercase string using local settings.
String toLowerCase() Converts a string to lowercase.
String toUpperCase() Converts a string to uppercase.

String.fromCharCode() Creates a string from character codes.

item.jsh - delimited strings/arrays

string.jsh - more for strings

String properties
String length Holds the length of a string in characters.

Routines for variable argument lists
Clib.va_arg() Retrieves variable from variable list of args.
Clib.va_end() Terminates variable list of args.
Clib.va_start() Starts a variable list of args.

Clib.rvsprintf() Returns formatted string using variable args.
Clib.vfprintf() Formatted output to a file stream using variable args.
Clib.vfscanf() Formatted input from file stream using variable args.
Clib.vprintf() Formatted output to stdout, screen, using variable args.
Clib.vscanf() Formatted input from stdin, using var args.
Clib.vsprintf() Formatted output to string using variable args.
Clib.vsscanf() Formatted input from a string.

Routines for UNIX
Unix.fork() Create duplicate processes.
Unix.kill() Wrapper for UNIX kill command.
Unix.setgid() Change group id.
Unix.setsid() Create a new session.
Unix.setuid() Change user id.
Unix.wait() Suspend execution until child process

stops.
Unix.waitpid() Suspend execution with additional

controls.

Nombas ScriptEase ISDK/Java 5.01 384

Appendix B: Instance and Static
Notation

ScriptEase uses object properties which are integral to JavaScript. For clarity we
refer to object properties and object methods, not just properties, though both
properties and methods may be referred to by the general term property. When
using the terms property and method, object properties refer to the variables and
data of an object and object methods refer to the functions of an object. We have
clarified one dimension of object properties and methods. But, to be precise, we
must deal with another dimension.

Object properties and methods are either instance, belonging to an instance of an
object, or static, belonging to an object itself. Thus, all properties and methods of
an object may be classified according to two dimensions. Is a property of an
object a property or a method, and is it an instance or a static property? The
following examples illustrate

• Instance property string.length
• Instance method string.indexOf()
• Static property String.illus
• Static method String.fromCharCode()

Objects may have all four categories of methods and properties, but usually they
do not. In this illustration, the String object has three of the categories, but not a
static property, which is the reason why String.illus had to be made up for
this example.

ScriptEase documentation uses a couple of style conventions to distinguish
between properties and methods and between being instance or static. The four
sections, following the bullet list of explanations, illustrate how these distinctions
are made in reference sections of documentation.

• First, headings, such as "String instance properties" below, specifically
identify whether the following reference information applies to instance
properties, instance methods, static properties, or static methods.

• Second, properties do not have parentheses "()" but methods do.
• Third the top lines of reference tables vary in how they refer to instance and

static properties and methods. Instance properties and methods have object
names followed by a space, such as "String ", whereas static properties and
methods have object names followed by a period, such as "String.".

• Fourth, the syntax line for instance properties and methods uses the object
name in all lowercase, whereas, the syntax line for static properties and
methods uses the object name precisely. The significance is that instance
properties and methods actually use the variable name of an instance of an
object, whereas, static properties and methods use the actual object name
itself.

• Fifth, the use of lowercase for instance properties and methods is used
consistently in text and descriptions, not just the reference tables themselves.

Nombas ScriptEase ISDK/Java 5.01 385

String instance properties sample

Nombas ScriptEase ISDK/Java 5.01 386

prototype String
method are added to the String object itself.

String length
SYNTAX: string.length
DESCRIPTION:
SEE:
EXAMPLE:

String instance methods sample
String indexOf
SYNTAX: string.indexOf(substring[, offset])
WHERE:
RETURN:
DESCRIPTION:
SEE:
EXAMPLE:

String static properties sample
String.illus
SYNTAX: String.illus
DESCRIPTION:
SEE:
EXAMPLE:

String static methods sample
String.fromCharCode()
SYNTAX: String.fromCharCode(char1[, char2 ...])
WHERE:
RETURN:
DESCRIPTION:
SEE:
EXAMPLE:

Prototype property
For the technically inclined, objects have a prototype property. Instance
properties and methods are attached to the prototype property of an object. As
an illustration, assume that two new methods and two new properties are added
to the String object. The instance property and method are added to the

 property of the object, whereas, the static property and

The following two declaration lines illustrate an instance property and an
instance method:
String.prototype.newInstanceProperty
String.prototype.newInstanceMethod()

The following two declaration lines illustrate a static property and a static
method:
String.newStaticProperty
String.newStaticMethod()

The following code fragment illustrates the differences in using these properties
and methods.

 // Begin an instance of a String object
var newStr = "an example string";
var instVal = newStr.newInstanceProperty;
newStr.newInstanceMethod();
 // Use the static property and method directly
var statVal = String.newStaticProperty;
String.newStaticMethod();

Nombas ScriptEase ISDK/Java 5.01 387

Nombas ScriptEase ISDK/Java 5.01 389

]
], 315

array conversion, 146
Array join(), 181

Index

###, 315
#define <name>

<body>|<name>(<args>)
<body>#undef <name>, 11

#error <message>, 12
#if <constant expression>#elif

<constant expression>#ifdef
<name>#ifndef
<name>#else#endif, 11

#include <filename>|, 11
$
$, 313, 316
$', 316
$&, 316
$`, 316
$+, 316
$1, $2 ... $9, 316
$n, 322
&
&, 151
(
(, 315
(...), 314
(?!...), 315
(?", 314
(?=...), 314
)
), 315
*
*, 151, 312, 315
*?, 312
.
., 313, 315
/
/, 309, 315
?
?, 312, 315
[
[, 315
[...], 313
[^...], 313
[\b], 310, 313
\
\, 315

^
^, 313
_
_argc, 163
_argv, 164
_call(...), 142
_class, 146, 304
_construct(...), 141
`
`, 153
{
{, 315
{n, m}, 313
{n,}?, 313
{n}, 313
|
|, 314, 315
}
}, 315
+
+, 312, 315
+?, 312
A
A, 314
abort(), 220
abs(), 257, 292
acos(), 258, 292
Add the ScriptEase classes to your

CLASSPATH, 10
address operator, 151
address(), 283
Advanced Integration - Debugging,

12
Anchor characters, 313
Anchor meaning, 313
API Function List, 65
Appendices, 371
Appendix A: Grouped Functions,

373
Appendix B: Instance and Static

Notation, 385
apply(), 288
Array class, 146
Array concat(), 180
Array constructor, 180

Nombas ScriptEase ISDK/Java 5.01 390

Bit operators, 120
Blob, 187

Case sensitivity, 106
Case statements, 151

Array length, 179
Array object, 177
Array object instance methods, 180
Array object instance properties,

179
Array pop(), 181
Array properties, 373
Array push(), 182
Array representation, 144
Array reverse(), 182
Array shift(), 183
Array slice(), 183
Array sort(), 184
Array splice(), 185
Array toString(), 185
Array type, 115
Array unshift(), 186
Array(), 180
arrays, 144, 145
asctime(), 216
asin(), 258, 293
asm(), 283
assert(), 221
Assignment arithmetic, 119
atan(), 258, 293
atan2(), 258, 293
atexit(), 221
atof(), 258
atoi(), 259
atol(), 259
attributes, 309
Auto-increment (++) and auto-

decrement (--), 119
Automatic and JavaScript Arrays,

145
Automatic array allocation, 145
automatic arrays, 144, 145
Automatic type conversion, 116
Automatic type declaration, 143
avoid, 109
B
b, 314
Back quote, 355
Back quote strings, 153
back quotes, 355
Basic arithmetic, 118
Basics of ScriptEase, 106
bigEndian, 199
Binary Large Objects, 187

