WMLScriptEase Manual

WMLScriptEase:ISDK/C version 0.90

Copyright © 1998,1999 Nombas Incorporated. All rights reserved. No part of this manual may be copied without written
permission by Nombas Incomorated. If you would like to request permission to use aNombas logo, or any section of
this manual, please mail your request to:

Nombas Incorporated
64 Salem Street
Medford, MA 02155
USA

http://www.nombas.com/us/
All Nombas products are trademarks or registered trademarks of Nombas Incorporated. Other brand names are

trademarks or registered trademarks or their respective holders. Windows, as used in this manual, refers to Microsoft's
implementation of a windows system.

WMLScriptEase: Integration SDK 1

WMLScriptEase: Integration SDK

Thank you forusing Nombas' WMLScriptEase. The Integration SDK allows you to compile and execute WMLScript
scripts from within your C or C++ application. Written entirely in C, the WMLScriptEase ISDK provides you with a
collection of function calls for working with WMLScripts, including the ability to write wrapper functions that allow
scripts to call directly into your application. This manual will describe how to add WMLS cript capability to your
application, perform common scripting tasks, and write these wrapper functions.

This document will refer to the Wireless Application Protocol (WAP)Language Specification as provided by the WAP
Forum. Copies of this, and other W AP documents are freely available at
http://www.wapforum.com/docs/techincal .htm.

Installation and Setup

The WM LScript distribution consists of three source code directories which you are free to put anywhere on your
system that you like. These directories are named shared, compile, and interp. The remaining directories contain
documentation, sam ple makefiles, and test scripts. When you unpack the distribution, feel free to move it to the most
convenient place on your hard drive; you are not stuck with keeping it wherever it is now.

When you have finished placing it, you must determine the directory that contains the accompanying source files. We
will label this directory WML. For instance, this file will be referred to as WIL\doc\wmlscript.pdf. On Unix systems,
directories are separated by a forward slash, not a backslash so the equivalent is WIL/doc/wmlscript._pdf

The root directory to which you installed this code will have make files (or targets or projects) for some of the most
common compilerenvironments. The following instructions are helpful for building with the supplied build files or for
creating your own.

Compiler sample

You may wish to build the sample compiler. It isa command-line application that takes a script file (.ws extension),
compiles it,and writes the output to the same filename except with a .wsb extension. Since the output file is completely
portable, you can compile it on a different machine from where you want to interpret it. The file
WML/demos/compile/compile.c has the sample main() that does this compiling; you may want to look at it to see
working code when you go to integrate the ISDK into your application (described later).

To compile the wml compiler application, start a new target in your favorite C compiler environment. Predefine the
macro WML_COMPILER. You will also need to add the directories WIL/shared and WMLZinterp to the include paths
the compiler will search. The resulting executable can be run by providing the name of the file you wish to compile as
its only parameter.

Interpreter sample

A sample interpreter can be built similarly to the compiler. Howe ver, the interpreter is more p latform specific, as it
needs to know how to read various URL formats for instance. You may define the macros __ WML_WIN32__ or
__WML_UNIX__ to compile on those systems, or you may define none and implement the changes discussed in the
‘Integrating with your application’ section of this manual to build a version for a special environ ment.

When building for one of the systems described above, build the target much like you would for the compiler sample.
Define the macro for your operating system and define WML_INTERP (instead of WML_COMPILER). Compile and link the
application.

WMLScriptEase: Integration SDK 2

Compiling and Interpreting sample scripts

Now that you have the sample interpreter available, you can use it to run some of the sample scriptsincluded with the
distribution. The directory tree tests contains a number of scripts. If you have built the compiler, the sample interpreter
application uses the rule that main() is the function to be run. In a typical WMLScript application you specify both the
script module and the function to be run.

The only parameter to be given is the URL of the sample. This can be a relative URL in which it is relative to
Tile://./; in effect, you can type a filename as the parameter such as samples\lang\wrldtest._wsb. Or you can
give a complete URL such as File://c/wml/myscript.wsb or http://localhost/scripts/script.wsb.

Integrating with your application

The process to add W MLScriptEase ISDK to your application is straightforward. You need to tell your compiler where
to find the accompanying header files. On most IDEs, there will be an option to specify additional include paths. On
unix compilers, you specify the directories using the -1 command line switch, which you should add to your CFLAGS
macro. The directories to add are WIL/shared and WML/interp. You will wantto add both regardless of which
routines your application will call.

Next, you need to add the source files to your application. The WM L interpreter or compiler will be compiled directly
into your application. Y ou may need to edit some of the source files to correctly interact with your application. T his
process is described later in this manual. All of the C files in the 'shared'directory must be added. The C files in the
other two directories need to be added if you will be doing the corresponding actions; if you are compiling, you will
need those in WML/compi le and likewise if you wish to execute scripts, you will add those in WML/ interp.

Your application is now ready to make any calls to W MLScriptE ase routines.

Using the WMLScriptEase API

The W MLScriptEase API consists of two basic actions, compiling a script and executing a script.
Compiling

You compile a script using the wsCompi le() call. Its prototype is this:

ubyte *wsCompile(char *filename,wschar *buf,size_t *size);
As you can see, you pass three parameters. "Fi lename' is the not an actual file that is read, but rather it is the file that is
reported in any error messages. You pass whatever text string you want to appear in any error messages. The second
parameter, which is either characters or unicode characters depending onyour build, is the actual text of the script to be
compiled. It should be terminated by a \O character. Finally, the last parameter is an output only parameter. The return
from this function is NULL if the compile failed. In this case an error message describing the problem will have been
generated. Otherwise, a buffer isreturned. It contains the bytes that make up the standard WMLScript output format for
this script. The 'size' parameter isfilled in with the length of this buffer in bytes. You can store this scripthowever you
like, such as by writing it to a file. The outputis usable by any WMLScriptinterpreter that follows the WMLScript
specification (see the WMLScript Language Specification.)