Blob Object, 187
Blob object static methods, 187
Blob.get(), 187
Blob.put(), 187
Blob.size(), 189
blobDescriptor example, 191
blobDescriptor object, 190
block comments, 107
Boolean Object, 195
Boolean object instance methods,

195
Boolean type, 113
Boolean(), 195
Boolean.toString(), 195
boundary, 314
brackets, array, 178
break, 127
bsearch(), 236
Buffer, 187, 194
Buffer bigEndian, 199
Buffer compare(), 202
Buffer cursor, 199
Buffer equal(), 203
Buffer getString(), 202
Buffer getValue(), 203
Buffer methods, 373
Buffer Object, 197
Buffer object instance methods, 201
Buffer object instance properties,

199
Buffer object static methods, 206
Buffer properties, 373
Buffer putString(), 203
Buffer putValue(), 204
Buffer size, 199
Buffer subBuffer(), 205
Buffer toString(), 206
Buffer unicode, 200
Buffer(), 201
Buffer.compare (), 206
Buffer.equal (), 206
Buffer[] Array, 200
by reference, 150
C
C, 315
C style arrays, 145
call(), 288
Carriage return, 315
case expression, 149

Nombas ScriptEase ISDK/Java 5.01 391

Clib.fopen(), 224
Clib.fprintf(), 227

Clib.printf(), 209
Clib.putc(), 232

catch, 129
cC, 315
ceil(), 259, 294
cfunction, 143
Character classification, 239
character code, 365
charAt(), 357
charCodeAt(), 357
chdir(), 234
class, 146, 304
clearerr(), 223
Clib, 143
Clib Object, 209
Clib.abort(), 220
Clib.abs(), 257
Clib.acos(), 257
Clib.asctime(), 216
Clib.asin(), 258
Clib.assert(), 221
Clib.atan(), 258
Clib.atan2(), 258
Clib.atexit(), 221
Clib.atof(), 258
Clib.atoi(), 259
Clib.atol(), 259
Clib.bsearch(), 236
Clib.ceil(), 259
Clib.chdir(), 234
Clib.clearerr(), 223
Clib.clock(), 216
Clib.cos(), 259
Clib.cosh(), 259
Clib.ctime(), 217
Clib.difftime(), 217
Clib.div(), 260
Clib.errno, 222
Clib.exit(), 222
Clib.exp(), 260
Clib.fabs(), 260
Clib.fclose(), 225
Clib.feof(), 225
Clib.ferror(), 223
Clib.fflush(), 225
Clib.fgetc(), 226
Clib.fgetpos(), 226
Clib.fgets(), 226
Clib.flock(), 235
Clib.floor(), 260
Clib.fmod(), 260

Clib.fputc(), 227
Clib.fputs(), 227
Clib.fread(), 190, 227
Clib.freopen(), 229
Clib.frexp(), 261
Clib.fscanf(), 229
Clib.fseek(), 230
Clib.fsetpos(), 231
Clib.ftell(), 231
Clib.fwrite(), 190, 231
Clib.getc(), 232
Clib.getch(), 211
Clib.getchar(), 212
Clib.getche(), 212
Clib.getcwd(), 234
Clib.getenv(), 238
Clib.gets(), 212
Clib.gmtime(), 217
Clib.isalnum(), 239
Clib.isalpha(), 240
Clib.isascii(), 240
Clib.iscntrl(), 240
Clib.isdigit(), 240
Clib.isgraph(), 240
Clib.islower(), 240
Clib.isprint(), 241
Clib.ispunct(), 241
Clib.isspace(), 241
Clib.isupper(), 241
Clib.isxdigit(), 241
Clib.kbhit(), 212
Clib.labs(), 261
Clib.ldexp(), 261
Clib.ldiv(), 262
Clib.localtime(), 217
Clib.log(), 262
Clib.log10(), 262
Clib.max(), 262
Clib.memchr(), 255
Clib.memcmp(), 256
Clib.memcpy(), 256
Clib.memmove(), 257
Clib.memset(), 257
Clib.min(), 262
Clib.mkdir(), 235
Clib.mktime(), 218
Clib.modf(), 263
Clib.perror(), 223
Clib.pow(), 263

Nombas ScriptEase ISDK/Java 5.01 392

Clib.toascii(), 254
Clib.tolower(), 254

Date getTimezoneOffset(), 273
Date getUTCDate(), 273

Clib.putchar(), 213
Clib.putenv(), 238
Clib.puts(), 213
Clib.qsort(), 237
Clib.rand(), 263
Clib.remove(), 233
Clib.rename(), 233
Clib.rewind(), 233
Clib.rmdir(), 236
Clib.rsprintf(), 242
Clib.rvsprintf(), 242
Clib.scanf(), 213
Clib.sin(), 263
Clib.sinh(), 264
Clib.sprintf(), 243
Clib.sqrt(), 264
Clib.srand(), 264
Clib.sscanf(), 243
Clib.strcat(), 244
Clib.strchr(), 244
Clib.strcmp(), 245
Clib.strcmpi(), 245
Clib.strcpy(), 245
Clib.strcspn(), 246
Clib.strerror(), 223
Clib.strftime(), 219
Clib.stricmp(), 246
Clib.strlen(), 247
Clib.strlwr(), 247
Clib.strncat(), 247
Clib.strncmp(), 248
Clib.strncmpi(), 248
Clib.strncpy(), 248
Clib.strnicmp(), 249
Clib.strpbrk(), 249
Clib.strrchr(), 250
Clib.strspn(), 250
Clib.strstr(), 250
Clib.strstri(), 251
Clib.strtod(), 251
Clib.strtok(), 252
Clib.strtol(), 253
Clib.strupr(), 254
Clib.system(), 222
Clib.tan(), 264
Clib.tanh(), 264
Clib.time(), 220
Clib.tmpfile(), 233
Clib.tmpnam(), 234

Clib.toupper(), 254
Clib.ungetc(), 234
Clib.va_arg(), 265
Clib.va_end(), 266
Clib.va_start(), 266
Clib.vfprintf(), 267
Clib.vfscanf(), 267
Clib.vprintf(), 214
Clib.vscanf(), 215
Clib.vsprintf(), 255
Clib.vsscanf(), 267
clock(), 216
code\:character, 365
Comments, 107
compile(), 319
Composite data types, 114
concat(), 180, 357
concatenate, 180
Concatenation operator, 122
Conditional operator, 129
Console I/O functions, 209
continue, 127
CONTINUE FUNCTION, 42
control character, 315
Conversion or casting, 163
convert arrays, 146
Converting existing C code to

ScriptEase, 153
CORE CUSTOMIZATION, 91
Core Customization Topics, 91
cos(), 259, 294
cosh(), 259
Creating arrays, 177
ctime(), 217
cursor, 199
D
d, 313
data, 177
Data types, 111, 143
Data types in C and SE, 143
Date getDate(), 271
Date getDay(), 271
Date getFullYear(), 271
Date getHours(), 272
Date getMilliseconds(), 272
Date getMinutes(), 272
Date getMonth(), 272
Date getSeconds(), 272
Date getTime(), 272

Nombas ScriptEase ISDK/Java 5.01 393

Directory, 234
div(), 260

fgetpos(), 226
fgets(), 226

Date getUTCDay(), 273
Date getUTCFullYear(), 273
Date getUTCHours(), 273
Date getUTCMilliseconds(), 273
Date getUTCMinutes(), 273
Date getUTCMonth(), 274
Date getUTCSeconds(), 274
Date getYear(), 274
Date Object, 269
Date object instance methods, 270
Date object static methods, 281
Date setDate(), 274
Date setFullYear(), 274
Date setHours(), 275
Date setMilliseconds(), 275
Date setMinutes(), 275
Date setMonth(), 275
Date setSeconds(), 276
Date setTime(), 276
Date setUTCDate(), 276
Date setUTCFullYear(), 276
Date setUTCHours(), 277
Date setUTCMilliseconds(), 277
Date setUTCMinutes(), 277
Date setUTCMonth(), 278
Date setUTCSeconds(), 278
Date setYear(), 278
Date toDateString(), 278
Date toGMTString(), 279
Date toLocaleDateString(), 279
Date toLocaleString(), 279
Date toLocaleTimeString(), 279
Date toString(), 280
Date toSystem(), 280
Date toTimeString(), 280
Date toUTCString(), 280
Date valueOf(), 280
Date(), 270
Date.fromSystem(), 281
Date.parse(), 281
Date.UTC(), 282
DEBUGGING CUSTOMIZATION,

98
Decimal, 113
Decimal floats, 113
defined(), 164
delete, 175
delete operator, 122
difftime(), 217

do {...} while, 126
DONT_ENUM, 141
Dos Object, 283
Dos object static methods, 283
Dos.address(), 283
Dos.asm(), 283
Dos.inport(), 284
Dos.inportw(), 284
Dos.interrupt(), 284
Dos.offset(), 285
Dos.outport(), 285
Dos.outportw(), 285
Dos.segment(), 286
DYNAMIC OBJECTS, 58
dynamicLink, 194
E
E, 291
Edit your jseopt.jh, 10
elements of array, 177
else, 125
end of line comments, 107
enumerate properties, 141
Environment variables, 238
errno, 222
Error, 222
Error checking for functions, 135
escape sequences, 153
Escape sequences for characters,

355
escape(), 165
eval(), 165
EXAMINING VARIABLES, 31
Exception handling, 129
exec(), 320
EXECUTING SCRIPTS, 88
exit(), 222
exit, Clib.atexit(), 221
exp(), 260, 294
Expressions, statements, and blocks,

107
F
f, 315
fabs(), 260
fclose(), 225
FEATURE CUSTOMIZATION, 94
feof(), 225
ferror(), 223
fflush(), 225
fgetc(), 226

Nombas ScriptEase ISDK/Java 5.01 394

get(), 187
getArrayLength(), 166

global.ToBoolean(), 170
global.ToBuffer(), 171

Fibers and Threads, 99
File I/O, 224
finally, 129
FLAGS, 36
FLOAT32, 190
FLOAT64, 190
FLOAT80, 190
Floating point, 113
flock(), 235
floor(), 260, 295
Flow decisions statements, 125
fmod(), 260
fopen(), 224
for, 126
For Array objects, 373
For dynamic arrays, 373
for/in, 141
fork(), 367
Form feed, 315
fprintf(), 227
fputc(), 227
fputs(), 227
fread(), 227
freopen(), 229
frexp(), 261
fromCharCode(), 206, 365
fromSystem(time), 281
fscanf(), 229
fseek(), 230
fsetpos(), 231
ftell(), 231
Function apply(), 288
Function call(), 288
FUNCTION GLOBALS, 40
Function identifier, 111
Function Object, 287
Function object instance methods,

287
Function property arguments[], 134
Function recursion, 134
FUNCTION REDIRECTION, 63
Function return statement, 132
Function scope, 111
Function toString(), 289
Function(), 287
Functions, 131
fwrite(), 231
G
g, 309

getArrrayLength, 146
getAttributes(), 167
getc(), 232
getch(), 211
getchar(), 212
getche(), 212
getcwd(), 234
getDate(), 271
getDay(), 271
getenv(), 238
getFullYear(), 272
getHours(), 272
getMilliseconds(), 272
getMinutes(), 272
getMonth(), 272
gets(), 212
getSeconds(), 272
getString(), 202
getTime(), 272
getTimezoneOffset(), 273
getUTCDate(), 273
getUTCDay(), 273
getUTCFullYear(), 273
getUTCHours(), 273
getUTCMilliseconds(), 273
getUTCMinutes(), 274
getUTCMonth(), 274
getUTCSeconds(), 274
getValue(), 203
getYear(), 274
global, 316
GLOBAL MANIPULATION, 100
global match, 309
Global object, 163
global object methods/functions,

164
global._argc, 163
global._argv, 164
global.defined(), 164
global.escape(), 165
global.eval(), 165
global.getArrayLength(), 166
global.getAttributes(), 167
global.isFinite(), 165
global.isNaN(), 166
global.parseFloat(), 167
global.parseInt(), 167
global.setArrayLength(), 168
global.setAttributes(), 169

Nombas ScriptEase ISDK/Java 5.01 395

inside of functions, 152
instanceof operator, 123

JSE_ALWAYS_IMPLICIT_PARE
NTS (off), 95

global.ToBytes(), 171
global.ToInt32(), 171
global.ToInteger(), 172
global.ToNumber(), 172
global.ToObject(), 172
global.ToPrimitive, 173
global.ToSource(), 173
global.ToString(), 174
global.ToUint16(), 175
global.ToUint32(), 175
global.undefine(), 175
global.unescape(), 175
gmtime(), 217
goto and labels, 128
greedy match, 312
Group with capture, 314
Group without capture, 314
Groups, 314
H
hasOwnProperty(), 302
Hexadecimal, 113, 315
Horizontal tab, 315
I
i, 310
Identifiers, 108
Identifiers to avoid, 109
Identifiers\:avoid, 109
IDENTIFYING A VARIABLE, 23
if, 125
ignoreCase, 317
in operator, 123
indentifiers, 109
index (RegExp), 318
index in brackets, array, 178
indexOf(), 358
Initialization and Contexts, 15
Initialization code which is external

to functions, 152
INITIALIZATION/CONTEXT

CREATION, 65
Initializers for arrays and objects,

178
Initializers for objects and arrays,

138
inport(), 284
inportw(), 284
input, 322
input (RegExp), 319
insensitive matches, 310

inteface: SEGetByIndexCallback,
63

Integer, 112
Integrating the ISDK/Java, 9
Integration Basics, 10
interface: SECanPutCallback, 61
interface: SEContextParams, 16
interface: SEContinueFunction, 17
interface: SEDefaultValueCallback,

61
interface: SEDeletePropCallback,

61
interface: SEErrorFunction, 17
interface: SEErrorHandler, 17
interface: SEFileLocation, 18
interface: SEGetCallback, 59
interface:

SEGetNameByIndexCallback, 63
interface: SEGetResourceFunction,

19
interface: SEGetSourceFunction, 18
interface: SEHasPropCallback, 60
interface: SEMaxIndexCallback, 63
interface:

SEOperatorOverloadCallback, 61
interface: SEPrepareContext, 19
interface: SEPutCallback, 60
Internal Objects, 161
interrupt(), 284
Introduction, 7
isalpha(), 240
isascii(), 240
iscntrl(), 240
isdigit(), 240
isFinite(), 166
isgraph(), 240
islower(), 240
isNaN(), 166
isprint(), 241
isPrototypeOf(), 302
ispunct(), 241
isspace(), 241
isupper(), 241
isxdigit(), 241
J
JavaScript arrays, 145
join(), 181
JSE_ALWAYS_COLLECT (off),

98

Nombas ScriptEase ISDK/Java 5.01 396

JSE_PEEPHOLE_OPTIMIZER
(on), 92

LIST OF STOCK OBJECTS, 26
Literal strings, 146

JSE_ALWAYS_IMPLICIT_THIS
(off), 94

JSE_AUTO_OBJECT (off), 95
JSE_BREAKPOINT_TEST (off),

96
JSE_CACHE_GLOBAL_VARS

(on), 92
JSE_COMPACT_LIBFUNCS (off),

92
JSE_COMPILER (on), 94
JSE_CONDITIONAL_COMPILE

(on), 97
JSE_DEFINE (on), 96
JSE_DONT_POOL (off), 98
JSE_DYNAMIC_CALLBACKS

(on), 96
JSE_ENABLE_DYNAMETH (off),

96
JSE_FLOATING_POINT (on), 98
JSE_FUNCTION_ARGUMENTS

(on), 95
JSE_FUNCTION_LENGTHS (on),

95
JSE_GC (on), 92
JSE_GET_RESOURCE (off), 91
JSE_GETFILENAMELIST (off),

96
JSE_GLOBAL_CACHE_SIZE

(10), 92
JSE_HTML_COMMENT_STYLE

(off), 95
JSE_INCLUDE (on), 96
JSE_INFREQUENT_COUNT

(5000), 91
JSE_INLINES (off), 92
JSE_MAIN_ARGC_ARGV (on),

97
JSE_MILLENIUM (off), 97
JSE_MULTIPLE_GLOBAL (on),

91
JSE_NAMED_PARAMS (on), 97
JSE_NEVER_FREE (off), 98
JSE_OBJECTDATA (on), 96
JSE_ONE_STRING_TABLE (off,

on if SE_SHARED_OBJECTS is
defined), 91

JSE_OPERATOR_OVERLOADIN
G (on), 96

JSE_PACK_OBJECTS (off), 93

JSE_PER_OBJECT_CACHE (on,
off if JSE_MIN_MEMORY is
on), 93

JSE_PER_OBJECT_MISS_CACH
E (on, off if
JSE_MIN_MEMORY is on), 93

JSE_PROTOTYPES (on), 94
JSE_REFCOUNT (off), 92
JSE_REGEXP_LITERALS (on), 95
JSE_SAVE_FUNCTION_TEXT

(on, off if JSE_MIN_MEMORY
is on or JSE_COMPILER is off),
94

JSE_SECUREJSE (on), 97
JSE_SHORT_RESOURCE (off), 91
JSE_TASK_SCHEDULER (on), 96
JSE_TIMEZONE_GLOBAL (off),

97
JSE_TOKENDST (on), 96
JSE_TOKENSRC (on), 95
JSE_TOLOCALEDATE_FUNCTI

ON (off), 97
JSE_TOOLKIT_APPSOURCE

(on), 94
JSE_TOSOURCE (on), 97
JSE_TRACK_OBJECT_USE (off),

98
JSE_TRAP_NOWHERE (off), 92
Jsedebug.Log, 13
jseSecurityGuard, 157
jseSecurityInit, 155
jseSecurityTerm, 156
K
kbhit(), 212
kill(), 367
L
labs(), 261
lastIndex, 317
lastIndexOf(), 359
lastMatch, 322
lastParen, 323
ldexp(), 261
ldiv(), 262
leftContext, 323
length, array, 179
Lifetimes, 53
Line feed, 315
LIST OF MEMBER SPECIFIERS,

24

Nombas ScriptEase ISDK/Java 5.01 397

Math.PI, 292
Math.pow(), 296

Object class, 146
OBJECT CLASSES, 57

Literal strings and assignments, 147
Literal strings and comparisons, 147
Literal strings and parameters, 148
Literal strings and returns, 148
Literal Strings and switch

statements, 148
literals, 309
LN10, 291
LN2, 291
localeCompare(), 359
localtime(), 217
log(), 262, 295
log10(), 262
LOG10E, 291
LOG2E, 291
Logical operators and conditional

expressions, 120
look ahead, 314
lower case, 365
lower case\:locale, 364
M
m, 310
Macros, 153
main() function, 135
match, 309
match(), 360
Math, 257
Math methods, 380
Math Object, 291
Math object static methods, 292
Math object static properties, 291
Math properties, 381
Math.abs(), 292
Math.acos(), 292
Math.asin(), 293
Math.atan(), 293
Math.atan2(), 293
Math.ceil(), 294
Math.cos(), 294
Math.E, 291
Math.exp(), 294
Math.floor(), 295
Math.LN10, 291
Math.LN2, 291
Math.log(), 295
Math.LOG10E, 291
Math.LOG2E, 291
Math.max(), 295
Math.min(), 296

Math.random(), 297
Math.round(), 297
Math.sin(), 297
Math.sqrt(), 298
Math.SQRT1_2, 292
Math.SQRT2, 292
Math.tan(), 298
Mathematical operators, 118
max(), 262, 295
maximal match, 312
memchr(), 255
memcmp(), 256
memcpy(), 256
memmove(), 257
Memory manipulation, 255
memset(), 257
Methods - assigning functions to

objects, 139
Methods for data, 375
Methods for strings, 383
min(), 262, 296
minimal match, 312
mkdir(), 235
mktime(), 218
mode\:file read/write, 224
modf(), 263
MODIFYING VARIABLES, 32
multiline, 317
N
n, 314, 315
NaN, 116
NDEBUG, 98
Negative look ahead group, 315
newline, 315
non-greedy match, 312
null, 115
Number constants, 116
number conversion, 300
Number Object, 299
Number object instance methods,

299
Number toExponential(), 299
Number toFixed(), 299
Number toLocaleString(), 299
Number toPrecision(), 299
Number toString(), 300
Number type, 112
O
OBJECT ACCESS ROUTINES, 77

Nombas ScriptEase ISDK/Java 5.01 398

Program your application to invoke
ScriptEase, 10

RegExp.multiline, 317
RegExp.rightContext, 323

Object hasOwnProperty(), 302
Object isPrototypeOf(), 302
Object Object, 301
Object object instance methods, 301
Object operator, 117
Object propertyIsEnumerable(), 303
Object prototypes, 139
Object toLocaleString(), 303
Object toSource(), 303
Object toString(), 304
Object type, 114
Object valueOf(), 305
Object(), 301
Objects, 136
Objects and Classes, 57
Octal, 113, 315
offset(), 285
Operators, 117
order of precedence, 316
OTHER CONSIDERATIONS, 103
outport(), 285
outportw(), 285
outside of functions, 152
P
P_SWAP, 222
PARAMS, 39
parse(), 281
parseFloat(), 167
parseInt(), 167
pass\:by reference, 114
pass\:by value, 112
Passing information to functions,