When you are finished with the returned buffer, it must be freed. An API call is provided to do this. Its prototype is:
void wsFreeBytecodes(ubyte *buf,size_t size);

You pass it the return from the wsCompile() call along with the 'size' output parameter from that call. If the return
from wsCompile() was NULL, you should not make this call.

One typical case when using this call is to store the bytecodes in a file which you then interpret using the File:// url
syntax described below. You can also store a file containing the bytecodes on a web server and retrieve it using the
http:// url syntax. However, when implementing WMLScriptEase on an embedded system, you may have no web or
file access. In this case, you will store the bytecodes in some way of your choosing. You will need to modify the
interpreter's url parser to be able to access these stored bytecodes. All of this is described later.

WMLScriptEase: Integration SDK 3

Interpeting

Interpreting a script is more complex. You have a number of options to do this interpreting. First, you need a context
from which to interpret. A context is a data structure used internally by the W MLScriptEase interpreter. Y ou can create
as many contexts as you like. Each one is independent from the others and can interpret one script at a time. T he call to
make a new context is prototyped as follows:
wsContext wsNewContext();
The returned value is a magic cookie; you don't need to know what it means. However, a value of NULL is returned only
if a new context could not be created. T his happens when you run out of memory. If the context is not NULL, you are
ready to begin using it to interpret scripts. W hen you are done with it, you must destroy the context using this call:
void wsDeleteContext(wsContext wsc);

Modifying the context

You now have a context that can be used to interpretscripts. However, before you do so, there are several routines you
can call to modify the behavior of the context.

First, when a script is executed, by default any error is reported via a message to stderr. You can change thisbehavior
by providing your own error handling function. The following typedef shows the type your function must be:

typedef wsbool (*wsErrorHandler)(wsContext wsc,char *msg);
As you can see, you will be passed an error message and the context itoccurred in. The first 3 characters of the error
message are a unique numeric code for that type oferror (for example, 903: string not terminated.). For a list of
default error codes see WML/shared/wserror.h. You are free to display or ignore the error message in any way you
see fit. If you return False, the script will be terminated as normal for having an error occur. If you return True, the
script will continue as if no error happened. Be warned that returning True is dangerous. The script may be unable to
continue, such as when not enough memory remains.

You assign the error handler to the context by using the function prototyped as follows:

wsErrorHandler wsSetErrorHandler(wsContext wsc,wsErrorHandler
handler);

The return is the previous error handler. You can save it and restore it at a later time if you wish.

You can set up a routine to be called by the interpreter occasionally as it executes the script. This routine should return
True to keep executing the script. If it returns False, the script will be terminated. The routine should be of this type:
typedef wsbool (*wsContinueHandler)(wsContext wsc);

You install the routine using the following function:

wsContinueHandler wsSetContinueHandler(wsContext wsc,
wsContinueHandler handler,
uint32 instrs,uint32 *oldinstrs);

Like the error handler above, it returns the old continue handler as well as its instruction count so you can restore it if
desired. The instrs parameter is simply the number of bytecodes to be executed between calls to your function.
Bytecodes are conceptually very small; you can execute quite a number of them per second. Thus, you should make the
instrs parameter somewhat large. 100 or more is good, you should experiment to determine the frequency you require
for your application. If you make the number too small, your continue function will be called very often and much of the
execution time of the program will be spent calling your function.

Executing a script

Now that you have a context set up, you can execute scripts. There are several routines to interpret a script, but the
standard call is prototyped as follows:

wsvalue wslInterpURL(wsContext wsc,char *url);
The script and function you specify is loaded and executed. See the section below on WM LScript URLs for complete
information on how you use the url parameter to specify the function you wish to execute. T he return value is the result
returned by the function. Itis a standard wsvalue, a concept described fully in its own section. Itis worth reiterating here
that you must destroy this value when you finish with it. T his is fully explained below.

WMLScriptEase: Integration SDK 4

There are additional functionsto give you more control over what exactly you would like to interpret. Each is explained
fully in the WML ScriptEase API section. These are the functionswhich you can choose from:

wsvalue wslInterpScript(wsContext wsc,script handle,char
*function);

wsvalue wslInterpFunc(wsContext wsc,char *function);

wsvalue wslnterpFuncArgs(wsContext wsc,char *function,...);

wsvalue wslnterpURLArgs(wsContext wsc,char *url,...);

Once you have finished with the return value and destroyed it, the context can be used to interpret additional scripts.
Speeding repeated execution

Each time you interpret a script, that script's bytecodes must be read in, parsed, and verified. If you are interpreting a
single script and exiting, this is fine. If, however, you are making repeated calls to the same script, this is a considerable
performance penalty. You can choose to load a scriptonce and lockit inmemory. Itwill be freed later when you
explicitly release it or automatically when you close down the context. The following routines will load and then release
a loaded script:

script wsLoadScript(wsContext wsc,char *url);
void wsUnloadScript(wsContext wsc,script handle);

Although wsLoadScript() takes a URL asdescribed below, you are not allowed to include the function locator
fragment. Whenever any URL references this script, it will already be located and not needed to be loaded. You can use
the wsInterpScript() routine to directly execute functions in this script as well.

URL Syntax

For more information on the conventions for URL syntax please see W MLScript document section 9.2
(http://www._wapforum.com/docs/techincal .htm, document or visit the Wireless Application Protocol web site
at http://www.wapforum.com/ document wmlss-30-apr-98.pdf.

Customizing your WML ScriptEase interpreter

Customization of the interpreter involves two tasks. First, you need to get the code to compile on your system. T his
should be easy as the entire WMLScriptEase ISDK is written in standard ANSI C. The second process is to change the
behavior of the engine for differences in your system. For instance, URLs may not be able to refer to files and TCP-IP
connections, and the Dialogs routines may need to be mod ified to talk to your user. Each customization is described in
its own section.

Standard types

The file WIL/shared/wstypes . h determines what types correspond to the needed types. For instance, on most
systems, an intis 32-bits, so sint32 is typedefed to signed int. Perhaps an int on your system is only 16 bits long
while a long is in fact 32 bits. You need to change the corresponding typedef in this file.

The typedefs defined in WIL/shared/wstypes.h are:

wsbool
ubyte
sbyte
sint32
uint32
uintl6
sintl6
float32
wschar

Allocating memory

The file WIL/shared/wsmem._h determines how memory is allocated. It documents each of the routines called
internally. You can change these routines to force different kinds of memory to be alloced in different ways. Read this
file for full information.

WMLScriptEase: Integration SDK 5

In order to support operating environments in which memory can be important, weve defined a number of kinds of
memory allocation calls here. Y ou can change the given macros to modify the behavior of all such kinds of calls.

wsMalloc()

Generic malloc used to allocate 'large’ chunks of memory. These will be things like source files in which the item can be
arbitrarily big. N ote that many allocations through this routine will be small but the size could be very large. Only
fixed-sized items are allocated here. Ifthe item will be growing, the grow allocators are used.

wsGrowMalloc() and wsGrowRealloc()
Used to initially allocate some kind of pool that will be reallocated as needed. For example, the run-time operand stack.
wsSm allMalloc()

Used to allocate a structure (i.e. do a 'new') Although different sized-structures will be alloced, you can expect many
similar sized ones and none will be particularly big. Open-ended structures (i.e. ones that have a size element and are
alloced to some arbitrary size) will be considered to be 'growable' and alloced with the grow routines if it can change in
size, otherwise itwill be considered to be large and alloced with wsMal loc().

wsFastMalloc()

This is used exactly like wsSmal IMal loc() except it is used for the few structures that should be memory pooled.
These structures are alloced/freed/and accessed many many times. You should use the fastest memory you have
available for them and if you turn off memory pooling, be warned that you can expectthem to be malloced/freed
millions of times in a typical program's execution.

wsStringMalloc() and wsStrdup

Used to allocate a string of the given number of chars. This string will stick around for the execution of the program.
wsTempStringMalloc()

Just like wsStringMalloc() except the string is being created for a temporary purpose and will soon be freed.
wsFree(), wsStringFree(), wsGrowFree(), wsSmallFree(), ws FastFree()

Free an item alloced with the appropriate routine.

You are free to add new kinds of memory. If you make it look similar to the above, you will find it easier to keep in sync
with updates. For all structures that we allocate, they are alloced in one routine. By modifying the given routine, you can
change the way that structure is allocated. All strings are used pretty generically, and are all alloced using
wsStringMalloc() and wsTempStringMal loc(). They are used only for strings, so these are in effect the allocators
for all strings in the program.

struct wsConst - constant.c - allocateConst() uses wsSmallMalloc() .-

The standard library

The file WIL/interp/wsstdrun.c provides the wrapper functions for each of the WMLScript standard library calls.
The Dialogs and WM LBrowser libraries will likely need to be modified to correctly interact with your system. See the
section below from more information on writing wrapper functions.

Reading URLs

The file WILZinterp/wsurl .c handles all reading of urls. You may need to modify it to change existing URL types or
add new ones as appropriate for your system. This goes along with how you want to store URLs described earlier.

Default URL

You can define WS_DEFAULT_URL to be the base url that relative URLSs are relative to. This applies only to calls not
already within a script, since then the calls are relative to the script's url. If you don't define this, the default base url is
"file://_./". You could change it to, for instance, "http://localhost/".

WMLScriptEase: Integration SDK 6

Meta tags

Meta tags exist in WMLScript and are, by default ignored. However, the user may create a custom use for them. In the
file WL/compi le/wscomp.c (search on MET ANOTE:) can be found the code that reads them in. You can modify this
to do something of your choice when meta tags are found.

Floating point

You can turn off floating point by defining WS_NO_FLOAT. The behavior of W MLScriptEase when floating point is
turned off is exactly as defined in the WMLScript specification, section 14.

Writing wrapper functions

Wrapper functions are routines called by the interpreter to perform a scripting function that is implemented in C. All of
the standard WMLScript library functions are for instance implemented via wrapper functions. You may also write your
own wrap per functions to make available to the script user.

A wrapper function is declared as follows:
wsvalue wrapper(wsContext wsc,wsvalue *argv)

/* function body here */

The arguments are passed to the function in argv. These arguments are wsvalues as described later. The number of
argument values passed to each function is fixed based on the table used to add that function wrapper function to the
ISDK. Variable number of parameters are not allowed.

Every function wrapper returns a wsvalue to be the result of that function call. If NULL is be returned it is implicitly
replaced with the empty string. The body of the function is dependent on the function s purpose. Look at
WML/ interp/wsstdrun.c for samples of wrapper functions.

Adding wrapper function libraries

In order to give scripts better control over your application, you will probably want to make additional wrapper
functions callable by these scripts. This is a straightforward process thatinvolves the creation and addition of a wrapper
library to a context. The following structure allows you to define a single library wrapper function.

struct wsLibraryFunction

char *funcname; /* name of the function */
int numargs; /* number of arguments it takes */
wsWrapper wrapper; /* wrapper function to call */

The definition includes the name the script will refer to the function with, the number of arguments the function takes,
and the corresponding C code function to call. A library is an array of these structures with the lastelementhaving all of
its members set to NULL.