132
Passing variables by reference, 150
pattern, 309
PERL, 307
perror(), 223
PI, 292
pointer, 151
Pointer operator * and address

operator &, 151
pop(), 181
Positive look ahead group, 314
pow(), 263, 296
precedence, 316
Predefining objects with constructor

functions, 137
Primitive data types, 112, 151
printf(), 209

Prohibited identifiers, 109
Properties and methods of basic data

types, 117
propertyIsEnumerable(), 303
Prototype property, 386
push(), 182
put(), 187
putc(), 232
putchar(), 213
putenv(), 238
puts(), 213
putString(), 203
putValue(), 204
Q
qsort(), 237
quotes, 355
quotes\:back, 355
R
r, 315
radix, 300
rand(), 263
random(), 297
Rebuild the ScriptEase interpreter

and libraries, 10
reference\:assignment by, 114
reference\:pass by, 114
RegExp compile(), 319
RegExp exec(), 320
RegExp global, 316
RegExp ignoreCase, 317
RegExp lastIndex, 317
RegExp multiline, 317
RegExp Object, 307
RegExp object instance methods,

319
RegExp object instance properties,

316
RegExp object static properties, 322
RegExp returned array properties,

318
RegExp source, 318
RegExp test(), 321
RegExp(), 319
RegExp.$_, 322
RegExp.$n, 322
RegExp.input, 322
RegExp.lastMatch, 322
RegExp.lastParen, 323
RegExp.leftContext, 323

Nombas ScriptEase ISDK/Java 5.01 399

Routines for file/stream I/O, 380
Routines for general use, 380

SE.INFREQUENT_CONT, 38
SE.INIT_IMPLICIT_PARENTS, 39

RegExp["$&"], 322
RegExp["$+"], 323
Regular expression anchor

characters, 313
Regular expression attributes, 309
Regular expression character

classes, 313
Regular expression characters, 309
Regular expression escape

sequences, 315
Regular expression literals, 309
regular expression pattern, 309
Regular expression precedence, 316
Regular expression reference

characters, 314
Regular expression repetition

characters, 311
Regular expression replacement

characters, 316
Regular expression special

characters, 310
Regular expression summary, 310
Regular expression syntax, 309
Regular expressions, 307
remove(), 233
rename(), 233
repetition specifier, 312
replace(), 361
replacement characters, 316
reserved, 109
reserved\:identifiers, 109
reverse(), 182
rewind(), 233
rightContext, 323
rmdir(), 236
round(), 297
Routines for arrays, 373
Routines for Buffers, 373
Routines for character classification,

374
Routines for console I/O, 374
Routines for conversion/casting, 374
Routines for data/variables, 375
Routines for date/time, 375
Routines for diagnostic/error, 376
Routines for directory, file, and OS,

377
Routines for DOS, 379
Routines for execution control, 379

Routines for math, 380
Routines for memory manipulation,

382
Routines for miscellaneous, 382
Routines for objects and functions,

382
Routines for regular expressions,

382
Routines for strings/byte arrays, 383
Routines for UNIX, 384
Routines for variable argument lists,

384
rsprintf(), 242
rvsprintf(), 242
S
s, 311, 313
Sample applications, 9
Sample Script, 159
scanf(), 213
Scientific floats, 113
SCOPING, 41
SCOPING - FUNCTIONS, 41
SCOPING - GLOBAL CODE, 41
Script execution, 220
Script Execution Topics, 35
SCRIPTEASE FEATURE

CUSTOMIZATION, 95
ScriptEase ISDK for Java, 1
ScriptEase JavaScript, 105
ScriptEase versus C language, 143
SE.ARGS, 27
SE.AT_EXIT, 30
SE.CALL_MAIN, 37
SE.COMPOUND_MEM(String)SE.

COMPOUND_UNIMEM(String)
, 24

SE.CONSTRUCTOR, 38
SE.DEFAULT, 39
SE.DEFINES, 28
SE.ERROR, 29
SE.EXIT, 29
SE.EXIT_LEVEL, 38
SE.FILENAMES, 30
SE.FUNCS_ONLY, 37
SE.FUNCTION_TEXT, 26
SE.GLOBAL, 26
SE.HIDDEN_MEM(String)SE.HID

DEN_UNIMEM(String), 24
SE.INDEX(num), 25

Nombas ScriptEase ISDK/Java 5.01 400

if JSE_MIN_MEMORY is on),
93

SElib.bound(), 325
SElib.breakWindow(), 326

SE.INIT_IMPLICIT_THIS, 39
SE.LIBRARY_DATA, 26
SE.MEM(String)SE.UNIMEM(Stri

ng), 24
SE.NAMED_PARAMS, 39
SE.NEW_DEFINES, 38
SE.NEW_GLOBALS, 37
SE.NO_INHERIT, 36
SE.NO_LIBRARIES, 37
SE.NO_OLD_DEFINES, 38
SE.NOWHERE, 28
SE.NUM(int), 24
SE.OBJECT_DATA, 26
SE.REPORT_ERRORS, 38
SE.RETURN, 29
SE.RETURN EXPLAINED, 33
SE.SCOPE, 28
SE.SELF, 31
SE.SERVICES, 31
SE.SI_ACTIVATION, 31
SE.SI_DATA, 31
SE.SI_DEPTH, 31
SE.SI_FILENAME, 31
SE.SI_FUNCNAME, 30
SE.SI_FUNCTION, 30
SE.SI_GLOBAL, 30
SE.SI_LINENUM, 31
SE.SI_SCOPECHAIN, 31
SE.SI_THIS, 30
SE.SI_TRAPPED, 30
SE.SI_WRAPPER, 30
SE.STACK_INFO(depth), 30
SE.START, 38
SE.STOCK(JseStrID), 25
SE.STR(int), 25
SE.STRUCT(SEMemberDesc), 25
SE.SUSPEND, 29
SE.TEMP, 28
SE.THIS, 27
SE.VALUE, 25
SE.WRAPPER_TEMP, 28
SE.YIELD, 29
SE_ACTIVATION, 27
SE_APIVARNAME_POOL_SIZE