After you have written your wrapper functions and created a library description array, you need to add this library to the
context. You do this using the wsAddLibrary() call prototyped as:

wsbool wsAddLibrary(wsContext wsc,char *libname, struct
wsLibraryFunction *funcs);

The library isadded and given the name Iibname. This name is a URL that will be redirected to use this library.
Normally a URL loads bytecodes, in this case you specify that a reference to this URL instead refers to the wrapper
functions you provide. Any URL is acceptable, it does not have to match a standard URL type, although you could do
that. The user will access your functions using the use url syntax, for example:

use url myurl “myurl™;
or

use url myurl "http://localhost/library._wsb";

WMLScriptEase: Integration SDK 7

Modifying the standard library

The second way to make wrapper functions available is to extend the standard library with extra functions, but thisis not
recommended. If you do modify the standard library then your bytecodes will no longer match the WMLScript
Specification and therefore will not be portable with other W MLScript imp lementations.

The file WIL/shared/wsstdl ib.c enumerates the various standard functions. You must add the names and number of
arguments your functions take, either by extending an existing library or adding a new library. In the file

WML/ interp/wsstdrun.c there are corresponding tables to indicate which wrapper functions are to be called when
the function is invoked. You must extend these tables in the same way. The tables must sync up or scripts will not run
correctly.

Storing information

There will be times when you need to associate information with a particular context and retrieve it. You can associate a
single pointer with each contextand later retrieve it. This is useful to point to a particular structure that contains some
information you'd like to be able to retrieve. The following two functions are provided:

void wsSetContextData(wsContext wsc,void *data);
void *wsGetContextData(wsContext wsc);

Reporting errors

In a wrapper function, you may determine that some error condition exists. Y ou can report that to the engine using this
function:
void wsReportError(wsContext wsc,wschar *format,...);

It uses a printf format string followed by arguments. The error message is reported and the scriptterminated when you
return from the function. Any return value is ignored.

Other times, you want the scriptto exit and return a particular value, like the C library function exit() does. This
function will tell the interpreter to terminate the scriptwhen your function retums. The return from your function
becomes the return for the script.

void wsShouldExit(wsContext wsc);

Working with wsvalues

A primary task of a wrapper function isto extract the WMLScript values of its parameters and create a WMLScript
value to return as the result of the function. This is done with wsvalues. A wsvalue holds one single WMLScript value,
be it an integer, float, boolean, string, or invalid value. You can create new wsvalues, query their type, or get at the
actual value. W svalues are immutable once created.

Each wsvalue contains a particular type of data. Y ou can use this function to find out what it is:
int wsValueType(wsContext wsc,wsvalue val);

It returns one of 5 values: WS_VT_INT, WS_VT_FLOAT, WS_VT_STRING, WS_VT_BOOL, or WS_VT_INVALID. Once you
know the type, you can access its value. Only the WS_VT_INVALID has no underlying value. The following routines
access a wsvalues value. N ote that if you use the wrong extraction routine for the type of the wsvalue, you will get a
nonsensical result. Make sure to verify the type first.

sint32 wsValueGetInt(wsContext wsc,wsvalue val);
float wsValueGetFloat(wsContext wsc,wsvalue val);
wsbool wsValueGetBool (wsContext wsc,wsvalue val);
sint32 wsValueGetLength(wsContext wsc,wsvalue val);
wschar *wsValueGetString(wsContext wsc,wsvalue val);
A key conceptto a wsvalue is ownership. If you own a wsvalue, you must relinquish that ownership at some time. If you
don't, the value will never be freed and you will have a memory leak. W svalues can be generated in one of two places.
The first place are the wsvalues passed to you as parameters. Y ou do not own these. Y ou can access them, but they will
disappear when your wrapper function exits. The second place is by creating a new wsvalue. The following functions
will all create a new wsvalue that you then own.

wsvalue wsValueNewlnvalid(wsContext wsc);

wsvalue wsValueNewString(wsContext wsc,wschar *string,int length);
wsvalue wsValueNewInt(wsContext wsc,sint32 val);

wsvalue wsValueNewFloat(wsContext wsc,float val);

WMLScriptEase: Integration SDK 8

wsvalue wsValueNewBool (wsContext wsc,wsbool val);
wsvalue wsValueNewEmpty(wsContext wsc);

You must destroy these values when you are done with them since you own them. The following function will destroy a
wsvalue you own, relinquishing your ownership on it. Do not destroy a value you do not own.

void wsDestroyValue(wsContext wsc,wsvalue val);
When you return from a wrapper function, you return a wsvalue that is to be the result of the function. This is analogous
to destroying it, you are relinquishing ownership on this wsvalue. This has two consequences. First, you do not also
destroy the value. Destroying a wsvalue or returning it from a wrapper function are two different ways to relinquish
ownership of the wsvalue; choose only one. Second, since you do not own your parameters, you cannot return them. You
cannot relinquish ownership you do not have, if you do you will certainly cause the engine to crash. In this case, the
following function is provided:

wsvalue wsValueAddUser (wsContext wsc,wsvalue val);
It creates a new ownership on the given wsvalue for you. You can use it on a parameter, so that the resultis a wsvalue
identical to the parameter but which you now own. Thus, you can return the wsvalue from your wrapper function. Each
call to this routine creates a new ownership of the wsvalue. You can create more than one. For instance, if you really
wanted to, you could create a new wsvalue (giving you an ownership of it) then use wsValueAddUser () to make a
second ownership of it. Before you exit your function, you must deal with both ownerships. You might use
wsDestroyValue() to relinquish one ownership and return the wsvalue to relinquish the second.

Although these functions indicate the complexity of wsvalues, you can think of them simply. If you want to return one of
your parameters, you return the wsValueAddUser () of that parameter. If you create a wsvalue using any of the creation
functions listed above, you either destroy it using wsDestroyValue() or return it from your wrapper function.