(5), 93
SE_ECMA_RETURNS (on), 95
SE_MAX_STACK_INFO_DEPTH

(64), 94
SE_MEM_POOL_SIZE (1024, 128

SE_OBJ_POOL_SIZE (1024, 128 if
JSE_MIN_MEMORY is on), 93

SE_STACK_SIZE (2048, 512 if
JSE_MIN_MEMORY is on), 94

seAddLibTable, 67
search(), 362
seAssign, 86
seCloneInternalString, 70
seCloneObject, 73
seCompare, 76
seConvert, 84
seCreateBlankContext, 66
seCreateContext, 65
seCreateFiber, 66
Security, 155
securityVariable, 158
seDelete, 81
seDestroyContext, 67
seEnableDynamicMethod, 83
seEnd, 88
seEval, 88
seExec, 88
seExists, 74
seExistsDirect, 74
seFreeBytecodes, 89
seFreeInternalString, 70
seFreeObject, 72
seGarbageCollect, 67
seGetAttribs, 75
seGetBoolEx, 71
seGetContextParams, 66
seGetInternalString, 71
seGetName, 69
seGetNumberEx, 71
seGetObjectEx, 71
seGetPointerEx, 71
seGetStringEx, 71
seGetType, 74
segment(), 286
seInitialize, 65
seInternalizeString, 69
seInternalizeStringHidden, 69
seIsArray, 78
seIsBreakpoint, 89
seIsFunc, 77
SElib, 143
SElib Object, 325
SElib object static methods, 325
SElib.baseWindowFunction(), 325

Nombas ScriptEase ISDK/Java 5.01 401

seSetArray, 78
seSetAttribs, 85

strcat(), 244
strchr(), 244

SElib.compileScript(), 326
SElib.directory(), 329
SElib.doWindows(), 331
SElib.dynamicLink(), 190, 350
SElib.dynamicLink() - for OS/2,

353
SElib.dynamicLink() - for Win16,

352
SElib.dynamicLink() - for Win32,

350
SElib.fullpath(), 332
SElib.getObjectProperties(), 141,

333
SElib.inSecurity(), 334
SElib.instance(), 334
SElib.interpret(), 334
SElib.interpretInNewThread(), 336
SElib.makeWindow(), 337
SElib.messageFilter(), 339
SElib.multiTask(), 340
SElib.peek(), 340
SElib.pointer(), 341
SElib.poke(), 342
SElib.ShellFilterCharacter(), 343
SElib.ShellFilterCommand(), 344
SElib.spawn(), 344
SElib.splitFilename(), 346
SElib.subclassWindow(), 347
SElib.suspend(), 348
SElib.version(), 349
SElib.windowList(), 349
SELIBRARY INTERFACE, 49
seLockObject, 74
seMakeObject, 81
seMakeStack, 81
semicolons, 152
seMustAssign, 86
seObjectMemberCount, 77
seObjectMemberName, 77
sePrecompile, 89
sePutBoolEx, 79
sePutNullEx, 79
sePutNumberEx, 79
sePutObjectEx, 79
sePutPointerEx, 79
sePutStringEx, 79
sePutUndefinedEx, 79
sePutWrapper, 82
sequential data, 177

seSetCallbacks, 83
seShareReadObject, 78
setArrayLength(), 168
setAttributes(), 169
setDate(day), 274
seTerminate, 65
setFullYear(), 274
setgid(), 368
setHours(), 275
seThrow, 87
setMilliseconds(), 275
setMinutes(), 275
setMonth(), 275
setSeconds(), 276
setsid(), 368
setTime(), 276
setuid(), 368
setUTCDate(), 276
setUTCFullYear(), 276
setUTCHours(), 277
setUTCMilliseconds(), 277
setUTCMinutes(), 277
setUTCMonth(), 278
setUTCSeconds(), 278
setYear(), 278
seVarParse, 68
seWeakLockObject, 73
shift(), 183
Simulated named parameters, 133
sin(), 263, 297
Single quote, 355
sinh(), 264
size(), 189
slash, 309
slice(), 183, 362
sort(), 184
Sorting, 236
source, 318
special characters, 309
Special values, 115
Specifying Security, 158
splice(), 185
split(), 363
sprintf(), 243
sqrt(), 264, 298
SQRT1_2, 292
SQRT2, 292
srand(), 264
sscanf(), 243

Nombas ScriptEase ISDK/Java 5.01 402

strncmpi(), 248
strncpy(), 248

ToBoolean(), 170
ToBuffer(), 171

strcmp(), 245
strcmpi(), 245
strcpy(), 245
strcspn(), 246
strerror(), 223
strftime(), 219
stricmp(), 246
String as data type, 355
String as object, 356
String charAt(), 357
String charCodeAt(), 357
String concat(), 357
string data, 194
string data\:dynamicLink, 194
string data\:in a buffer, 194
String indexOf(), 358
String instance methods sample, 386
String instance properties sample,

385
String lastIndexOf(), 359
String length, 356
String localeCompare(), 359
String manipulation, 242
String match(), 359
String Object, 355
String object instance methods, 356
String object instance properties,

356
String object static methods, 365
String properties, 384
String replace(), 361
String search(), 362
String slice(), 362
String split(), 363
String static methods sample, 386
String static properties sample, 386
String substr(), 363
String substring(), 364
String toLocaleLowerCase(), 364
String toLocaleUpperCase(), 365
String toLowerCase(), 365
String toUpperCase(), 365
String type, 114
String(), 356
String.fromCharCode(), 365
strlen(), 247
strlwr(), 247
strncat(), 247
strncmp(), 248

strnicmp(), 249
strpbrk(), 249
strrchr(), 250
strspn(), 250
strstr(), 250
strstri(), 251
strtod(), 251
strtok(), 252
strtol(), 253
structure data types, 192
structure definitions, 187
Structures, 149
strupr(), 254
subBuffer(), 205
substr(), 363
substring(), 364
switch expression, 149
switch, case, and default, 127
SWORD16, 190
SWORD24, 190
SWORD32, 190
SWORD8, 190
system(), 222
T
t, 315
tan(), 264, 298
tanh(), 264
Terminology for objects, 136
test(), 321
TEXT_ARGS, STACK_ARGS, 36
THE ARGUMENTS, 44
THE FUNCTION HEADER, 43
The Nombas Preprocessor, 10
The Preprocessor Commands, 10
THE RETURN, 45
The ScriptEase Context Parameter

Interfaces, 16
THE SELIBRARYMANAGER

CLASS, 50
The SEToLocaleHandler interface,

51
throw, 129
Time functions, 216
time(), 220
tmpfile(), 233
tmpnam(), 234
TO_INTERPRET, INTERP_TYPE,

35
toascii(), 254

Nombas ScriptEase ISDK/Java 5.01 403

upper case\:locale, 365
USING SE.START, 99

ToBytes(), 171
toDateString(), 278
toGMTString(), 279
ToInt32(), 171
ToInteger(, 172
Token replacement macros, 153
toLocaleDateString(), 279
toLocaleLowerCase(), 364
toLocaleString(), 279, 299, 303
toLocaleTimeString(), 279
tolower(), 254
toLowerCase(), 365
ToNumber(), 172
ToObject(), 172
ToPrimitive(), 173
ToSource(), 173
toString(), 117, 174, 185, 300
toSystem(), 280
toTimeString(), 280
ToUint16(), 175
ToUint32(), 175
toupper(), 254
toUpperCase(), 365
toUTCString(), 280
try, 129
type conversion, 116, 170, 171, 172,

173, 174, 175, 301
Type declarations, 153
typedef, 192
typeof operator, 124
U
undefine(), 175
undefined, 115, 175
unescape(), 175
ungetc(), 234
unicode, 200
Unix Object, 367
Unix object static methods, 367
Unix.fork(), 367
Unix.kill(), 367
Unix.setgid(), 368
Unix.setsid(), 368
Unix.setuid(), 368
Unix.wait(), 369
Unix.waitpid(), 369
Unnecessary tokens, 152
Unpacking ScriptEase:ISDK/Java, 9
unshift(), 186
upper case, 365

USING SE.TEMP AND
SE.WRAPPER_TEMP, 33

Using seEval, 35
Using the Preprocessor, 12
UTC(), 282
UWORD16, 190
UWORD24, 190
UWORD32, 190
UWORD8, 190
V
v, 315
va_arg(), 265
va_end(), 266
va_start(), 266
value\:assignment by, 112
value\:pass by, 112
valueOf(), 117
Variable argument lists, 265
VARIABLE LOCATING, 68
VARIABLE READING, 71
Variable scope, 110
VARIABLE WRITING, 79
Variables, 109
Vertical tab, 315
vfprintf(), 267
void, 175
vprintf(), 214
vscanf(), 215
vsprintf(), 255
vsscanf(), 267
W
w, 313
wait(), 369
waitpid(), 369
while, 125
White space characters, 106
Win32 API, 191
with, 141
word boundary, 314
Working with Variables, 23
Wrapper functions, 43
Wrapper Functions And Security,

159
WRAPPER TABLE METHODS

AND OBJECT, 47
WRAPPER TABLES, 45
Writing a Security Manager, 155
X
x##, 315

Y
YIELDING AND SUSPENDING,

103

Z
Z, 314

Nombas ScriptEase ISDK/Java 5.01 404

	Table of Contents
	Introduction
	Integrating the ISDK/Java
	Unpacking ScriptEase:ISDK/Java
	Sample applications
	Integration Basics
	
	Edit your jseopt.jh
	Rebuild the ScriptEase interpreter and libraries
	Program your application to invoke ScriptEase
	Add the ScriptEase classes to your CLASSPATH

	The Nombas Preprocessor
	The Preprocessor Commands
	#include <filename>|”filename”
	#define <name> <body>|<name>(<args>) <body>�#undef <name>
	#if <constant expression>�#elif <constant expression>�#ifdef <name>�#ifndef <name>�#else�#endif
	#error <message>

	Using the Preprocessor

	Advanced Integration - Debugging
	Jsedebug.Log

	Initialization and Contexts
	The ScriptEase Context Parameter Interfaces
	interface: SEContextParams
	interface: SEErrorHandler
	interface: SEErrorFunction
	interface: SEContinueFunction
	interface: SEFileLocation
	interface: SEGetSourceFunction
	interface: SEGetResourceFunction
	interface: SEPrepareContext

	Working with Variables
	IDENTIFYING A VARIABLE
	LIST OF MEMBER SPECIFIERS
	SE.MEM(String)�SE.UNIMEM(String)
	SE.HIDDEN_MEM(String)�SE.HIDDEN_UNIMEM(String)
	SE.COMPOUND_MEM(String)�SE.COMPOUND_UNIMEM(String)
	SE.NUM(int)
	SE.STR(int)
	SE.INDEX(num)
	SE.STRUCT(SEMemberDesc)
	SE.VALUE
	SE.STOCK(JseStrID)
	SE.FUNCTION_TEXT
	SE.OBJECT_DATA
	SE.LIBRARY_DATA

	LIST OF STOCK OBJECTS
	SE.GLOBAL
	SE.ARGS
	SE_ACTIVATION
	SE.THIS
	SE.SCOPE
	SE.TEMP
	SE.WRAPPER_TEMP
	SE.NOWHERE
	SE.DEFINES
	SE.RETURN
	SE.ERROR
	SE.EXIT
	SE.YIELD
	SE.SUSPEND

	SE.AT_EXIT
	SE.FILENAMES
	SE.STACK_INFO(depth)
	SE.SI_WRAPPER
	SE.SI_FUNCTION
	SE.SI_FUNCNAME
	SE.SI_TRAPPED
	SE.SI_GLOBAL
	SE.SI_THIS
	SE.SI_DATA
	SE.SI_FILENAME
	SE.SI_LINENUM
	SE.SI_ACTIVATION
	SE.SI_SCOPECHAIN
	SE.SI_DEPTH

	SE.SERVICES
	SE.SELF

	EXAMINING VARIABLES
	MODIFYING VARIABLES
	USING SE.TEMP AND SE.WRAPPER_TEMP
	SE.RETURN EXPLAINED

	Script Execution Topics
	Using seEval
	TO_INTERPRET, INTERP_TYPE
	TEXT_ARGS, STACK_ARGS
	FLAGS
	SE.NO_INHERIT
	SE.NO_LIBRARIES
	SE.NEW_GLOBALS
	SE.CALL_MAIN
	SE.FUNCS_ONLY
	SE.EXIT_LEVEL
	SE.NEW_DEFINES
	SE.NO_OLD_DEFINES
	SE.REPORT_ERRORS
	SE.INFREQUENT_CONT
	SE.START
	SE.CONSTRUCTOR
	SE.NAMED_PARAMS
	SE.INIT_IMPLICIT_THIS
	SE.INIT_IMPLICIT_PARENTS
	SE.DEFAULT

	PARAMS

	FUNCTION GLOBALS
	SCOPING
	SCOPING - GLOBAL CODE
	SCOPING - FUNCTIONS

	CONTINUE FUNCTION

	Wrapper functions
	SELIBRARY INTERFACE
	THE SELIBRARYMANAGER CLASS
	The SEToLocaleHandler interface

	Lifetimes
	Objects and Classes
	OBJECT CLASSES
	DYNAMIC OBJECTS
	interface: SEGetCallback
	interface: SEPutCallback
	interface: SEHasPropCallback
	interface: SECanPutCallback
	interface: SEDeletePropCallback
	interface: SEDefaultValueCallback
	interface: SEOperatorOverloadCallback
	inteface: SEGetByIndexCallback
	interface: SEGetNameByIndexCallback
	interface: SEMaxIndexCallback

	FUNCTION REDIRECTION

	API Function List
	INITIALIZATION/CONTEXT CREATION
	VARIABLE LOCATING
	VARIABLE READING
	OBJECT ACCESS ROUTINES
	VARIABLE WRITING
	sePutObjectEx

	EXECUTING SCRIPTS

	Core Customization Topics
	CORE CUSTOMIZATION
	JSE_MULTIPLE_GLOBAL (on)
	JSE_ONE_STRING_TABLE (off, on if SE_SHARED_OBJECTS is defined)
	JSE_INFREQUENT_COUNT (5000)
	JSE_GET_RESOURCE (off)
	JSE_SHORT_RESOURCE (off)
	JSE_TRAP_NOWHERE (off)
	JSE_INLINES (off)
	JSE_PEEPHOLE_OPTIMIZER (on)
	JSE_CACHE_GLOBAL_VARS (on)
	JSE_GLOBAL_CACHE_SIZE (10)
	JSE_COMPACT_LIBFUNCS (off)
	JSE_REFCOUNT (off)
	JSE_GC (on)
	SE_OBJ_POOL_SIZE (1024, 128 if JSE_MIN_MEMORY is on)
	SE_MEM_POOL_SIZE (1024, 128 if JSE_MIN_MEMORY is on)
	JSE_PACK_OBJECTS (off)
	JSE_PER_OBJECT_CACHE (on, off if JSE_MIN_MEMORY is on)
	JSE_PER_OBJECT_MISS_CACHE (on, off if JSE_MIN_MEMORY is on)
	SE_APIVARNAME_POOL_SIZE (5)
	SE_STACK_SIZE (2048, 512 if JSE_MIN_MEMORY is on)
	SE_MAX_STACK_INFO_DEPTH (64)