Conversions

WMLScript defines standard ways to convert values of one type to another. They are typically applied to parameters of
the standard library functions. The following functions perform the standard conversion. They all return a new wsvalue
which you have ownership of; in effect they create a new wsvalue which is the result of the conversion. The original
source wsvalue is unchanged. The type of the returned value will always be one of the target types or WS_VT_INVALID.
The later indicates an error in converting.

wsvalue wsConvertToString(wsContext wsc,wsvalue src);
wsvalue wsConvertTolnteger(wsContext wsc,wsvalue src);
wsvalue wsConvertToBoolean(wsContext wsc,wsvalue src);
wsvalue wsConvertToFloat(wsContext wsc,wsvalue src);
wsvalue wsConvertTolntOrFloat(wsContext wsc,wsvalue src);

The last function is different in that it takes two values and converts both to ints or both to floats (using the standard
WM LScript rules). Thus, it has two output wsvalue parameters which are filled in with the resulting wsvalues. Like the
above, both of the new values are owned by you. Both values will be of WS_VT_INVALID if the conversion failed.

void wsConvertintsAndFloats(wsContext wsc,wsvalue srcl,wsvalue
src2,wsvalue *dstl,wsvalue *dst2);

WMLScriptEase: Integration SDK 9

WMLScriptEase API

Here is an alphabetical listing of all functions in the WMLScriptEase APl along with a description and usage
information.

wsAddLibrary

DESCRIPTION Adds a new library of compiled wrapper functions to the engine.

SYNTAX wsbool wsAddLibrary(wsContext wsc,char *libname,
struct wsLibraryFunction *funcs);

COMMENTS To use this function, first you need to build a table of wrapper functions. A wrapper function
itself is defined as follows:
\‘/{vsvalue wrapper (wsContext wsc,wsvalue *argv)
}
Wrapper functions are completely defined <link to manual chapter.> You build an array of
library function structures which refer to these wrapper functions and specify the number of
arguments the functions take along with their name:
struct wsLibraryFunction
char *funcname; /* name of the function */
int numargs; /* number of arguments it takes */

wsWrapper wrapper ;
/* wrapper function to call */

};
Once you've built the array of these (terminated by an entry of all NULL), call this routine to
register it. It will masquerade as the give URL name. The function table itself is retained so
you must make sure to keep it intact even after the function returns.

RETURN A boolean indicating success.

EXAMPLE The following code fragment shows how a small library named nombas may implement the
nombas#printf function.

wsvalue nombasPrintf(wsContext wsc,wsvalue *argv)

/* code for printf function goes here */

}

/* A table of the functions included, in this case just one.
*/
struct wsLibraryFunction nombasLib[] =
{
{ "printf’, 1, nombasPrintf },
{ NULL, O, NULL }
};

main()
.... initialization code here

wsAddLibrary(wsc, ""nombas' ,nombasLib)
-... interpret and termination code here

WMLScriptEase: Integration SDK 10

wsCompile

DESCRIPTION Compile a WM LScript script and return the bytecodes for it.
ubyte *wsCompile(char *filename,wschar *buf,
SYNTAX size_t *size);
COMMENTS This function takes a \O'-terminated string of characters 'buf whichis ASCIl or UNICODE

depending on the system (see WML/shared/wstypes.h.) It is compiled into bytecodes,
and returned with the size parameter having the size of the bytecodes in bytes filled in.

The Filename parameter isused only to label errors that occur; you should give the name
of the file the script is associated with or some other way the user can figure out what the
error message is referring to.

RETURN NULL if an error, else the bytecodes. W hen finished with this return, use
wsFreeBytescodes() to get rid of it.

SEE ALSO wsFreeBytecodes

wsConvertToBoolean

DESCRIPTION Converts a given wsvalue to a boolean value according to the WM LScript rules.
wsvalue wsConvertToBoolean(wsContext wsc,
SYNTAX wsvalue src);
COMMENTS Stock WM LScript conversion.
RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value

is returned (which must still be destroyed).

SEE ALSO wsConvertToString, wsConvertTolnteger, wsConvertToFloat,
wsConvertTolntO rFloat, wsConvertintsA ndFloats

wsConvertToFloat

DESCRIPTION Converts a given wsvalue to a float value according to the WMLScript rules.
wsvalue wsConvertToFloat(wsContext wsc,
SYNTAX wsvalue src);
COMMENTS Stock WM LScript conversion.
RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value

is returned (which must still be destroyed).

SEE ALSO wsConvertToString, wsConvertTolnteger, wsConvertToBoolean,
wsConvertTolntO rFloat, wsConvertintsA ndFloats

wsConvertTolnteger
DESCRIPTION Converts a given wsvalue to an integer value accord ing to the W MLScript rules.
wsvalue wsConvertTolnteger(wsContext wsc,
SYNTAX wsvalue src);
COMMENTS Stock WM LScript conversion.
RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value

is returned (which must still be destroyed).

SEE ALSO wsConvertToString, wsConvertToB oolean, wsC onvertT oFloat,
wsConvertTolntO rFloat, wsConvertintsA ndFloats

WMLScriptEase: Integration SDK 11

wsConvertTolntOrFloat

DESCRIPTION Converts a given wsvalue to an integer or float value according to the WM LScript rules.
wsvalue wsConvertTolntOrFloat(wsContext wsc,

SYNTAX wsvalue src);

COMMENTS Stock WM LScript conversion. The choice to convert to float or integer is specified in the

WM LScript specification. T he value is converted to an integer. If that is not possible, it is
converted to a float.

RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value
is returned (which must still be destroyed).

SEE ALSO wsConvertToString, wsConvertTolnteger, wsConvertToBoolean, wsConvertToF loat,
wsConvertintsAndF loats

wsConvertTolntsAndFloats

DESCRIPTION Converts the two given wsvalues to integer or float value according to the W MLScript rules.

SYNTAX void wsConvertintsAndFloats(wsContext wsc,wsvalue
srcl, wsvalue src2,
wsvalue *dstl, wsvalue *dst2);

COMMENTS Stock WM LScript conversion. The choice to convert to float or integer is specified in the
WM LScript specification. If either value is a floating point, then both are converted to float.
Otherwise, integer is tried for b oth then float for both if it fails.

RETURN None. Two new wsvalues are filled in, and must be destroyed when done. If either
conversion fails that value will be filled by an invalid value (which must still be destroyed).

SEE ALSO wsConvertToString, wsConvertTolnteger, wsConvertToBoolean, wsConvertToF loat,
wsConvertTolntOrFloat

wsConvertToString

DESCRIPTION Converts a given wsvalue to a string value according to the W MLScript rules.

SYNTAX wsvalue wsConvertToString (wg\(ﬁg?ﬁgxg Ir\(/gc ,

COMMENTS Stock WM LScript conversion.

RETURN A new wsvalue which you must destroy when done. If the conversion fails, an invalid value
is returned (which must still be destroyed).

SEE ALSO wsConvertTolnteger, wsConvertToB oolean, wsC onvertT oFloat, wsC onvertT oIntOrF loat,

wsConve rtIntsAndF loats

wsDeleteContent

DESCRIPTION Destroy a context you are done with.

SYNTAX void wsDeleteContext(wsContext wsc);

COMMENTS When you finish using a context, you use this routine to destroy itand free all associated
memory.

RETURN none

SEE ALSO wsNewContext

WMLScriptEase: Integration SDK 12

wsDestroyValue

DESCRIPTION Relinquish a wsvalue thatyou own

SYNTAX void wsDestroyValue(wsContext wsc,wsvalue val);

COMMENTS You will no longer own the given wsvalue. You can only use this on values you own, such
as values you created using one of the wsCreateXXX() functions.

RETURN none

SEE ALSO wsValueNewBool, wsValueNewFloat, wsValueNewInt, wsValueNewInvalid,
wsValueNewString

wsFreeBytecodes

DESCRIPTION Free the bytecodes returned from wsCompile().

SYNTAX void wsFreeBytecodes(ubyte *buf,size_t size);

COMMENTS When you are finished with the bytecodes returned by wsCompi le(), use this function to
discard them. The second parameter is the size (an output parameter from wsCompile()).
Don't call this function if the output was NULL.

RETURN none

SEE ALSO wsCompile

wsGetContextData

DESCRIPTION Get the saved generic pointer you associated with this context.

SYNTAX void *wsGetContextData(wsContext wsc);

COMMENTS This simple retrieves a pointer you have previously saved with wsSetContextData().
What it points to is up to you.

RETURN The saved pointer.

SEE ALSO wsSetCo ntextData

wsinterpFunc
DESCRIPTION
SYNTAX

COMMENTS

RETURN

SEE ALSO

Call a functionin the current script

wsvalue wslinterpFunc(wsContext wsc,
char *function);

This routine isidentical to wsInterpScript() except the called function is looked for in
the current script. You, thus, do not include the host part of the url, only the function, for
example: "#myfunc(l,2)"

The wsvalue result of the called function. You own it and must destroy it when you are done
with it.

wslinterpURL, wsinterpScript, wsinterpFuncArgs, wsinterpURLArgs

wsinterpFuncArgs

DESCRIPTION
SYNTAX

COMMENTS

Call a function in the current script passing wsvalue arguments.

wsvalue wslnterpFuncArgs(wsContext wsc,
char *function,...);

This routine is exactly like wsInterpFunc() in that you specify a function in the current
scriptto execute. However, you do not specify the arguments. Instead, you pass aseries of
wsvalues as arguments, terminated by NULL. These values will not be freed; when the
function returns you still own them. You specify the function name such as "#myfunc".

WMLScriptEase: Integration SDK 13

wsinterpFuncArgs

RETURN

SEE ALSO

The wsvalue result of the called function. You own it and must destroy it when you are done
with it.
wslInterpURL, wslnterpScript, wsinterpFunc, wsinterpURLArgs

wslnterpScript

DESCRIPTION
SYNTAX

COMMENTS

RETURN

SEE ALSO

Call a function in the given script.

wsvalue wslinterpScript(wsContext wsc,
script handle,
char *function);

Similar to wsinterpFunc, but instead of calling the function in the current script, you specify
the handle of the script the function is in.

The wsvalue result of the called function. You own it and must destroy it when you are done
with it.
wsinterpURL, wsinterpFunc, wsinterpFuncArgs, wsinterpURLArgs

wsinterpURL
DESCRIPTION
SYNTAX
COMMENTS

RETURN

SEE ALSO

Stock call to interpret a function in a script.
wsvalue wslInterpURL(wsContext wsc,char *url);

This is the stock interpret of a script function. It needs the host reference (http://,
file://) part of the url (or a relative version), than name of the function (separated by '#)
and any arguments in parenthesis (e.g. (4,5)).

The wsvalue result of the called function. You own it and must destroy it when you are done
with it.

wslnterpScript, wsinterpFunc, wsinterpFuncArgs, wsinterpURLArgs

wsinterpURLArgs

DESCRIPTION
SYNTAX

COMMENTS

RETURN

SEE ALSO

Call to interpret a script but passing args using wsvalues.

wsvalue wslInterpURLArgs(wsContext wsc,
char *url,...);

Identical to wsinterpURL exceptyou do not include any arguments in the URL. Instead you
include a series of wsvalues as additional parameters to this function terminated by NULL.
The wsvalue result of the called function. You own it and must destroy it when you are done
with it.

wslnterpURL, wsinterpScript, wsinterpFunc, wsinterpFuncArgs

wsLoadScript
DESCRIPTION
SYNTAX
COMMENTS

Preload a script and lock it in memory.
script wsLoadScript(wsContext wsc,char *url);

If you know you are going to be executing a number of functions ina single script, you can
load the script in once using this call and unload it when you are finished (if you don't
unload it, it automatically unloads when the context is destroyed.) You can also use the
handle to refer to this script, or you can continue to use full URLs which end up referring to
the script.