	FEATURE CUSTOMIZATION
	JSE_COMPILER (on)
	JSE_TOOLKIT_APPSOURCE (on)
	JSE_SAVE_FUNCTION_TEXT (on, off if JSE_MIN_MEMORY is on or JSE_COMPILER is off)
	JSE_PROTOTYPES (on)
	JSE_ALWAYS_IMPLICIT_THIS (off)
	JSE_ALWAYS_IMPLICIT_PARENTS (off)
	JSE_FUNCTION_ARGUMENTS (on)
	JSE_AUTO_OBJECT (off)
	JSE_REGEXP_LITERALS (on)
	JSE_FUNCTION_LENGTHS (on)
	JSE_HTML_COMMENT_STYLE (off)
	SE_ECMA_RETURNS (on)

	SCRIPTEASE FEATURE CUSTOMIZATION
	JSE_TOKENSRC (on)
	JSE_TOKENDST (on)
	JSE_OBJECTDATA (on)
	JSE_DYNAMIC_CALLBACKS (on)
	JSE_OPERATOR_OVERLOADING (on)
	JSE_ENABLE_DYNAMETH (off)
	JSE_GETFILENAMELIST (off)
	JSE_BREAKPOINT_TEST (off)
	JSE_TASK_SCHEDULER (on)
	JSE_INCLUDE (on)
	JSE_DEFINE (on)
	JSE_CONDITIONAL_COMPILE (on)
	JSE_SECUREJSE (on)
	JSE_MAIN_ARGC_ARGV (on)
	JSE_TOSOURCE (on)
	JSE_NAMED_PARAMS (on)
	JSE_TIMEZONE_GLOBAL (off)
	JSE_TOLOCALEDATE_FUNCTION (off)
	JSE_MILLENIUM (off)
	JSE_FLOATING_POINT (on)

	DEBUGGING CUSTOMIZATION
	NDEBUG
	JSE_TRACK_OBJECT_USE (off)
	JSE_NEVER_FREE (off)
	JSE_DONT_POOL (off)
	JSE_ALWAYS_COLLECT (off)

	Fibers and Threads
	ScriptEase JavaScript
	Basics of ScriptEase
	Case sensitivity
	White space characters
	Comments
	Expressions, statements, and blocks

	Identifiers
	Prohibited identifiers
	Identifiers to avoid
	Variables
	Variable scope
	Function identifier
	Function scope

	Data types
	Primitive data types
	Number type
	Integer
	Decimal
	Hexadecimal
	Octal

	Floating point
	Decimal floats
	Scientific floats

	Boolean type
	String type

	Composite data types
	Object type
	Array type

	Special values
	undefined
	null
	NaN
	Number constants

	Automatic type conversion
	Properties and methods of basic data types
	toString()
	valueOf()

	Operators
	Object operator
	Mathematical operators
	Basic arithmetic
	Assignment arithmetic
	Auto-increment (++) and auto-decrement (--)

	Bit operators
	Logical operators and conditional expressions
	Concatenation operator
	delete operator
	in operator
	instanceof operator
	typeof operator

	Flow decisions statements
	if
	else
	while
	do {...} while
	for
	break
	continue
	switch, case, and default
	goto and labels
	Conditional operator

	Exception handling
	Functions
	Function return statement
	Passing information to functions
	Simulated named parameters
	Function property arguments[]
	Function recursion
	Error checking for functions
	main() function

	Objects
	Terminology for objects
	Predefining objects with constructor functions
	Initializers for objects and arrays
	Methods - assigning functions to objects
	Object prototypes
	for/in
	with
	_construct(...)
	_call(...)

	ScriptEase versus C language
	Data types in C and SE
	Automatic type declaration
	Array representation
	Automatic array allocation
	Automatic and JavaScript Arrays
	Literal strings
	Literal strings and assignments
	Literal strings and comparisons
	Literal strings and parameters
	Literal strings and returns
	Literal Strings and switch statements

	Structures
	Passing variables by reference
	Pointer operator * and address operator &
	Case statements
	Initialization code which is external to functions
	Unnecessary tokens
	Macros
	Token replacement macros
	Back quote strings
	Converting existing C code to ScriptEase

	Security
	Writing a Security Manager
	jseSecurityInit
	jseSecurityTerm
	jseSecurityGuard
	securityVariable

	Specifying Security
	Wrapper Functions And Security
	Sample Script

	Internal Objects
	Global object
	Conversion or casting
	global object methods/functions

	Array object
	Creating arrays
	Initializers for arrays and objects

	Array object instance properties
	Array object instance methods

	Blob Object
	Blob object static methods
	blobDescriptor object
	blobDescriptor example

	Boolean Object
	Boolean object instance methods

	Buffer Object
	Buffer object instance properties
	Buffer object instance methods
	Buffer object static methods

	Clib Object
	Console I/O functions
	Time functions
	Script execution
	Error
	File I/O
	Directory
	Sorting
	Environment variables
	Character classification
	String manipulation
	Memory manipulation
	Math
	Variable argument lists

	Date Object
	Date object instance methods
	Date object static methods

	Dos Object
	Dos object static methods

	Function Object
	Function object instance methods

	Math Object
	Math object static properties
	Math object static methods

	Number Object
	Number object instance methods

	Object Object
	Object object instance methods

	RegExp Object
	Regular expression syntax
	Regular expression literals
	Regular expression characters
	Regular expression attributes

	Regular expression special characters
	Regular expression summary
	Regular expression repetition characters
	Regular expression character classes
	Regular expression anchor characters
	Regular expression reference characters
	Regular expression escape sequences
	Regular expression replacement characters

	Regular expression precedence
	RegExp object instance properties
	RegExp returned array properties
	RegExp object instance methods
	RegExp object static properties

	SElib Object
	SElib object static methods
	SElib.dynamicLink()

	String Object
	String as data type
	Escape sequences for characters
	Single quote
	Back quote

	String as object
	String object instance properties
	String object instance methods
	String object static methods

	Unix Object
	Unix object static methods

	Appendices
	Appendix A: Grouped Functions
	Routines for arrays
	For dynamic arrays
	For Array objects
	Array properties

	Routines for Buffers
	Buffer methods
	Buffer properties

	Routines for character classification
	Routines for console I/O
	Routines for conversion/casting
	Routines for data/variables
	Methods for data

	Routines for date/time
	Routines for diagnostic/error
	Routines for directory, file, and OS
	Routines for DOS
	Routines for execution control
	Routines for file/stream I/O
	Routines for general use
	Routines for math
	Math methods
	Math properties

	Routines for memory manipulation
	Routines for miscellaneous
	Routines for objects and functions
	Routines for regular expressions
	Routines for strings/byte arrays
	Methods for strings
	String properties

	Routines for variable argument lists
	Routines for UNIX

	Appendix B: Instance and Static Notation
	String instance properties sample
	String instance methods sample
	String static properties sample
	String static methods sample
	Prototype property

	Index