WMLScriptEase: Integration SDK 14

wsLoadScript

RETURN Script handle or NULL on failure

SEE ALSO wsUnloadScript

wsNewContext

DESCRIPTION Create and initialize a new co ntext.

SYNTAX wsContext wsNewContext();

COMMENTS Each context is capable of executing one script at a time. Typically, you will need one

context to runthe scripts for your application, butyou can have as many as you need. Each
is created by a call to this routine. You must delete the context when you are done with it
using wsDeleteContext().

RETURN The new context or NULL if not enough memory was available to create a new context.

SEE ALSO wsDeleteContext

wsReportError

DESCRIPTION Print an error message and note that an error occurred.

void wsReportError(wsContext wsc,

SYNTAX wschar *format,...);

COMMENTS This routine expects the format string to be printf-compatible. An error message is generated
and when you return from the function, the script will exit.

RETURN none

SEE ALSO wsShould Exit

wsSetContextData

DESCRIPTION Set the context's data pointer.

SYNTAX void wsSetContextData(wsContext wsc, void *data);

COMMENTS The data pointer is user defined; this routine sets the pointer, and you can later retrieve it
with wsGetContextData().

RETURN none

SEE ALSO wsGetContextData

wsSetContinueHandler

DESCRIPTION Set a function to be called periodically during execution.

typedef wsbool (*wsContinueHandler)
SYNTAX (wsContext wsc);
wsContinueHandler wsSetContinueHandler(wsContext
wsc, wsContinueHandler handler,
uint32 instrs,
uint32 *oldinstrs);

COMMENTS You continue function will be called every 'instrs' bytecodes executed. Since bytecodes
encompass very small actions, you will want to execute a number of bytecodes between calls
to your routine or the vastmajority of the time will be spent in your routine. 100, 1000, or
more depending on your needed frequency. Your routine returns a boolean that if False

causes exe cution of the script to be terminated.

WMLScriptEase: Integration SDK 15

wsSetContinueHandler

RETURN

SEE ALSO

‘oldinstrs'is filled in with the old number of instructions between calls and the old
handler is returned, both so you can restore them when done if you like.

wsSetErrorHandler

wsSetErrorHandler

DESCRIPTION
SYNTAX

COMMENTS

RETURN
SEE ALSO

Install an error handler.

typedef wsbool (*wsErrorHandler)(wsContext wsc,
char *msg);
wsErrorHandler wsSetErrorHandler(wsContext wsc,
wsErrorHandler handler);

Normally an error causes a message to be sent to the screen. If you install an error handler,
the message will be sent to itinstead. You can print it, store it to disk, or whatever. The
return is usually False, but True will cause execution to try to continue. Be warned that
this may not work. It is probably best to return False always except when you are using this
mechanism to communicate with your wrapper functions.

The last error handler if you wish to restore it.

wsSetContinueHandler

wsShouldExit
DESCRIPTION
SYNTAX

COMMENTS

RETURN
SEE ALSO

Tell the interpreter to exit.
void wsShouldExit(wsContext wsc);

The scriptwill terminate, analogous to exit() in a C program. However, the termination is
not a failure; your return value is returned to the caller when you return from this function.

none

wsReportError

wsUnloadScript

DESCRIPTION
SYNTAX
COMMENTS

RETURN
SEE ALSO

Release a script handle from wsLoadScript.
void wsUnloadScript(wsContext wsc, script handle);

The scriptwill no longer be locked in memory. Itwill be unloaded unless it is being used or
another wsLoadScript() handle to it exists.

none

wsLoadScript

wsValueAddUser

DESCRIPTION
SYNTAX
COMMENTS

RETURN
SEE ALSO

Create a new look on a wsvalue.
wsvalue wsValueAddUser (wsContext wsc,wsvalue val);

The manual chapter on wsvalues explains extensively the concept of wsvalues and locks.
This routine creates a new lock of the given wsvalue. All old locks remain.

The created lock

wsDestroyValue

WMLScriptEase: Integration SDK 16

wsValueGetBool

DESCRIPTION Extract the boolean value from a wsvalue

SYNTAX wsbool wsValueGetBool (wsContext wsc,wsvalue val);

COMMENTS This function is only valid if the wsvalue in question is of type WS_VT_BOOLEAN (see
wsValueType()). If it is not, the return will be nonsensical.

RETURN The boolean value

SEE ALSO wsValueGetlnt, wsValueGetFloat, wsValueGetString,

wsValueGetLength, wsValueType

wsValueGetFloat

DESCRIPTION Extract the float value from a wsvalue

SYNTAX float32 wsValueGetFlI oat(wg\(ig?ﬁgx\t/avlvig ,

COMMENTS This function is only valid if the wsvalue in question is of type WS_VT_FLOAT (see
wsValueType()). If it is not, the return will be nonsensical.

RETURN The float value

SEE ALSO wsValueGetlnt, wsValueGetBool, wsValueGetString, wsValueGetLength, wsValueType

wsValueGetint

DESCRIPTION Extract the integer value from a wsvalue

SYNTAX sint32 wsValueGetInt(wsContext wsc,wsvalue val);

COMMENTS This function is only valid if the wsvalue in question is of type WS_VT_INT (see
wsValueType()). If it is not, the return will be nonsensical.

RETURN The integer value

SEE ALSO wsValueGetFloat, wsValueGetBool, wsValueGetString, wsValueGetLength, wsValueType

wsValueGetLength

DESCRIPTION Get the length of the stored string

SYNTAX sint32 wsValueGetLength (wzeg?ﬁgx\sa\ﬁ? ,

COMMENTS This function is only valid if the wsvalue in question is of type WS_VT_STRING (see
wsValueType()). If it is not, the return will be nonsensical.

RETURN The length of the string in characters.

SEE ALSO wsValueGetint, wsValueGetFloat, wsValueGetBool, wsValueGetString, wsValueType

wsValueGetString

DESCRIPTION Extract the string value
wschar *wsValueGetString(wsContext wsc,
SYNTAX wsvalue val);
COMMENTS WMLScript strings can have embedded \O's in them. You use wsValueGetLength() to

find the actual length of the string. For you convenience, a \0O' is always appended to the
string. This means any returned string will always be \O'-terminated for passing to C library
functions. This is NOT counted in the string's length.

WMLScriptEase: Integration SDK 17

wsValueGetString

RETURN
SEE ALSO

The returned pointer points to memory internal to the wsvalue and is valid until the wsvalue
is destroyed. If, for instance, you get the string value of a parameter, when you exit the
wrapper function, the valid will no longer be valid.

The string value.

wsValueGetlnt, wsValueGetFloat, wsValueGetBool, wsValueGetLength, wsValueType

wsValueNew Bool

DESCRIPTION
SYNTAX
COMMENTS

RETURN
SEE ALSO

Create a new boolean wsvalue.
wsvalue wsValueNewBool (wsContext wsc,wsbool val);

This function creates a new wsvalue which is initialized with the given boolean value. You
own the wsvalue and must destroy it when you are done. Remember, wsvalues are read only.
If you directly access the wsvalue structure and change the value, you will break the
interpreter.

The new boolean value

wsValueNewEmpty, wsValueNewFloat, wsVValueNewlInt, wsVValueNewlInvalid,
wsValueNewString

wsValueNewEmpty

DESCRIPTION
SYNTAX
COMMENTS

RETURN
SEE ALSO

Create a new empty string wsvalue.
wsvalue wsValueNewEmpty(wsContext wsc);

This function creates a new wsvalue which is initialized as the empty string. You own the
wsvalue and must destroy it when you are done. Remember, wsvalues are readonly. If you
directly access the wsvalue structure and change the value, you will break the interpreter.

The new empty string wsvalue.

wsValueNewBool, wsValueNewFloat, wsValueNewlInt, wsValueNewlInvalid,
wsValueNewString

wsValueNewFloat

DESCRIPTION
SYNTAX
COMMENTS

RETURN
SEE ALSO

Create a new float wsvalue.
wsvalue wsValueNewFloat(wsContext wsc,float val);

This function creates a new wsvalue which is initialized with the given float value. You own
the wsvalue and must destroy it when you are done. Remember, wsvalues are readonly. If
you directly access the wsvalue structure and change the value, you will break the
interpreter.

The new float wsvalue.

wsValueNewBool, wsValueNewEmpty, wsValueNewlInt, wsValueNewlInvalid,
wsValueNewString

WMLScriptEase: Integration SDK 18

wsValueNew Int
DESCRIPTION
SYNTAX

COMMENTS

RETURN
SEE ALSO

Create a new integer wsvalue.
wsvalue wsValueNewlnt(wsContext wsc,sint32 val);

This function creates a new wsvalue which is initialized with the given integervalue. You
own the wsvalue and must destroy it when you are done. Remember, wsvalues are readonly.
If you directly access the wsvalue structure and change the value, you will break the
interpreter.

The new integer wsvalue.

wsValueNewBool, wsValueNewEmpty, wsValueNewFloat, wsValueNewlInvalid,
wsValueNewString

wsValueNewlInvalid

DESCRIPTION
SYNTAX
COMMENTS

RETURN
SEE ALSO

Create a new invalid wsvalue.
wsvalue wsValueNewlnvalid(wsContext wsc);

This function creates a new wsvalue which is initialized as the invalid value. You own the
wsvalue and must destroy it when you are done. Remember, wsvalues are readonly. If you
directly access the wsvalue structure and change the value, you will break the interpreter.

The new invalid value.

wsValueN ewBoo |, wsValueN ewEmpty, wsValueN ewFloat, wsV alueNew Int,
wsValueNewString

wsValueNew String

DESCRIPTION
SYNTAX

COMMENTS

RETURN
SEE ALSO

Create a new string wsvalue

wsvalue wsValueNewString(wsContext wsc,
wschar *string,
int length);
This function creates a new wsvalue which is initialized with the given string value. You
own the wsvalue and must destroy it when you are done. Remember, wsvalues are read only.
If you directly access the wsvalue structure and change the value, you will break the
interpreter.

The new string value.

wsValueN ewBoo |, wsValueN ewEmpty, wsValueN ewFloat, wsV alueNew Int,
wsValueNewString

wsValueType
DESCRIPTION
SYNTAX
COMMENTS

Get the type of the value
int wsValueType(wsContext wsc, wsvalue val);

An enumeration is defined for you which specifies the possible types a wsvalue may have:

enum wsValueTypes

WS_VT_INT = O,

WS VT_FLOAT =1,
WS_VT_STRING = 2,
WS_VT_BOOL = 3,
WS_VT_INVALID = 4

WMLScriptEase: Integration SDK 19

wsValueType

RETURN The wsvalue's type.
SEE ALSO wsValueG etint, wsValueGetFloat, wsValue GetBool, wsValue GetString, wsValueG etLength

WMLScriptEase: Integration SDK 20

